-
Notifications
You must be signed in to change notification settings - Fork 279
/
Copy pathadd_existing_baseyear.py
790 lines (697 loc) · 29.2 KB
/
add_existing_baseyear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
# SPDX-FileCopyrightText: Contributors to PyPSA-Eur <https://github.com/pypsa/pypsa-eur>
#
# SPDX-License-Identifier: MIT
"""
Adds existing power and heat generation capacities for initial planning
horizon.
"""
import logging
from types import SimpleNamespace
import country_converter as coco
import numpy as np
import pandas as pd
import powerplantmatching as pm
import pypsa
import xarray as xr
from _helpers import (
configure_logging,
sanitize_custom_columns,
set_scenario_config,
update_config_from_wildcards,
)
from add_electricity import sanitize_carriers
from definitions.heat_system import HeatSystem
from prepare_sector_network import cluster_heat_buses, define_spatial, prepare_costs
logger = logging.getLogger(__name__)
cc = coco.CountryConverter()
idx = pd.IndexSlice
spatial = SimpleNamespace()
def add_build_year_to_new_assets(n: pypsa.Network, baseyear: int) -> None:
"""
Add build year to new assets in the network.
Parameters
----------
n : pypsa.Network
Network to modify
baseyear : int
Year in which optimized assets are built
"""
# Give assets with lifetimes and no build year the build year baseyear
for c in n.iterate_components(["Link", "Generator", "Store"]):
assets = c.df.index[(c.df.lifetime != np.inf) & (c.df.build_year == 0)]
c.df.loc[assets, "build_year"] = baseyear
# add -baseyear to name
rename = pd.Series(c.df.index, c.df.index)
rename[assets] += f"-{str(baseyear)}"
c.df.rename(index=rename, inplace=True)
# rename time-dependent
selection = n.component_attrs[c.name].type.str.contains(
"series"
) & n.component_attrs[c.name].status.str.contains("Input")
for attr in n.component_attrs[c.name].index[selection]:
c.pnl[attr] = c.pnl[attr].rename(columns=rename)
def add_existing_renewables(
n: pypsa.Network,
costs: pd.DataFrame,
df_agg: pd.DataFrame,
countries: list[str],
) -> None:
"""
Add existing renewable capacities to conventional power plant data.
Parameters
----------
df_agg : pd.DataFrame
DataFrame containing conventional power plant data
costs : pd.DataFrame
Technology cost data with 'lifetime' column indexed by technology
n : pypsa.Network
Network containing topology and generator data
countries : list
List of country codes to consider
Returns
-------
None
Modifies df_agg in-place
"""
tech_map = {"solar": "PV", "onwind": "Onshore", "offwind-ac": "Offshore"}
irena = pm.data.IRENASTAT().powerplant.convert_country_to_alpha2()
irena = irena.query("Country in @countries")
irena = irena.groupby(["Technology", "Country", "Year"]).Capacity.sum()
irena = irena.unstack().reset_index()
for carrier, tech in tech_map.items():
df = (
irena[irena.Technology.str.contains(tech)]
.drop(columns=["Technology"])
.set_index("Country")
)
df.columns = df.columns.astype(int)
# calculate yearly differences
df.insert(loc=0, value=0.0, column="1999")
df = df.diff(axis=1).drop("1999", axis=1).clip(lower=0)
# distribute capacities among nodes according to capacity factor
# weighting with nodal_fraction
elec_buses = n.buses.index[n.buses.carrier == "AC"].union(
n.buses.index[n.buses.carrier == "DC"]
)
nodal_fraction = pd.Series(0.0, elec_buses)
for country in n.buses.loc[elec_buses, "country"].unique():
gens = n.generators.index[
(n.generators.index.str[:2] == country)
& (n.generators.carrier == carrier)
]
cfs = n.generators_t.p_max_pu[gens].mean()
cfs_key = cfs / cfs.sum()
nodal_fraction.loc[n.generators.loc[gens, "bus"]] = cfs_key.groupby(
n.generators.loc[gens, "bus"]
).sum()
nodal_df = df.loc[n.buses.loc[elec_buses, "country"]]
nodal_df.index = elec_buses
nodal_df = nodal_df.multiply(nodal_fraction, axis=0)
for year in nodal_df.columns:
for node in nodal_df.index:
name = f"{node}-{carrier}-{year}"
capacity = nodal_df.loc[node, year]
if capacity > 0.0:
cost_key = carrier.split("-")[0]
df_agg.at[name, "Fueltype"] = carrier
df_agg.at[name, "Capacity"] = capacity
df_agg.at[name, "DateIn"] = year
df_agg.at[name, "lifetime"] = costs.at[cost_key, "lifetime"]
df_agg.at[name, "DateOut"] = (
year + costs.at[cost_key, "lifetime"] - 1
)
df_agg.at[name, "bus"] = node
def add_power_capacities_installed_before_baseyear(
n: pypsa.Network,
costs: pd.DataFrame,
grouping_years: list[int],
baseyear: int,
powerplants_file: str,
countries: list[str],
capacity_threshold: float,
lifetime_values: dict[str, float],
) -> None:
"""
Add power generation capacities installed before base year.
