From 8f9a93bd44ace90ea2b7f37e6273dd805428da3a Mon Sep 17 00:00:00 2001 From: lisazeyen Date: Tue, 30 Jan 2024 16:56:14 +0100 Subject: [PATCH 01/12] first step to integrate new data --- inputs/data_sheets_for_renewable_fuels.xlsx | Bin 244380 -> 1137736 bytes outputs/costs_2020.csv | 920 -------------------- outputs/costs_2025.csv | 920 -------------------- outputs/costs_2030.csv | 920 -------------------- outputs/costs_2035.csv | 920 -------------------- outputs/costs_2040.csv | 920 -------------------- outputs/costs_2045.csv | 920 -------------------- outputs/costs_2050.csv | 920 -------------------- scripts/compile_cost_assumptions.py | 50 +- 9 files changed, 24 insertions(+), 6466 deletions(-) delete mode 100644 outputs/costs_2020.csv delete mode 100644 outputs/costs_2025.csv delete mode 100644 outputs/costs_2030.csv delete mode 100644 outputs/costs_2035.csv delete mode 100644 outputs/costs_2040.csv delete mode 100644 outputs/costs_2045.csv delete mode 100644 outputs/costs_2050.csv diff --git a/inputs/data_sheets_for_renewable_fuels.xlsx b/inputs/data_sheets_for_renewable_fuels.xlsx index e407563fe0fdf3265d418970ea0fc9447a5af09a..b85ae2c3223abb0280dfcc6b81a73db93813c701 100644 GIT binary patch literal 1137736 zcmeFYWmp_*mp0lsgail>Ah^4`ySoK#br8TVre z@-lm&EU#3N%e>aw9v|&2#B#EuH3NlQ@Eu+xviS~lU&zY!ugYJ(_KAySAJVu3E+%#< z^!E~pGvSpan-gRCqWMJGh|dIe6{kcyzgV`#EzI>I#`Q)*Wps_t%SpWRf0Qhwqm=K+ z@9~dP-R_}yyPl;fPZj=64Yaj!_KxNgLS`p9Go}&iEwn>rkfC*FW7KZmpw_0fO$p+uD9rsHi6z*Q(7jXWN6&1S%5p;#Q2}ZkXG`nt4 ze2A;(@bL@`n0JY&FBZZSt5G_OuYOXZ{s|YdJ+Q}l*z*_#ziR~7-)y_~RlZWgQF{`7 zBSEf*dh&u$J7Nxv<%8h<%%bVTLJE)7%50lJ^6iff90yxs4n|@Qdtwe=qJFy|;$D_m zY&LOwPl4Eg$V$j|LFHhm!q@Oh@6ievsg;e@Dh4WSWO2`769S2ikWNwZ3G10*l~n2GD=*1eLu1_YQD9aN0I-T8>*scu>jhGa*&i z}lCyHMalbtzPE=O5cK|O7I@*b;FSXpkeQiMx)Np>XJ z$?*gaM`)lCZ40~z#P+(RQ2dU0FU#*`3vz6pwXbKq~+} z!2|rIYj14nKu7!X`M5zJ?tAlwPXD=Fg zDBj^mXjybn{EI1)aw}{07jJmUdUhZ!$+ItplbA}kKTo}uIlEfCJ%+}mBw`VXR{R!D z@Cv5`>KBxgriIK8s1Bo;&nSjEMPa)^z>Z z*9?_Bh9jz@Y{(FIHId8~rUP+wuc zgyczb#Ty>7wZL|*>$#)&q+~g-O?^&Dppq?Neyua0#@6Cu$9m}5C-<{+w((2IhUl?Y zvlABGFVB{kjay6uw@Q<@bxqEHzU#;kPKM!iI@IvmsT@yU6;hguaTmiaMom9BinZ9H|pwrqXbzt(_$%xy5a06}T7ndj zd@pmiJ%jM}IgAikqs{va6C(N1NbNZ&z^CaL-aI;3<3yEqTardseV1wJErn{V;!o=2 zRXJ6ra9$?2^tE*SiInzcA?A&vQD+`5L}BlDoH;?U8cWzJq>cdzfu6%a^{*!^nXlP>imrP`leCuy;|jA?&`bAmci>Xv9cSM;57P$U#N~e-P`g(Cs1?T z`uK8cta567C|kMQb}}+;m2n+11G++wh3up@h|6g|QSr)ad!qDd&AyVJ<2N5vai z9M)Nqc_&JLGlPp|UlS2hG%U{BcDWL}>a79W2ZtjLlAUR}Aw+@k;^245F;9KI#0)w_ zOg9lgzQ(#LoYv#UCE37FzrxDE3n6QU9<=Afz1K&+@HXtP>XAeDd0x1ciuLx9jXik{ zS}$2i+`4@znHv&i!o8g{XWU_UFpkaroY7gnSDiGhbR1pve#Z@!6=!gtnTRhG3#vo? zqyJ}V()Q3+Dba|~UN^AV^RZEZ2TQb}Di#f9M!$%M%XfF6ibCKHGLBBmyq8~AR44(Y1b>ne1 z2ZJkZ>ejk8mp-Xi|LjTEw_@X{xdeS7=5`9>bD7azuSjpKQ-7-GeVf)DYm2wR;1dKz z`*Tw)Q@I!lk_&z{|8hf(ut4r!AGYSYRYtFwBES;MWcibQSJQsM0&xhBAy4 zrXSDju9iFca&EIrK6R#50x{B$hly_{-xv(%@mIh8gVL-KXiOz5LA z>qSDi=g!D$2_-0TuvABDjMT6kQDRl{`rgSBY02~M+lR>YqVHy#2R~*#@Ow7Dya`a{ zHG$yeHE}U#)cM4ZErMw(Miv>*;}Yq>0$C2)lf|`ODc*3Y9uJ$>iEfQ@K!UDuV)cZ) zhHkCuHxP@#334oRp56NOu8PL_BDV}hDlm9>V7k8^H!m^(qY5Wq$(|*u*+(&`n#PHu z&3{?*qGE1Yd*#bOVHrp>f5kbIv~b{o@U*Z*a~Q_|*b;BQ!^JVyX||J$U^|_~$|(}W zay3QOa|mx%jB3yPsubEhM|qu{(~kQpNRH$1f}pDf->7pi#lop~IY~Ju!nAT!HDi|V z(d>zCyBF**!g75FGhDKPkVM|KB>i5iGbs41Ub_f@E6rLh0sOQ7~04$dGRyS0{^(#>^?InH|rcYc2!h|2bM12%gB`UP~F&7YO5sr=Mw%=M1TM+EX5|tp(1fM4l zYOl%ZI3x}t!9EIw)vjooWf@3BSX6M3>L1_cl-e%;j{S-NXNy9)3!BmOsLE>7k%Z|0 zH|C2)Lc5?9T9+sF0BfS~tyO%k55)V_vK@A-PV7qA;4?$HKFkM$3GjUcTLIV;XtOa(7n+4tk29&*^8 z>soPJ+S?9TL+ZTkl-~~c(S5a9fUcPvIB6$bBq8eZO4MVU+VHdb9DV|J4Qcy<55T`F=y~)D@HI%m5UYI>*wA~jY$@fQ>~*M24}$69VZ*x> zy*6JD4&8Ol9Ed&`@}pUk*Zb?U6YBH~;(b+*VojAGeZ_Y?dA`<@KoM-{NjXWUDd(Vf zz>uQ=<;y`-L`<*Z{>B#>gK->B+ojtR6Qp9O4W8SB6iiP$!6ug*?F7ngBb-+@(zGdm zeU;I1Do;DfoezQkE2gq^I~B$ts-Dx`-On)s!B<(VYiyr-S__58MeJiX1U`!&uBrs5 zWtpGO96rk!SPW)gcoyji>&!Ril&(W`PLLwHdg>SAn{CeBB%TR8U>`;u=7Tcww)^fL zgCZghs4#@O1|fmE2UEc?j1~7icVQN+X>+Vn=KR3x$^l2S5|YcQ((D2z7uqkQ81D)S zQ60msh&U(szT@-BTP7FFk+LPFbp(VIX*hTlz@a$)41IbFr{o0z9>>^Th(iNG4aSdL z#_n9OS1?N+RFD)WG@J^`+*e*mHJv(yi;@cCMwy%Rwt?M%-IpBi5qcIESDt1h?1%RH zCV7}0FC4(edmU?>l*ieW138_3&I%!cd3HAsE#r7;Zst#JF}Hdd^NQ?y*Ag4O*?QQa zU^@{!>{}IZYn|pynpcY^a4CF*DVfJd^R7m`BBgnD#la0{78{@E6*r(uBm->{n3%2Y5Lgcj^R`gU&D%9pIH#pa8}B9DaoX2pOvClomEN&_ZoD0rqhr0QPna2aty zwZ{|j%Ch9%f)mNat|TTvo=h1O8ifBz`TDM4kBj01BWAvp1&Cd`{K#HUTD0%rm7OFC zm-+W|7h}7hgt=Z8XCITvF@)YKb_m8!q{?G{d=?={RukupzcQgmM*7~{L66yHGX8;0 z%M6@Q#xe6Y;B!z+Dq7D3h_z>ei<7xMMzm;`Qr`%Fvnj}q**DT|KvRTyEe5*CTwQ+? z-)JJ}v!s%FJtEG&(0G?{@?Zf|a7<`2|62{iiQ~ZS&X3%rx)0CQJ+A}`rUk<+w@Mj4 zxkP#x1|dv=3!X$;)g<3}ql=P#j3kIgM{GI_`yA2~NNEuRA;Xd!Qx^%N)4)5s+1V#l zDsf4>l58Hr>B3C$S%t}*!~in;Cy6`Vc%S7MUamwKbBaVKG7-`b$#Jd(%_{R}jNqzw zYtoIgRa72X7!V4@@0#BiVTwQQu%$Y|n(hWU4S1BmPRg@Udd9^Qrb>K`542gNkKJZ7 zuTt!y*sF?NmBcJ1Zu%}u1y@l$Eh#{~_ahb!#yW@1x<-;!ApkFHPJ@9@R&#MatA|>! z>cdB=H_|=BDjZlWpbzN@(<`Tb;i6M|MiXNq)V%vy>RU$W+L5+A-0&^*uR#T$2`Ia{ zU`}e4?b;BzRtb{Ft2d*9tg(IXAw}2s*>6aXK~-E)rh~=rSHJsbRB0`HfNHCt9(ytZ zoNe@eaPM^C%y**9T$RMNXKtidue{MbDtkQMZ{T^baHvn_PkmU`c5BYV9)9!$W9tbU zT;Dt~T|cn>wYS|Van`=y5}0LQA*Z^^ETy!~IdaSj8S7+($45fiV6v+;=cDHgzJUX~cInC4T6NB|X0E*P{^;q<`Kk5!=}C$y14pj- z@o~R?!Nz)Lg{}9t+~xV9cewWW^!BEDF4g4m?N#r>?d0C2eX|<&j9kjnzUy?e<<(;= zw`0iC{?zlY(>nGRY}R6rXSv25k#yr}gWCDyosG9;h@TA|5fK-DZ5!4;eP1|~+YmrV z*_kf9_VJu=!Cr}~(G)|d)x_cTal18MI?}ll@|@?jkz0ApyqL50dfeG);VR+fxo*9u zqf$MnHN4l2?L4VD5OO)hl~sLQL(3VzWUGyE9>?1|-u7O2_RpF#4H@n{dSGjO(zD{# zU0ia7fAnd*b#A)3urxcB)4q1Q3E?}j*_p%FCZ1nuZh!VlT(ZGc(M^|o-fMZRoa5z9 zyDQeziGP&C@b3ThcpaUx(O}c@#IM>NUFEHnrsBdDa=cK|iuqIb?(4Lz)e$Gz^VzWp zkGKz3b?t?{`jF`(LG zy#9I8=PY-Zr>FeDQ9d(>9kK5<6sNcM7VmhUGvB1*4cZ&%QD9(HgFy(Ztf3V^LIkj~ z$g{@b`WjWkOm*DCSgk&Yi+Z%RE$_Zz2d?gA{0X7a-j?|WqwPD%9@tO5==Il_U708* zN+j2%_~WoBqt(}BGcW}k z%>sVeZx>0>Vxkn=QK=g+w8FZ;p^4m>Qv^lP#i;cH6`9E$nTMLUZu_t2-^WC`KnF#O z_I*|3=bV3U4;4cTt!nTQY=1s@+WZy119)E-`1o7KO~p#_qHgma`!H#&=tr;X!Nt)7 zs6MN;`3{NqCsX-4+I2xdn~N6pXc6Q_5aH5GF#RNXC%j$fs70F}08{8Z^iH?|gIUM` zj40L_2I@11fYCbGftiauMiPoBDQ-oSQ;48nZbbeJVfo1F`wUch6-Ag=MDSg_tDydY z!$p-7v8q=D@WSFRyPxPAVxXsBJ=?%y}^qX;YWX5@UAqcf<|stDv6=@AhE6 z`3s{1SH)HmUJFtTGa3++s)C_?dbcJ}NI%}~$LhOf&`qlGjx-@LOaiMd`#a&UkN-OG z!$4#pKv6$C0s=wro2!CE^NwFf7cvt={i_PuCfDFrhYIDy-Sv!GurKN&iFGgAz7XuO zWql6%F9U$V#DuZvuU7=3rk^|6wSgHK$o$7ieO<})b`&(t__JH++LqMHkBR*l4*l5V z(po)Z#c0JJB&pZi~P@%L482tQ3a^ED^vLYa$kr3yE3KeYuA;AJW6Na&s zUm<8?+xiytr%S|FBS)IEHzPhKDrFpgR;HkLw9ABA%}g4``|#@Z%Sn2DW?B@~j&=sC z>*rC-!Hkj{8h%+3KF6Q|j7STpVBki+^u#%VFF!&+FF_*o=cv-=B z!Jm2}I|R}5q4OFqGCv)KnWLh;OtCVC#)It@yf!wyui7jU#(%RJbDJzG@COL5uo$%` z$;n?NDueHzGR}Ds2_`Yfl_W<&{zc@v1i`!r4X7a6r+P4Qi+(Mc;>;JJVS{Lr$oFbX zfs9%UxTpMVtn4f$Fw9521|oz3YND!yQb0-=?A1uN5-du3%eBBy&2x_$HIJV=rSXrm;-0RJf}y9k)4U2Z|CFdP(mm~$;LFLxn9Rtq2kt_VN3$lDmTaYt zW32HLDp=cI4;&@#^?@{eV_UUUdN7_HC8;USWB|q51IedKe3Y0(j-y0m2K`m2B;T$f z^WHC^a71){ki;gk_kqIF814e3_zVt=i)^EnUH6b>baBeGvc0HA1%~NHVJU50(lY!8 zXeH?}{&dhNG^_Tjfzkrd%iHD&wo+|}@Qh$ChZQ{Cq{h0UPIrgmv@ow*)!M=J74N$B z9-w|eF4ij18%Um^2i&3?fg{IR&CydlGZsw_GQ8o|OMCYTCEYyCMY_&FJ0Flhst1k& z+>jn34gwIEWGhhFumkBeBbdcdti50ngZ?XMKzQo@p+E_WLESe7;jSsIW7?j5_f())kr5+eObH z&kOu#q9sbOM1PV3PCb`iWIwAxB5L~k>9>F=mQ2BJ#H8LFtFNv_-aTH~qZUwMkmbTg zw%balB)4&L-h5VMhBjpGgVcJPAAm<8Zpbd7Bv;h}2v*V*_nrBX2)2Wg1uSfi(LmBJ zxrOyrvTv7>Cb6{S)TjMRG#Sm8m5QTBYzwqeNG$^MdfAPqA8qTBSv`s~m*O|5v4q?< zPpX6Cj!sJEZ^$zyqNmU{WY>Y9g&{PN;2_@6kmow@;x>YK`N?>ZBS@8qICEgFb#$D z#5Omat9{tGZ1xwcDl4pFGfPD6eLt;)5+vhbF5R1+tw@|dI`4mukkrPhvMX7M9Z-*L z1pc;)p7rK)HV1SSM|bxDo35Ciyy}FyH$|EueR_a2zCnUxg0AE)#?Uf8N@yZU+SXS^ zPH02UK1g8drnlcRquO(2Ka)jN$@ks|qW)yS=maCpjJk%Ss4%3je7XFbmmtXbb)It! zoU$RX4dwEh)FqtNEr6LL+iiyQ?E%u6m{pl^g^HoQdf_lh{9V+$ zMn$Nb42hc*w1R>*HdP{B)UFvZAEhz21xS$?;FrmA@g(%1S1WN z`k0k!>nT%23I2?|xVg7{_%JAL+ux*(dyhhvbIZ{2<4=<* zgefca<-(hVnBgD_gqnmiJvPPagVea^+QO4&KQhK%IQqx8S;5rZt9C;LQ3w-=jnqYi|Tuzb>Vr2u}$VWYbp~RUZb3_ZR0$8m*=TmIp9}==CVIKKC>Rh)IeZ)-lC3^?C3~LuZnqcC zj|f^fzA3nf9XR)JIlNyz!+0G1L`+92J>UmK?ksPhs+ho)&zud2l`G=e9 z@&m*_b#o^s{bSRCBg8;+=>J`5SpKavU8)P#8>~oPbYnjBke8p))x)gb9Z(~a&0#hU zLtCJG5u2GC+0lHal$bksyhDh`7}oJGjZ|?%ae6;&JHp{`v;Ql<0n@Ub)A*7(oFW=J zlPQj>IbGC;+NPfvlbz0qmMTXd^Qc{Mg=5Rsvsuf&(45)1{y9U3`Y5dH= zuzAK|b-s>t;u2?A#FoLWMpGQ>)tbk?mqlJ;Ub~=>WYfe_s#{A5lbn>yqx>%4obq^3 zi(1Nd0FH2(@{NwZ0(=4f#mC|Y9lf1y!nk+Uk@P`z+Tq6(#3XM_Y9A9lu>VEbZlRfZ1hn)hpo87|0s(etM4zC-#w84E*CFibQ%|$|FrlWX5Fh*c6_WNwr#@05>zBk4}izN~MUVVj=2Kf^wuQ z<7>pqwu?=|$;s*MFX>Y_iBVzfj7ZrwPu=EQXj#ubmEw1iVrh%m6qTqy^|IVza*fboMi5H4S%ce@~iySuW;Hv&!b&ePZIPCCB&9dRyjwWF~{Lp zV_=r_euvGL=kjNNeQCd3!@eAe;3_C2A25s>yZ`aF%ws%m-jblHIgT~|TY2#Y>*@nk zo`QT>^d%AGjs%w~T29gyLA+s)B3>b1l((_Kp!E$N_Q8+2J(%%E8`by$+y|BvpSt=+ zREN^xnnt4K+7?C=BHD{m;j^J`u3zX4Ty|r@tCDg_%6{q3wbS0zPZTSlN9Kfsfz^2k zQWAksNkohItXWk`R0-#SuU(o>#P3ISz#}9EOmb4NMkY5O_Sqrx=yE0`7$wx#<~yLy zKYiv%g~76Y?Q%E2pE>hN%#?j_6%OSya#WUdCv9DjV+RUz-Vb}%BD*4URDrWW?U+k? zj{Y2j`foXo_22gWZ;pd_5_0v3`x*3FNQsTG?!(T% zIS%#FqYB%&ZEMSRbc;3Rp1Tms1mQFF)PGRismDA`tH8e~jypzwlC~uoLRMBXtT#sO z9eibw0`Vh8r+3#}WfWXt4Da@wM3@_W|7`@;SV_@Gt8-nLYC72;C)Ar>ssWrlit0~? zQC@i5);X;s;^(7*5*#slyxHO$eIiHaz6JsZE?4OXk{J+w=2#c@&0fHBDSv-r#jrBR zyYqj90o#AUVEAJvJyPI_UrWHO2T5ZHlE1O8B*DxBw=ZS6)msme>Xg_fFGp#?%-%J_ z7X9SohM|4L7oPv9?I(C%iO8(Mj^o42mZ^sQ%Q`9$&AM;w2VSvBbQQq!6o2wOvV^AL ztXv)Y3(qrlHL+7LL<2nUOq5(+q>=Kl>wDE-=-eFCbYLOht4TTd+_*sx8ND*Di$?6m zq_2oToQO!Sh+wbK$epb=b{F5g-SD&3udO=Ltzmf?Sn9unAcfIP`ac7K{l9?lU!2`? zt`k83^N}cIEz=!X(&djgHFN|g9G`q_5-1_6{&04A_u3}E0+NJ?;eV9z6Wq?iVA5!f z^bW(2qlq=A5M>2%F*+W(PkXK(=6-Q~751SLNi$J+Vj1HKg*M7bT0H1A1D&koP>#fi z?oz0U<_E6044knR_UXdf7&)&u`<`;fw>~b|!K-ITk5&S)e1AGS^go?l^oz4IJ*i*b zKjGJ#?`hJq!TU##Z|Rko|33qP4t|l5h(j z{l_3gI8zZvUG-H2S0gyO{v1n39+Q^_ZCLEP!kkqjoBVE z42%(EPoO^V6y*v-ad-(s>HlV|bx+yWkwq;(1Cu*lwLO$H?yO z-CRK@uCM3_T<1M7ez!Le3J{}Gq?|y0F=OH&>ygj=CbC3DQ>J+Qdi=EdXzJEcsdvPs zp}9)*ZtFjig#{nt{fmnH_mMHfztI7_#tUN#pZGlhj7dxuQUf_yAIM*3bq7||lpt~# zKV~g;aXnqh8iX6t+oV4~dCgr&M~#i5K6?O-8Y}0OtGD*(JlE`NU^mrB@m9kXzq4?` zdR{d(bqYC}p{nQ)L*f0?P-Nd1#uCKONkoz)9zHBVF^A;2F>cjDGz2MWd%$nap9n1B z*3&+p$aW&}q{ls{e%_3Ri<2U5KMyASg|GU93as1zr$x=k=p7MqVi`-s&Jqy&{sUu5 zYf!rX&(ee6?Bq`ng8l#@A4VyBOG^@ehV&8iL1!WRO45vt;OTx>Ek!W8({P!7_>4hr zKk9`sVg7I%@XTsA4e3`lfZK4g4i7{_Gh(l4{JM=oM)s}CP`o5OXtskqb~#d?Z~aiM zH&9s|@8U4Gi#u`iAsTC}N#%ppxeZJ;RX(Q++Ic;fZv$;1_4CP#@AMY-N%;c=fGs=) zKHJAc%x}Gbpjk8g;|T#W&uVDj?H=-?@fA}MO!21(|{7=gLF$0IWJ;>6|PsiZNLX+Gn=L=v<9ff7h zLH0-2nby%-U!Ps_^+Rz-`+b1$p*OIfBv#K&=(BrF@qGMC_`ssML-zO6M%^L}E zVMXAZ8~DS4g$6#aUL&pnUtkW3VuGNu5$ru+2hvnPMgRn=jD~;EhXVHDY{k_bfUX^2 za|oSay*33#AQ1G9gs_0Jn%GgISg5iLQm@5KML66{s+0DljJ$LrQ9(%q6)vg+NG=?` zJtBR0y*($KFr33+mL;nU4#l90dOMKgTJ`zau{DY9WO!)d7nheepX+5)5yIrs^oMD> zLGp9-&sKx2!Ovt5x@70?pMD*D#pd-?tFfFT+!;xWBa=(-JD4f|rqk>`kt>0+H~*vf z6E=t9-LC_(ca+K%rB9#84WlqwB=4?{u)L(D*>N)Xd{_s+(y_^;uy%JCd0s{*ev|r| z9F4~}k2`?Sqg7+6zR8fnVqv0EqSo%5B;MF5m%$tV^msoQiN$uKQ>aL?x7^%#xi=|x zetupzp!SQ)<+!iXus655TG{*IroEw5<40@&45FmBH}6W0{oVx0@%-cc^{viNhFYry zQXDSlO%L)^XW02Hn;9m8Gd8%)Nx;F@nW=`r7u*gB;+AjPuuues+n!7G$kSal~&tmcPvYV z==^+3swT*E8Y&JBg|q_Ew{EULfyjLVScFhq^Z}e=)p9f^&TO=9v#~rGtm3d7Q&rh? zZu6CO$KyryU_?CYmGy#p2Wf3o^;YlZPgratA5mo&7_H`+%ZA$gAWDgQM$))=nCwPp zD-8=9y&oIQ7wanJ^7Y%ByzUd+eV_0%IGu{(yWTUIymm^iP?JE?hSYsNHlHa=D}5{6 ziE&W(ym$I7q0gjkwLL%`{E%5id{}!*Sy(8%M3hLA6 ze7TGop3v7A^uAj`@aSr!*~>}Bv$7l&O8TD9PfJg){14%GgDWm8P{@8A%(TAI%yMcOdhtqX4#osNAp z$rjMjs5T?OT-{r$wOJWqT5580NH^`x5sOyqa3F;^03qV>8olp1oU8KkhI;*;QP^ZS z*?7gj?rAZV+aLkQ@O-ns+C%1NDRFQx_OgFwXAY@_N|~0#5}>lu`Lb!;ILK&Sr(KD~ zJ_!x50I04Xa40tx@!fr@Eoo;YSj~K;#0dCe?qVXeK zmg+5wp~HF?oX+0VWhpZ>cq_d5M=%vkn6MVCi|yeQ6--DJ$6u#q#e7p+pfk8>#*JNKU$|NkGS|>*<^c z`1mrMSV|Z?q(}z>r#akPpcyz1;l=ej_?wweD$Uf=?@yDMOq+@cq&X%@a2Fe0M!96g zjiv@QWj-n8%bw95rcX>L7Kiz9)p23g{rsq7&EhRc_PS!g&CTr)GVAvXiBuZP0Pk0zP02H zW0=hcP6ARKU_lc$dZU?qoZaXQel<89G*MGghVC($48^>`Vm-yFEwf%~U|<72SbBwz zqo_}I$8%a3&SVY%Ys_M!MU>@&pr>1umgkwAtg+IpvY4S=`2MhKq_`X#i+A(NQ~gZ@ zc)#!yZR8gP!&0+YI(N||9s(R;ok%WvXD~KW8T>@kXDmJG!|Z$7$D1=l8|mC16*V0l zg5KkwuCz5a@pNZd;oo|ugaUpLBq1UzTqdaJ|NDPw<#;UyV?uyH$$&ro*HbM<_WCa7 z)}{`0|JwK?O3(eU5Vi1UVG`-G>>b5qgZ@$5&u_3XH4%ijAX<^qP|0lmiLdy5t)}7< ztoG`eG7swnrtD1IJFkBM58+)dCsEOC)?J)Iob&K9&V`;C@A$at!W5pE3-tzH*>7?^ z6U{uOJf5`j=wQX`Iu>$^)9+&^aJ4d-40Os@MIkEl^@T;RT7APT@cZTthb2N6g7X%)q|TLVglUL&Nh7QODn>WkSFVlo<>L2l<(MRVW#LRf z^_A*d+}2p_x7zUuYWCxx8T&Xrho!Rz;@LQjAO; zqS!5e*uag9#Q7<|Au4L2h*aQ>3jf$=$lh=x0UWCdO38h~`L2v3bL^ehIy$_DjatX&>5)LPQc#~Z zPR9ef|VJ43^~*`&itpfQEykdm|v1`W^$`*JMc%2)RTo zYOUUoVT!Yx+6|T?c^`KxN8l=pI9Sk;Kjhmb`H_=wz42te7$RTh;&vh12X= znp%Kvl~ntJi!_jJC~v6%7D)2Jwoe?HxIhw?kb>5h0Y&sYZW{z~G$^r%LG+x$P)+Zg z_c$U}UdbS2kTo9u2%!g&t%ue9=AdK_+kP0G46k)#Z*c=+hDpP#Xw>I*<76aL z`0B8^EkNgEwN#>`nU(4;7NNu3l7r70n~nMd@+#jxNP;7Gzq3_JXwRY*N19=uOGx=n zF4<&18J4$}BXfN)#hz(GE)WQO4i>1e zfvzD8ULxDyLfZct!ghg$((>j2cmDAb!n*1lra|dp@1)hzn7k)WqG4iUT99~MiL;;| zf@$mCy!`8x>fM0rH!2;hVA4t)G85n>CF&=VKy7k^dqk`$G7&|hS;2LmvY_- z$z}O^)F=A;_wS_h!u*hbf2V%(&5zTLrWN~#W5SuKzRb>%5O0yd{`$5R1)rErJ1g8x z{`-)^{FseBzObQxd$SXPnIDeaC_Bm!;)DO~9jR^jj{<%MWH9xlY#{xs41iQIJ!K64 zFckQRI3NQP?>p_de-K05a0cV=GeQD0CB~0jdY=(qCh-qg&4zX6K`K!geLH*mlSS3g1KR&s49jkARP4cO3^ zW%`Gq-u~}0{R^xAU8XoUu*goUHpGfdbq~M#@T-(gr1%S1l|o z1gaAs=c~-e1F9dMwa!mCv?Z42W zlLV;rzAG#aC_yB1I(-CEa2{@M>@*xzV*vpH4Gj%N#d9E!n6tOHx5R7|1JXO7PB96T zM}X`nBskdJ&24&%WM7NW77t+56&P+D%HOGbtN;=yt2iGo{?P9XCQEnq97<$hA1ZFf zo^rap0LnZz%S}*D&AGX`A`#nHJmZ^oQ?(zb-R~~VJ3|mHmKuKKTrlr9?+-4$n3{{{ zeuL?6j;jLN5A);U-rk;OjU|u!CHcH-?Rlw(k&y?NUr9+x1Uj8=oo%|=ZCjhK7@k+P zPzVAqFYizO+(uh-z@2E{o$alQ{8u;GRtmR@%jbGJR;Jx(0;GwKyD=Yg*8830BqZkQ z9ZZdkdTXo}Vvcb!Fm`u#OkqL>dC17vn3xVm(wI|^9?0?uxtB}(_qWpm0AY7r5gK0o zCM=Sl26Er+D!{-_vNt+Ox5IZfCNoLr_RCZxo~r|5)h z5a8fV&CO$@0sj7d;iH3tqa!2cbBv2KGqnj{bCyIhj{(a6I
