|
24 | 24 | nfft = 2**10
|
25 | 25 | d = np.sin(2 * np.pi * f0 * t)
|
26 | 26 |
|
27 |
| -FFTop = pylops.signalprocessing.FFT(dims=nt, nfft=nfft, sampling=dt, engine="numpy") |
| 27 | +FFTop = pylops.FFT(dims=nt, nfft=nfft, sampling=dt, engine="numpy") |
28 | 28 | D = FFTop * d
|
29 | 29 |
|
30 | 30 | # Adjoint = inverse for FFT
|
|
49 | 49 | # numpy in many cases but it is not inserted in the mandatory requirements of
|
50 | 50 | # PyLops. If interested to use ``FFTW`` backend, read the `fft routines`
|
51 | 51 | # section at :ref:`performance`.
|
52 |
| -FFTop = pylops.signalprocessing.FFT(dims=nt, nfft=nfft, sampling=dt, engine="fftw") |
| 52 | +FFTop = pylops.FFT(dims=nt, nfft=nfft, sampling=dt, engine="fftw") |
53 | 53 | D = FFTop * d
|
54 | 54 |
|
55 | 55 | # Adjoint = inverse for FFT
|
|
69 | 69 | ###############################################################################
|
70 | 70 | # PyLops implements a third engine (``engine='mkl_fft'``) which uses the
|
71 | 71 | # well-known `mkl_fft <https://github.com/IntelPython/mkl_fft>`_ .
|
72 |
| -FFTop = pylops.signalprocessing.FFT(dims=nt, nfft=nfft, sampling=dt, engine="mkl_fft") |
| 72 | +FFTop = pylops.FFT(dims=nt, nfft=nfft, sampling=dt, engine="mkl_fft") |
73 | 73 | D = FFTop * d
|
74 | 74 |
|
75 | 75 | # Adjoint = inverse for FFT
|
|
129 | 129 | nfft = 2**10
|
130 | 130 | d = np.outer(np.sin(2 * np.pi * f0 * t), np.arange(nx) + 1)
|
131 | 131 |
|
132 |
| -FFTop = pylops.signalprocessing.FFT2D( |
| 132 | +FFTop = pylops.FFT2D( |
133 | 133 | dims=(nt, nx), nffts=(nfft, nfft), sampling=(dt, dx)
|
134 | 134 | )
|
135 | 135 | D = FFTop * d.ravel()
|
|
170 | 170 | d = np.outer(np.sin(2 * np.pi * f0 * t), np.arange(nx) + 1)
|
171 | 171 | d = np.tile(d[:, :, np.newaxis], [1, 1, ny])
|
172 | 172 |
|
173 |
| -FFTop = pylops.signalprocessing.FFTND( |
| 173 | +FFTop = pylops.FFTND( |
174 | 174 | dims=(nt, nx, ny), nffts=(nfft, nfftk, nfftk), sampling=(dt, dx, dy)
|
175 | 175 | )
|
176 | 176 | D = FFTop * d.ravel()
|
|
0 commit comments