Parameters
----------
n : pypsa.Network
Network to modify
costs : pd.DataFrame
Technology costs
grouping_years : list
Intervals to group existing capacities
baseyear : int
Base year for analysis
powerplants_file : str
Path to powerplants CSV file
countries : list
List of countries to consider
capacity_threshold : float
Minimum capacity threshold
lifetime_values : dict
Default values for missing data
"""
logger.debug(f"Adding power capacities installed before {baseyear}")
df_agg = pd.read_csv(powerplants_file, index_col=0)
rename_fuel = {
"Hard Coal": "coal",
"Lignite": "lignite",
"Nuclear": "nuclear",
"Oil": "oil",
"OCGT": "OCGT",
"CCGT": "CCGT",
"Bioenergy": "urban central solid biomass CHP",
}
# Replace Fueltype "Natural Gas" with the respective technology (OCGT or CCGT)
df_agg.loc[df_agg["Fueltype"] == "Natural Gas", "Fueltype"] = df_agg.loc[
df_agg["Fueltype"] == "Natural Gas", "Technology"
]
fueltype_to_drop = [
"Hydro",
"Wind",
"Solar",
"Geothermal",
"Waste",
"Other",
"CCGT, Thermal",
]
technology_to_drop = ["Pv", "Storage Technologies"]
# drop unused fueltypes and technologies
df_agg.drop(df_agg.index[df_agg.Fueltype.isin(fueltype_to_drop)], inplace=True)
df_agg.drop(df_agg.index[df_agg.Technology.isin(technology_to_drop)], inplace=True)
df_agg.Fueltype = df_agg.Fueltype.map(rename_fuel)
# Intermediate fix for DateIn & DateOut
# Fill missing DateIn
biomass_i = df_agg.loc[df_agg.Fueltype == "urban central solid biomass CHP"].index
mean = df_agg.loc[biomass_i, "DateIn"].mean()
df_agg.loc[biomass_i, "DateIn"] = df_agg.loc[biomass_i, "DateIn"].fillna(int(mean))
# Fill missing DateOut
dateout = df_agg.loc[biomass_i, "DateIn"] + lifetime_values["lifetime"]
df_agg.loc[biomass_i, "DateOut"] = df_agg.loc[biomass_i, "DateOut"].fillna(dateout)
# include renewables in df_agg
add_existing_renewables(
df_agg=df_agg,
costs=costs,
n=n,
countries=countries,
)
# drop assets which are already phased out / decommissioned
phased_out = df_agg[df_agg["DateOut"] < baseyear].index
df_agg.drop(phased_out, inplace=True)
newer_assets = (df_agg.DateIn > max(grouping_years)).sum()
if newer_assets:
logger.warning(
f"There are {newer_assets} assets with build year "
f"after last power grouping year {max(grouping_years)}. "
"These assets are dropped and not considered."
"Consider to redefine the grouping years to keep them."