!BxYz}&=ZL@)8xj)INjMv1Z*FioSf_~aM1JerYm0o>Dh)W9sf8pZ!P_eSo($ex$QSF>>6+pmT ztu(n!Zmy5*N8@m{n2s(V%-9f%+Nb&DyfLxjCRZ$XuVaP&+v`D&gXD+72Tch25VHR73XX ze@NNeGrnq#P#D{400TU~^=XV##BbWJM+0t@qJ&pwJQ&*7C!RBp{cF>#V7c17YHCVZ za0O?{T1SWWS(um`2J=3qeYxJ@t1rkWc0mTA8jWu$au5j!P8g#l(f^|1dPuMc2!uPS zzE_u*Ts^vDwPE&j?MU|^KOT554~G%o{*8SKk^6}(nr^Y-^hrhp0DY`dn+a@lOD)_N&> z80+cE`Di{8sGqI2`MvWfRlSo$$cp72KVjc2RQ;NfA?ND_)MN|jSMud-M$}Ee7NCUj zYa_|K)HY-mIQ%7qW2Oc>pOsM0m&00iVz&KqM62C!xjT+yQ-2!-)F^YxluV-p&kpJML`F(d?1_qn&k3E28u^P_~S|X9R%v|984!%4Ou zVFy`1-yPU|`NBRm%i-J=`WA&$T3)XS>l2Y`gNXTI*=4n3>2LF2t$~zpauWw2DJz#p3oZ{gXK7q6H8X)^$7w@XFN$D}$8Ot}%Hbg0 zHeUaDIOhNmexuz6bmQkoUX!6+0-@k)^GQ*HGfdkNQGN-`kt<)7 zP*7kXStleUq^z+On#>dSOkuV1^70zn$KjaZpjf^^A(ORSsCgWSFK(%!;o6r2zky9C-`o?G0=SDWuvZ_`)-E;3;L~~zNin&~TroS&9Ht6B z%kkbqX3SNYzD4v|>j)|+FtbAkGbI96ZZ18v>@Rs)8-d^YI^pF}U|`@ZrKY6hD_K_u z=eaqK%Rq~nvZHEqC9%1hy~+HGxSZ3u5RB(0UKT4u;HM*k}c!H(m&10%JTE`Bj4%Koz0*R*^`tE;PHi{RcL zFL{Le<=f(Tt=>p^dOnC2h%R(A4d!)!C$zSB*vxN0m*XHOI^jz~!k73DK3ls-k9WT^m`rOh zo9ZWWoB}N3dyb(I)oaOrTj^sNP(G(5R}t6K)$HsIP-oO?^$u7$QuYrB*d5^Ys9|=# z#w8zdxh~?~@f;Oa{Y%0qpAWga@)NK@U=eD}CrNo8M}X!Du;YBT-VGE`7aM}WeOQTz zl;U^xQR`(@*nnl7c_Wr4^1Jw%?XasfWKn5>SM%P6qM|(jC#Nu?qlaIaoj{wy)qn8!gl8O!2H_AxLZEW6i8li`Zs_d)>{XeH3e`!AlHlaxP; zU2zh40X!v<^XqW5wyBBxLjKm*7c_Ma#ATbCU)tLAzR%sJB^(mhE>QMM8J2I5eVbe& z1Dg(SmGkA)`U_@RaKd7`>XimtK=)?8)H*xZKvr_;u<*-&a^k+Q+lIt zEXD~ffd&hnPZKv67Zn*9IvbbW`3o!Ta*bby`BH%0&a&|Tg}t;s`DSF`QS1Ub1pmfr ze{XMVZOz=1`&NGedr3}DPw)BZG3538i98vL8VaR6W~=#<55+1FFbMlVkMCcR!R_qQ zD!~ET?+!u(Qe0O~qTcJ?S<=KL;VtyZ*4Ez6&PuhpnX4;1&7!pR*GCG*-uIl&hidZj zwrd?Eh|!Fmzjlwz9)7OpHrly?V}7Q6hIRVA*sy91X&VptSxSHe=@6%Rk`P%oZ7VL& z9h}mnoxXThKMoB^)6vlp?kh}4Ney~*$0sB-V2Li3U!cT9FWqK*E|dQq+f{f-@*{7c zjaaH#TdH2gN<;I8Czbsc(CZ-h8_=IQB)eb!Of;`8hWFuA<{aqH88h1nC|^DP~@ zE}QjY9Sm-wb=lFu`%wN);2zCuNe5WJ;lK}h903A510srVzKgjMaZgXztO(3JRq8+ifUhQ5&)u>~`SO+jA&yGQQlvqtmAHdTqCqNx($#^8m4u4x+r1 zHM8wNW%gM<}NqKj3hT_Sd z;CxlSdjf(ipo^W#XgmOLO);T9%*2dcAIh~X-_=5`(#FPy zl9EjonNRMy)?flnSU4L6<4IYf(@G>Tx(5*-$gBCc(L>vs-?r&T;mYQ-d1rmXZm6xT zb(vN=D<>{i5^6E*jXFd@M~|-21=2@5x!5&;sv`HjZB(;!gfr7&ft-b`g0uAZ@%V+1 zDrS-#l-UsCc{%R}M!l~t=zQGl9$|kscU%Z^}j!+4;3^50>X!K zT`EkkwXT;OCXo6cj1Cw3E28nozQ}Z7+}3(O{{d-^z<>Y_i`kK+tse@o z8R0&8>zN0xyPyBn436bG`uqEbhZ*?!gQ=bJm9#Z9G=NZHZB5!#Ke*=d%lUZm?t0+_ zpv2ARcXBtR^?Z~0h%paprqoz z-kppjc5pZWI0W`pFr(JxWsaynv1ezQHiE@$sp7kLggmzTpsCHFWO@UaAAl$jV*x>o zo+sVZC_G=j*EvPEe7(i-|GF*H!cZQEu$Axco&aK-+*(jqI|H%`QSG{{oU;Rhtn8qQ z$|R6+c6Y$D1Y!uM;My))FakLpU5MA=kV*OTw{JE@FQFuRe?ccX;rut;u!V!(ojLkl zo6cjm4v?(Mg7Hh936=-^UrL{$%RFFud7);l2G}uFQ)wv zg?)pmtk%-!|KG2uPdJ8*fgpgY3I^pK3p= zfBFQl+S9|;!LYTkxz~so(rJc1xlW zsk|ZKuUly$V7FObv|bvzn3I(j{<3)r&{wn5(fu4GnitW!-HvMe>1Ji2+O)jAT@Uo= z7_%cqE&iyR(^D48qtGHUc9YAIRQAw}dJeIr3=4E+(q;<*TAi=|x};2>*kVQhdK?Cg zoG%;f&$k=V(WHVwO+xP1mO}%)hLWzXpQlxHvkIJR9LB^gxU1$Tmj@v`Xpe_;mG6_8 zG9wG^eoN%oAq?~{H#}Y){Z|bkhpwgZ8Olsf#>2v@PUkymc3NqSUj~T}kX%8ZU#_zv zB5dd7qY_-$gGtWTTU}FmV&d7EoSD2+P*gn_o`IsYE&to@7zKnL$z^nn0|B85%@ypQ#~LzrSfrXvx(<)>Z?3>>TRwUaLt@H%MpdvFmTA^ z&Py$yb*PrUx6PLQHBJut%hUfGseYgqiEaFQe0glqmE6IhF2<3j;2RpNHUH^0lrRXA zFv$tuofzoo$X&di|G?bt*iBcXNp6UX`JIhN6R`JzUPc2wCNAQ7ICjD4@cLi(gp<-1 z@Vug;B9O9LRg<0v{|mX*Ok{|&u<$d$F+3##(y@1d3Vth~zB&>139?NHxA|G9@aYrd z;Azppqi%lrFGb1;Wl+Ct=%(&T|AjC3D1G`AKX7SPNlFA@Q7C`}WcJ2)6*5s*oN8B3(AUVd~jlO@`e;ku^>mC!pzbPBsmy-CX2{rk4vEXCm6y zMIDn$O7==+v~XeAl0t`tIcJ&XGW@IT7GXdw?%^@(791|dy_N@g7mxkvVgQ7*guS!c z(eNi$3Vev4CEy-FOOVk6&|cim&d$N%5>!x?-+$3=o+MJ(oZZVeq95}6b29g{K}|cz zu51(i@0ymQhya8*khO4JX@dcv0-xUr+3Ors!`PfC(l&r;JN;kr-`9bA)OOZKbSO)E zJu!jqMD<4K?GdUeJPOLy%}svo0sw`eM*XTXb{zqiWcCUAypo&A+w;G{M~FxnLQbV# zi%W4)kv`}np7)o9hktVOR8crY9J;sIQh z6Ocv$aT9cNIGHYHf8$xkEdMG*MCUJJ{SmtF@y{bwOYMV*L*{(|pd!amojL}?3ZO3t zDx~~QjADxYC<>%@hKGrcGCf=_3Xf-{OZgp8!S(X@+fS(fL;NDbl2KHo zk#pUfG6s+V2(3ZSJ9u%CK)eB9EpVABaw$?;`l>!^odgRjd{%*gH?2v9@6Y~>MSnEe z@W=@09m=4VkYI>c3cFwbMJ@2r-vas1PBk^>k$J_|rK3sN4SV1nu2xs|QFu{!X(`Cb zn&SoFb%Op=%o^ySO6~yzObrhXHN*%h|m4bpQu| z%+BsYeYA48&-=gHj9Rof-alZtwY1N`CZN~ldhG@yDU&q=8s`-Ykv{IN28)LY;d)g@ z1Q_RYo@v}RLZ7Dx=-<=a0Q|L?0Juc9$GN$_KKj)@4{`DXNPdBAruaMQdTSlpcPX~z z$@v=+IlAybgl^TJk^LuA`KChGr` z6k9=PwTSMW)P#hHpH+sU<;}|oT6|Yc^oyRG0~n7P0C!>ML8y2eHFg>g@XTKwV8|#b z(TV^r;qtWF*=;(W)#|Xv#)&avgXNf6DJOdeaQ5WlU;u5RAdqcy-1xd>A@$4Tc31qW zYAxS|MRnT$^E`Q8Le-GxOL9fY5pSzSP${K+)+OO{U>O&aek<&BcnjPN2jG!JRpCA5 zU48%*VtXvJn_$!3In4C%9iFejE-3xY&L_D(#Eu(4<$R~)8xWuktRRWTi{||B(V?N= zbyg39@wD^7bZ+}3NeKy41vv`o8W{njsmH3nD4`Y975Sx9!vhWXJzNCz7hc{* z0s?|$X1ziPS9^b79~>Oq{oS3qwl`5Z&7ZM`1{X52l`1wj2b}F4ywlEp#TtRc4ztX% zt|iBd07eJgzLB-=;Jqze0)o`|coGbZ$y{-FOQ`^J<&qdWXX%@Lz(h_?`im~k&W?YT zXP1}jSz00^5P*yxp@0hu7Y&l=RM|&gACE%~m$0T+|9DoI&_(l=m39e-ZQ!MwuU5MV zlSD&s~%a^h`<<DDQc_Yydq-&QiPpVY zDS|*K7`PN}7yB{(DfLj1T3BqHa^HW-=gO~Om3t?1mfcST1+u5l2m!UOFc1eBVkLZm z66~>&jee!$-?jej0@rhpM8jzF*j5n!1UBAy1}{uIpVjhiwCCCSOKq2ni_7_>i)z%Y zm|8{O#GTE-_e9**4Yq5Tdk1Z8LZYIbSy`mu$2{-0l0$6D9h%joMg|8vW3AsJHxV8D z6u}44!V+WKf4M~lVMT*KFsMiI?!y3K4uLlQZIWW|^0xbmX>RYw0AkGWY*x(?`3z?N>XXKptKCfTlKu-1W0FI9a%!q0a@S+*hq{JQ?~`5h89~yVC6j z^2hV#CS8#vmw3Ku8U32KubK#jZzk6R-q|rgSfCHmW_jHggVK_)84j=wM!t$;gvu}5 z@hnd@^#;cSTnu91xm*TAR_D2E+#)%UP|yz+!}8Y4E*KqY|8v%XL_XmG&aLfbasWuR^U?3u)YQ|%!~WNY3Aj{Pr2X`r<3o`0 zbZO(z>KG5Z!#TUpSh}Fg2nuf4M=oV2gag2#{F=14c|VekEtyfX$!6ux<)wqzIzgC( zeawyZN<3jOyNLjY=@>Bzmpn4o!D0Z1(}BP+aJG2JEW=XJB7MlN4cy`qf3GX))c+s; zM^W@ivj?|}_J!BUvgbx$Bnkq8)N+UV7^oympo~`i{O(vm^dT$(lZ*^7uzTR^m>3yR zv?}LVKi*ct^2Wz6t~%#4JLp1hYO*NKmalZYpnCSRGyY_usCW!4gt&O{4HiTcXgJl5sn{{I+2~c;w z#VU^Yn%zFO9Qgk3^n_>OiZKVhI~%-4$G)!$-!tVJe&m-TgBFBO+{p$*5$o_s`3Za% z@ZB^t)Hk9f{ElAWlVm;NPBxF z9rooE6eM3)XA{xB$%1R@Q3+J^9U^o<7n!F?+o*4US^~*w`eYGecS%N>cK7Q;UXNRr zALo+cxa!30$aM(`*kbF0)g8zZ5a_8@29!7FbKu{E;)oPUb`--GHK)H9jB090DJ^AW z^8kYjqAHOc9WM-n`J5sOpx_EE(4uJokS!Z#wm7wqoeS#BDpwEi_OJeh7xusBS{%9n z@#oUf)Yl^5mFBkw2L|R=Zitc7ljwvLZG@?K(d__2m>1;nvoN;+*XDQ4-K`y4{Btcv z)4K|NP^i*58OkM14UT0vE$Lz~El0B1AaK=VzA&$L@1)Z^e0+Su9>kgH>3Nx$aN`_| z%Zp;{$tlhlG)fPrzOpYZDKF8-;*%(R==^?-w)}wmR*Rf>Sioq_c@)P+0VtG0wS+qC zuQ`}MHONpuZVtv9LLi`w^ShoKsd}bF3|tU!el9prlp1LSc(>K#jxC%!PbAXTjQ0O} zyssOL{w3u3@+VG_>Mb06H0>Kw$<~UBkU)3frd~sz_XU!NRRG?%A=dvhiZ`pu0I=Ov zS~9gNaEySIl)-LGiUbymd)pz!>nY%HAaHH_W0UbyG6j)pHN@KL%0hNNLT?~2e^u%{ zUF&8TYU=eb0q&@D&x4cGcT^}GV+rg9khUfbm;9y;TU8WjmCnv5e z_TnWm1=MZM!^NKNc+{Zlu`U*;L;U2~xynvR#m(87N!7Mg0~Lfl$s5n@U6b1XUR4D$ zRCi>f{SH%teOe_}>pMGUY@3==AfT#5q3RSF=3AyWk@_}8EeA&Xo_2sJ0A|fQ16LvN zX(V}h@0>u_VJxrA7I4MfkrVL|UR#`_p`PP$qsNB?Kr8{tvjgTrG~pMcvJZ=6+3g)2 zpxBwKM`juXH7QE+<#&Bjcg!qM(R|0qPNKOdRZywDXYRG8TU6A^C>5q?U;uRo0evMu zc@LyV?x^I+;Vgg6SZemc$A^c7i81DIDTsBw9YMEzH<7ZF8ptq9UU>*J8~J|MbHI~jkU^wpx(2v5H6@Wp*ahL zcBl0oS!g&QAB7v*SdsBVFU(i(6yd%T5HmFNqnN9ReYtyZkPmHs9UFx%qiI|!hK$*V zbI-f@#_PwYP@442qAB1|H~c6)FtVv*`WA~&bpDA-*ysMijl=1;8k621dONe8^tZZ? zi1x(B`gCb)P>7@7k)ova_1oL3eq3?RU+>GX3d`6y@tVo^5BpFS`Ps|DL2o)KclXjd6& zYH5{VeA0A8Lb71BUG1QMPdpn|-hD7xERh2RRCJpc1CiG_63MZH_FF@o8lzA!_gJ(_ zWvJ^v&91kn92MY0nrzpg3!U?F-*g$jHI<~rD*pUxOv)YZ-td1^yJLUz_;1%29C60jC6D{+8c13(#`i5GgqK- zFVaH!i2*ZB3aUabX*BFxWQ67OX1vmRXw&$~)EcFJf(LC*D^Qr>iLkS&G&7ALhU>Sq zeh=_Lw3#ZzM?Tw1q_0rRfJ(tjn0<9~#8(YJ9piI8X8}L-+8Hw2 zZv-L|CikW2jzQOo$J`8t2eV~5f)t49f=Rcd>GeQ?j(p^%hDvfht^`3hU{1+te;GV0 z2?zR85kEAYfZBb>jI5xMiR5A3qaw`P0@XiV?Ng&6F5iLAlP5j1^lSf}wVaQnD-hhk z(~{nyP)vo>DmqrX&ilYc`3e%Db{+O|=Z(R7HoE*o+HU{Y`f`&a1FpmUq-si`Y&=`b z0YD2>Zezd0`N!bcu0d`~(N9E8jbqbHSSpC>M+i_BELPm9+PGjjCsI5I<6du)eDsRo zq%`%s@&ulSSN4m{8{2oaMF(ozB4*-_{pSjtvp`4DR4&e*Z}W8DX}u);L{PT$*W)eC@RjQ~lNS+2VD0{LGQMw9lE-)jm!E zs^0=D91yvYXra_QWemhg^4`n=6CDJPLRM0s-dhn9|8R-=ih=B(bh!b@w^^Z}*#!B> zyN^&TZ)1O&T9x6ve`&`$y)Pb2?G@wK8Sq9zQl~FTbVg9u6s7f^T%RGq#TDE)0FJ5j zfBuG)3cc9RKoJLiShuZpfQ_j9w|K;1z*oAFzf)8T{}NqN(aKWo?{zeNy*U61Cwq5Z z#`{ZBbN%y8*^leR0nxA^mV#C~87cBfkNz(eQxx|h$V#2CwZT+!-yBe3^Hurfe!1(r zfYpnT_~L8GSoh)kBX#zlhH#!owcJr;!iwIISybeFpc5Jy=ZeXBJifhj6&CiU+8Q!H z*2bISfyK8eTI9$#Ffa7u#-+rj(C$u4ms)t+rz$2!d1P{i|AAY_6cr#oq(yzCeuh8r6T zYnbt7LL5yN#17l|AS4*4rTG`T9E#FDGH(hgsJY%vn;n+g!%6`GFENA8kZN?;k!NYt zC{$ycbM+I#%zOtjK;J=-Ck4}&Uj<=c{DGR}YlUr$e3WUp>gYAfm&<@j zo(8jW3xoC!l5q)QhtowW4tjq@v9q=429%02{;8(PJ9;^3qUyXnv5b9}X**7;!HQWt z?9Kd6HftRWd6aSj|CboC1Li<^loqCCimQ)K>*VST>Jn_^6o_{E{uYXdy%)o&r^sIC zgND_K)+oClP%AinXkG{7qg#ZT9oZijJa zAZPkx9*d9}d_APMoSy247P^)~zeSqK>ZoM&=(AopdWAxY=$}7cKsxI857zMM&OqM+ zLhal+MEu?HPbbUMZnSZ)<3>{u|B)0@61>9By(-WUyq?PkTCovaRAgi&JpEGN6NY{b zG6~=2-A=am-4Ke z%h3Bkqbrkt@A13*@LOleaEg4_i}PI=MvD-R6xyP1@^=Ut#IQtI*3N>}M8_R10ioYi zXFR2eD^OzTE{7PHT`tx{~no1yiKdA)TX03i_zVOrDc^&P~Y1qH=lGWVYx$P{{W;F8weq;1j;C>h4{pTWk zuza$I)^tKU)=5`{SXhu=mAiy_k4{))GVq9W7Gc2R*m zBQ^a~``xHbr6$OmAR8}FZG4TgiE1LUX@9x~bXqOG7$G)}4JrVG_4VwTuU;z!~c=>&vuF6wc}|ND1}C6*jpn9_|DgDv0|B}TXFAeF@3lV zx?E-*lk22;=6R;JJfwVb*1-#_`XO|-p+$O~5}HZEXP!+!z;EiOgcs(hV)58yzVvuH zcQm!rwyHE1O&8OZa?z(z)H&D6;Johm7%E6CQ`1$P@U^fbRkMQ!SC@AJDZ6rTIZb65xQ{>s{@tX1Y zvG@FF6n&&Y8kXpO3ix;ar&872h9KyOAM7}?s4q%*4az;3eGaa(v3z{_z$S#uttK%% zB!}UXnpOcdV^qWLskuO^h6Vq-e-H$Zo8yIZ9-0K8zYp91P472Q24Y)7VoaYPM@G2z zSBYp;f`r(WFr`+mu3N4tWmM zNYv)(GUO6$)us8%@okD8JR6Y_)_rfJHQPEU;Mfcs>3=1sr1ZE45zd!t(ka3laaGNe z)FMhxiTAlbKi$}kfUttc4_CJru3-3hvtnA=!fHTNb!DY@ptA%XaYQ_-EnJIq!i22v z+xPIEtI_v6&TxN?iSGAB?7C*f%JCQAXMlK2aoGczAe|)6pBU{AN@X({>vU zI@q7UC!OF6!0}b@h}nxZOXV75`7#}yNf8+*Voh7ZkE=S3;NW<^4AMhU-x81)Mn)K0 z4y1TlO~2(FSkOU7a8ouR9FcN<2B)g^y{alS49vt_rDYbMV_JYgeBWWi7Qxrc`8-eZ zQCP6j=GkxVwxB>FV?+vNDX1wr=nrWF2CD2mjt)M8EIDqW^NDULBS(>vf`WL39ri+E zdU~+*6CiE@Bl@pFs*aY6$7_eyh8wY+zb3GH#+^A@?ghC9DIeupi$O<FTy}(!aTsS4CrXat>NUNRyMnCIY2t)DrW2c{*g5OOju7KTulqejv6#Ln5`}0Bw+bR6c^JEM8qsRHBg>TU_|FZw`1>`1;?7-i zlG~;`V>(3^WnUBsZEz4+^i%MaGI&C@8^nXJT_RNI?=tOVmQsOdci~>E;fO5$>&Ftv zfDD7bP|+j!Qlu;O?p11EO^~QVx4n$czPE-JJjtvk+Ut}9bTr|rW$g8$qatqtp zpxuf5?o`k@s4+q7K9&&-aF^7u_6TKNnbJa?6=V4icC`?ne66(~I_}`@m3QHOCOfD5pkG75W*n%fF&?)) zSV}EdvkS$=_4E?I!0rnIcG5IfNYKGDF9Wf~9LRrEGy}09)vEE7aU=0-K2JU_LcV3lfLyl-5{8bOxe@TfdZe1-F1_oS&ykkj|@aPoX{eKg%@ zPu6!4dLN*d$;EUV)Bfk`x$8!|Og`S#5g0kt9rYH!k|-~(Jp}~P&<}jCjb){aREXAr zKk(Y~1rCWeT z!NWsh*e9=0eXsMJYKp7!s&jG#Qt${;6PYj2!)WH5H&9;d44}M6ShNarYJ5nHUfLqn zRA5dCvFjR|V8UfgA;WXFI9V2q2CYAZH6Nva6?9M??hrhv1jkI&uhBwHrxtn-N_=Pp z+2AG`wmV!eW@hdjFJC9}^0qYocff()x}rrA>L$K zxQKJHRQ+^hB9F;uoz{LcFp%Kaoa12wc9vh#A8yEUx_DosP0rCn`{B9vgv91cMQ&yj zk0!}57TCsrW(AWwhKbrWW@EvT;_ouPMn2V?96YeD*jl`xh)F-Rct_Oosl`}=5}%0k z!Y&yLX@kxs2Et0mzHB>Q0oE0;Jw`-2XJ2T$TTvoI`NpIILpSU6^3o4Kk+ac`@$iw> z7cPnv?G;vt$tAYf?tED|SxDuz=!dekOWhH8!c*TaUpg1b``TTk^VV(($BgY^FZ zp68TuGIkFbS5S7{ZC-i$agcTwOU2p^)|o*52KZ^CY|u0AF`a3B$ov}&JtRJ^*ng>V z^*nW%P)0Y$be;g!Xpto5ctsNd-}TU@<*YC{`3C4-z{&b}CZ|xKO6`Ri>V26{_R~M} z_xbgC*sTCBqN5IGS-xph#b7%uVX)uwy@4%6!-x< zri3?>9!WJa#`3jPHKU=SNrJrvb2E%U+R*y0BVT_lBi_2H19BQIb{l+qyZFv721iPM z-mecngN+&BqDrsND!{p4Sn;^9qQt29Hh*NsvrriwLBI~T?Rfnu^F*Swi{sun;w{+D z0T^Kqy5Q|9jD#yXu|(_0Un4yV4sCHjqC-aQTJv4oVY%vY^UrC;i zJb9Xr*2^uO4(%4dthe20$Sof^5=_`A-4-2BGVbsu*+IsRkFTVlAZ4OiyB_lv9ZT|z zmolyNbANrQm^H(hm*|YO+x!^4N{=ztXvihDmUzyA@<7+b}*V% z05N-<_2S81D2)@M+>i%bGK{rpHihS0%^ z2!{jto|iA<*F=b64iXy@pMQM8WYSx06^~8@-KmGvEeA`G-|bsI9Uiwfccq{m@<~~(_HI#pX*mb!UC)-P_|FOJ`)a-uZM^W!1F~yJh#*P==y1Q6|rmvc_LS%dp3`h9&`uD@g}Q+WCXgu%+x* z=OHp>GE!~YtByLG6;TWBsasiTXQSgv^{i&8F$_*;mLNcXR4~8Z=RwL%Bf}QqFa$Pdew_6E}ovnV@C`TxJRa>X)JCr#KnDGc168(Y>kXY z>ZEPiaC@wb9Ag(5IpbR*?~+t9GdCYUD?NQ&$b;qfE0JN+$mMrkbq{weso@>l^bMEB zi{Wz#)VJ0K*l^q#1iK0qCZk%a7ctx+XEdoRxZ%^VFS*!Gs!^_v_A)Iwe1LuDVBHEpie$cY+LyWYcyK z^`9Rt&`(FwrjwW<3lFy!yfbXbXNixc4{fF5=YK`?s<0A_aH5h4b!}c37b4iE)#cU4 zUj+@5d?&0XnmmV(k9u>lvXGIJFR}UuB+J^pgB0E1s98*Gr(7n?0VMPdQ_Q^u_H7lW zex=i%j}+KT-M-3}#$mp`5iK0V+BH}7SsYE3*Du3CqUqN7Y=}Gv(<3E5K5#-X6k}F&H&ed-J<}gshdXBqeU4c%e90RrD3-ME@l=5ic#!yfufvg=-4_7J=bsbX zUAa^$7v0*D$Fbg3hMANk@xO;U7P53rxl?AVu43C0>g`JlR1NbpIQqQ2NYxG58dAS? zpPU=)C09!M0Vxs>@TgYJN97$tBClE4*0+hS(yE-wU8AdeBn~&lPfx?34QcHjA152< z-Fg8}O3l}&fCX}R2zTC$hSGk1-F)OuG$o=Yc3&6Kq7ytGwge)Dxhm!>=Eb;|Rm z{oa%$mE)|6i~W<1s(4mvXSd5jv-9&nY<|&uue0^n0v-54EJU&S!EcU>1-NHk|zkXifw z+>N81eaAwG{v(SBS7;PA=XkOV6PJW`3P;^HGNR zW0CL|D_LWMeEP;HdgucJU@<(5tmLJ|#}Mv+@KJyqxgrbShU~|qfsx!nTE#?Ae}6i~ zU9wy{QI+Cxb`vl+nfx+(mtSgi%bH@9YKq`zNaY;Go7O8U=RPX(x%@W<`9xF*PMlm! z1~BU+SimSXA|KjUPmayc!K&`uVi85Y^-oA5_R4^dzZ!$`r_nsK5~V_DjCg#=Sti8b*d2_5lVf? zIr*>;#(+reb<9R$!SD-`!@YfZy2X35)?eT1-ef~ZS zRRmiT<*j~=qw*FvF>y4%zCS{T61U^7dlfQ#sx26VRw#Js=$*dTQ9s7U;71}puJh|J z&vECT;Q2CxIZ^ImRQNmsZmZuBQy{LIvA!PXyzFWU_QEm3lzObK89ZOxJa0E`i(|4C zySIGVlKaAV_Uz)~LZ~!3KK{ylb>1}FF?g9biKJo76H@naok0SA!?%aa$U=2#Sp`9F zrwvCZvl(3kv(@bid<*R#ZxB-Jn3L$SR8bkEiXM?n*8(f>N;Rv4P)W36Ut%$$x+3RD zB;`qXg4svIm&FY*X#xluz-cDq{K-cso+4oR8m4W63-LYsXZ)XmwfXA?e#Owe?(L0#q5HKet$3sz2aN;cc+EsAdu!pG+;b_&b^cm^1MiTGpwZ3cr4(rCy{| z50hM5Y^-jGE28*d$Gdv7zOE{kd=|c*e{pq{|ET`_$K#OwtwF)lfa>hK1G7c+xrnt5 zF!g;aqm;=fxyN};&C>sSX6%S#A_3q077m}58YR~r1jyD7B~L|koC{p@Qa98@H~|@9 z(V$i<92fQ{@U4?D)Fy_1*lv%D?*+|i{ldC3GPKAKEL2x4>!8FSV{2Y@5*mady z2Cb%Xj`7#LoFuRG7Nczy5WfS@HPe!t60$}7gI9`j7eJjx=M&OCd`j$B=XfO#Ia8|= zVsFasifg{Xb5KL&v&=M~v_*$0R_qhL zqXoX$qmiV^SdW+JM5hirz2%kj)L53F|E^dC_n49d-n1hwqjcgF(YbobuaouVv-o_I zd~U;4v)>#6&4tqBXD_z{(R|+B-UvV6L5(@(?Xgzk;NaxdT>KGwy8OBOnDl9vKt-l8 zrNgD#R-sZoBi}`pZZkq~>Xt;1lZLM^MMXIYFKLMdL50~TlE>BAMfSi^;9%2HQAFsP zPkNt`mgCL%yqG^zd>%+Y8EMNr8dqTzmqbmhGU91H9IVbNf)uDES?TSq>&JoAFn2mmOE%1j07wD73*eiKWXlzN71xtsdW(!-T^MlZermWPN8*@Re#6U#;)bUxHkx1ErC};Mxc+^hv24)g!OLr zwcSXmaawjdFw7E1&2SrnK~>R<_0i~V|K5?UcaIuH>904%Zj)nUG}XVJlAJt_teCn2 z{Pwt$$kb-f2h^Gmc6(a2W{0<2^xea9eQ|v#d9BsGy}i|A6u2op(VXa>rcZ>kye(EB zJ8CRRn-CQw4#)R-iW0|HF;+i{G*jhkP^GjS1)NJaX|xDJw~vnqSV6_N>8O)ktc0v} z{{zcZ-u4SfTNZC{dfZk3>yq-|!&JU9+Qba~Qov2*uf`eDG*P4MO7ow1E*v0(x6%jW3_~$~(S=8Hz>pdPRr1Hn^zR+60h2FqTlcQC9s&HFWHrd|$gfE+Qr>?&Pp z{3Xr6ICBm&lnTY+2pp^hH;rxRx6<%Z2@#bu4N^?05wvQ|_rmfdv5|EGl`lS^85-*L(pH7~IHTZE0!YnX#bDnRb%hRwm zTBFMy*ThkXUI`;m(CA_e`ZO3?>Mmkh2#B7447~Wh^i(@xwfXi#^QYxn5rQB0MMw~= z&q`mC+0P|`IkuyrltNVuk+Y#}h(T~gf$C+5Ft3XH7M34^BX;yHRB$E}6BDyI(T4=f zY)&YG*oCuV`uDB?i0ko>R~IESbQ;Ob6Ya0Cbh2s_2#W2VYBKB1D$^Q=<{jg$rG>oI z!_IB_I0+(}8nv1#;yP*7-e|iYH@Ge5eCWST)mELW*nU+-d1Kn1?bar=OxUsud?=HG z%BGEdijXKV&bkmBG>$tkb4~tA0PKbk5SzV#Otb4`E_1?@AF6gf0Ide!n_v^Z7L0YA zOw&(s{`e#GBW@n^Wn5sNE#8O4iF~^6QUk1S6puxJad6~8YJb5+U|Ds z+0SK93ZxKWHceLg9eE#e>-=^m+aH!rz#JeaaB@UuPQ#$QRy#zy(h2mzIt-Rl3jAcS z=>(}MS@#|jIwBBe*D`S@in5}&zaN80NnXH^Lk41Jgaj^Q&(A=rL>U6MsC$^kK{ba8id+A`eak2Pw55$D-XfD?(Fm}k+tU`0aUuA(64Y%g< z#Pj5#ps5qZH*Qs2(J*EI4oL`QM10!eul`b&3DMMc_`O01i*7Wj1=jpZQ5Zu`*+-`s z_ZxSzL_MpVgt+22-A`JhnF8jcnz?jsaY+haUiQVr=ui6qe-jl|Jw9}zkOvortaC(J zjG%gE=Y$soX((F(-x4y?n)JoVg=~)m!_%>77*R3Kw{S3`@PO4Gl9!7Ye>!tv7c%$=2vq@1Cv)1ohwkg#Mw%!PM|RU#}NQj2NSkO77F zjl83-Jnj*MFK_J;NbU&sNNCactcLiFwATy$6XFYXAgG6F?=urY3?+R<^|9Zz(^b7V z>xH+j?Yd#njMCi`n6m_`p0LBNKF(o9-AVx`8lGNby%I3=i!@F?WCVW?H3!UBuO>Oov zrl{?A*9C4^P|NVO)Hv+I`ZbjGNu+9Y+2evYjQd4_jds7ltU*_Ec+x%ONxrp~a$Tt8QXoxo9gQBaGI7-qdW~je8p_Ma0$ho|%wSV-DX}K8cZv z%*2(ltJ?m$k4jteME^QHY3%05zx+Bz2<9L)n%f>*+#NOoS6Zk zA0J_kU@A2)z-O6c1)H>UwcQV9tw=o`D5xrEqLsiRtyWCstwy)rg%sNU&oV3mQL#W{ z&l{p-(y#1ONJ&T-$?NFZoDzdsgQ=m*7csN7MQ4Kw^oYr8FfKG_ES}}+UKuYkbTp0C zZub%lCtijaVx#Bol2scI<9?FrX&y@YguqOLJZl5%z!g9tE<`@5zcAFKAb@fDO$YzOnI>SSmreg-xqcFH{RaD=mf^jetysd z`Y!^6=X+s_ zlYf_vV3e=NFjxdcnqFc#g4s}uEPI#nU#oeq@`~a|0Zh_e$1t03GUzS@;{}vBxkwab zbAn)i!@0>42}|Ux&-i97m~2w6TSJ)-nss_^0Qzfu2$gSEDsKA>*w}#XfuS8Kx3u{& z)^vEC&Fc5GoT6|zt5KZ*NFTIToldIwEx;f3F^x?57yod-A!V$BU456qgAf3In*0)fm9cpJ+X{O22KO%a}dTb0wx~&p1TzdF}p?-SvNWTajUe*DQfsK#{g##d+yT z)j;#^T*aKRJfwaO=IPfFxfP4^&*;nvwpm`n+@&U*==W*HFQ_OhCw{o^)D787SAzTr zTs57LQ#uA;*X+_;vRW+dwu5DzR^7%mg5^rcD<-O`O|u}s5rsMYyhpGN1`c^Q8rH@t zb~o!R&ZG*YZdDOhgF-}1Y{GFz!OI%P??r+8;4V~+itX$6xVZ}?wKEk5^E(AK067!haDy@O5pn+jwfMlW>l)qxqJvfY4f5 zVtCs@AM8)UO#%X&*HWA=V)%2f%D3;Yh~U+v5=-XD@29>Zxm+t7mXV})=yM_NvF}&d zP`c<3cT|Pyz~ErVsUwZ*s~M7A3)`-~uvWsZ$jQ;4roP@3ky-_A0DX0I?tGWzXG`&2 z8b<>JFA8GJC;Q_?-Z`EMPZs?Wn$k+u1-{tCU{Bw`0V_ihuq7~3q9;f~qLUYv`j541 zVEjV=lm2BrI~Q#F=Wy)brDFBE-cJh45)sjRd(LwN(~l$+smaOFDpUCU7#f&d!#}_O znvte07l#I;58^3fj&Imn!5dNMc12iP#u&eQbcq5c!21Ln!1jtc^2~!T7WSO*Ib`0C zteR3G>Dcc%5x-GLmgzK)X%Jtj4Bw0uqm(fp4j1VQJpQ@y&iP1a5Ztqr>#dm1h2l!b z#}^jxE}3g*xhoZPfsF zmO^C)k~!sf!pQb$eG2}_Lo!$zvI>3ywuZU$&)dGijkGFOvK31<|cK*g^$np zViz*6N3H`_!8!3Iz!|EU!LR#Rtke{0Z8;qE<;4H2=~cE781H}F4SniU?>@n;vs+yF zg!mnRr)P{RC<16K<*S7nb8Wj%80G^4va``GcsEiXrDw3flAHqs%Z=_|@P*oAt|m&iN??gBFfuZVIrgwyTAIm4rG*jQ_(>;peW+ROn3A5rRpEtA6S~`s z2j70d<+qu6k#w+M!eW-kud=c6co#l*NG|o_?bR|uXD=<-9^khH9b7?i33V3>3Ub*qs`=s^eR`y+gII|Z5JD(=bwC}exLe^z` zw>Oc*!~?Ldm4)n?Q`*BxaM=dPDvT1y!g9eeEB!;(M-=@o2Xm}(vF{lOg4SNC=JC?~ z?&mRb!1xf|2y0#RloYJ7kh~Pckn)0{M@9;dGUlxZ&8QHAAvM^KNs`2AfmZkX%g;ZN zf8`7*Z`dn$D15zQ&Y^^W$ZTSp!^K-!#uy1{nkg_u1(Z)eY{^G_=U;h}_%E;Fucg{* z>InV_Nh8lX`yInaNFN1|=3!FO7-WQKY?{vj^oA>bA&_bc%dC%hLlH2VZ?B4v^Pwg7(Wau8M@(@P%tVLS zR5@Ye!+>wSjr|0S`o1dhjJnv(cCb?jj6!)mEIgw$m59LyL8fU<)b=mp?UW~rMCYJc zcyVe~mJFt6oVYqVd_Qc1gnKWGgd@Ud*{ScAGbJ-0en?;`^BVTZl*~+DXZ)xYX2wHe zMYWHEFM5i?%d~En;cW3yw+T2K{Bsx)rucx&NZ2xl6DSoxxnQB&m{DNCIys{i4fbk& z7kp100ctsBmg&J4mC>O2L~}4*zQ3U>T>KCD9c5jCVgIcuR8+9^dWxP{5J-=rndvl`qI3d8PN6Bg(!(#-98nq z1lTBx`Qh1*{Xd${f-R~xTEjGqbPpXvhca|`cco6({E0IiYFszEf~#94F~CuT_Os4D=A=O zoL#GXI^c5wj1*rLY`g&01=?O&wfkaxb$u^LBqddtrr7e_N;_X}E|G=>Ycatae9r+K zye-#tzngzG2eJ%Xd>L_-x#~7)w`Edd)`33fD@t5M2Wd0CNyRn73NpA59G{q;c!cn| zXlno#LkdAX#O);85KMm_Ip?O6jD}bs@+E=RWlR+=fCU7(eXXJDjA-?j8;i2m@eFmN z?{uLG@)-gHyFMiTG1R-V+$W*~;<}l(VM6c-76dC_3w!CQ9;v9mmW;|Bq|6LGGi8JW zK(S4cE+1&+e2^LH9JS%K6qxPGvT?4R{SAaqU~Bs_bWrI}TE8c8J*9D)yBM}MfV*Nz zlSkuzbHhfV!(+Jkjtv$9^XEbw4C4NSlfRPI**4f`Te0-YfKUl|qVrDz#_CS5p<_H>X&im2S zJ^mjjz&&x|JT(3xBEZYUGX1rx-lFqCkdIZ3mkni&iD7awGM;25i;6#;tLqyEWZn<_ z#Uxs+^$N6DLUYtvH6Z;`*H<{+p3J4tckf)+PPv!SQBZd68XS^8aQp#=C{kKjAdsBv z^ZlMR#}$x+5w#IqcgDFj;kZlS)tJ!&WnE!Ml6C4u!2 z{S!Rc(Aa3V5Wa)_4IETn3Ppn`REzY0G#OZk#0o5DS564ej*e84*{pPAgKPs&Je^5s zVTSIkGLt#u`_t!9Ps=NroN5bRI96t5WDGcSz_1h8x+nIr5J4Fy!a+p_U$=aklRAJY zVEs(p0G=$5&*fWk`0ZhX`A?hrilw$u-e`68d2C%K5=gEu9#>UV9Tb;vFZk5@VISf` zLUaP#$I-hRaCY{8sjEMkESBp4LF>Nd$qlGZw_L)Y-bwyi`qJV<=6#Y zhnwuecT97jdvuf_j%L{gu4SkXR86XIHxrTDMq%wcLdG*~A>A{rq`s#MJ`S>TD&J-w zmzU$zf5g>o5PS%fhe%Z}rD z-@RuIdTChXyZf^{h>H5zdYn{-TH(N}FVh_-;Ni37Vp#jT6$ zSLVuqbJ>ElrKKgT>bGGmY@Jc+1na@kbO9c~SI#bH! zF>(qBByL;Tn8?z|h{N`LNcdID6GXu^(Jap_x#trfxO#y=G~u4u!zfX0i8@@5&%4Q! z!8O-1JRUJ#6sbx~$H4^vdo``se6gr| zlW%>Usrgxx_XRG4e<)^~ksvG`_~ZFx#rM!3%B0r%t|)MMz$OFkcUD_o9R*4}@8D`O z+i`{X1^<~&5t7v`o< z2N?v+blCjov;f%1@9?C~37O)4&X)_IcCfNb>!q_6xJIWROX!IVul!7khz}PI=wq-P z9wtoP$fcJA3TY5CqU!$u?={(G(O_9=M3-0DY=kv!?gwmENR*wCGxk4JBaxoAt(e$C z%5Z}BZ3$`+RU5E0jXuzm*hy-p3KY@5R#mKdso)(k#Mn*1v0cC?QszhZBE)d+v6CL4 zQp?AGWR2I+%dZ%VbP?poE6y||u}nE%6hpDAR!h@ed_xgT z|m~+Q3tPy%<=Rqsc??)gOD}iy+~i}I zsfZFH`P$9GbDcNZvc|f?drL|P2op$@+c>mJ^yO@CQX20F@0Eqh{-Z<_ONTt z1V<~Q`o}ef5SDci_9+iW7@F%?tJ_AeI6(-2`T(2``*#t@_ntP)+zcxeyieikW)~l& zo_+@X6KQ1s$a^&b^vttbN>KWPZbsdubFZGvxxD0P50@uaXiwr!ORZ4upU}50f6hg; z#UY3Y#E~w<8g7dwUwHxybe9>W}?OLZiW0=<{G3O9{aJw^5%}z@aA-Q=P;s_!a6r0;2Pw)UcG&7{xAHM@?_6z%Lg?m_ zyrh3w%gPEuIebaEKJ(mxh4hxK&1@Ui0g9+IQ~Uf%reOrLdTtL0T50JB@lC2h$(13Y zcIx0WU;xNV|5s$cA%i!dU?wkGveb{z2&TG`)}_&lwKY8?Nz>VF4ks2AhLWzH1I_`f z|B{_)r6mx8tjwLP0YvE@F#goS-@z1Rd1x&HiK2=;8@XkK?Zt`FrMfMd%#W#w2@7+` z?WCePA3vpCIGN=1Y)>%mF&=p&HpN&z3Jbq0wZ0k2aLB!0iTSCpNOFPFq_p4L9Vm~u zpv)EP&eAckVup)R=VS4NBRo3+4(m-h7Ie3f&ah^+6HhAR4(%g)80H&gx@y#VYFvV1 z(bs}YNF6-cCPMLJM-#Y;t#MYC$GaD@5p^y7^O^iw_)rCclwh}b-|*?y8&DEse{xm| zG9f|Ac3dM>SF9hRDpfdpftY_j3-e72N970d{xB1H1FLlN_#v%{JpH%UDNUMypVFxh2)({9KS@*dCl0-%IMQGf=pbbVdc!tZ+2Xuo8%M9wfje!KhQ2ZSPr zhKT-);INAD=+Qon6+>WS>h?D&*(@IfTfcu7lhJ6Ah0@xOUJn}Q&5A+c1LISUTxU#k z@@~1JxMX8)kI}XVcPjJuUG47f*6jlG>Fo3^D{`(lsmwd6;aDXpCVJVV`jxkje4b-j z8l-wz2vZtE>p(pMTt5(N(b7KymyNwkaOr7+?XtBJH@_-^lBFV-u^S3H5z4p2=c@>r z92r}%Sn3nDJ@%-MHjgAOD8|t-(X&e-kgt={r%G8$H!(`IyQ1JvaK%1JWo@kNbUlw~ zL+iTdHDdzL-Wiz|B2F~6TJDzf-~@z9@2$N=po|UkU5iI5h%;eQwNYQ&PP&Ptw(imz zJ{vV{%)hCv$A1~dV0Cr=^Dy)kJoaIa5}P7HdT0+@PDp^C)-ug@gbv4Cz`V`a*VxK8 zNkFPbgc}Po6KwCa;ib2Z*FRAa5Du29!hH1%Bn5pn9x%g`v6MpSz$n#G`nH(36b7Aq z03rW=!NGG<9@C`+ojBs{RDpy70e1sNp7a%o;H#tR*-8q3W*aN%&&J6ne+9?NY$x{zgALvS>)7XC3++acE*KoDf`x>;mO zuFI;+WcC)y%MRs<*blJk*5ToAQ;i6l+zN|u40rzKSi;f`r*t%k9%u?9&b#*x-Kqbo z#Z|D|7I2@3!kgO3a}(~{oScgPPf=`J)XnW$F|sX`OQ`6diEE%^Q>E0qx1|3qXi(+K zMbUZq(ibamtrlE*hk!pr=81tNXa!a9k#Ir{0COX4MZ58Oyw4h{X}ZQ8ein{y7&t@g^Up6aWfOvoMr(ZS^SG zq^eJ40y%DN9WW-baMKWb!Bc55wH&Cas9Q;-q7&>)GD}@1fvVP9Zs z^w%U3a2 z_pj?=ntqE2dF5ug?Ed8Zm#&{5ahvb*zmD1C%KkI&8(>e6o9mS$&^t37HJAuh0aXJs zj->iQt)WK~dzqiv!1zdC!Y7mS=gtFnFE_i(S`%tFlE+@bzh_cu0&p$^p*i{Is0v1v zT#F5qq`_HV?VXt#20h4iO1RJd48Rl zu`x6;&4xeB%eLk6*xmup@cmBbDpo=%X} zfO~w`YfNp|y~;_?OojA~DpVHVOP%{*A(ESkE(mYH-2gV2=P}%L1TA(vbd5b0bD%@m?FFYQOFM#$M zU53ODs1KV3KFC#`Em3pT0z}9dpG{kX$@CIjT3$S|2;;>re}PvSby%CJvbb5KK6oC-jP&SvMv`ToazRCK_JmCQmj<@RH0rt5$ zERDHjNE99pm$Jz>a!y*fa^Vf--19=E4sZo>+ub1(72KT(((JFSwX$fZB}JZ$A|ej( z2`5`G-u=VOz;Gj;a%#UwSN`NqfFxhWxSQzfoOM<)CmYG!|JCQG_&%X|d3DPo3F)*$ z=%uWsbZL;cO#1E{fT2xfqoSs^_oa0|+Oj_7yZ>~>DAgzp9NtQgQHrR zE^UALa=j(<9CjvU9b`Q)(7gYumn{swU;8REH7*zJI~G{ml@Z`xt=j<>u%@Pk3Kn7a zq-if~0d8U$4kNC?3LQJ&$djKkKCOUg1mFe$Z=)rok=!k!=(yq;?=x?1KM`M3e8)7} z*72-mQi9+B6&eMOcgDhhX;viiKPtV7HbNQ3r(Fi_>FcjVH@6zBFX>}8HkDWh|u!>t&&(w?J$ zI13JMo1rLh`q=XU27*z1fUu%rMSf2Nv6s;mC zMlnz}ISskG59Qq6p2t5vyU)H)D&zWtM;*s7P~c__dxB8{yd-xZLCy5C0vMqa79uqA zd+@Mm0EY+jFZ_P8Ja=GzvR^Fexe5Rbh(mlb3^K2Loiz6CuKFw*`?cX3(^@G+w`@^( za-n0guAEkH|Ms0F9;F%{C{TYuQQL~3UAWRVA9RAlWrdLZCOCqsfZ4dUMEZJ&3M$i}ZqCprG~p`}a6bd^+T#|1p)bG~A1-~Um`AF7 zh@h*(&yPRJO_ryQ*+iKb3ynoBcVn!NPf6017xlU1KyE&5g()0jt)#yf=LvQUBzxV; z92T#aDS+eB84P3$>F}wPaA$#EZUr_tucZ9i2Y@(%Rb)M$;avKZOl){vJG%&i_yO_F z4Tiv(ga1CrbpQs{|CfBdJ_^zj|7SWPEMYy^?{e}h0N7PI8Hq?BHMw{eZvKk#DH_K_ zRKnA%iPpxJGIK+OFGQ8d)dZV@Jf+b(Io9s%J7MG$9LEONxMeM~ZWGs?pIHBWLj6QZ zQ{#|jRZqwenuMwl;Nz1^;{_rIZSdf!4=z7m;~H6&(rM9QCsCf^d>n)ZUh~rpQ^+OK zA@G{LMk9Db)K^imxQSp5PIvmU8Nm8?m}RiZis(nnzVE!65H8}goZt{(*oz8OCnBIw zYXOIJjsv3_%PCJH@bt`}j5SfU<(A}=^g8oEB#&yI@L*>^*zHE3^Vb18yWw1URm4-g zucDYN%5BLjeY}cd9s&7aF?K#bS_(3;5c?1qW0ilMC?mrL_o1OBG9(f=KU7ad_I=p# z5tt?G*ia4ZYq)q#KsYs29L9~S4Hk|$*;ZP8tdB~ml0PIL#39SF%L(TP5GrYzwvGnp zGFbx$cb@+Uf1WDr{K-#mnXFz_I4@GpHt$#gR75<8C8IMH$ zKqxh|q4}do?)#u2;CjDb&*t!uj$r9XVPtZDT-Y$6#e>ftL$XkB2-yIS9& zH+YTB^Rd9rBs_6F?~RhU_qg~+Uc>XRD^=H_fkz@gY{r=8a~9JWZ;PU+rDxqYMQmG4 z+ua$-MTiseOV8EZ@EMh=ZM+10(i`b5tmGo=K4@X^JN7@j6jye*M2$=KH+m&JfJCHqn-b396<%QeT8b7KxYyUcq^3Ay%PwxA{=}#Au)?