)
to_drop = df_agg[df_agg.DateIn > max(grouping_years)].index
df_agg.drop(to_drop, inplace=True)
df_agg["grouping_year"] = np.take(
grouping_years, np.digitize(df_agg.DateIn, grouping_years, right=True)
)
# calculate (adjusted) remaining lifetime before phase-out (+1 because assuming
# phase out date at the end of the year)
df_agg["lifetime"] = df_agg.DateOut - df_agg["grouping_year"] + 1
df = df_agg.pivot_table(
index=["grouping_year", "Fueltype"],
columns="bus",
values="Capacity",
aggfunc="sum",
)
lifetime = df_agg.pivot_table(
index=["grouping_year", "Fueltype"],
columns="bus",
values="lifetime",
aggfunc="mean", # currently taken mean for clustering lifetimes
)
carrier = {
"OCGT": "gas",
"CCGT": "gas",
"coal": "coal",
"oil": "oil",
"lignite": "lignite",
"nuclear": "uranium",
"urban central solid biomass CHP": "biomass",
}
for grouping_year, generator in df.index:
# capacity is the capacity in MW at each node for this
capacity = df.loc[grouping_year, generator]
capacity = capacity[~capacity.isna()]
capacity = capacity[capacity > capacity_threshold]
suffix = "-ac" if generator == "offwind" else ""
name_suffix = f" {generator}{suffix}-{grouping_year}"
name_suffix_by = f" {generator}{suffix}-{baseyear}"
asset_i = capacity.index + name_suffix
if generator in ["solar", "onwind", "offwind-ac"]:
cost_key = generator.split("-")[0]
# to consider electricity grid connection costs or a split between
# solar utility and rooftop as well, rather take cost assumptions
# from existing network than from the cost database
capital_cost = n.generators.loc[
n.generators.carrier == generator + suffix, "capital_cost"
].mean()
marginal_cost = n.generators.loc[
n.generators.carrier == generator + suffix, "marginal_cost"
].mean()
# check if assets are already in network (e.g. for 2020)
already_build = n.generators.index.intersection(asset_i)
new_build = asset_i.difference(n.generators.index)
# this is for the year 2020
if not already_build.empty:
n.generators.loc[already_build, "p_nom"] = n.generators.loc[
already_build, "p_nom_min"
] = capacity.loc[already_build.str.replace(name_suffix, "")].values
new_capacity = capacity.loc[new_build.str.replace(name_suffix, "")]
p_max_pu = n.generators_t.p_max_pu[capacity.index + name_suffix_by]
if not new_build.empty:
n.add(
"Generator",
new_capacity.index,
suffix=name_suffix,
bus=new_capacity.index,
carrier=generator,
p_nom=new_capacity,
marginal_cost=marginal_cost,
capital_cost=capital_cost,
efficiency=costs.at[cost_key, "efficiency"],
p_max_pu=p_max_pu.rename(columns=n.generators.bus),
build_year=grouping_year,
lifetime=costs.at[cost_key, "lifetime"],
)
else:
bus0 = vars(spatial)[carrier[generator]].nodes
if "EU" not in vars(spatial)[carrier[generator]].locations:
bus0 = bus0.intersection(capacity.index + " " + carrier[generator])
# check for missing bus
missing_bus = pd.Index(bus0).difference(n.buses.index)
if not missing_bus.empty:
logger.info(f"add buses {bus0}")
n.add(
"Bus",
bus0,
carrier=generator,
location=vars(spatial)[carrier[generator]].locations,
unit="MWh_el",
)
already_build = n.links.index.intersection(asset_i)
new_build = asset_i.difference(n.links.index)
lifetime_assets = lifetime.loc[grouping_year, generator].dropna()
# this is for the year 2020
if not already_build.empty:
n.links.loc[already_build, "p_nom_min"] = capacity.loc[
already_build.str.replace(name_suffix, "")
].values
if not new_build.empty:
new_capacity = capacity.loc[new_build.str.replace(name_suffix, "")]
if generator != "urban central solid biomass CHP":
n.add(
"Link",
new_capacity.index,
suffix=name_suffix,
bus0=bus0,
bus1=new_capacity.index,
bus2="co2 atmosphere",
carrier=generator,
marginal_cost=costs.at[generator, "efficiency"]
* costs.at[generator, "VOM"], # NB: VOM is per MWel
capital_cost=costs.at[generator, "efficiency"]
* costs.at[
generator, "capital_cost"
], # NB: fixed cost is per MWel
p_nom=new_capacity / costs.at[generator, "efficiency"],
efficiency=costs.at[generator, "efficiency"],
efficiency2=costs.at[carrier[generator], "CO2 intensity"],
build_year=grouping_year,
lifetime=lifetime_assets.loc[new_capacity.index],
)
else:
key = "central solid biomass CHP"
central_heat = n.buses.query(
"carrier == 'urban central heat'"
).location.unique()
heat_buses = new_capacity.index.map(
lambda i: i + " urban central heat" if i in central_heat else ""
)
n.add(
"Link",
new_capacity.index,
suffix=name_suffix,
bus0=spatial.biomass.df.loc[new_capacity.index]["nodes"].values,