^( z6vnl{gHnN6SIAO_0aH;OQ9O-A0*1K^cJfNs&bWp0;vx!Qgok+X0+i(SZax&J@(iauhgP+Fo$;rkpS#@^zCFY{G%MZ( zI&J%Nn|f;b!bKzhsXmrqYfY6ay$=UpTDRmO^!d@!cE=fDj(mV|U3F<<^5=UiX&9;V z?I9=2&Pq`Ik-lejp`mn53X&4Q?RI>nMOP_!WYjA)*`X@QxMY+A$Ts7xII&ymxpA^cP9oSSUZ#gFbp3V^ipNsY)Ai*kkDIl}iJad|M&K!{@GpF2vg zG>iqp|C~@LE!P_3&&_UoOs5ruDnmE$6Y?ka_zxIDCACBBU(=QqU7xEv%h@H9iqS=& z7m8Xn^3BFi@ppaC4EXs%YoCGIvpm;$j>6gIe7f+S6vlNN%76k1!v+<{#mXKTrfg^y zp(L=x45zk0L~vu7MII$FSzk(VcK_fTt+{ddHSo9N?j_!mhsW*l!q^*mxKpt$VyLL{ z3Aq*Ot^2j&?YZPWW)y9k&OP3b` z<2JD+s3-X<`nI)O7bQu@&oqoVuv_gwfPDa^rengtVmA#L%wt1@>8Q8ND8f}@u?gro zg%X6NThE`ac7p)^#kr>yxrsIzOm>I3FdjqRBW9cyHlq`)UL0I}C!)iGKXUcli~E;G zB(rUm;`l`PV7br+m>!nPD&SBGj^w-dVXgyl3Vv>dT8t&nhBhEGEoM1{)zJlGwxFb6 z|1b9rxHt9(;CpZ+kFoVHIk6pX5SynvXE4pR9Nn*mDvRv>I}nt%wP2r0;a%7wL5|29 z!N~g|psJMTaawY@?t?H$aWGF^r|HFD5hZW@(*5sA1X|Fx`Xlg(ic(WHu=v!Y zhH>^ffonn%g*`NCwjTc@mtorSvda<{JMKTFtaqWu6DmT~0OhJ<14VHA#So~x{TDGH z*cK8xuGwU5y*%W}J2At!(kGCTN#j808Hc`|B_?x^GYh28q~A@=-Z@p${uBBcZTKqk zCZQzQ^0#4w73=RFO(~&-#nh&|s)))=W9XF@ANH5@jI|c0FCw0FjGy7yFCku0&6%Oz z8CWOMDhzp{g1&x$GhOMOk_wMYXayFWG)=z<;zTLDPrL|Sh4{0L9{ z`0|L&f(DG%n_#_2vI3#Lpp@ay(L=vatAR7r?}dwH{L6^G zRB)J$RDo#c=PoYun40AKQ&wJ!httB5v>NSyw-ViS12ABm%yH$rm84+QiiUFzSVJ@l z`wcJ&J)?^N{5%bwIY6S~X9czFdQ2Kpu^Ro^{24f0s-TNqkl=A?(?tY@Iy+0XuIW8&GH_%+oKxv}soNN+jsn-~e_G=)lXizjJKIHZ{bvbo|&@QRlhG4RHy~Amh+q*EvN)DPL@Chhx zG_~ML|Gzh{ZFVZLP+p^QGDn~!A@EX~)u(z-D@)9uME^?uTf@^|3kGHeo9sL1<5b8xxtB-@;1$-g`mIsKDbQbgGl;KOaY@ z+>zu_y^r7hdkg~LVL~5nWGP*^=(>Ypa<4|Zf6b{7>3`wBNBT{GKI52k22g$9NA{{f%7jveP7Fp9dY4?FiP8c#ywyn7odY zApEK%nxNtlNo=ErwPB~Zfgu6xX|QsrYJ5L|Ml8}Rm4iP~l|KSC{ri>Ph&Nrk;sB!3 zGos|WN>9WwNqN#em@^EF!ZtV~6Dyw?&SF^v+mxzinArxtDJGesY(@V?{pL);TC!}UR`r|bo3KZTC#u^B1;3N1=P}0M!_{V<=!cl9)MI2|92)NXp`DPpud0!;A0FT(Y&@S9{(y}xlFf{U<5!i+sS5ST z2FOL+zHDm|M(JGdgL6M3nEejhOKY+U=F#MI`VkJgL{U}`k5VX<+ui=c ziG1$fynZeHZ@>bHg~*HiTq}C2Dr{1Gk@iPJokfIf2alP+sSm8PaDxf)7MSZj0}m1o zAB}r$BUi#GLJ_t8>Wts#_p0i$D--}~bKXgIzZcQ1XFANXk5v_gcz^OU;H|W%Ub&b* zz^fC7F78scv`dY3c6P?&Vp8|vNueY(psXThrPqlusM~mx^Z~^~`VjLxxqkqCq&(uO ze!YNu7k@Fa{o~pNtg*0L*#1JcldvkDZ&=n_VN?_-vQOZfAOhnFTu}{PXkSvI!r&U6 zRb+Xx-Ujunah33eDa{%<3dn2#L;D;L)9>zlYF%N+MLoLXa?Z7QT#f4TLvP!5G`VS` z4QE*VXQK-3&L@vU(FqJ$kwN#P3cPH57vQ@y>|1-Kf4$3N%5|QFg5iESU;dTx<6v6C zp56hogEkB%xrocAX=Q~D(-%3ZAFI&WYva z^{d5YtM6W$%an`BhWty`IY=KOmg6V&lUSm9ZFbqvF&7b&0(?Ks-r?IgAD-K00+DNu70DYo)Zp7i?)N58 z2$1BEJEAP9vaAaH#pFTHP*ynL---N`&zKoAPn2AwLrT@MYUnm|%l;wL(bMR41EJ(h z)Ai+l3wWlxg$OxID=(WJ*eRr?VvX&ZU&o*Qe9#Jnm~nz{GTJyTE|Y~jQ_lw7I^Gu! zxPM>G&saa)hc^>~m^Xv zBEH;9Z$}onqh#a(u}k=>JytWeGleu2aK5?0IUE7T)Rv6B^ZoZ$o@5jek1TfsJszfX zt8z?OrZyM<(dww)kgie4{NCwTV4WPxjc}y8Mmpjdg$<0(o3^wtF6EsL8RbTwS~-^p zVicWYl!QAp@|%;$RrEDE6-&`+)ZLX7(kE#-PaWIxyKMM+std4Y#{KG_FTdg#C%E&K ztpKJQ034HRZ{Y21csgflohWfCUosDP@ep5@GY+R)I0a8ErXqE^hi3>B)A7ZAi76vM z`9oF|It6h#e#=_xPp*J_3@f9*(rXg4MPPW%1-Efbpw@PEdai+V;%pM};Xu;?C%pq5Tp z%(uoA11?FGAq+CpcK~%&=kwG(OsIjerOn}=C1xjPM}!0Lezu9h+W;EgBSA)VUmyKtbbGqH@|*AXj3`LL)jU#!k+#%D@ps|b4g$^=ZJ za4xRfp~l<68}RdJ`+_M<#Z)e+PdZNr%cq_S86ugFyYJ&32z<-m3<(2T#C(u8>%oK%9WJI^f$wj2q$*VArkTqv)XIEj5aw6dI zP?~Nib~&uK@Hy8$AoYczfN~ko0}!G@7$ybxS|^$>x;Oh@jsshXz&*Ny-o{dDh99E4OdF1Fm~>s z9Ng;BUu*Q{#0kj}BU$b+h9VV90MBF=kT16l6#nDo%ph)FJ4Du3npl}mzbL3xX(zob zaGs2k*Y)(+(%8|M!OX}=fE5{Twfg`ZR&EBILphQEjZO#s#U#Iw zhRdvQaA2>X6KdnrT>}v;|BL43Yl_s@y~PpVz%CetOeicyt+vxHF&BirinYr?(N*OZ zEPbzuaK&UqOy%AK;1}q;v89FK+g!3VTT~ezoMdzp<=GClPVnt+I*OT!sI=l~`l1_u zSq|I3Gc+_~nN7*d`ssK$*XyN*@DbEVZq$oqARE;A$u8$!8Y+Q*nJ_y!JMPH9pkwL| z6x9V+v>1RJnN;U%G@VDfA{9do!tF)*pocxBD}E$J+ik4jEwImw;$pnIvvsokHE7Un@T{MuK`&d)N<%u93a*2J-FCwA z$GXwcch8U8lOgxE1z|*8{XXU-rAD@=B4-41tKH)hz^+JUo9K~=9*&GHninOFWDONp zI*MY)EQ7@@=$wGJNPv!vx#RP`cqlukt>E*OH)ti%`V) z4aR11hqxaTwI%%~ORmd;1haltm7$#u5UxWYUBsTrqrDx0+-4G-w8r2`dlG0V^6{Q< z7gyBD=kki zHqP|)i9y|lL&vUzlUwsM$z>s1et{jw8QM3NX2M?*IJU z@Ba!t)rBM19B6S3%wB0DuWpt0EMY>xQAuYV%^Y`aULt6~d@X|tG{M&ds^{B{QCP8H zEF4;a6Ao8ODA*9G>A&^i-W|J6+G{Hu2Cp#{sb!W`mP9HMqvjiOD>yJWihhA}ZSlZw zw@>tdp+o_|@RUZ2&ub{oXsuck1;YyhAC-U@*ZV4noO#IQk01mWZ%Xnmf5Jw*%L=r` z$s8z9ism0vn{`3gE7hK}*c*Uxo0>#8OzNrXY`UAPSZ%g<=hgiVtI9;b?xnMg9!QQ%oyh37065Oa; zgB8{3N#98M53r}?<&FNJ!iN#Lag-Sv4zc`J5F|^m2nR*#o0%bs-EqJZmIs!XaoN!x zLC9!G#IA(%xN;|Wi9L1%^%lCY-7XoMG98ZVc#O+mjyG* znONAe(cEmV0^iLc>aYb@wtQXkmAhEm4Fbys|39xyVk^fPni`Al_6Gaz_K#W0JN`Vi zgBKXIqghdI`!J{1B~YjvtGJmn2T0%3qE;VG2ZfIu7|3gY;k=H+13QL4<9a%+69*CH%uK)ogKar zFt5~_euxMd0+Z0llAA!gMHNUR>xQ#Kl{I=%k&eZmuS$S*w}l-Jt}7hRZWPN|o>b)& zC>;4hX#(%f&7h~~691k(?*62)c^;o0CQ}U!U|2;O4aQ4!xL`O~#+!X~MaBd4oQSjn zQwDY3#rj1mT-GHy<}OV}lp+?M4283c{>t?+5Q0K63+!exoplR6xg>hndS|(?l5(qS z`D#ilp)Xfc6eAYmKhe!dquUxb6+NQflMtWhd!-mQ^I}Ouz@hWmU3@1S3tZBq(Y%-5 zj7^qzrGBL?+mq40nQD1ry;cfmri;xue;PBjETxqt?2d{;H@^z0Id~sNoWe*I2@)B= z6tJ6t#gQg#dF*p_(k$F`c`)boMn>2H3N_wQU`=c}!uqS$?NGtzQ6CM8iFm_qnOKLD z^U5=Ua*y4hIQpMez#4~^^~g*5zHSp!v1^50gzZXn*>IBrj_5b23+p>uv%PtwIA@+< z^goV2-k)h9po&moR*#lO#mLcPq2bWCN26Iz4r=aRTv!gQf9n|RTw@-$GZ%t+)>Aen z!0>E8(g}z42&5_1NT}wh=GRa$wQ8tyXJG)|oSc2Xr+0>h$kY5J&T3ykY-;fWfB<wV3xLxB{`59WYHqpmG@Ur z=K4fyw1TJJD{W87%M$v>a5_l=-xiqbB%tW`kBBW(@#4YoEp+iH64{X%DRF?(F~&L* ze}40%R(L4qms$j}(9Sm&7CZ8p$bE>yqQp<|KP?WO#a{^YXx*8)LpY1uIxjdMNQu;X z5<>zc8`&L3a>CJN09JS|B02^#mI1|2$ZPcpTTkKlR`hP0(9i5X>PT^73tmGehTxkZ zaDPe`-sCN?kSaAHJXhO5m+9IaY)qqlDUlL;JT3``bAPbN>dTY!8ySrK1ijK*`yu4| z99TPMr;A4UG}PyJxIyv`Ge7X}T}ILiD65(n91>W5YwhRE`#L_m1MV~k( zYcH2N3O;BI3p0n@fck{Ksv3Arqs$B&3c}ef0XRhEG01#WRb8F_>p8`b`;N1EJfi4-yoru&N6F_5=-f&KpiV#mPbK0VGL=;Q z{PLoBQowD^ZCysy+}QF?A`L*s``{692R;j)Kg5~o(#o5Dk^h>CFl*h$f>^ve3f}}I zD|}fqU9*Vb9u5>$)HEZ2I6nXcbJ(`X9oQn$f__)O`?ucR6%&>>rpl5_R5E1qCo!n= zF16qp{G&3q7$`6B=+XbtL5h^6fBHLtup$gK!Q=eN!W65ACQf7uiJ}_EP(u0o{n0vO z5Aen%Z>x1)n%c%?zs+yF=(qdu?Ns$gsQ_;xVxK=5`=EY7O1AYQ89lr|cm|TMM*1SvJR@hrs0>MB;bm9Af~&rt$$%5y9737Pgh(}odA$4*y9*(M zR!JbS%ZG7H^!wGM0t_RDjf7-mJr|mX;9w2;S<^jCgux0(ZZA_~Bv-I`bXI>K4&HK} zS&h#Dmc&~iXwCTzC|&Ltlq&4RmOK#NmL~5hPvHOcrcclRaF`YIle>iI>F0Fd9p;28 zQLnV+kuFL)?9LkgaN!yhhC0^wQ~Z{JwO9A!u#yW6F~{eb93c-TCBp=>0Gwxlvn7co zis(W{<})MR{d^DvF(Kij7NH^+fwnGD*l^&*kt}!}3M=>w3#-_nDeE?ahH^tZ>E3?k zonpBCq2_d)ZdlKvbC;`KH_(0MuC)D}eLe5Z6jet+CaXE;Z7MX=p|zb;9|?XYkRXgihdyV=Dq-WQiumAUE zxt)0J*XkN^9ABtLa}%4Ni`?F5S2e2Tw5)uf%0v7%MB&=0)S?C0D-Epy^!PX5>uNiT z{~9o;cdQCgv-`C_E@MPss{`{>zSVcT*a9LdaS#=B56A&=1zhn@1|U#cT{F*^t`$6) z-GZ`v)I_AS%;2N;o5)l1b$cvl@^f8kYA?S%u(6w!B!ZA@{Yu;8V;dqo=+OdB>W0NFvsZyxhL z6nU81Ye|6n69&{-w_p_%zhW^AhQeZcLSVgC@o{qfO3JhNaZ#!^+G<@=UvJF1=T=JR!EA(|j{$QmcRBOazs>R?kh+DPud*)K7y2h?PrVg!NWg5VEC(Fh8$vw+RX?Z)$=O# z|H$c?i=itMJc6@?)TaP-*%g%LJo;E3Cnp&k1h^NCn`5}9$65w3G`b(H_sdM==UzEsh^b2Cmdrw+@3yc|)E;Mo{>O@7 zAzq@W(d_H#)!gH+-pczDZx?jCR?DGn<&0;H>(IdOv=eeL#+(ZLhyyfKL1lk6j?&k| z859bxR#}A@F77wZIWQeSvK;#?&p^rw_TH0gZbf_V{=yO#Q{_7CA!li;M;{d5#8+(` zjc4!ubF1Hu?pNYNe8w%r2T8#9Ona?rpi-c5NJoyEO0G0c^kvW`{(Gw&x* zqRc)Uue|oF>u5=2sgM*-EKmv9wRw#B7;NCXj__a2RJ&7AQqoI7e0*f2)GCiXp(4BU zx#G<58^7z8Yy*gzLD`v(j8^6PUxnDfYYS%jvLCWuJ6MLoT*b3`_&FF`UR9eg*A5Tn z_?@xBFaO)UYePpW{de_!{s=^s=cjwDVx^K?q2$MJv=km69?{(M#NTrU?bqmXq zFpS2B=9Zz0?!g|Hzus_y^H0Rs0FrXM{a9b)<#ufU=TQ??FZMRXaQmdm0d-P5yy(Qd zR&nva`rh6o-KqT%@nP6Hm4ne_5JDB$Fz9e-&JAZE-(2_~tn|8YF6PWs*zm@;*ST-JrHK2;E(d#y+0D_+tyY=OhY0gXQM+D zG4Y^Cj^j8nmB?=B3Rl@j;ICuI&ccQWHH4*_EjBn=sy zKZcH@Q?T>x5#~GWS(KH{kpH2N-z1;De&-WXmShwsE(UzpfSeG@4N3inHU+bfzlq5M zxym8FMIUEZCYmodqE$rQ_gPXoY%I?wpUX~%)Urkr_?de^^u$?t@eW$=DLL|hf!k%W9iFMl3&1XC=5i_4JFo3Za2!H{$K@Es3a0t?5Xp62oyJ{GW=)g zP=ayjuzbYkIAzBB$e-rQRM2oJWvxPHm1h*6j!2tm- z9KwLN)|4sHBCE*mtGdqyLqHudf(ZC)Jm%tMqLZwoD|)onL~*?!`DKyC5jYg2K2TGU zcyzHwRQ*oGie=^ng|;+9W@ip=pb*XzI0pg*Fz`fTucs$&j~0VWDPcw%VuHWM*Jvvr z+8}R#i;Kez6UxQL_z6U=Os6Vc*!Yemx)YWrsEo3PgI;v~Xmb#a#K^+1d-eA5wm~%F z96MY_JHwM=?w{*0;k6%efF%Ts<`ao&_U_s(weCVy61X`xll&rM0 z$-ye23%iM5AU>km%{%o%1(Bc6=9(6N{hVU#lYjO_p#ByJefd5S&g6 zfG*=58hfh_DB1Zgo4_O*lPQK%(XFA*8~uDBt?>a|g%GEFT-L{4YK~IGp;hDTy*m;`UP4rrl;O3chq#cRm2$91(xoEc_$YDFp#+C=Gm_!SCPC#b2vThhB-B zi+wWH$Pqzh7Qm^~f7XONF)30bTTuf5jH|Tlx_6@?VAsORrGg!%VzGgJ9l$*v)AonM zJ$xaMn;7jUixKJvl)@({`^x!<8SC+RBKh{qDM0qV~LAX zjlL~t2+Oji;Bi9s6EjhkDS1C#`~E;uD?bpMqSkEaC1M-ei=PEwzGDvX*|WRq!YmJQ z(kv*}-cVD-@Z-*)Q5AgTT~4Fo^e>FW4UmCLjR)`{h&A;Hc^>>??z{1#e2RrTt-KPg zYCrg^ju1f+(xBY~V;sSEjQ!5NkB-n>kOy?b%yuO3;wtJ(1(C;sb;|DbDDO`6^~)|V z;CHvDF;ucUHEln@fnW|3!T?A!iMm!=Nbx-jGe9;{+mC(Y*GfP# zmEQCy>$k-uUaH*V6&j1`>s4mo8_=Oo0O>2TwgUOEFX^cK1R2q2pLo_vey7R3;ztB6 zGF@HeXMf0axHk^ZQ17PFexL2_85i`RFXMV8Kj-JNi|BOubxsbc6(gbqDO%%;5U-cT z;$KW%HwL2xp9VA@%uRLLon#YLB#I*^up&^i<4F#5p#~#|2?&|6au6kPazE;um+SO3 zn!9cGE<5Np!j;fFJCnpkYYppRUQr==mBfuH8u;g8YCT$#TzEZ)k*`Jd<*lUPt^_KmC}#9b66&`8Ap{I~->4aTCgW)jgDO7XGS{uXiF@A5@?3YX zvyXX_Sn7I(qgbPY{T0s<;5a$}ch+G&G*O|Z7m;a1_$RRmWF>@}LBBFdAfKI)SW!^M zj;S9IX<+;mKhklE@z9zA1-@ZzWM-$~IfB>P-@fFfIGBTRs(X2$4t1k;%|-@G?4}$6 zDdkZVqLG_$_>YC3xT~wHOL+D}A6e+TSd;Kpq(uzI!nHYvw6^~Ur3vkEp=yosP!l8S8#J%D36YTfD44UBd`Isl zFwJgA0qruet;Y>Kx%kmae^4WW(W;7;HgY$zBD|D#I?>j(ko8j@YC};TWkc8hj##cTHC~#XXMDA?V*LzS>Hz}Z)rIHL|=BxOUB^(_dCXCN-0U*j$qwVos zWY~N4&#b;wnUY%H`i%FP8B}sbt*BqwQhrT*;5LhKPKu+;lDCXjLnzWRqqdC*H(r%p zNyn&S{#>$!*P&0$-6^uNv1VW~y0xq;al80yg$C5&YPS@dtob29dUL+KbzSbnEXE@w zeeBR8CeJ#zy0&(*F*Ncjkw7Qxjf1+Ex3`}OjM(9umGr_V<{+jEbYucT+Zu#6vA~9i ztO)Ec7!nTqQp;_I@<`U94^`>-85l@EXZ4)K87>MBekWy7)*B^RjED-N_f{esTK^MW z^f6Ls|K(t`gD^284tq2tF&P)FTu9aUi!_C9+VRI3McX1ww3(aobmf`O@%GozwDK|N zQdnVM8^!lhcLjU6MEDU@3a_vxLzp@)k%Ts0upxxdzb!}>+rYI6I>#FL(OcplJ+uDn zU5y0?eCT9*0?md?OMNmT_DCX%M*S0gIFFVxIf(}VpmF#jBhfVCcE#iJan!3!3V4h$ zxQnO_wTvFr9qST*(5ThCZC~wCM#euF$K$eeo0k&HKeB^C)fV=)X`6x%1_q7iTaQAV zu>(H2`>B$gh)Gf8j*wpRRWW@(ER8o=-T33s18R7S2A;|Ya)zG1(NrnI4r|(MIv+IX z|9H`QV7b@E#+bucC&mSe9OI=E9Fm?tsE=D`P5-FS|G zEsTyj#ZXK(mLBx|*JE+rN8^T^!{i^d^jwzCrDY1gN5>#^p*D}Q+C1v0`y9T!HD-Bm zVBcgMDA{fHL6)9&n*;u|v+@T+u|0u09vz(`io7WGtII(FL+J+}$p?pbhI=xonDuTZ zU!Q9wh0ziXApYTtz`FuW$Kc=mUgs>*VNS^(rc!`&g=ENAg|8hNMSOb{cW&W^y68mx zT!nYEBoRj_LQP_B^1Yi?~nSG(wE|MxD zA;DAs5L-Y?4}}apn(_*3-*tC7yz^vKRq+#+F$XVi?4a>@0+5`WkBL8}vjpm;5g-7X zZv3Q~wZ6OzJcG_b+LDLf01$dRSXJtKBIt_7r91VQr}1u z9LEv|=!t(qtiFHmFgIMbhP>OeUz~rV=mgi(bIaOl`Z?T7?0GhK7N)}~W|;TZkcSq- z{Elfy#*UQNC5&T@eJ;Ql(2pR!+1Ksi3k1JtS`iK4yfrSn?^BVaFbE!H2S@b$x@Lhm zNCITX+|BLhXkn}+xk9gh_1mm4dcaW)X-p2sD)_<>>-hVJ$sYs+j*Yo5J>m5{WkmGPCKZ-yH`SBI`^0v0 zg!A3XIJXG)JIecb2<0Q``vJ?9E$lg&3ENj$Mh+rb;>nVnxxIungB7$x+=$L|V&0#S zC`q#K1$dRS3Yz7l*l67M+crN|Wy^mbU&_j#%Z|rz(PH0kdb13OcFM?pn-RZ8mFwj( z(m+3GwSUZmSieCKjwep|KvrY7wuR9RtsLDJ21Uv+9pfqx4f+ijKe77Zn_V9}k;n>f z3(AfOgIJKTGuZlU1~o6VDh)z$(LTFiR$Fx3lGvg-j7Hmkd`Ed5Rq05)7L4XtF6W6K z6&xONxvr5sTSs(kZSq1cs_r9(FUA2gaUjqt_Set1=%c1)-!TJ*H`rEl6GgBMOQ9#E zvQ->QfsCg==Pq1wDjIu6Ow&bf3$%iN6T+V*wbJIR&3s*N4NX!|$L`{>9E&=iuKZEm z65U}QBlH`;;^X)8tCfduIwaT8$Yuvmb4y_~reu2Bh!|2GEozR6%)Hq$Bu|T#&rmksis99>Dq?5Qka^}XnX7xyRA z%MZ>uCvoz`ygyMdp%)Ez9WTOI#d;e>}GF zpS!jWM(3Emzx%L_C4TP_e(x(*=G%Gs@L&Jw-%kqo5u9C%_}R!_+&1_}Kjl;oBY8!uKO*jW8 z=b6_zlkbGYh;u?qcxN4gr2KEv<@Y*kyd<`E%lSPz6^=Ru&63TIIuSiO0eUJ4?rIH6 zsK`w|*UJ>>5dn|l2v^o=#7#3`TZ^#X9_HU2BR%b0+MDAzD5Y~yN2WL2{LF$cX_dU~ zEzdWqj?kI%X9b?R78xsLW(kTqaWHkyoTCvls*}lm6ZkboW&dc$Q z>{vdUn1H?U%6N&kzrQ~M0>YAps10z67WBRZnIs#awhYvw`D7YH{8aBX0@Wh3Bbf7E zF*7i)sjanPI}TXUGxQ%l4%vTfwI(2Q6(3i9l91)9TTh-4O}Md+Pfom1l5}Y!$_U9^ z(DG{UW+RH64eOz!Hz#>Uys^E!T4?Z$&8}|T)^ydX(ZgtL6MYDx>fP-9GAhq2w;E<$ zy$MVE47|Jhlh{lFHM|}S-KC|hwZ0To6cp*w=IxFbnQH)>23`@<4bG$qxoHKvqG4+hJv&Cd13&_8P@X6r>5T zv9Mx>ZTiEbzNBy&f#!f1b@l)JiHt$klq0}e*m&`5B^kmTKF5)vjal08ii-`t7E)}K zv642c7V}g;hFpJbcbnwd8rkINp^T@!^q-QjUcz-Icu0c_+Y2gg2Hxy~f_FkfVoH8- zF0mD{@d>`H0_Gh786LO^rQ0+_|v#u}_cUhxdX>w>%6@PSdyF6e*;&L`TIr z(Xdt3Av^QS$#`Ps(d`azAn#94jpq09x>!Yqgh#^DsBKQm%b(cA-hU@%x?(`NX>mXL2E0o@9RBX>Tc)y}sV(`$MC!dc zgfjXK==MzGIfmcJK0Z3MN$=)4HJ>k(H=ZIPM-E>9826DTA}9c-J!CM0zBTJwG)w zSBuy0l{Kohl@|&DD3?K(SE79!623@!#`Q2t22WUc-B|trEKHI9_2Qk(NTuT*!4s6L ztN47vb6S~Ngp45Qk8j9I89*Kn*ePEE+&w=p?@jv1@E*|SJHNOH3JMAc43sG?