bus1=new_capacity.index,
bus2=heat_buses,
carrier=generator,
p_nom=new_capacity / costs.at[key, "efficiency"],
capital_cost=costs.at[key, "capital_cost"]
* costs.at[key, "efficiency"],
marginal_cost=costs.at[key, "VOM"],
efficiency=costs.at[key, "efficiency"],
build_year=grouping_year,
efficiency2=costs.at[key, "efficiency-heat"],
lifetime=lifetime_assets.loc[new_capacity.index],
)
# check if existing capacities are larger than technical potential
existing_large = n.generators[
n.generators["p_nom_min"] > n.generators["p_nom_max"]
].index
if len(existing_large):
logger.warning(
f"Existing capacities larger than technical potential for {existing_large},\
adjust technical potential to existing capacities"
)
n.generators.loc[existing_large, "p_nom_max"] = n.generators.loc[
existing_large, "p_nom_min"
]
def get_efficiency(
heat_system: HeatSystem,
carrier: str,
nodes: pd.Index,
efficiencies: dict[str, float],
costs: pd.DataFrame,
) -> pd.Series | float:
"""
Computes the heating system efficiency based on the sector and carrier
type.
Parameters
----------
heat_system : object
carrier : str
The type of fuel or energy carrier (e.g., 'gas', 'oil').
nodes : pandas.Series
A pandas Series containing node information used to match the heating efficiency data.
efficiencies : dict
A dictionary containing efficiency values for different carriers and sectors.
costs : pandas.DataFrame
A DataFrame containing boiler cost and efficiency data for different heating systems.
Returns
-------
efficiency : pandas.Series or float
A pandas Series mapping the efficiencies based on nodes for residential and services sectors, or a single
efficiency value for other heating systems (e.g., urban central).
Notes
-----
- For residential and services sectors, efficiency is mapped based on the nodes.
- For other sectors, the default boiler efficiency is retrieved from the `costs` database.
"""
if heat_system.value == "urban central":
boiler_costs_name = getattr(heat_system, f"{carrier}_boiler_costs_name")
efficiency = costs.at[boiler_costs_name, "efficiency"]
elif heat_system.sector.value == "residential":
key = f"{carrier} residential space efficiency"
efficiency = nodes.str[:2].map(efficiencies[key])
elif heat_system.sector.value == "services":
key = f"{carrier} services space efficiency"
efficiency = nodes.str[:2].map(efficiencies[key])
else:
raise ValueError(f"Heat system {heat_system} not defined.")
return efficiency
def add_heating_capacities_installed_before_baseyear(
n: pypsa.Network,
costs: pd.DataFrame,
baseyear: int,
grouping_years: list[int],
existing_capacities: pd.DataFrame,
heat_pump_cop: xr.DataArray,
heat_pump_source_types: dict[str, list[str]],
efficiency_file: str,
use_time_dependent_cop: bool,
default_lifetime: int,
energy_totals_year: int,
capacity_threshold: float,
use_electricity_distribution_grid: bool,
) -> None:
"""
Add heating capacities installed before base year.
Parameters
----------
n : pypsa.Network
Network to modify
costs : pd.DataFrame
Technology costs
baseyear : int
Base year for analysis
grouping_years : list
Intervals to group capacities
heat_pump_cop : xr.DataArray
Heat pump coefficients of performance
use_time_dependent_cop : bool
Use time-dependent COPs
heating_default_lifetime : int
Default lifetime for heating systems
existing_capacities : pd.DataFrame
Existing heating capacity distribution
heat_pump_source_types : dict
Heat pump sources by system type
efficiency_file : str
Path to heating efficiencies file
energy_totals_year : int
Year for energy totals
capacity_threshold : float
Minimum capacity threshold
use_electricity_distribution_grid : bool
Whether to use electricity distribution grid
"""
logger.debug(f"Adding heating capacities installed before {baseyear}")
# Load heating efficiencies
heating_efficiencies = pd.read_csv(efficiency_file, index_col=[1, 0]).loc[
energy_totals_year
]
ratios = []
valid_grouping_years = []
for heat_system in existing_capacities.columns.get_level_values(0).unique():
heat_system = HeatSystem(heat_system)
nodes = pd.Index(
n.buses.location[n.buses.index.str.contains(f"{heat_system} heat")]
)
if (
not heat_system == HeatSystem.URBAN_CENTRAL
) and use_electricity_distribution_grid:
nodes_elec = nodes + " low voltage"
else:
nodes_elec = nodes
too_large_grouping_years = [
gy for gy in grouping_years if gy >= int(baseyear)
]
if too_large_grouping_years:
logger.warning(
f"Grouping years >= baseyear are ignored. Dropping {too_large_grouping_years}."