`9{lK zQLtSX3|uZej@IM}kd_GcAxCU{e2DyyS5=GT)Sc`a?G~4|#)?4EBoT%0*Mo;|bTZE; z{i!LHYd(k9ynX#T+`#SGuOKWklX8*{?6!x_WHtqRPp#C45a>BMT|oV8Pl7KV5s~7{ zhxLMTHozJ;IyyQqKx)>a-q7r<^A#|;d$Tz);+jDCWaU@J0AF3sLN7>yT|o%ea}tcH zI1i4GF}F81DRve=2Fs8^DgF_T%Am897B*W+{rdA~5pU(} zxZlTRLz;T_KXO(aWTuB>*A;Xl|MdN_9!6emx{i%aNr_66O*Ng#Yx5U?s!TILtAbND z-Q7LQx=Q&y4GO%$4{V?<~vWk>gu@^@@#Kp+opDN-6j|=#ov*#jfC3hGca`@S$lqqDV-u-}5@I{7h3mn?Urv2IfO2zARfxlRL{qYc<1|V=NUFr+78O%*a&lan+x3 zMlRq=$tlPTJ3Ski+cY+ws;_@T^6rAlI4wCK@LZPhd_p!hDWPT0@HjMfb^e4IgEQ_l zCZ@V~r>D^Mr8ax6-zP?~@e~W4n~43l$`*S-MP&x+jXFFsvb)vr9V4@18SynEqsWCA zmEB27$;`Io5)JBA^VxhCw^bYu*Z4ah8WRKv`BM>)!H#Fr#^wD%y}Wxep-&U}oSz>_ zgD?P}eV|CQ>>vS50@2YgWP`}aR7gMXW=9I}097_&;Sb`h_f+9bqox|Op)A#Wg-R#2 zXSS1pXo0?<)ZOlfriXOJGhL`xlJF#uWFHLCo>PeA(Y^sogr2Vz>0+<(FY$msT*I7q zP?k%jcQzWi&rQ}mYKPmehl^K+m%Lyab9~;2#RTNOH!jnGvYMP3Evac~Mk74d4=^5Q zNUO=CMGm}Xu*4-6vSzu6co3_v{Yh|TS^>{nPaz(dX%aIO>NHenMQZs zvImcc>b>0fRPEFpwtgHXxau~@?0LAec>P-VG;lm{ct=M^2ThAj(a;jIE+20bw$TfY zkg(}m#ut3+@)XXqbxHK>mxNA}b-j@{11+Ome_tOxy$$KpXMR1CCtY&kdOx;Y=m$>v z{^&XjSaj6O7Ht1))g-sFWAMF*Lhoh;lm5q#9GDnr*pJnEAf6_rNZV0DE-sw$i}&g; zK$HOAuE(u(Yj}luLm_ZjLAVAivO_Z6eesHUT{$@)W6(IQr=0+}T3u*SPh!3MNX4&8 znSZ{I@*9abjbi#s*EAJJF-JAtd5n^D{)1q{o#%aT-@ctpJE5iQ56IlRuYK(GHGEi< zhCuB9#rNn5{+@6cS4ofB{Uv7jG#G+eXmT|1=MM*@>2+rFit zUS=z8z;UAG9F6`bDNcGqa%|Ay6k{tz?ws|nPmH4{AP-E$l+o}+HA>%rc0C?-Z(W9W zNli~!SVRNMg1>%BEz(ud2BUT~RY!z-Jfkr+DkjuS53_pU`8S5WIvAVdA#3Q@8*i@; zL`1Xri9yxRP(@^V93ir-(Pvn+4k1MkX*9)*X^{%jko}KbXMcU^YFyVI*iFzBk(LwF zG^O-Od5$6(J<|#MW1j!)0lk@$(({1Ax!T7(MX$GbmaPZUn_YtPLk^`CcxPo~W#89Y zZPvbiI7CwsN5%44zHofu8ZBsmr<c(=TKn zYjs=W%?gL~fqPfCyOKvZtPXYuuJJU+E@`XY6SnEy0u`+A0LIWm{P6q=jJ;mF+Zmt)7zYoMF90?;acSH8zdSaHnBrZp>k4q%BYK z^>cMMXE~$)lCG)cR;{BO$>Yt&#LRV8WpKVlMfX{|KA)etMaTT?;KZDKgJNgfD_B5jt&u~~A7u{rm(!BS zTd5$z;*p#lq+#qC`12axs6YwnBV_1+t@2pWTS#koNK1I(GgAxy#=f$)CMH(>@i!eGl=`#$75igAM-Tth+z+iTu6xV8=F|!GUCWqykM4Y< zKh2Qa$`;Co-<=%i9whD&GqT51YQmR#tP6YM?R~L`FYzX2;H10JqepNCpMOhZD=lm( zt5#k#`QoY(j4AJl0h;;Sh4ZA538Nm+@lcK$F}r@t{Fi(J{JdNOG+Zxf3)H2af9{j7o5OY_)7C_` z@-Am))NR1%!*`w&@aseU5MZyMVg0lLxq&C3O=)`We<6a^dFZ<1(dm6i$E?^Sj06Fz}7cB|CV+G-1uBUc{xUQ?65 z7X2*ER@^ zM0!1O!a1{lW@l%_fD7YmxxVw9X|K_jfCyGAXxersk{877Ww-0KtDKfRN;_#4jv2j`y ziTvaRHV|kks(>po?Q{TVy2T%v_DVJb){HKYJYq0{$3bs4Nu}d*euL` z|MeWcIp6GAnC!AOYA(Vp(51m^(=-aiY^-QHfiLLkUZ&UZ@9=N_0N;|5lB&k6O2*=x z`F(BWfb>>|cg(QDY4EV`Fv}o3k7ak|BXakI6;0zSU4?M8LA@qg299mOg5N-*dIzDS z))csk%YSMbKP$Z?DE~9`(0F8Gpvs-0q0xI>ZhU5<(S2s24I33ZadDMYDVxD;G%Yk# zmWc``@C@IVferojXx%s771W#@Wrle#xuC#@l7SGjvC;95b;XbHIj43+XCRw1JX!BD z(Pyu2{05k4-+Hm#e)M|T5_LFmN0{&}XLUulfkaQe0BdKm|J-Fd;lkZh zoYR)4*n4KagmP~^MrUa*rBs#9&yN~=GTg$13xd|j=DW8u{qJiqjXQE%{?kbh3u z3=k)C3y`<@`rsTK=CXlfF6P8Gi53N>qnpkTm{gsICb*GyPS>-|W?#T!U#gGt$w6()})h zH0B6>Z)J_pmpt$H=cc%rhE0*tBnB>NZcg`7U7qTsu`-$;dEOLS%3K1Yuz|y=onKT` zbW`=*8L}BTzZsYWG7_&((>vVjFUAt4ARk0r;AB&K+p%4f-w)7evz~0hv3U}_zgl=K za-#&q(f3|uh228DCHr+EONbk_Hl4y4?jE#=8%bhV%!F=Tp88TDWUEV+ucB(pFIu#C zP#ehF$+sDqGxsKCWCSr?CbV1=QniT{PzAVc41R}Qj&t2{s2lE_oIJv$YMXq`W3pWO zv5K2daAyA!Kun=bQ~T`hHgy5|UI*f8$Dtb{qN0PDj1=j9OJYL85)vljMj$dWy#ono z;p56j?8m)tj3fka&y6NSb{fA2wD*y*)6zeU;TOJbx#6ecFbX=mfu`5qyiW3#SfQ-L?{qaP`o3%m3OSQj$*Xnb?-Vze8W7=VoU zm0t)RV8WLcZ1!Xf=h+wEF_yJa!N(0^Gnrsda)P@ok=J zP@av!gxLmaCcIG-F{dXTxTppRUgO&5P*+h!EP-7W(CTk#o`6>@*b`)UZkM=@m%*aa z(u^HE0Z-xT6w-3Eh9WzdF1pPjQ~Dh*z=-J3Mm z`P^${mzVhAX*`Yqf=UNo7;5rGFY5BIxIIs2Q7OFYfHh<94mHhlkB!v?{dOrQMg6SL zVwv9`xp5v7ZC!0e`Q_&)_!|6*%-4VZW|!kJIi+XUOv~`%JO^JbmaT9;-v8j)|AwmV zgn)fUVBr6Tq5ndq-%^6eq5oXXN&asD_Fpf_W$@AQbrTR|N4agcw+i$L0Lm%Eo@@-azaf_EiNTR8z^_Y zf4m&{NheN~pr+Ao#5Uz4?7*(Kytiv0TbH7R1a|Uxd-P||#K{L=7gQpf{8Fgf$;wGx zOblLZ%GNk^>>A21S!->aMB0);`Uec+G^eY(Q?kAu27>|~p7^pdMHp7e9qfzp*^%xO z-qSPG$c#GNgbe+S4X7I`65=(K-D1DIwnW6M){bwO%<;6zkV-&tgNr6JRsq5+5l2CZHmJ8JS}}&+YG-4cde~LlAr4lm^yM> zM4ozj^FskY6?l@fQd4s>GnZ9YS3{v|U)N8V7|haKouw|JelcE(UG$#OL7J7W=YO8W zRyAwKxw~=o)^M~!UU41N4gaKR4pGEctXha}t;{Ml4j@Zr9~3qB18rJHYcc$)B4phi z`)-(;T%PZl!x1e5=4*y$GhgOvyd@Tt@L^7hFbA86+Dg{C6RQ|lsdQmRd5GT#PHU#u zl}k5h76%6hIgD;76ly(PO(N*iG@|3StS_aZLEQ=D6>M4uS1d$CQ?ST*a&&pk(=&u+ z6cm6Eij;{--XnGjiVX0FV>pcY)vM}*jB0!xgz;)H$RxzY7jNIxKU2#Du$}7;@#c1s zb6%>d#nx_5LblC(llflL2Z!yEd{movQB<(ZjvI2^VNw@I@RaowI-aTvG%f%kj`{fwI}hbCpK1Ja}Z%m ztoWv0b9%bX86|b@iKYqZ2xL5-m*X~{^!KHTCh3HK8UdhBUVH|wB4eyAXQ%pMOX-3UG5 zcxgcC_bq}9Sbs$6%gvHqGZ;ScXe^(4)LJrGo75O`u6eA;%pAn_qw$3}PJ8DEa$B=7 zF3#)Dz0R(o8^rK76Oj(L08ASP-KUur=P|6ket8MiALcn8(u7`u^_?7KIzgA?=uLRP zqYbK?Cy+qB%ssMRWi8tO{Z=nmRC}dmm_x9)EaWrJkHf3J*G!Fxdk1SZQQGeF8pD&a z9WT8+k1;oA(^h*{>eqhG^)|YVv%RQ=rZ>x`L3(HMi;cHUvS~a}klo*YizohXJx*m)ufP42f!1|KVmwBG_4)Y=w{RQ+hzAaZzKz&MSd)XYds zXQxCZav3G(#4{P$Br0;Qy~rxGa)lnFcn(G0Cc!O^N8y&{e6mVcY{mp|oPo8~G9 z!GzUY{01*Gi;!a-AhFizT?#s`K(!WNhokVZy3r{Bj04+C$JK6i;$$5+;5^FG9yWML2{T^?+5zB+K^i5p$1<5o?O5nBoEZQ+GFt7 zv2=nt%g6>HmMd%>sPY@b6$t6UN50|;!fh3GU-WGzqhr%7RT$<623)ny6k5`bGLK-& zpLG|pxpw*NHf3x|J1nZ3KKlzJ==&NhB`T05KRoA}4A}fC)|&btl*d@Z2Pn5uy?T}0 z`wb+vmb(e26p=-ejuR#xgCh=0cCF;|I|%4JPAjw>Gqt(<|kwLdrliH;wR!DX!DL9 zbHC4y|Lw8h128kt-aH!r^(P_Zt*-#|xqMl46#BPhIC$B5gA>*1BY5mo{C`9SqeS;g zmf{-gg#Q}q|9awo_2N0W%^RCq|3@5Bze3DUf!!X~zE6t9#yCopiLDv03$`U$<@};FrGli6Hc1j^g(EGgS|>PH1<3 ze{IImba$CQ%bl!^jSXhY_Ph%NJv~^opw8PGA3iKLrwL2WA%TlLdmtb5 zUsM5IJX(5s1vwc3-_7A9N21#kZqL2R5Y#*xi9`(YRG_cQ-u) z!}9hKfUv1v>C`!KQ!_!q;?Bgp@pZksx0lcB_^1Be!Rh=>5Ezi#@UKp5GT>4zrT*)z zl=!p&ztBIjzIHrVS5{B{#SvN8pL|0^VS?zy8C-k)Kq}o`h2hr1?8ek zFLrjdS;nI@f@=|Q9Dk!xkv=#i~bj-U+Qdnq?f`YQ6_|!|L zd$;af8-j-y;tzpKm-F9VS63gW&hkYVb3v1lxVu9N-kquBRA`?~ZT0_clrV~As*8!i z=9|5mn)lsc3i3Sz17)XcO0{fkRi%23KIa>M)GfK7H@A{--)gI|X-rgXie?hhl!OG+ zp93_nsL9^Cxot=2PT2m;gir{&Tg-L7zPmQN7>?B3oAae*Vj_=E=U2WONN=e=Yi&!M ze0zJew7P+rQoB3l`dr{en}}K3nMO_pFT83fKIHEsG0hJGaTW3tRB*dpqO~VWaP#tN zrzx6H*1O##(gS__uHoZUC>QKvA9RN~2K@`LC%r70^Azmyj|_!2e7xvxX}RssdkxC+ z8Uj?-QN020NQV7%aJoByI8L3)lKFobJe79*^ z)_m4B+>=nYF~t4=j0VgH@AUtRSaT-(oQh-DVKg3?&I#(n_V=IM-rlMYNU2>lgr_7h z-h2t&t1{u+uPI}^?dQ5(CcV2@ML9Bo*o<9v*KE_yXqLfPUM?PFseU9EylxYf%vVU> zAM^EGEztXFfZOw8akk_29|_^h&Ds-8s?>^!2d$&RNSCUWrOrhfyVJFsu(GoS zf23p%>*VMp>A5-}C$+3aVG9S$mLWwOp%wu$N?xZeVs5AX)&nESpf6u?a`N&_KW2?_ zS&lQleEE`=CF&+6FtFNkA`dKFfWp&{)Yq;F3TWD~H6hghdo5ZpM5d*Kz*`pyi^hE# z9KsLY)qBichHFP;yxm<~uPm3h@?u9CTOa3=TmF3zZvJ- zLO|$!xr6d)@t|O&AuY05kaT@>xZY?zBKnm0Dl;<^#8VH?uT-s}UIUj_M|*|?d2g6B zpL!Z8O}PGj0TXgYM!de6uC@utn7!Sc$v+ET6eUj-xTrTxKi^8wr>0ChwM|bSD{@#| zT%2ogvLL~AVR&N?_wPu7?43J}O=AmOo}WPGwQo1+w>mTrd+^`GvfPgr77QA@()EGX zVFlL4#ako<{)eV+j~o7rhek^?nCqAirsY`*pPMSd+cl!j_3)OPMeq*}_qm8o(04Og z@bfuum6wWsNI~dreGytCc(ZCtcX1mIzXrA_=i8O5MNB$Payb0XYrFH#3ZESImX|*_ z>`C2CP?|e|HI(!QcLVWn)0o%-8=_b~#NyucK1d<$WjHq7D#vI+h(W&VC8}&f%gsD0 z5wo~>tu4f0z5{l<=6iifBzWD&?0ek(bwJX^O#czPjOW;67Z2iouo5>O@uBO6{C)9{ zYlJEf?P}K$uKoBWhH@?%6gm7Oobh-)!+Q(+?x@Q4dR>!TpT%}7=iuh@*k-p%c3r-S5yH30rKfAwZ85bXQ!{VC6sp3JRIpDwx%W~ zb2E^v(yQ}JJ1c?kSy={&aoEg-lbZZJVULb(m*#(WLjY>XwXTUUGrtDu)tCf*X!Ll* zGCv*N#rYq$xJ*TPS%$I)`Z_w=ri~DYW@bs6wv`Uw%{m}IRA9Yjd)%Xw!tT<;Co>oP zw=37i-#a5y zYg;lXs8*Ys_?UH?szX%aQ@(7R{Uz_XM*C!qY-xut$^W)2;@Szdj&vY-^S*jZ`~10| ziXBIEBuh~cq$AwD2@^|9->%YDdkaFA+oJvqegaJR>Gca)S*p2q&c%D~|Hha)f9 zJ7_b|0GWpBrpTzTDoub4#aox&-!9hgM{pvxZN`f?H=;%Fj$lNJDLjRuSG8VckB2yV z{l0b1v!tH9{@Y~vav@5{%xt3RQ%^X$^n2%gt#wM*+Q7|;qHp;|NI-SK z@(%6fT%)u5ViFC^`^MH%)2sS$`Aq+An*w@EQKmr5)!=>QVk8-PJ_7dv#X!1YEnWt9 z&@$-pH8%7pyfBtpO{Ha~#{6i`_L_!>&8GMF;2@4d&&ijdAVI#Pw!4cd>;&lD8ins! z5o(^o=(5#=`;q#f5-RfdptTo`_|0xzF9^Q#wcXD$Zz_shTG z;^JN_YN7Wce3`9c6HMWXAPd zIV>UX?=xTwI@9m|enN0Vp9X_y{~=;Y+22=3utxg-|LVYfS}?%I5T@$`kv&c}HMf>$ zfQ*j*-K`_wzVVrhU}86A%*miver1L;YM;qQ7W0xvD5|Y3YfgX9nAoB4kaRlOKdsNO zb^2k%Or2ZIOW{p_=^<@i_$R;_K6$!$+brp1wyj14(;|x1)^g)~vwEV7dgO2fI0$z znkMN0CPB8o&qXdsKJea=)n5_{++8Oqq`p(_sV=oW}sLB1I0%R#%+cP}vtg(UY zr=H|5z*ZVF4Ln<*4!dPxJ z+~&tP&7VQtHgoM}9g@AGm-YIzz2Q1Fl&;p1jJGznZiZNnIqz)VQ_>HIOgZ2cj)jzn zm!Mnhk@c(Zx+VRbyPo9VP2cq;B^_mOv%&AIjUG2W?Xr0s7NCZw#@x+Jn`32ukmW=m z_rC09CK@f`UYJl4D>paydf6-TCbwT{jfLK-$OH)DLbyuE1pdRJeyqSz&gz|D3#+kx z0prWmS!H?4=1{-Cj$M1+`c!YNlx=#KSKPRZCI5Aa`2A7;JQxwJK(i^ETD;fOH{l0^ z28N9WTcvbOcZ9{Cta;Wck{9a`uK5G?i{jDBGtDO}aVN5cPn@%snJYzqB;>t4{mNz2 zsaKb3w`nmnMLsNF|)lP9G%}EOTSQ`?q~r zvv(n>;~h0!3VL-OB^z&D1btf~!bwN5inJ7#C(}4ts5#NO0g)da_cPSD^ z-z0vw(1EN4bN2CCmY#c#eA79&V%ELsO70`sOcGxYwSCue3cuvvC?M)Y+P<-y8=s@; z2Q2!zGWdpIH|jS}sA&RLjRi7lTsl!7Qdf66lj-V;Prda(ZCxxz1*?lE4rBNktr5gl zExuyLKZVtWS4g$fhQbW1S(c=cZlB(W3#BuQ*t0n~+Gqyy?CCDX^2%;;b=ahO2pbFt zpD}fl!30}d^tOYQ;R!|KdQPGPVXAByV^ko_a?9;JO(v znR}Eluie1O|2iA3lN@IO234NJrr3ikW3Ny4-`ZR>lyoV4{7CR?5{V)1&bS5DXlwk3 z7Btn!GrJ}wT*$;_Pm;8@Br+V-RI7E`a5kjB&tP@Al29ONB&(w{f*`RQ@0|Lt4K~JA zq#%}cf*;u$S)kMYPyhSRUx{I$r^X_TZT++R{ZB9a=Py+prA{yk-iQ3vbN}k zp+B$dp3qQa#@l+wGbko0qhjqw+?K-YoUY~W+Lxl`ZZRMI z8WiL2~oMl;gsM2Flgb28~RBUV`-!aWs|JTRAy#ILn(dvP}-i;&hFD@2Dw z>Q*wtThM(voU{Qs-X1Q9i%s{kyFS$aZ3a8FuzV!-TvpyM;>M z+Xvfj^gUO9xz1n0VJ$aBu-nTPnAc7GVk8KGA5ArT!j_DIreEjOR9MXnlfLvUK<)gI zf<}gij}E~k@Ko>8^&b=9{ms}HxW5aq#BF>AaHA(E{m?I`9M@gpQ;|1K`Y^rhAVJo0 zxTr2q4SW#F(Q&{J5Pe9Tv|ZS#336 zEjiKOmz@G!6ltjP7eufd6{PBfBpMt+96>^Ik^IvvlG%G_$Vf8cmo${8X?9sLb+*|R ztZR+uec=G9W=j-wUo#^sX*(h1LW|FTR0&f~k2{fg%=1{kIr(=uXvn!5QwokFec3sG zC%V1!M^GA9vKDL#?pp74o5vY%-KRHJfQ6hwI#07H%s;L1tn*h!rqOZjWYi|+fA)$x zL~v=PLb@|*f8DEJXtQ)j5A-%%7fM~H+!R~{@X(cQpN*9(!cngTMysTkC7hn)@H84@-{2?{FEa6>-y;?+q%NFJ&&N{I`ee%*@K)L zuXdD5*g#s#xt^j)Zz`MZYO*se`ZJ%wF+P}wdrqheeux6+5e1Y)4<{ZxF3-EQ# zLKU}o`gq&Cd|ObK1&4|zHgd0F;zNXux5r9uen%k;M0hTJ*P9D*20EAAo=hJux@%Zg zz%F~msELS4k6LnWCu7a1Pod7vye%sirf?k{<9WIl`IWcAb6`H;>o=c+zMpg>rW68r zs4pai?e@Idhm5+oMX`u(0Emaz=d(W;OfGV;NZXuN$#1sv=|)W8bG~MO z4%J6Y2ehFMef_$goVHT})}1E59pCSe- zX>{t`=uRgq;^GLhXIS<}@&`mhKAg-M^1$a@A7G^=CXQxn_okHHE#2K-UrpR@=c0N# z$tn)$R9cN45*Af#U0qz9?2J1f2TLY%Sw6+ZozIi+S*PaXzuoNG8ZDL92FT!@&2XGM zdO{%B+zFWcgwOjNr9phSO;)n2pZju85384%ar&ys6lYwFUpN ztO?nJ`AtvfXLZwG9VZvT|0&1IAby^eg9^%y4iUvv9)8cg_7<<>DfsPq0_1i*vgK}B zf1f;3(47bNVW%$}`2OjBZQAQvR@9Z3V^#8NUY_;Yeb4G^J(y`T8-kxoIPt@{YKW3z z7Y1=n8Gjv!wR6_pGvKm0`du!GH32}IF0VtdF`tfFPBpz7qgNk9876KWFf$buEx@w|8;P&SxrDWvA`8R6- zbCx_EL+VKg647sPir+Yni`yok1cCKaj@zr61mE*DiWaX`D%P0;Do!uP-Ne-o@asH5 z9WMd5b2O(kLFe7!ddUf(6$&~m8zN!7@N%R5>r`@7qr0MQ>MMisJnuWdtQB8(P=!@9X07LU)|b|h?oooyOz_E|2TIwgLz@iv?H$s zNXSyTqCb)N_Tg6 zBPHD>4I(Pt-L0fZcO%^$XR_b-`}RI(pI=;ZT`ZqxuC?YI_qfMBM%R?DkMDJKv5&Mg z3p)KW7MhY^#eEk1;X+r=606h{kMVI0>fcA>@vG;h0$3veVHo8Jl)Ilqf`SwV|pQ_2<<@{MtsLcAM7$urlrqBgFE0_YT_MzuhBq zYc#Vk;q&K>hIJaA>{7{#UB*vude>0xX}WzTUt@yT#h{F4_|9EO{^l|4n|Q4KeC6}x zt3-1F4OOARL*Lb-(tf;U^_JG-kakTH=}pVLrzhYiKbyxD95SI_ouD$145+>&)RVvJ z>=e1@e1vffYn9t=ZXPX2{U_=?j0RBkikRde>#yIU2?scjbEgwNIY&))c^l4gw{lr& zw96G;iosoa`*lsMXM2^{W~lwK`~&tRKF`~dm&nM-y}^3TYHyudoaK4Vj;j%I0mt5} z>^T1R)pV(92HQI}qnWYFg3#3|y;80Br!$6SH0%pPZTFWM;X+2QY3O`0N0Z{?J?Z)S zi)=K%x_WtqZjP2}&*BYg*V-&Ky+@9^xn5F@jaAfq3TQq&huzzd(_e1ZyFv?4D*o#f z|Eo9zzzZLsUU#@3bD@8I5xWow^TuKQhW%oDnpNlQl3KD%NRjQWWIeJ>b&!KEP#8 zU@EiE(aSsp7p$}zzQuRm%A=!&iVkps{4HkGk{5LQblR@RaD6sM&)jl;f6WQvWxira z3mm)g?yDVJng6pMU_l1Qj~Uswi~qoIR)o(>@_arUJ8OmX+;gar?s;~*pB<3DD|H?b zBlh3v{^;nVC|0vus4%<s0R?XOuI-80J772F1ycbuhF~9Rf}+xPex<> zckAt2A6LDPj9klKU^?!e&mI6p1M)XE^aWQ{|Jg~5-Vc%OU*F|qC z&QFzolH#JeY%_dl%A_e5Uo@u9bbI%A8L=+`Dv#EIKfZsx>K+VG@4t(4*!>QGIHHhR zS1X@&05isGO^i9APs9Q^B;E{60upt(i-GqJx^->tci9rJ-{0T=ykTOgaM~Ry zDSSHP_{K&9H}auZF4b*+iQ)|&u2lJGrohvQBXiruyih_CT8>XF5#&L`Kc93?fPfaM z(`w@W`eh+v;A_m}3Uw(iTOW}5i(kF%`?UUhvv>+)cEmrgbNj`M+%+MEoLbX8H_;yL z+K+Zh<#nAiM~x-w{f5M;*U81xGq+UjuK(2=YE=L@`eB!a}zrw~JJ4{`O3$?E{d22LG6EY=>RRWd)L)fht^>?Ki2~vEdVv&2q@B~r>1MB- zy5Gq~5BlTn?9tPC>T=uNQjXyDb&kGoz1d=DX68cL2oVWBFGh2dgH7XWbtLQMGS}X? zICk^Vo7-!!-!$mb3S{rLdbwCHl~{^)g~+IyKQ8w_U2mr@`(7NN``=t2A>%TK)w>`5 zZj-7XQ9)li!c2aBb9+O~>$72(9xK?bPGawarh9}l!NW!4zLg1k^l&lJ?*I5^@or~g zl;)B9p=VIloqb+__p{`MG-Af|Uq|PE%gjI(P&Z$y@HgCA{PnG0#z5@9;=2j(Yt8X= zlD{g`?GhCOP`AQyVhT1g6>HXST2XLS)TH+N!|mm($AOiYgZZsUJQ^b1R$f=`j4T7! zs?J0K!743mOGKmPLREOQ2r%)Dc(bckqSYOKc+a5S#!GYOR-dL2i$?Uj%JaM(?@qT@ z1i9p4^G7P51FhR|Q}p%-6~^>Zlj)fuIyyDn(&)5(|H$GQ4pY{{#0Tu+X+2P#v=&J5 zpBh}1Wp>7d3-U8W5xORKbu;87?w@F^SUWA~n7r{95~5J&_gxRZw0d9Mafz5fL)1Eg z{`a|}1hYU0nXJCx6Hw#**B9r8f!v{AU84vSxL*h^%Jy_(7;5ovU&<_4s#jDLj9R-p zQ4~1q(cpFy*>>i3xH;Xlnl1_VY;jx%r^sYTH$iKO4o|*+&XS^#;47=e0&f)9R~%nQ z!}=xBy>}~FS+n@?u=5dwiCCrA7u-CSNry1T#%o?#X2=cQHa%TA<>uw zpY5w@q?vN`D+5;&fwgf*MF9o%pQ+4>&SagP2lI8W*eZnD8CloLQ3-zgn;drpK9GFJ zdtu`NpIh|xCGk>`dTb{&NCQ#K+9hJEtWo*<8?#`8z3)rcw`98KgLH)lLAb?HWE-WP zm4f8qNL~N&>}dIM1-*T9d$j#&xVYWJaAyVb?JKT?opT@Dz)ix$7@}330QxBO z13!M074UZPUNs-Rzbt)9;q|}Dc=EFuI>s5!K$_(&109TPfu_g%5X5%R^-28}?mW{- z3$mw|-JwEm=N0Pyj|(J^+oe~JS6NRt7yd$gk1|Nz+na8`deQf<#zyt=gmUfefAW5V zM0+~JrO9>qs?%82IdhUUNNP$#9NiEL~kVW`K?jT&h1T=O_o?1AHLRr%SNHOM6)7>w+rzO!g(kc$M(?_+1b?L7#tQ-P~3dc|^!$fGxKddmoZ zukkU$Gg|3kv84H{40I5HqNAJUvR`C1z1<%beA>!5qUrWK@rx}{8)l=++VlP<@Hbrw zDUti~xnO*W`b99}ug@PN9zZd{WxI3>Y6s_SM%f03Z%1P2mxq%DPU2*6Zc>+`dusn= zMIr&kbtn;38vFgZmJpV~Ae|>nU$vSn0Vw`F7t*&s=G9bwi@C63K z04B+L@!y?~lT7&9z1}XXU+7`xOvwB8TfdZZ1VQ}v4OFk~cWLCmo}mBmUf_eygn~bv zclf39*B^TbK=l+$y|EFlyChz066Xqkoi;tZhp7Vbf1Shl;8~=G{yzDCU+J$?`T4qE zNWr=B60i2f-%IAyZh+6Uouz?7w_#H%Hs2c}&;GA;iu z#s|d3&%AMEg@7G5H7&{g?>*^98->)Vbol~L5KmsE6q2p_Wm?^AZI3ZK8Y2fSa$G9) z*{u$AZ!X-j6Sp*syu9uUi`8EwM%pnmlo-7;Nq&VbMtHJvvrBo%McdIXvnfktHA#DP zWL?{vxzHkjh#RZdnvxKozMbUGPQ!d8Yc=4rYLmrNr7z8DM*yfqoL0TkZSdi}xjo?XMCUf`vlVhZv{FHW&t5F|ZV77h6J*?* z4llu5J6bospp(@Lpmf0gnQW~=SE8D=yZJzLYL(iOn5`oAPk#0M;vzge=GH)(q~A5W zHO)Pao|$>nu~Zs#3eqbpEB$XLa+vkooItqF-5Xp&!i7S)p`53Cc&V%YD!(ateSLj@ ze}4k@SHGV2_ig<6q|#)hrLRx=zX7jWS-ECS7zQA9@wk{&H!^DCM&(_BY69wPlKGTZ z<|ACfGu7rt`j4lpe5m$awe#n6^XHW}(T*G7OK9ZN#=scVX+TPa1c80(Aa%p62QtAXU?tOB6+9GU33+&} zr}n`>V$~S-cq>R6h#`5B2Vce3CpZBYnoCa+hl@b}S3>;`^&4Q0Z+NuSI<(E}YK2ZB zcprkB?VcFpsm7I5$!FEll37VpXlldl>ULWO{S6;qK_l1n<&j^^cMdJ>(iey7%- z?W65I9CJ6#{$UX{Fh7dR)p?x)S{FRL(mZ!!@hw#{r}VyapfTsrT> zX9eldob2jO&xlmd=MJQ;Ka-Iw3Kdj;Br&Rfank5DEX_c*U+S?6;j%X^j}{WJ9__UL zW{Hta-oI>RT8A_6<40RohW2mLMWQ`;s2|B<4RqRdUwJI86FHOUw~v;;Y9&t-@9Pv8 zRYbFWMXmKR#-w4t1m!KrB!9X-@t}!=#2Ew{T-({IHz2b5;|2a;m1OiM0WTNlt>bPU zFue|jS?56ln1*fYV~(J&8Tid~xjwV#g+VRxJn}+Ix*L$V0&P96fP7wF9uaR%xn672 z!JE_y%DY!l^}xa*nm{Vgs#0qnR9pt*V4{9#V4y;)VFPvy^m3p(Utp$_ z*~k9}Wj9Z&){1pGKmV1cuRJ%+$AhKT?X}*>stoPcLQ2?~pJ*g8(UFnH*|>QfMhoEe z7`*F3)=t>6X-^$tkp#TN(Re`^$Mz&UOFTUH|jez7cSF{xAKxg8MlZf!H_L0;uY3A7ZB%`$-! zQ?7~y0!(`8u;phe<|BpM;f&Og?AGLXWkFin64}j_F&1SwzObKz!5zmLpRzqcb5{7; z@IGxW58Jf7i6l1vzIX3i`9sb5>7;chwix+qt<Pg5Ov<52_#D~6sKh=1!x5%gIJJfR?g@1=Ox=@2P>|Z+Yy27`(KIsRP z%r`FkFH6AK;<6~uH$yG@xOR9>?R6gQjTldQC3ts@ZqM<7hqW8p83T_X+IPsQ@h@-p zz)&p+OYgA40t#d>WO!4*?3bF5um(eIP%Fg5&`}2k?{PXvBN>Hf7a0xgXoeGM6lZI# z-OawR<2574(=}O2ze}Wk+hIFXAyw+eMn~t_8-cy-FNCQcNuG41ws&$4#m}de2i~~* z%le~t#cIRft*$}M-2U`%aQ2ds?p7Vo$6leLYFY)R06o4HZH8vdzM~%PG~kW+p+OH?gp#KFH<&DV-Y%`Y_UAE{ zI#gZC!nkV8^y|PX?>YKFtGw&`E1Pk@63R_a#%;2?-%@FYD$%%HOtR)1 z2E7)T+pLt77;)tADy;($H;ix&qQKp91kqdXPk&zQdB9xKfzKQ;c!|+nBCdOwT(9NR8_`ksI?;k5C z2p-lSh+;{&xjZ3E_wCp)=Keve{S!^C2m#z!hSjx)K`QM%2_nSZ53BemL;1VG_tOG# zoPp5rgRx-X4QGVD&2c@Hinp<`9uaq;-dE1MnK2DbD;S}6GUE%*%pR++HXmJT zN~WTTOkvh9^E}%ETpy1!2P5O~P91mm^jGCpz_OI>w$v5>3xqBO0YrR+Z#^w!X=ld- zXT^k9W$mq6s#W{xjrHfEBHeaBBGDM#2f%t|qV|v#|Ei>Z`$~1|bd%nEBs1B5haGc& zW(l0Y$n);DPqnW9THa&0=PIL{wz-#GG>X;2e7U)&>fpPbV}~RtODV`-!^0$Xa}f)O z8X1vm?p(8Rb6*F-bF)>W41sF34@f;`CJVcjyqG-v0RF1{)%+b~ar|r5J@ zefrF@T6M*g>fSp&4ex};DCD$(r$eL_14qWe@$M`4!#NN|#@I!K@pm2^-wX{6J=~#p z9J5xae}6YfMBKTFX9fRH;Q!Zi*D;RJkj=+)i&*P-B?18@ufoM7*b$*S!>R>r@*)61 zCSDKpQH5_PIv^mP&Sk_!-T@?&O0VALw24rl?(-FFJm3(zp(i^8W?*1gzT|ze8Q6(_ zCev?sWm`}D{SN&18CnqlH04!xrQ1njS0LH$Oj%=va&t;$kVFU)_V@S2UT0>nr5eD% zaH&x*211KzIf7bP&4l@j-|^ay0F(f@fsTx<3f&xOp1@iD|J-X2)aPX~`>Okp+x08@ z=j5Vi$MUie0|P%xMHiU+cZ>>)Sf{q1rRU$+n=Jl$1;9#dw1DW7_2hThQFqVLTIhd& zSgPj_n-DnFKNJh`#c#$Vi?yzC(5^uU{K(B0%YuTp&%wbYSl&ch4fz1t!A{siaBeJJP zos0_JvHt*(bNM=r{=P?j=ta8!5>*8L01{C*%rfYxP~6AZ!rblz*EdI zJS=k^TOS-Rw-O4ua(IV78=fZ-R_5qkpYgE%aVy70=M=bLek`TG&~LjYc1 zbmGQ!N!ZstapixM-TztdSTR67^rNP`%}~Rj=(`JIl$Vk1aOQmp`S+q`J(uYU1$n-e z$bo!-!^$Kav26A{Gn1A50T2O`PD4k$&Ft(fc(xG{5y2kZnAnvXz%V$OiWbF5p1=dW=gw>!e=*FS8_!816ajb z@brSYVX|F*4Y2RsMCaUt{~ci6fK{UWHZY3~Qlb_OK2H!JX>1DF>uzy4ZLET4!Ld*F}Q|B@U3 z`w5E3!GEnPHBx+w>e+W2ZAm2MF29C13H;*bzo`~=)r8B@)DzCG82(uV2Bcts9E68F zf(hDZP}5$~py&0c&^*W2Z77XZEEMI>T&;D1WVFGNrl#i1(sZeISmndrQG3|EahMcE zuEMF_o91)FzqJYfd1&jOTMP4O(Qf-s6cD=o)i`*)s;lAj+V&h z`RAik4v+H|P>X^(Ai6SZz>Ns{pAQz21Vk)9bBhbx^TM1x3wnHpYI}`H16&2z*%NbJ z7FJe&u~^ycS6m$*J2dbP`7AUz&Wz@OI5=?A#oG74i2gT~LNJjr!2fQc;hI@r4g3?l zAuqjm^1=*`z;o{p{JvK%fT|S*85vBUQlj{sZVZa|9s$Qzuv(ww+wjB+CH{9!%0(c` z^rl>KS+StjaPJ&kKAVS52@bv1C#;A^^S)1=&*QEEwF05-g zD7lrCF!&dimzVqdr5e2QbmI@Ap#P510nzk`?YZUK_3!StVs4tm+N1N+Qi;>-RMFn z_EMM~BVk_*!21ohEE?q21h;09DT4pKQ4$?4Fg;C7_n9jq{4nA8@5+TI9H)@5A>E(Z zU%sdhm#ab;26usFi8#c~yf^ba`b3ZN_csBM(9+Cdtc1lL;^Hup7YY5U;gdv(d@V%N zUeb31@f41Y{pQ(XE7BCBC-%V7o!kGBpY_0NBjax59ghMjJNsT=bZ{i@C>5p0`DjRF zYC@u_2k8~8j`tUU2nx|4nPu|Tc=@+bnnvK|_j=IRUVL02H@m#!AxLTBDMtT{;DHP! zc+_@RR?lDToO9Ovmank0B5q}CvY4|>XAtpVd2o0{hCdmz`EsOms7trI5KFL4&~Oqe z_Te)0BB~E+?kp>N5ZB8x|bYA`meIb+%2asqgm*=xR_WiM+d6~ z+uFM4ILbB3G7*rjiUZrfm@R7g0pr&_wd%Pyypv^y6c%RK-SK3Cg4q;@9V8F1gZG4x zwUbL9#AMB;b{i7$(>32(OS*kio!Di>*Q`hD$(m`gbe{XBN@qT@KUeGCKO&HQ=X`t| zzmc>z`CZLSbWU(t*ix~puzQ;s%yeDZE#x{W<^CxTpA4jZ3+rURZOfP8K+Q@=LxW3c z{l4rs&G)u-Vh0cy2*yOHv82Fpc5>^eBX+3ctg~<6?fUzO!y_WBmfMK_sFwqfP{wTt&jNHCcL%sI!<}1Qg!nvngO#}V9!TQ2 zI2c|M_qmvxdcgyR7oNyCxyn{s{6tJDP^jQMk}S33AnfD=19jqbFVH0<-jGL)$9xfZ zz!8^yL6alk4UQ2tuvbvbR~8AyA3Wp;`9rEE@gwKuVLKYtZt7OIIvvq{<9seCMm<#Y zEV~AtYe|scVarJ-jv>GNqIN`ZW31nR{sV=G+BlklrTtP1k2hHYYTF4y$PSupnB7ty zUelM;%*=V*7YXi13JdM_Q~NnzMnCP13t`bH-rY720%ZZNb-3PAR6x*BHaF_(50jq~ zgFg7B^7{!Cl4_a3MD8*X%*Cneyer)G+oJ4spR(;2YO#5Zel%7nuvTD+eq@E7fU@VX zVsO@MLe5dhcQryI+TT?2=y2G_gt%Em7yf{_TF~7ldO+WTOw3llj1X ziJ9~AcLtYhRpYvevsaG13HP!5ltz~iH)fDALy=~)*-%=g$>58WHgGcInAmYuvZFz% zTq0oI(NT+Y;06fus?-e1mFjK?cWOc$_UL*}cnCMm_U%4%<3XxdXI zn|Y(4XXT`1AFEqst^YT}lA=cG{R6NnI7~Xy zb(e8*7#8eXb}@$Qw60LoM6%P-#1Y|eLQEfd`&;5~V}x&k-ps*+53TsTM^c|#rx}-+ z=kekP>R;?v)Hfn6WgChsXR>vJlwd$dj%X(QP029krmIL!L5f1ejnKUP1d`WSt4{m@ zC&T?FiLyS&*B3fWb#U6h)xp$AuUonO1=QWzP!tCc(GgVLqh<0nt{2*y2b6Bb@}Da_@agMh)-R!E(I&LDF5Ef zGm^{XcHI39jKJi(ulYlA7bkqR`cmpzp&g$ zMZe+!;lRa;!_`33W_!6m3k>c&HmCxFyJKoZZzkTqdQ4@N4eTRDkj zaS1}HKi+yF_r6r?jmI+4Cf^+j$ym0W60f?p*x`eH@}y(^^+t92PgjzLVqCndOJWD;pnqPKWBb zVqgN1-~EZ(@kP2F;HAJ|+s0zeoX$8bWklfBt8d}y;c}!C3Fsf0RBsTZ?4A$qNTHR&cIFv1r%L86t&bRD&n`!9l%0yT>spPTUK@W|}1hv}d>o!0YfR z|Jga1=+Tf9IHB9$I|GKp(xh)S#6exjBRiYoKHL^6d!>8%6S9y1*Ozyjg47$mj|5GZ z=F=wuh-R;PyG3s5#dH^4aU89%lB&g!DplDkp8pOYJ<_5Y#1-^*?IL2V1ff)V5 zjUQs3IM8qhd9L0*w(rwh%svGUK2bc~+5*wm-k+ElR}yIuc7wYM8=Hxpj8dI@$uE3| z`+`xC5;a(m)Gy=b`{p7&;sS)AqDdM| zjC(|_V{lodLhrK+qo5tJ*GS(%@g^otqkTC>{q=H=iel|g^wQ692Vl5Hl(u-i|0lNK z!CefdC!Szi491-!3WyiN%ESZ*NuxFK&~EO}M#ZQHXQI|Q_6U}%J8&FVt$JR4+)9F= z>iVGPu^M979ol)LNz5u}Tth>geZydG<-y_jVnJg`1`h44b1)OnpOYdJ^W%^g2ssRl zLB|^%-+&@gIJ#=SrkB+d_6CO8fqTH8jabN!|Jy!Y?0B{n>vOaNQ7q#Q4na=FncGiK zy>krh!V_5ibf3n<{jZ&<`eNHI;gtp?f$8g+qnSOLM4pIY&R<9#iH1zN@s;qKoh8M! zm0<{>Njp)&LZw85%X1PQ0Ba@xT8A&J%0`i4Gl@;Ie97k?HU{Dl;cg-(e^~wJdwAMahD#8^&gOMkXT74`a!TnmpzmP6>Aavi6S)2i9aNl z3*mFL_*E~iJ_d^X5YKm19hBoY0e%GVK67Y98MxYbj_x!Dry2BJ@6 zy>Vf(ZF_yCn>VOgnB@Fj=X11VdD(rl+)sTZ!!(hMw|jeHgIt7K(&Sklk;9~7jAX50 z^c}ZLQ`BJ=aGrraAIH)ps}H85c+VD4#F&bUNwa-H5v`6(*FlEKhakr_V$#hwPD@b8 z=9i(FMb@2XwOw4tz|h~+uCLhm6An$xkE0BCUo4^#tI6Sr`&q5*ypN!Y0fV2fO(qjzN2^AYjWZAiK@d(U-jNrSil&Gk zpXwpNT75<{h-d#zSQ+JcWBBiUiMp59h*^*`DcUyPO!&Zey;fd0H^(`b#zR6)RCUQH z%CuQb6&Y+fD9;vQ)+mpB11&G=Xn4VJGJY~~&wQd^&}3KnOk&fTS)`f4sqD?%n28%h znYMwZ8f;n_MrRza<3r*H+(erZ=MTpV;L(}@Ql)BqrCH8zVVkrFzkqPj&me>Ha^z`; zdyF(uj)V!unAsBtyAxHEYIfamkzC*hmLh*3JdBx}j{OFQYW=73x)No#=67jq1dB*a z+wP%=(3aZ=W)Y|91_C13ix^c{ExJbU`FBiR1ViWY$yY?4sjb}3*R{H)QmYVTFGk|= z5Gg1{Q5@Gj+y+Is%Y1EkJKR2E%EWAUzWyK(4CcqI`z8LWIH4h@6lqE57Fb_a`z2_g z!Fw!xSjj}wlF-B>JE(y2*_SB`{Q%*vlOlU7Y{J*1e(!3V=Tk-`?tvD`qX~+@EE=_( zB4MG(UIHvCIJXaZ^5JUPAs4 zzftcJ)he#DmbVv-Sv70$VMWw=-wC=oD$s-7=&k6CXk!2@Vk1(Y9`7#-@1Ok6z0Pdf zX_T~i8&ye}r@rN880t~6{q=O`aItng?zUiZ<{A>yWjHU57XK|PnszS&PJ~D~;2k(* zjW~UdPU7@IBubm~Oxa>eK)7Yr3}ognnY=J5RyWt*gr8^E;}LyD@gYM??zgO>XQzAY z(B+B{b?OI@19tP^I?NB6-AS`D zZYEujGtqT~c14c93#@cTA>(D+V&CRwDI8xud6jSTVN}jaOu4+F`*Rf$65}^epWZw- zcvQQ35h^03L-j0J_%PxjCbEuLd-jFQ4dxfQFT5MY%0Waw0jWc zLM~YoUB`!^uM_D$Eo>p2jHtW+AP>iVv5{zpF{QBUF~UMIHTagHFQov*4#V|CmK5O$ z#BOZYcxrGooS=z%80>Su@0_va(N3B(kZn1tNRse2pf=7tz8NiO0CXG8dRul<-yoqlhudIU|BHLkc-nH*&4vtek6~+vgv9DUL5*gmoi%No@iGVhsr!mwsBpPz{2Mgm2LJ8k`0hk_cc~*BV@!yvD zyRlXnQ-3Hkh>l;OXCNkgwV~FGtWDu->>gZSFlvU}BTlhJK@)^vB<(~Rx=g(dN8$d- ziA=*8^H;cMm;kZbAas6d|Id*UHRG~BB(9la>3-Uy`hB83|b4@3D;LxWm8{KfqR{nud6fK0* z@ga#$)dS=}3Gta%1jKOJfu0fz`NH*yY(To0ea|dGOz=epI)=xN*Z6$gnEJqECXX}A zG&^CPMz|$14T7KZ3}1_Gez5~RMKr(6(Ew$vJ%3TH99L$LOkOEoDKY}*;Q;J#SDin_ zVnwS@TLM$h_l>s%yKux2!>JEh2MOQaEA?UE2e1t(e#Rt6V*O0Pc5=v`IQ|&dtX?%n zChN$z2mR!Fp!1qXP%G$}1vH-KS&@YauB7;c5GfX8SZz3Mc;{$Zk7P{%i7X@&CGCTO zRWD~l%JG9qfp-UZfnN=CE#DW);HpuVEk9n?1MQBKnlOIgD5n%t`{kUqkG%?od+|-q z(+x?m$A?2%0TIxi`~lFV;O&ms`nGzzSG9V1b{cv529Otoo;<*lv|QcpmB(-Wh*7Ot zJa{wy$PEvfw1tctw94y>_;9v?;4Bdzsivy&2vaZhTG3I_fa%1mBp=Hb z*`Z7jn3gBwVz%Nn?hqcvPb|Z|$F{mXnxjZ=ZBhDD)m0YhMaf=6R&|tf+bduiILOyS zMf{Ws5{y<9Op!nDLlKVl{Tw;Vm!slbvhu^?!9zDOP>P~Bmyd(waubG1;Q3AjPuQ0V zJ8|E6$fNR3;5h!2OZR6HBSVW2#x+o>2hyn)xg+Ja`vA?_+BkK5|8< zP|H51!3YESDj^@8eadIl5X(>@zI+xWI+!$*C* zCvw5;mg@0dnzC@IZ-g-AGfH1bS_}eg-OyQXuE9?sk!jt-(S7QpPi_SkFdhPVNyp@b zMTYLJUKiwAlZ)>%`Js@hQ%n?mjkArRgQrdpo5y}J?JBsyf93OB;FeAH(A zh1G{C)9jK_KZW6wV_4x?2KO5?+yqHMd%-Pei|XW+=z*T@3nDQn?+AHf8{#3RFHN)~ zV^k;UJai%?H%{a8)7q`il6;*HpukA&D2smdhnbN^@w1a_dX;KmZsQln+1YVxSw~fagj)tB*oP7Scp?$O3MeGbAr;G@*G8ZxLAcb%99$MkOFMKcl<5`l@J%uht$_<}7A-bE$J`ppx3BZkrJd4KKf z6F<{KOo+kN&qX`QFw#e@xT_ha@W#~TLR;2ol!;NQb|9je2$^#q*Gql@9!;b|1R-3m z3CYd{;tf1u8vo@EW)I2I4hpP6n$Zb$T8N#t#QTpJpAZn!$cOpNoZVpfyGw8N!qZzp z6X+ai(_ToRcl&b(In(WEP2T^}@qUl3ytLUr{KjwNkhKWDa%U2LVN~7=CCZ)+@h6cbX*2)D zmPiK|MiUWTX|OWJW$23Qg>GC#spTX$jV@M@r*O)o8B?Py(IE)4;8+Bl5YL%LC4}pu zz2&#cNK&ue8&}uy9$xC!%I!-y=?SRBYuqhj6p}afRFDhDDZwWuG4@k?PEBYYlxA`} zFslafy^<)s)JJY0gq$MuU=Gz`sQE0Jhyua~-;b9APZ`hw9rBqWeY|JV#$Z<1T~O`KXmH7v@o<$3qxf#GZy59=KhsYUO&-eZfcHAbCXK zLPom|(u-3fKKmS=z`43V23bdfcB}yf*vV{RWFvVHA%n2_zO}A#7+1IqTE_Yq;KONV ze%fcIpT7Z3@{`>j3=@BevIZ>2I-okrvWcX}q>PZ;8x80$*t;nJBg8QgC5+`Tb$6oMmAx zx^X_)w+JRX;CPE3*+7efjSZ`F)A3TDN4X8xO9rQg9BClua~dPnqK>`kdT>9=Nb&H< zfQwPJL3w{i%o-f3Zd<)1zqLnRoXm`@G-|cYESueEQP_*{kZ-WXG+L0Mqmc$Y@g<@5 zGc(SN&#f+n=O!DL@Dz0k1t}j>b7Usbt{p-64kn9>v?%VS^dNzWTuH%2SbbwK_a~zi zk;9%3fvWjM7(!kObu_$DWqDv<$Tg3Yw_#_=R*vf=m$(NkrJx5()PufbX!f}4L7_Kk zfB=pg;Njg;x|||7V%xb+c~#ojnYEI>nh~~mZsrYlDImXi*AF?gzRrk35C*$ysbe9_ zGv#(aYIw@>p3VTdB}GPqRPLCTVVgTlPUTmAj`XL1!(X&9=L^Z@{7K1-aIy@K_xEmd zb<$6(9>>DPxVvz?)B;?>iRdHkgj^wn>eYooywxvP!)`jpkSEM|D;Fc7KgJ878H8lA ztIw(^m*irKp)Zx|3oWtP6}4FKnjlaXz+4zuN@an0Ts;B{$WtOQgS6R@ZD$#VP@U7l z3A5aFi0Mz*kl;1MZ{Cj4{qu+C4y%h$8<_wa$)H#yfXUOTPDNagQ$djQSEmrwY9ix@ ztZ&s9!dn}~MM{cHp_AI9g>X{Ay~aczV(guH>*2$&n)XfeLq!RTkh2+;YAUHWwDcr4)7;f?Q{Uf5 z_QrkrV*>>Mwx=Uf*CLZo!6s%eZBCrvaA)_!wM$19Y58O z)INH}T}qMoCIxWGv)U0%povQlULQ}qe?ht~{im+6N}hzFR0$IpxHuk*bcNQPtQo6_ zSz5>qFVK$61ELCeq3{H!d#yk)G%B=dz*N|u-8$=Ninv+*te#PaYx>}t6}cVqYvE{! z6KTZ@;tl!2x8UNYPPd4|ikFF>DWjA{GHB|ndppXNI65LahffK)@5U-NnY=<|=qg|H4hcGEL|j39wAg1~*E5`h-P zlz-7?!laxq`(gB>kEGFRa_T!|d3z5*)tIOJ98q^k=QWv5cshnJ7oyR-g&N-ZXR4SE z{-E-0e!@%MB97=yW6XJg){J-v8ltC-IuI}Q zmyk6e5@a6dX0uP24P)u9D985;E`isx2o8<#qaWlOA(ap7ZoZ*(i~_#Em;+2Oo-O1o zdS9`Q5^^}#Xeo*ZghyAzSaX!46NXRzaziC5Cy=A(Cut?FPb5NJi#Xh04I|ld;4ab? zKZzpbd2u>OjxJ!}>lPEn_zH;@wS90+a<1`%NA=|uca0eN`!ok_7G~{-KxCC!gv!9LKrVrbt0E7N{#XhVV|foG#L^bZ_3GM@rM2l zsrV{+;2pFUga^4~$OFqVO^fsyDIRd|9{1(X-Y+ccVR(d647>kG)(JO?#i zTCdbpJaY{`OTJgS=5^Zww!Zb2Mf^4z(hg_4?+Mh)HiFID6Em_BJzi6|9b{>zOL!*S zT;B%2N4A;j=b~+q*9_YrP#hfK_2FTCT-*F%n8$iyCGn1ye>lxBCJxI8qZETl8KMAA z(y3}(gRJAnRM$v9Q^-zt3Wa&xsXiws6QxAA{`z$CdI}eJB{Gg$%i%w5vP|24!6wSZCS=I`< zQ=Frb%r=;MtC>x;J-|=f&a}97Q=>o3y00iX{czp*4&U6*Vd=v)G`YJ@0DDQP!|U^C z6wvN})Q9>S9(L|S-9fUq_Ta+2=llqDri}cL!9mzTtz`O(@b5?57{IySeP_%NN7#a~ zX2C*QjT6R8XKi(Nr#-IPRvwy+lXnXKv-4*+8;g?Qg`bh(LX3b2A601B;rWfGCO^bU z&u*faZO^8gA^A9;ABRT4=L9}~_XGp=nx zUohhJ!?ZADXK>kv=2U#{&av&mDTMZh4C>N7*4EQdBP%IjVS4!uA~K|9=ke!ywS_U7 zX}1ygjOOX0D5PXgEsp|A+W#8;c