)
valid_grouping_years = pd.Series(
[
int(grouping_year)
for grouping_year in grouping_years
if int(grouping_year) + default_lifetime > int(baseyear)
and int(grouping_year) < int(baseyear)
]
)
assert valid_grouping_years.is_monotonic_increasing
# get number of years of each interval
_years = valid_grouping_years.diff()
# Fill NA from .diff() with value for the first interval
_years[0] = valid_grouping_years[0] - baseyear + default_lifetime
# Installation is assumed to be linear for the past
ratios = _years / _years.sum()
for ratio, grouping_year in zip(ratios, valid_grouping_years):
# Add heat pumps
for heat_source in heat_pump_source_types[heat_system.system_type.value]:
costs_name = heat_system.heat_pump_costs_name(heat_source)
efficiency = (
heat_pump_cop.sel(
heat_system=heat_system.system_type.value,
heat_source=heat_source,
name=nodes,
)
.to_pandas()
.reindex(index=n.snapshots)
if use_time_dependent_cop
else costs.at[costs_name, "efficiency"]
)
n.add(
"Link",
nodes,
suffix=f" {heat_system} {heat_source} heat pump-{grouping_year}",
bus0=nodes_elec,
bus1=nodes + " " + heat_system.value + " heat",
carrier=f"{heat_system} {heat_source} heat pump",
efficiency=efficiency,
capital_cost=costs.at[costs_name, "efficiency"]
* costs.at[costs_name, "capital_cost"],
p_nom=existing_capacities.loc[
nodes, (heat_system.value, f"{heat_source} heat pump")
]
* ratio
/ costs.at[costs_name, "efficiency"],
build_year=int(grouping_year),
lifetime=costs.at[costs_name, "lifetime"],
)
# add resistive heater, gas boilers and oil boilers
n.add(
"Link",
nodes,
suffix=f" {heat_system} resistive heater-{grouping_year}",
bus0=nodes_elec,
bus1=nodes + " " + heat_system.value + " heat",
carrier=heat_system.value + " resistive heater",
efficiency=costs.at[
heat_system.resistive_heater_costs_name, "efficiency"
],
capital_cost=(
costs.at[heat_system.resistive_heater_costs_name, "efficiency"]
* costs.at[heat_system.resistive_heater_costs_name, "capital_cost"]
),
p_nom=(
existing_capacities.loc[
nodes, (heat_system.value, "resistive heater")
]
* ratio
/ costs.at[heat_system.resistive_heater_costs_name, "efficiency"]
),
build_year=int(grouping_year),
lifetime=costs.at[heat_system.resistive_heater_costs_name, "lifetime"],
)
efficiency = get_efficiency(
heat_system, "gas", nodes, heating_efficiencies, costs
)
n.add(
"Link",
nodes,
suffix=f" {heat_system} gas boiler-{grouping_year}",
bus0="EU gas" if "EU gas" in spatial.gas.nodes else nodes + " gas",
bus1=nodes + " " + heat_system.value + " heat",
bus2="co2 atmosphere",
carrier=heat_system.value + " gas boiler",
efficiency=efficiency,
efficiency2=costs.at["gas", "CO2 intensity"],
capital_cost=(
costs.at[heat_system.gas_boiler_costs_name, "efficiency"]
* costs.at[heat_system.gas_boiler_costs_name, "capital_cost"]
),
p_nom=(
existing_capacities.loc[nodes, (heat_system.value, "gas boiler")]
* ratio
/ costs.at[heat_system.gas_boiler_costs_name, "efficiency"]
),
build_year=int(grouping_year),
lifetime=costs.at[heat_system.gas_boiler_costs_name, "lifetime"],
)
efficiency = get_efficiency(
heat_system, "oil", nodes, heating_efficiencies, costs
)
n.add(
"Link",
nodes,
suffix=f" {heat_system} oil boiler-{grouping_year}",
bus0=spatial.oil.nodes,
bus1=nodes + " " + heat_system.value + " heat",
bus2="co2 atmosphere",
carrier=heat_system.value + " oil boiler",
efficiency=efficiency,
efficiency2=costs.at["oil", "CO2 intensity"],