E~u*MWvRO*xcz%3PVaI&9G218MNMm-3@JUdN9 zU2j==b*93cmmWmB9VlDVQx3<4JVIGw;wQfchiwW4ea8#17*`1nAXMo40T=rr`sJR9 zxTXQPVL%kN1BP%;JvV68b+Xlr%~nV*HIe%xTd-pEHKL&e__%6Ok{OHr<7RHV@Te{m zFr(G3IKBt-^|4(scx}Jbi%{&^BKyVBL`VZ`)~lFAFaWt@B%2HUBJ8D}f4F^nYI6VPu2- zGW=0AD{79wDW)+b(QnQAVvA=>h&J2set)sBQ)M zrlfTmh*w?N0Z5q#Z_kl?6EaE#BNt&Q3mt&^1;nQH$Nc29cYja4gdiIi4CYFVPC5)U z72la@rE9K zw1?O7sw(Ie0zF4@Pp(K%+`zK{6QA9z!efr;!#ka*JR}x)R=iVg1@1C=AFLgk=%piW znMwnKnj(#|_WU76CbXL$V(A7tDD-JBd2#k**YZebALV8;C+98EVCm(qfO4|06GuY- zT5(n1pjLsA6hWGpyHfIFr|`lYrsy^OJN%7VE=(4Uo0}+d;!7rbR6ag4IA|G_p7oIq z12U-2dgU1Q$Qko*gcOY)zs2f~QcK534^ptQWd`Jpg~uPAq3DqqlAvgjWEMWA4CBPh z!)pODf$({rx8Jb%4d_;K>yU+4DONzA=*y$hy00GWD~7!CpV_#^szO%QP8$OfV_B#T zbfNp>Bmbv6@Uz0>#At@^%}PM9E|FL#kd(2&9ut(ISxUVFU2H`m&_x8CpxJ6y2q7ke zWmu1Gn?aA@Ugtz6NeZnMX^qWpGDsWzvSBr}eGg==t4 zrW9EK0$QpuZ1;VLA!_APn`WnO!^R4}!d4_m%t%*q8!7@))bS6n$Qlq?abcNg6>Pch zO|W|xWpsRqcwaIs(mHGUvsB=IzfTaq&2*RO4^S7awAoMKX3k|yRu#ghp8XkN?P0FO zl5Rv{8j0B&wMm7eEE%0wRBYqP={9<3R6|<^A7Fe@#XnQnfNtlGE^sBu>L}+$)ICY~ zVYs;iC8?&FKdT`((o?64K8-TJw0l(aTs%nxVb#{ij(wC>h-DJfn?+(pdVuRbIXwtb z{9bc|oA{^P2&kP*draPQu zJ~7Xp&0r$d8yg1=G6ONJC3f-MuR=MX5$;!$n&7aa^E}pc!W}2SHLGKV;ghLf7ZmAw zk=QpCQX& zwj(0S$`WU376i(onv{F7*1ZGvpJeO=$A>1>p$lZTrl+!shI;`Dczf8kMV*Pm>OE6H zj!r@Vq)BtcagvNTYeQl=`^Vp2En7;2Y#hDHsoyfn^a3Lc_ue5x3>)TsrvhyHtob| zMh|iAKkrh7@h3skV%q!Yk41Sc*m_{A4WvW|jil~_y`l=CY2_8)~(ih{cibe9R z@!@%=6d`Dq!B+QW2$h{npZokThM}EtIWnPt4$@1jtP2c43_{Nw#9zHkcJd|s7K zp%YVDT=@YIrpB+0Q6`uDZE|nG6|U#hah=q)$2vY1{*zQtdj`nwMBhM400-ox>c|z7 zlpXvlGOTAF|8f3B%8zXYw|@(r`{)FvjE)}zue`55ykKOeMlbIoZ$e}bQ71yXO=Jaq zMn%kkq#U5z)h~5A$Dp3DQq@;vGztK_xX?(G#9L_G-{hUKDc84L@lZ-kYDU%1yAIOE zSNIcQjxsTrrr&jRgE`|wTW}ZWtt$7dtfOdn1!}u%I?KFSBGD_ukG4N4k>k`e)Dwew z!X?(a;8=+7iV%`uO;pT8G2(xObI-z5Uc|yvwVdt}8q&?x9OdY%}WYVn&GKB1? z&n3Kj9ciRThFu4oYc$(rZF0w<-#us@XlaISLbvsMvy#j@$&cNyLcV`w1(^i{&p>W6 zn}#3-Ui_LJi~ZnT*g{p*#v?N<(TTabq$<_Yk69NIhv)S{VwLw>4JWOe*TEFZB%!;M z|Fx@wsPm_+Bn-2ARUGo-Z6H3((1E$cJVSt#M1tTa?wHNvDYM8pgYgz5)`J>ZkejbH zDmWNak7+X&PMv}yustYjr60#0mQniMidBvRG{}SK_3`r|W7jJHynqZ`72XXx|6E4i zi~8!(>a>mYo;O`;gM5uveHhT-^+$}0w0O@l+z_%GqiuBVkD&>WWeXAQ9J#RhzQLil zT0s_n`+n7R)gaI(A?Z75b^FXGkulX0^iAnuFcpi1^z9&-XH~I4=CdYnvZS~&h(VYX zXw0yh@5PARn^tkMC)O5+J7#C+*K|L~GW}T<@@)n+I}eE&8`Sa-XGW(mDrSi|Q!$N_mB}oeY*z35qwHBnj${NREl} z#f*Stpy!kz&1-5C6a{w2g%1U*ja1%aKyEP{09dHsbLByDps&T3u^3kulo;gTk>c$g zC?up(ofniy7S8r!T1+9I(mlL{ezr=~GL=~xL+OM2_H(&F+cO-i=)nZe+aJNxD?HDu zQWx7GB=@HzNh+2#OTPOiQd)&{@ZGIbBuTD=k7NQJTCA!xL# zRyiBFnCj?|?_p!@wo+q7NfF7S35&BoI;ZTrV4;ln-R-Z0%Bgi3Cc7QbXrwpGO-$a^ zB=c&NILT`>6&c@j;%6}WeU^8#_MG>Rfp)IMj}f^Q9WYTN_Rm}0Fp1P&{HR=pVyQz# z%NxVL(wm-Y%EtHAAq%3lFo4i^-L^5X5HzTis7-M(nC#MA1F51KpiQ!pRqrATprZnh z4EzeaVQxcPub}9vb{#w5%sBw>Noz!_Mk_Lj z*zTE1yZiM(D1by6p{eSa>`lBs;rc3mylUiDaGG*)&FF@`59SUzs|1AO(0+ZJL$Zws zagJ_%{_|Shcv+<%3CPJn#0~bkDgnkx%R(bk-7^GJs&Y_Jbz1k1hWYBEmfQlS!yzBV z=v*6-EfYe$Za9~d_p;f3Uw@bg%1-2;R|U)J^V?rT)_w=mW&et=jML}Ynr?>MsKE9M zZU`yJ+ATNXM`QDJf}sqfH`(?DvJqYM;%^4!mqIs@Ac%WE;!g7ZYtQ@~F&1?KLDp)< zrAFSwu4|^@QJqKkxhE=pt<66-Ic2eNyTUY@I$CFd8+jAUHY*fyL^&3D*7qQ()7`rX zgqg}TV2JgLzwhT;R(O>PJ$>H!v<)8C&6&|hu^X38-|jwQ4{;C#BvTgSJjf@@6okCq zoK{u=>mtA9BN8AA6RVc3@gq=LFn;OpeI* z;5ia;(Hu}D>Vm4Lss2{zqw%;=G4e!Rn1NqlO-_lDosz zD=kTs>0N$>9EycMPDD*MgwURl1##XQ>tbND^99}0ey&$0VH601?b8R+H_5HIQCJ7{ zEm4BvQ5SJSMu%AFBQ87#*T$uvB%Bkh!0y`AWE@s=1M%cYrkTqjIB!+{1MWqmrAb^s z#%{Y96L;0LN)%B;l4Mo?6!ymRecc2FZyBtpYIiBXj_OK_#BflW*+MmX_8~Ea{nlpz zO5@~-x<{A#j+> z1}9VE8IQdjJJ9eCTOULX!wYkSoV;vZX!&s1zl#=Uhh)v4D)6QLn(js4HNshBLrs_! ziJfr755nM=7R;43>@Wg6a&D6-@w!|X3DP0VKLQ7DB(RKKma)uw&F&0 ze)XX-{3Go@>ktK2tPO??W!;vg^3yt}H)$PkHMoKkdGs9|ADUL%C`mNnecwt3a{8Ny zqu;P7x&LXVWQAcQe&(BrVdu>;?WRv61x;(tN^%3bEDEQzgb6b7ghd4_lPvjtrduXD zx{iWu|6!zTK{@hRe&0lbU;(5as6hRuN8h;7ZTyb#E^9WyNEtD9l1|B;ZQvu)pG2K} zv6QbgpWut50vvxd0(&_x6;uRUPc}_m2H+nS@hI@GZ_ZH)D;l+^k5_472>qO!o$ehp z^yFRsf5ndw>u41VpV3T*mq3eao^t}3{<4$D4b?iAR#$UO-Ttntm$PZ-n%$Vx7~d*m zW!orR@9er8_vP3YV>-^*)qE^$X@vX>w7Ot-UJ&*)jqQf(LI3-Bni#)pp%O)ytgfjv ze>mk8Ip((CJyGzW)VS_HWnI5=us0H@nu_kY2RoV|w6;gs&`M9+RG#RLI{UH{tOpc>Fd-DeHC4 z@J=h#N-~AS3k_M}hlN?uiOic|ENeXro4y_sGu{%cRPE|s%iG;Xqfq=TPOuP>#btJe zJBwJZi1|6Q9S0%SFA;HW_h@{W)wT#8GM*jH_A-vBJzWus1sk9A0r5|ve)Nr}eS8*G zUI9$calFr1XS;!Uvk=!=DHf1f^z&(o((_+{O+CgHZWe#LrMI2h8$JI9hMc$xyZKJ^ zYPldMvgRZGVu~C`)xDlap;F>KtA*~jR1AOe$LWaX$% zD2>Z3G3&+6W2JpV%YY{uqYdpFWFK-V6PS))T;Id45H-^htCSZrGuo{4f4!3|Hn=#wxhing5v z>v`#8@|~<1ofdCOdI@QRQjKCAKxz1l(m9$M|3n~#^0Y|^bU(jbLqw?k-|OI?(jbQ$ zb_*xpsTwPC5ajQ@9QcqCF&9Qvy8pxKX&cc}P=d6y4g9*KFhmFP#j3R}da8RR_|-Jy zmH-0=yI5YHl^#ki-5)=osOl|vVep$0=(RFcBS3K(d&FV|>%h_|LqF)4k97DYer;Xl z=<>_M1MyH(Xd~I;Zn~1`ur|8Z=UL*{=QmYpGZ2;~*Qelf?w4XMY<~;iSpBeSC}i*; zR+jd1Mc*uB8*&*i-w78gV?;bHRh17?K#Ud}_8i3(8POJf`dn(bYfGi}FT4R$N0{s1 zW%3t;EZt-zm^>M28Bq)oi?`}_P{NCuGc(>{gGyi0ZMiyv-$`a+HAkF>Xu?5H2rXa2 zSIfa!5x_UICi%DTsBADq1qYnY8T&G>?lpr-FHJq2Xbu@JZ-ucv_ zW#MMKmN>(YBp_|JR+Cy``&>j811n}`k4$3f@5X=`!4%FSbcy6q3mH*gM4RmfFN@!= zmINsNRFMLiCl0r&m%84`GRWsKy-!z5E~%JETpNw>^eeB0g1cUap~voB_l_`5WDInb zNH9RCat2zbz;FdAKA*`=-|E0xbVs;J{p^V@)B<4IIPmD0Z(_cr;>Mw)?Z;SE+^qtt zznTCnB~^S0!zr(=YyzU-IqhJu!63r_YDy`|*H8O2(J#-DE2EywX!D>~5O)cQhk|nc zT7!HDcL2b`T4HSIfq#}stX<@q5`U7acNBF@at!_`xh6CBS+fkUvXC?MDwQ7l1Hm-b z7hfWI|FF8S#nWKp9AgeI)}+T(uL~BAEwsZhJOD!HUh`}y6bm` zPa(mBaTD%zNDJZfZ4=IFmx5kc@x+v;k)y~y83;VqbF5s}qYWuF^mIKsoKW(c4L9H3 z_TE*RC8{eMua{UHPO<){6AT&>I4x4gXOuUQy+*aRU!#3k^=U+PaCJH#rgsm;pV!lh z^fbun#KbEsY$HIQNOtaKH-@=jy$YS|t8(d5ty|iHzN`5FF}WjEk9U`zaVRQj3l>G! za+Ak%fc!kLrvhOc=ngP>pgF3=pee^6nD^;_CKnsAG2Vz%hS z$ODF9zB0;gTsDfUccL%afRDIos-pTe2?@6RIq34`g zvVuY`HBDlLP@I@YvFF|k-$yuC$`z{o6!f@Ye!pqEW&gW81qhyS)e1SC0DhRDtA$Sw z_j^wr_rS?c(>+*@TzqHfn%{YOI^%B%O}UxmRO0F%&e-54;9Me1s#RI30InK>5qIUm z-06Q-by<{kp5!R7a{Me$PVvSo5P>I*|4Y0aWU=(6s^=1AM}Z)k1Z?)kATt(2EcUiW zsj8RV`bDm6gbajqpja^FSaYM8f@wwJ8XqK93IYOVwE%@4s}IO{!F_x)c?B(I90+y5 z_NyK&!>^tG2rQy0dlSqElwzfE-f>fX>6?jaKH^s!s4^|_Q&bj8^a}VH?|G6qch%GF+J4NLECD3vo2!K>_nOoiW-bM)~UDJEEE7ZI~{lNcc zasX&t%ym2p4y@GJ!-7%*KS>@3?y1A3idwfkjh`o*c8aIGeLz9lgeepovW81_=(IyUf{=9T7z{qQ&z z%PPG4SHa-Vn3LmML$@x5+61`8~lxnzzow08k2p)M&z@F0E!(=fKJvXt4^d z17tlMLNS>$ZMYFKe$~f9+=y4Q2fW#8QliT#7I%6mZBeB~V2h{j#2goP{Bqvp>iNwh z4b>44Rgst_p}iO^N&G^ttsC`7E)zN1@tgu56jtB(lhl{@HO&mqd(;=4xb4UH{e)D; zVxM+e5olNA8}nWUYljP?>9B!mRg_0D9(!9il}seEOua#TE|Y^7vQxv`9&V(JAQS`) zpP}o#%STGh*cR`{$CJGG45BI3k zMvFBgaoJE(_q5>e_Tx4#fWYK3MnH9|;U~9vd-|SB zHrbP@_fqTUow`oPg;}pDFfd&$xcgrpz1lPT6mUiE2nvqQjBw8Ss~|LMece2wLQ6G) zZ70`dFjM7s5h6)6{Hr2aq6Lec;ZtVli4Ql!8m%rii8qZcQ=wh4oEqO*vg&n$h8+97 zotF+(5|&+^O%|z~bFvruLvn39Q4NvBsHv8df=1jk@dN@~Ilv0k)<+ADrl#?Pbft`M z9!3m-a&bq=Vd(M$K!92FHrFLNL|e$i3n!FGGqUum>vh4?=5iuJtSypH9Ci}MO#-Ok zDV8hvzAaiUoX8#1Dto!FEZRk)`TaIO{Kf(8RJF$u8wSOMB|Q~C*)7Spy=07tHNrvc zLrkyspw|kft!8q5nqM0Fpojcmm#ZAA;1arneJU$|(2NwR2=LJ{lo4oiZIjnr6-AjV zwpCQc-jOI>GrXhenrZ#rxt^wGyy9AXA0_r#a=q zZy!i-5f_B;ls0DIuU(z4i0c{QSm4*iKkS0!!s%>zNn3O9xP|N-gj!AcreFhGWzm;0 z-pI@Yc8TcunBz)Ue#rEcQuuv5?`Y6yu-9j!I~6)xuc4N2zPv%!XW$$XVrKptOCh>O z6GtOQyCru*`}8kPj$<{o<%hs{-;bpD#7L0(-2=g72*UdMLGU!^9nq=7;>7cNxo&JPOh@Glt)W$S zhTq}GYYXicv!iP0)x~`kR9pKYE`r%sG~A;`pXS_<8K`8hHOU zj!?lAp+ub2u-1@yndluJ++8LYJlkf?^PtEO+EAlN`*X0#YFl%w!P})8y~wejPivn> zApih@MC;>uSF^Y=;F5S>H*FvE-9cdJ8C*@TzrI2S^>Qm<2VRh?YAy?6Co~SKI^dlO z%UdbA%N=p@Wn2i0Iub>z1;&^}Uw~Asc#Ba#Fl2TsbVjMfFUt-*3BcP?;}zA3(No)Yl#Cd#k)0cVB3fWQ1rf8|9c(h6}OF$)_&%q2y# zY|4$!704yJC3*}uN65u#sIqK2y0i~su%vCe46^R|yPNA$y-^J-jt<(0AT_%mk3+tj za6t$Ud9Hd0{r*Sce&>dT5$KaRElixyTII$By*47NKlcAfE-q3t$@8rwv#U7qpLj=h z$nscT7X+yd)tFzLyE`ebc$l#nAw@Uqvj*QT>!R%SS+H5uIMi?o@43Rd)+RApmz*KReXlO0& zd#kHvDY+1T+Ca3jA%9hDvJ9A4opO``!u}riL|YJxBvH)9n({R&Pe#QtS^?$tmOnl7 zaaD}FcsJpLg8I?@y+`$ex{Oq==McABLs&w``7k>GKT+J~D}!iyKk7ZbnCY*qZa z5y(uiBz`zU=@{?Owp-S7+Uo2Wx_H}RHVelO)1+NF{k1_j8HFvpOmSIkcFT~mCQ27GfO^8Pa&I@e> z@nISrl5P4w!%M%+TI-|~J2jAxZ}+l{KF$7hLAF}GYw@oz;CFYr%aAWA$qWAV-$jCt zPiH&KqLl%MDf z#7;PPPNVBQ?==ox9gC3{zAc1spb%L%WBA#8+*T5z3Z$Pd%(FY(><}@dE2br_7Ny;! zc>pWgsBd*R8PMIHhO7-D!!M&>{2Pe{*sEpHnJ<+5O2yz*PUZWUr`|TgoO1gbL!)oJ zx3A~eg|E?&HF9{$yd3(9J*3vgM${V%ZvW&ls&UU`Y*=-XH-1gN^=*%@c(JLT@P^rg;5dwy7+*5PLt zlGRAIoXr6G)|yTMH`jaJ5pk!nYU=8H@jC!t*60ZLK4>`2u~+`@(Gpsnbr|a39TJ(; z^z1f-3z2=8$yPnKhh5!3<1Yf6p=R`q$3NeHu3tEj11=zu@x;!IF13iA3{IrNYcnyY zmLFZ(HPxQh%xL~tj~q3HU3LRweZFH=v8&mWnU5Z%lm!-C=Tp|@0|8hN-c`KD%^I3h z&l^{9w@n5d+ZwxH{rOJ-qkBO97n`R-6yh_nbskm%Y#2BTi)v(YJ8xL)e_j!Q5Pa9| zTGo*LgpnRr{Z4o}F$?(Fj0sXNI-c%2$T<{1-;-WBAo|4mhuOlroeHCH2Of_~BtmFHS$3-%*w6{7@hv^_;EiR5aWoK65JI;>sb?vr)akKC>-X&G(;XaR zo-{ATv0|2IkUK5bL>7ExZ!(T9vEGwWAZ+Gpu`YT@J2_yWBZU(Bu~k|iZOG$yJL@|; zn^;X1q}l@(sHi%}F-Oh_3_PW{dqKg&*>n1{Y@>#pnIDs1y%Iw6EjyIqOz)|>Dec>W zvsg(#6hmd8ReIZTOej$(3`pdVS6sib2Qjb^tv^chV%iS;{}ig0Fz<$-@zuZV1|?Ic ze=ph&AwhTbQIDneHnbD=wkvNJij8`1`?l=-2)H0pLA;%79Ur$))5DI{QuT|bLI31w z{&}s|*Pz=Iq=Je5ceM1Dl-3j3!SCO(xaU64yBy>@LoUqPvACEMflw(-$VmQ?FQq>5 zXickU1(^aCEE>jB>=7QJ_QtU`d(-%EKW+yln;0V&lQ^zQLav=L)5cgN!QOtaO0&Un zdXa5RVyr7H%9SJPd(V(g|1hUSUBw>M*0j6OaNDR$Tecc=n_oW+A&%fK0?&^lFH0;W zdc4XU!Tu|0vsrIwP)A#sabwCJimMRh3TGjS%(fqN!o!yf0@J@^u|g)fda*7?{;NGK zHPglgKQ;>&z^f9?o&u!f-^=X*;>K1@=ozSDiHCLu+sZOM)Y#3M9{MT57&12&zsrdk zEG@ezY=fBbkWwJnm|DGk;S3{KIbbqzQjebVO^OW9Z&n}e-thUmlfJ>CGSOqM|5rux zF+FDB0`RmnItVt193tML3m|GkYUz zN4)9Dn4Bzh9nkBvDI}{2W$kiS5vDoXeBc`9kYD5#d!H#q)}XR+7bBA~f^Vxpu+EEyLunDWhK8hOLnj|o%)|CA1X{5RqNL$x=K^F-_5A8v-}SxkrWpR7u%c5^A>>8z z9_~a@v8Cb;@PN8U`&yg*z(V-4ah^hDM$={|CE`AM>Oy^X)pWf~`PuMYY z_&_k2!kJYFQ?J^s?xQPQe;NDxwSum#^87r0z;=a&!gm7SmzW@l7ongj0wL-ihop+& z@^JM6dKT&>iGr)V!$9eg7>LkS@4LCcYqx&1pa-Iq2ZNta-IL^%6`EO4qWO>O6MqB` zb%gJCf6YZoO0ayobDk9Zp3ufHxYsfl-~{)K&(xcGM}JPxuX}leld&myBB)1=#Gxka z4dTELQDrHAeXy*+vx8qq!Xd(OQjr(282hpoMj_Rs%`wD?mdR4k?iRyN zB3vCDJ>71?#1+<^vn{NUIEhceLCN&VfImp?HO9E*n&ofTZ&6F?vDyO*^Jl@=hvrXe z&9nYe^NOR$zKIyS7vs|Q8kn|LRVIU?8wkB+d9nWR5h@fVMcO-f|!6?dZEzeEsJgN7@yPXIV;=_9(1!`BUbmW(wuiqa+-BX zME8P}>tUPP-0WrR)uFH%X~_QRiM+fj|5v*VUhls*~pj4^geZ;1;WV$TMjDtwCt`4L}gYRwG4*ImXTMIyQIc zCh=Mg4rbf}%*EuE0uc^)dG`+Gz&vdNG7er*zd%hN-tg)#q41>6DC$7)5r?PdrpMT; z|2?`mKsWE)M2lFMZlCy2e@uoJfvVKI%n$@veciPaI79Cp;IM34_Aj z^Kq{H0&IX3`X8l!KOk&49x91%3!gA*G9_<0iii9dq!qTg?fQvp@3;v7buHrS9sD8U zu}?otYZ1VdJYEDG^r18*7L2>eRH~m|IS6am!)v>*uuNEX84=T8A8ZF+54Ncgm(xaH zFx=rQA*6&Pcdk!?XKmKfwY5CR#VZTv23#%z)8xrp_`LR7=M)<@rQ%H~i+uj^hS1Gg zN7Iv+CUmteqc8^FslIjaAaZ(>uyJ%?%**hm;#x4ah`meg^bb|x)mLsQ#LLB5KQpTDec?lHLFIvQF5vm|~jghh4{TC-)dX)ME)kF!O$eRus{8lNkh*(Zc6cC*fylizP zP2=c_pfX_R;bV-Y7#JH}2s%B@crPx;u21>zx1lkgXs)=tM#Yh#$^BJ+%QQbk#)`AQh36B2>;ti+5+CT0-qsKm>tFn``KDqgMS*_+1y? zzL36E>n&rT+3KZ#67WxK(W!Ce7n6zS6~{D=C!G47=}#pWe83}Q+?siY)DTa=9i40B z20ztMeWR)OB9JoP0H2h81a3u`vhMFmr|>S$7|nr#^x?~e6ALBLoAbEApm`28mJuc} ziTntHvC?{QzMy;oO(l(g_?>n2&zRDN zw}=@kE90)Et2N2wYb`ahJT2lSZswX`JqP?POW5Je$t({?_;XZ7+bI-0mQ@Kk{JzA; zB?dSkoCkgkX*w?Uh_}(f#PN+)0t4O0&J-Ao0c8*9%QCH{NSpX#A;6?CR7SuFmL$Xo z*W#!bJQQwJM)wBONmWbzP~}o3d|84V^6zAg8Uw9`-4YdVFBqeT!GOF(Ba1BUr(x49 z{J4nWwQZ}^!{sZ@$JDs+BX{yOGHQ_$9IEaN*$m{VLDj^7Nn2wxf7RXA;+u|ypuRZc z^D85>3GY8&mPCqVR)z%sbF_D9J&T<5ka~{n+nANcudEXV&<|q@kcu4jOzCJu4N$%LUfQK$X|i^ebK=Dq&Xsn!fGD1GWYEa z#TZZbG)XM~;%820(i0>!+LD>)85S#epZzT$kynkuOU{qS4tp=JX(@Q$qNewALD>46 zm3lusUQ<@3<@4?md=}&9IA9@plxY(Yq?vV9!`_H!>_0QP7F^#>VwSK{kSh7Hf=wJy z;;}xZPZTm09-Oy<>=NZ&=;q-r(j1`DEqSUQ8r7*(Xgp?FaMP?-(#VjEMim-@B9Y96!1Uw z1tyk|gvE)Wld@%%UU0vO>Zze8jK#H94hyE1a`SSxyk&CR0>EN&_oQ6zyP-^Vw6!v0 zK9UEh3M=5unq@RrJHxRv6CeZ^)C<^4gls8SvNQbGbNz2cil$xN%eZpzhds{h&ajt+ zHL6v_rC~+_~Q%sWv*q^(4}}PK!OSUzC7J;1W2E!~+#XV9!{jA1R&1 z|DwJUTeL1Bu5ygg{mc6mj&Etbb8dlCz-l(d)b)q_APqVtEPo!^)zxCjtNlgs_V{N( z7SL)iLa2DC)LTK2kwJxF$e|1V*LqVNFgtpDsC65SI*=Tz+`v8AZiiLKYSMggz+M-c zP(NGqau;@T(yZ>Sks_>M_|m=rB^d1=j^m1K&fDd|Po+$Qe>3r?Ne*FO6FxU+-`hv@ z|Lvx{hxEq@ozUa4uPi=0pA&1p_ZP*V5j%SmR|^r&VS2Re1xDwHGDiEBh(Njjg|V-;{{i0*^k zs2wBcHA5KyykyMG*n1B&??2(~b1v3n42+D%k31yx;Sk@;nsXcUeunn z!FrSnPZo6839H2mg(c`8${r?Vt**k}h=KM+wLsFBHNBIB#S4?Z$>88Yn$<4ooRbyy zsVc|kc-DIT;<`z0o>@82OQ*ixZ&}`C^E<9CLZp$osmdlFHn7Iidd^3Y5-CNYqhIqn zW2F`wU9Xwzm))|7!oOq2)enE_3r`$IdH`XF)LRo_6u;`U8$<4Vk61hwp^q~)_Ro8= zoAvy(w#~ zFtrQ{O2*bsN6!