capital_cost=costs.at[heat_system.oil_boiler_costs_name, "efficiency"]
* costs.at[heat_system.oil_boiler_costs_name, "capital_cost"],
p_nom=(
existing_capacities.loc[nodes, (heat_system.value, "oil boiler")]
* ratio
/ costs.at[heat_system.oil_boiler_costs_name, "efficiency"]
),
build_year=int(grouping_year),
lifetime=costs.at[
f"{heat_system.central_or_decentral} gas boiler", "lifetime"
],
)
# delete links with p_nom=nan corresponding to extra nodes in country
n.remove(
"Link",
[
index
for index in n.links.index.to_list()
if str(grouping_year) in index and np.isnan(n.links.p_nom[index])
],
)
# delete links with capacities below threshold
n.remove(
"Link",
[
index
for index in n.links.index.to_list()
if str(grouping_year) in index
and n.links.p_nom[index] < capacity_threshold
],
)
# %%
if __name__ == "__main__":
if "snakemake" not in globals():
from _helpers import mock_snakemake
snakemake = mock_snakemake(
"add_existing_baseyear",
configfiles="config/test/config.myopic.yaml",
clusters="5",
ll="v1.5",
opts="",
sector_opts="",
planning_horizons=2030,
)
configure_logging(snakemake) # pylint: disable=E0606
set_scenario_config(snakemake)
update_config_from_wildcards(snakemake.config, snakemake.wildcards)
options = snakemake.params.sector
baseyear = snakemake.params.baseyear
n = pypsa.Network(snakemake.input.network)
# define spatial resolution of carriers
spatial = define_spatial(n.buses[n.buses.carrier == "AC"].index, options)
add_build_year_to_new_assets(n, baseyear)
Nyears = n.snapshot_weightings.generators.sum() / 8760.0
costs = prepare_costs(
snakemake.input.costs,
snakemake.params.costs,
Nyears,
)
grouping_years_power = snakemake.params.existing_capacities["grouping_years_power"]
grouping_years_heat = snakemake.params.existing_capacities["grouping_years_heat"]
add_power_capacities_installed_before_baseyear(
n=n,
costs=costs,
grouping_years=grouping_years_power,
baseyear=baseyear,
powerplants_file=snakemake.input.powerplants,
countries=snakemake.config["countries"],
capacity_threshold=snakemake.params.existing_capacities["threshold_capacity"],
lifetime_values=snakemake.params.costs["fill_values"],
)
if options["heating"]:
# one could use baseyear here instead (but dangerous if no data)
fn = snakemake.input.heating_efficiencies
year = int(snakemake.params["energy_totals_year"])
heating_efficiencies = pd.read_csv(fn, index_col=[1, 0]).loc[year]
add_heating_capacities_installed_before_baseyear(
n=n,
costs=costs,
baseyear=baseyear,
grouping_years=grouping_years_heat,
heat_pump_cop=xr.open_dataarray(snakemake.input.cop_profiles),
use_time_dependent_cop=options["time_dep_hp_cop"],
default_lifetime=snakemake.params.existing_capacities[
"default_heating_lifetime"
],
existing_capacities=pd.read_csv(
snakemake.input.existing_heating_distribution,
header=[0, 1],
index_col=0,
),
heat_pump_source_types=snakemake.params.heat_pump_sources,
efficiency_file=snakemake.input.heating_efficiencies,
energy_totals_year=snakemake.params["energy_totals_year"],
capacity_threshold=snakemake.params.existing_capacities[
"threshold_capacity"
],
use_electricity_distribution_grid=options["electricity_distribution_grid"],
)
# Set defaults for missing missing values
if options.get("cluster_heat_buses", False):
cluster_heat_buses(n)
n.meta = dict(snakemake.config, **dict(wildcards=dict(snakemake.wildcards)))
sanitize_custom_columns(n)
sanitize_carriers(n, snakemake.config)
n.export_to_netcdf(snakemake.output[0])