&7+&1_07<)UgR!WF4N_m5@~DLgxNwD_8zZI8EyO7J#+nww=HWMAdDbnZ}}$qWCJ z;b{szH$48-w2nE}HAm-_Yp z%+=XItIsA!7YetJ{$^e@DSLQE6YL%_*10XF1O`e!T@~r4u(HPkdMD_rlfJyCc2$CfS`1jK;__9Ii++k!UE%V)gDmH4JFjC#G&MA7}?dD@-tXML$ zYVHzF_n12?V7%bb@c;{`d>?!*viOz1Rek`+8xX%>e(Aov?8Y27egym#FZgpt9>O8F z*Ke8t80HuKQlHTnK;U5cE050>gT#8-0W#+>DTw)%CP30n*n}+hS+EeD=SEfcT};2q zbO=R8M!bC*Il<#fB<7!}@Cf4pLZO+$?-Gw}!FMF_adn_vHq1I@1=EjO3hH3OhyY?i(NDIKQ8Ftz(OX zik<4umJ&v!qxPgBsowgojIcchD~!#!QZEnoeog!BZDOt~A>X)-!C&OuQ_Qz064F4P z`57OgAE4aOLxWIt2Z@J#6uciwQCrc^98c7Y;$4xM z*?brEAz#k}SMn0?im{@F%ChHdJv(5WEi?q?`&Y$Iy*-Y*Z)LKCT3h_&4YI<@&~G~Z zJbCJCnf7C#9-9izXZ$Uy#1FepIg6Xf1w@$WTHeLIL$Lz@@XT^0`3D6@G-Jw3`~8Wc zOA=-q==Me_LQtflxTPUEq~aFPMuq)I4TpNnk;{5g_8NaZOeH-1_?-y@wZZtsJa+R~ zCMtT=X9^$@p$>?G2fTk@)=T7cZ8woNfazC$-u5qr7G&r=qo{xrQHUwU11|D>6ke8! zMOg2URCog9l~BhD0|ka3S$uvQUX<3k#H8{425*&o|MD*{hAIqG<}d*ei=$sk(E%GO zC1|eb(4DQ?@5;m+3kXlLaDfJwv*Mm*6g%`YB#1|?*Y}ZlVwxwcqq5M^jaaSKzkofm zTCRF*{j-*oSF8H+vNp%ft3k>!+Dx(~H(9#E{IH3$RQq4Oww?GCc+o}cG~&XlyH$Ut zDLwNkt@lm9srZ})_MBs=OB~0oGv}c)MNRt{JEthjk^BCP#9WccR{>a5eYPvmUz$0>9k=5(&cMWJC4E#J~0(}U}*bD$*mayO5B z$aiqVj6rk{fm3VrOZ0Hohx4yr3SLP0i%_WomXD|Xk|aYpHz?_f1D6IeNV0(qWsfBzp=_G*dq%VJjNg-R+h(tT6ft+hM*H8Im3d(&0Y?>@;P(mlOlu z6e!GR*B0*QV}GzN>zhi)58Z&w(7#4n_I!xavchhUY|7f8aH&*3cZ#;g6+xyn&#)5% zrv_KFi6<^5f#VWGOoCe{`C1SJq@ifoILs2_n1nG4UG@41!PL-eF7b-x$kV~ZGcv8b-k)dqC90q#5pYoV)|w!L@mfC(lWh$<$SqZAq$ zJK-?em*px-5&Ahe`QW7E=@IxwL<$s-$^VR6!#i)LJU8j>J6G2iowd9#*d5Csk#%@p zjElU>PaPGFpcqpn1i)FFHr|x2D-%cMhDfSUF|?btUPSr83qI=a{L!P|odA#x*yTN8 z`kB|gCEj(zI&t?@DIyJGtisGg{PSF02aaaS&NeUYAWAJ~0ITx3s9u^wU#ph6V}+e8 zOj;lRHste#Eg%=aKd+Aaw|EG4H z_K|o2g)hEP6-33Ms9+%nU5Lu_TGo{H-w76opUF!>rB;f1d1cMzP9!Sul_07Cz6g8x z)Ysu!&maW7*Mjc@MBKhLg61D+P3h;t%G6r;RWdRv;-je|^hAYu)k1H7vp|z;ew;HC z6r^N21IgMvBxNr#q7n}0e=V*Ya_@(I2=@`2L_UDf{6LvBwGK#=C{?Z6oY^9i_|fg1 zB~fyPsWsITvKB6Al9%}R{qIB2qP`ObCFWE9Rh}g63&uGVYc_}$8x86VMhs_4p~1Vn zM(t%_Zv7IrJ4t`+mJi%P+>mp0edP9#wyj3Q2RmK-Ut|B|)-hk2(wgLBzLV(p={8Po zVTcNi`N}1MV|WClcOReAlTW+%(5$4jnmZdl~TxayTPpU{@y*Vzv)K0%kF#33MX zVUxV&z*`w#{w!wlvB6DEDNKF6`$*UHs5a7ol-G%+xfLo|=Z1Nfj}w}rA3(e4?_J9q zQocv(m5Woo_O48=C;W>{iwekw;$mV#Ry%7g#TDGC=15QY09F4VANced6n%6v`ILBvjt?Tfu*qE4H$)SvjFS}le z*zueRa5VrV64pR(m%;+>5tQtGnqICypYalo(X*gwf7{oVJm#j`8Q;@%NJ*+-(8h_z zk=Q<+_Y`XyUto(4sM2wzKPAx8wi5K23)xilz3X#`pk8*imAIq z#@}M?MU|JFcS4QMI}xLtBQgSiXZQp76@6n4BE(5XH(q{QUD>f4C@Cd9+OXhp=;(#P z6c_ z%TLe1Z((!W75Di%q}arKi*`Nt4#NBA!F}dM#@Ppz#oYhNh|)j6?1+IMOnDU7m*voz z!D&oKY*|Kw0-J`GM3;iz$(aYI=N1%-cdDKPktZ2&s)=lUBVU<~9jAo*{b4%AJraoN zCD|+S+G2R&za@yv-VURQR=~3q_}!3>>?3X@kukSS13t#t(w7FP_nOkYEyMzI03LbA zKK5y_%tk$j}7j);oFy1eihtf*haeua@I<*};` z#}ATzT5G-eQx%1#o>iPMXRvfNI^Rrz_b5>7;yD90|B{rS@NgMz_20uC({ppoOk#h+ zXagwcE?hbu07L3Qa?gKDca)7x8*byxzE{QXJ{-sD{pRFL9WJ{4-D{&;(Z)etU7cF+ z?e_KARz>kIH?mh{8o82wUTf_ED$un;*?^|LqT1QFKPgQM*9`%c3N-5mxDRm2`L2Oz zg|fJH9j;9`nwYtH2cVZoBIjR3s9c}50|s1mqW@R{nG{PYVB~&SISCx^A9xN-&U>DLbj_`CVzMwPZgpW2i4E(&zXyF$OLCu+>$0`) zp2fVua9SIJg+{jv{&5Mwg28fG@cD%N((~F{?kj_;-ukF1DS-omA}t~UA|N2$ zAt(q)Bi$w49U`65QU@fJ?&cuf-JQ}Q-MstU>vQjY;>$bpetO3l9ft9of9(B>^;>(b z6S}yaN>^?@mn!H0-jp6_wn1M@+>L3MY#Wlc)iNY9{>$u%E4~pK zVKD#X(9Ct$+1c4wvdX=C^WBkUyVj?%i=U~eL{uvCg!0MKM{ zw7c?c$1WpuP)X93T+L+k(By<3f0q2{< zKPviRY?wIrh2BzLKxRu^mR@^Um78RchImNQfc;QGq@@XF6!# z8R`vF7Z-d2ISfq!U*584g-=o&D6?{-_$_p{ftjVXEex?jB{$Sv!#=7u^&9!xeJF&x z`ArJik3rz$%gRgWhs}VC@dvJH3A3=>~Mp|YE>L9IPSe<}U&18btT_QRBgh{k{bKkQA8Fw^xx0a@&= z@q+jA(mgEr)cJ5>VFK^VM+lyWsB6!QpT%Xp_rmrGVO1e`t=aq@^>MD?ptaoA=caaE|xusgk2eudtP5UrWMxDv0Ak^PAILU>lh03l9BEoawTp(XRS7{9EqZ;&#xvJ6pTF z>RV6NCB8l;~<+TjxPeZ^7DD_q!NRBt;@rB4(XAJ0*)SzBAT?`mAd=*~r9Q zVA~Bu`Ko=9a*`G|Cr05$p+FYwfM~cTE5Y`(Gwu36O^7Afz@w2o-gmia4pbwo(Rt1D zz_RaE`vkwuN{2YP^CxuMrm}bUmLG<5T-G@sYHvTBI}e>CC3L*kffo(@Wgp*z9nJ%T z)1Cyjy9JB}Eu1n>c$qgzHMzAL5lrDO_gt-^e(1)k(mMm*x0_$mhnFTI*M(%Hh&<-uxqpexNNuR&ijkGQjG)R9dNLQW_I2>p$IAB;dPaP8k7qEQ6!_up>>U>?7X zd!~w;@D|XcIyzq8Ytqr986h3wH=B6j5k+4h;*UeB^U*nJ#wLzQ>nFP7(8y<%Fa-M! zUgw|MHGArMX?=1=Kb0bJu(R^9d6matHy*+eEBSK-&?e zqHMYWaYru;xgzPEqK ztk=d1M8{@6lJGhl10SU3(N0J>qu@r3RCDV8uvVsnw@w;uG0zmyr7Xwth{l{)8k-l- znSMIv9VKASk@?A7{^e%>*Zw_)8%FnG_lpT$tuQc6@Z9X^$26bdcmvbq9(siwFNS2u zRm}3FObTx~@Sz7nvz?(xLWYKhZdZZ8LQ12~2}8>TIj*j*uB@yK2> z)c;;yfB)lz1D_HZ<&|Zh3N7@(m~z-CbQV-*t?m3P(NIwKzc6*aYS;2j0%SzEAYzCe z>8Qnf>N^FR^(7|5KjG->o4K>$e6`7ySSXLGSdPzzNKAO`1F;8ENM6YH__@6wGQ-_x0-+&k&UPBP;U% z4sO3+!Q3bKJc4*f?jq06s5UdWR>!IGI;~SrJOE@KS+MQvZK#=fc+_@RRjSU;oNPuG z4a39hckY|M`R9`Vy#XYEK;cPbYW8Uj9+DVsEx>Uf^}pXudf4vIY9yVVoh@>S;Ue?q z4cO6G)mt5A+3#0({FE*K+njm{g#7xd026132*Q}TYdD5`dxR#;gAZvoDl*b4gl27~ zHJFfx3A`ggLacwXzEQs$j4-#ozmu2uoPT0Y@*z)I z9SHOK$uh5BSJ|v$!hnl5psjYCTbXKClD+xE7UI<+`}i#nM{h-YvR-)=qmL}O1H zml42$qft4f{CJdJIV?w`mfenzkr79dM-&`ge(GlFO0A?e_^*WY&refytlX(Kb*)G+~C1ye|v)*7&zW>j{*-b&2E-z&D#Mk zU--|v-2dCA-Ny^meI3@n(gwUvK8#1gHP^L&2rnD$&D9eT5xsCAUFKR2O`idf;GhMl zqz3dR>Ielm{7%6o@m_BCdmKW?2hv11t;w_();QZv zx5oD}<22nsR(MQBRsWE|-R{3us1*@d5gMrV?Ay;!Uet+;DSeo&QGENBup63_BLXwEU}fNrd}o_onY<_Jd<^A$I##Uxyi(;_D1txVmr$ zQuZX7eBV;2{m1hK&J*w>cgm>+=5UV7-*MxwSTzQ>n8v2OuKgds1OH(G6JX4>NcQIP z|Mkg#yvHK=Sn&h;#{7N6Y^q0S9cx_IOF|g4Yj10T&1vL*^>>n?UF1^_vzA4zN>2BT zGNJ!?Hh;yHbB#WGo;_)Y-JPWAs}-(88p5{AMr6mX=*6{@WS*<>FZq&cm3t0p6NIUQ zYHPOCgZ&fEFbFd47iffOZUxBh#pR9_g%pZ} zG4lLAO8>3x2K0V3pBV_ebYb<*eD#8nrfeYOO=L?M=rD$W+ph z+-Wh1X;@chR z!I)VMwB1y-&b|iwtuc@cIx{IAK6E-Yb6G<)JlgN;&D*A0V_f;Ug0(ku0=lBIAQ3sS zpJnd;M&?sQ#KbJNO%soPCMs)cnNPFoZS5|kVtNu!anzW8Dhv--Zqn`(F*029DASp~ zn5YT~d8?%bjbG1!_#H84Z#J2ppG@xo*III7;(uAUT4Pt+_TD9AOkgpPP*uIik);Ay zx=}gUSxNCM22i%PF5+2@ z`cVD>Ntm7k7{Gk@w~MNBfw~TySZ-A3^lJ%BRl)FlBvr_VPX6g~xZ!cE-1`MMt^lM> zxxoo#44MU-BI&_!=Nq@C06Z#-xwo#DJM&oNytKT$bqY;#MQnU>(=N`DB2#eX0S^-0Av88h*&>+4D8t}mi&M2TAW3`vG*N=Uie-gF(t;de(f zxDs+$)_XBtDpkN>^Er$=nn5O(_x(PYY{;LIr&L?l7DBbI6GppYf648o<#NasYRO&s55e?>W1BV)Dk|IgR>|)0sb*uWV5u*)Ur3ibf@1Z4Z zxk@+93;x8SpIA?mCSB-0ba#fh@6JHM0`(i*^Wf*q#F`VP@W<%6Bq1Zao&ZDrFjAf4 z&;7|f9G*8H_h8WYn3&aGrUr!89wHuxZ6IT35qu7O!D0aMpC4H3avNCs;k z?jn3gOTqncK^5R+S;jptA%$38oX8U0H6i6)93fGcRJ^?4PQ^-3$;LoW)838D)O8V! z0X%RWj00eW_KDS;ZQ1&Ubb4!l}yplzFK`c3~%NxDA%@T!VW%keDI8c(<#?74<-1IzB%B0Yie?&Q2%^ z$AEPnNb;<#!={Tv8VEBl&K*Dt3r0f~PGov&Z9;_U6b;6iBt*F~{^3HE78;;w{7|m% z;&K6wu7Jd6cYR@>>nrJq7;gj|O#yG=bI^Ty)mh_rRy|OGTfp|Hv@nRXP|4%d_+qo# zb-X)U3OFzehWS<-=YVA`-zG;?OZVcLo+CksY9ZW{WwN@ONT0KeeiRxi{uCeYlC}E88yZ%Jx5*&yi(XXkf1b@S=|C`2)NU!Ag4QmwPEPLAVsIWD++F%q z=^!ZR#jwXOJF|eQacV=u`7@-jkg1A!%j}E5it~>&kx|kfX0G>b&os~!e?E)~RaTsr zx5|B&h7{HNV8-lA1i7pjxUgnGE+u#vQ_O=YmJi3P;H)CB-F735M#TQg!~SqMfWV2Z zYmne!Iov7yzpI5;jqq|N5i3XOAI-~eNKQLA)1mZ@;I=-$(zu ztoq}6vf%j4|Gziy&EmK_!(1(qze|oZdvoUTx^FaMrmSsI2r~9wBdQP6L9|XuW-X1@hS^z@JFVY0-JD zLQ6tbzHK+h`|4axFJYcr`Pjkq)jUfKayw)SedRLA9JhZKP`a+jv)(wdOEFW5=EXljyO} zqib^DF2JJv17ec$R)z202XdWF$_ZmVZ}RsW%_&w}!kSdJ00iNEEBJ_MPx?!VL3b?u zo^qwZ@fyuJijsoYHheYC4s3+}wHo2;C;CgO^>$XH%4=#_u5llVs?hf8gd(y##ba>v z@HS9zvgGW?d}nP;jO)&J@^m$3_`h$3Y^qdt2l3E_PQu&!RUYl*^E8|zG_ON7!al0P zF9s2}%AJ*(>ADS>i)&)i{h4C^@tEoSf<#crEII&dE!L03{@S^???`ItScU$)wZI<} z*P9jS9#+Cuwc=!>k$+rHP$M!V!y-Ad;=DcS(=yn4UvU0y|Lq&Xw>!(l9|4}WZC4AX z*gDtmUq-Q*6I-VF#}|=1EnH+#$Z@>wc@rQH`1f{Tg9DOz;P1QQfa65bgMhaGe;XAn zd({RrPz;GBq@?&fuFiI6T?;g7W8>o5 zIY2|EtEUI7T6>^xH#(2EIKs$7mj@#wBj0{|_h(#b%!kv%l$z6${~2b$0deg)Z!2r{!Fo$!eD(uttBGDf~MgRSJXkqK577AokDj#EMr19O@REi@{Ct zI_(c+NvRcC-i>o;iHV8|PP-iWHvICL3nJFWuV3w_yR(T&NzdnJ>YVXS-4~ngl;&N3 z`LY3^E`CpbNy}Lfg9p_;@!#Odk5`A72F)@&eFK2hhW><74y5k~^^R!g&Pe z2HUkTDs4=x=krz83Q&IcO(5k3Ze2JrM=4*`ABPM)41xy_3?(QYKYpxQX+efRTn#dy zL02?$ru6SSJB1@Fo!23COkONK|n8#_9{@mg4aJ46hAa0$s$o!qd zbfn03P5O9iTt=d%!l-{2R3|^vxAa4T!@~i|d8jyPS_V9Vr4|gg*PI1@kyq`38^=xAivU@=08z5~HMB~v92FV$nZ@Us0>7xSeAWgQl;^eFX@b62}Pv<}`?a_YK5BX9U z3|P2}+O6Y(U-*jDmXVXVeqsV_O-ZC`Q1bmM^}OY$brBRq7?tz0cLkpbP&$7N3N9Nv z;F|)?^@H}ABnZDIgs?9zHTWE(l%o6Hk#T5Ua?)eEqA&~ixo4$%_g z9RrXsiNo>+kT8MxAz!G)WQi}YL#5@~(ojEDJnutLxqubc1BH1tk}9PP3$njx23I8W|XRURd>+_*^#y$v$oJ2WTt;a`qGm zYQ@@-au(gO`Nrk@l>h>+v!}n@92Ko%2As~bkAyoZJdV;>$GXBW@$ooe7`@{6knreS zw(1`I$>0CH*Sl~E^GC_M@OlA_%4$5R#PxQ?r1YtDN`=!#(8NUguV2|q%QEELZu-Yl z*z+<87dtIJn$@O#LZYW4xb8oeGU*++r+hMJePqW9 z;2#Xk`YM>IseMbw)^YrdJJ@4wx96-h8U!4+RjeV(&Ad1}dw~1iLy>K#zLnMxVfuV% zwx(5^uT~3~-#RUP3ro8MRf~>JS~xGuQ6LRD?3A?vpdS-+Cg|?q#Mb=E&$*{o?nmpg z1SD*x1b!|Q6k6R+RW^$&mk9;^FORn__b@43*VFiqa0M&Or^SdEjk#p6*-S@L$>~l& zcjt_oQ02i#O}`cE8j^7$48nLF8F(sl{K!Y=_Ys+d5O&E3J#7{v4T9tHUcafH`|50W z+feV1v)L{K^>?W-olHWy`+y;tMX&G1#~<64TP)su+EFTn+jjaSnQr`+N_fa_hNZMb z&T?+$)SNH5!_KN)_*LU2Zet7fc&i}Ug9n;m`I`+|Ic)zbrs_D4Ekq_ z!LN6ITJSE87ixK~4=jQ#@p-s!mv;wOPigAnc#H2$I~+7r+J5PO?(za)k{1=1m$&pU8!vx`@fU-wRz(P!hS?9iWgPJE{|IGhXn1kX z^<`+DwT)wBL!sFaCMAO)(d<*_>oh3&8CQBgfpa+Wo%L!URVL4Lei`Ua*A;B22TPn&z<46s)eU3eSd92uQ2&$y_%vm7gzhhqBljT_31|T2A z?9N@dNbgDwu?NW})>yQuLR8=Wk=>`^O%;!lsvP)<_aP$EV0b(9t)!&oaLwqlp16)4 z1OlNc#-$U<^;#%dXd&rPax*#G{|pF}^!&>Vkj%=LjeWMfH!U)EV@bJ)*0?R>DCsQ1rBhs!VDJT_Rtd(8blJDwL9Uo zYb0YLJ=+luNzK92jsxkK;C=Mc~-KF$?{4o-Q8#hb3kkiDd}M zDHgqe;R%ID{LwhfZK14H!gn~36l&pQZHtgb zkm$jb9zAY%IJ@7{^YR2(!WXah?|GaGB=a~v6-}!95c^$ZjE}J!{n1f4LFtnfw>Iyj zcUCjYiEJOl9#;Ym`Wg>4?`B|A-k*=4^Z~x{*Fav&bN`1c zL;x7GCbI53Y)_>9c-KlS!H@^88wXzO`*@9-!Vits>sjtxz&w zq#Uw>Mra22?{(nDOMtSKW;2RS!pV zgl_rkQ6cNoS@w6Y4#)GRtDGjE<(=O7T;r(gHq?|!Uv=u%)H=oXq0D0RtIev!uJ5-K zc!x4`4-v;6oStKu9Dh`>qUsv(WW)Vt8ST)%*1_D}{n|=YzBDbtQ8D)oDflq@|&y~77EZ>MC!MT{fkF71Gu#}r+PS-eERo$37GqDJ zCEuP6eR$Y1A*&~j-5heOeHzaLiJq*zePq*;Y9OP4!@N0jF^qjv)+hcPyxBJat^Y9ci=v%HlEBl8tx zQu6dl>ocOKc8}+ZYlq*jZ_SQcw&T3!H~OwqxI2)>SC{O^nL=2lP^zLtJOf-VFKqWS~b^6WI`8sFT%}-yJEg_QG!jD66NI6?Jb|3Z^YSfBN zabXSsPO%m_w_O0zDR%@=msGs-UV32h!FbbN5#?wQe1+%2XLqB`g^)sYCkPU{rqv!G zmb&R~cl41>H+vL&SkBeBPxVw&++OG2F3(pAJXfi^YWy+bikeyb)bZY(@qoMs_ekx= zds%4FFL}8>>1?3eIv(u4w3tE1na_5FnC+nljOL2pL+JM;VatPlvEMp~X*mjc`&|`g zy;Yu(0h}4J$R{e*-qM`$9+#QVnhL_^G`P!~Wd*4Cn&o;{SxrL53#QLzA@YS!pE~SK zIj`)ekxf_rQ2NQ|lPU8Z>{kaWgud?Ev_|e=-rfwV1mgrKn6(eTbot~eo<8qYHf^yhhCf*E>KK;V z{F>i!R|cR6%kPy6)XS|FuhPYr*Uf=pDwL5FPD9#GM?Y$@|Me}l-nFn-BAcX5yn0Gd>^q=7-2Hk zMl|z5Z^BZvX01|a7vAE-Ij$?xbO~MEdvvP-mav3)g>Q0BqM26A##CuG6C|B$#3Q-g z8f@RiF^G zTYq({fm7YTdsPJL^AnlIzdF?>nTIh_`CTy=qN9~C?s{Mc`~Zn_12?(B_0%F{$p;Pc zbH;|(50kww4%duJH2;06@x$%<^gg#2A3z!A3Hn9QR1*eC3p>#=X2d=^ ziH~RGbDg8!eC~Ij-cLK>=R+Cn5;ek#UiNoV_o5!QlQg&A-Qg=`|5ojo743uhy`kn)!m!PP{e%x-S8kvLsH z{KA^OctW}e#$61WDk*+*7Z(=;xV%Z+m6r2D0^dOB@z$tqD_Z%QAt>T~??EU+=OTyM zgdnrD%d!x_OQv9+o(lJLgT~>t$F`U@(1AKTNIj#1F?GKNIK*~ASEA)}z1qH^M4b}A z#%WNI+C3;R(Q*<^7XG3=E@w>Lf15lq)M5 z>6D)fsquZuH~Y1fR^hk9XcXxL58F-ln*IFz=cU|@)a`t_tuU|8KfqM0T{Px)cm+H? z^S02F1xQX;Z1Gb}RbVL$kJRUnL^k~bxiGB3i2V4QLiw0luDcK0?(BmVOs1$W$(MtE z=39EpEG#UaFZI5r^FJJFzu7#Je%1IMy{PJkN1y=AmIhK2R`@PWJg)StF|$}N-TVnY z$yKcGzN!9)2LF@Nm!IDyGyQs&EuF*Go@SlIgX-K=cg|#&3{=zjTOQhkY4O1p`<)V( z*&*eziqW@ntn*gU-1p@KB&la}<+E|@%(p}(}kxP5ySsH@QDd@!*%cxQm) zMyQKr@F}-lQ0H?vPETAjJZ8 zHkO0k<|+54x>7&YX;~Cr1aIr*rx7`k%C*wTQ^4sKsH3j&r4H|ozbY^0F?~DIwo9vD zuKB8w5oKX*!t{mXGbYp*I{8EM|v22@~R}S~9I0*A%h+pRf3X#}yc&?J%JoEl_ z&>;um{UX`bm}!zwn-Mb8s&%fZ>g}p$zD!c*uaBrN6aiN2WR?NWfv6Mk+{21@?7ey?LZ{+Xu4Gz~AArN7ux)hhg zE8n|x90$;EjE=JR{d1W#8WIrB%y}I3+J11{EK(x3g^=>!Y_vlY_w90(dOI1IK0ZHq zJoL=KYP^h^2A@T@ck?sy1>e!kCmJ3H>hq!7*(z^YiH; z#yD#F*xC#Yk-^5e8RLE1sZ~bPZt?6;>7TZ`aeJB4j2k*aBX=0nReoHMvA~M3=r}1SGaG>!ek|P9{+tp&{LMk|}V5W92)!O0nstD!8XrXfA3mZ4KQd=8~`Mwxf zkg+ie?krE@byG>qhZoDdW2MK00?`^`mmZ#x)8o(*CpRWb8fX+eqM@lc_KR2VdK8d=j2~Ctq;ZMhV zOU{Q}e)tC*^n1WJ0e6MHv>L7jgPX=E+^WR0df_|jOI+jT<0a=kDaO*jS+Q;oy57!~%xEbAh@_{cX6e3*RF zW?*J^HG`U?*=)tuMJP$ir>YZ0@E-r3eF8c*n4frm{ey138;bC@>dmrPQmsWm&3~XFQU>l z29-LjxiE;k1AFYTnp3MSmMc(gE!yc%h8eehFBcu85U@5~9@{DPNRUxF&&ffZt#M#H z+Gl^w(_XPmN%214)NEV!>Ky+bqYLKLl+0fdhJnn${uRlg|3G{Qa9j5g`UK;3) zHC#T)j}A#VENvc6cgh=`Y|p|BciLLJl^C_E4ciOqt6FS}_Nhcr`PdDe4%eTGnNr)d z>3H}@?Fm>}?KOz#>k8`3?O^3I%vISeb-K|lZoOGJiBex_S z4X_>Wyf1@#CQ>Y}R5*)ZqE(}N+|)|XSO(F9SEnv)9%a!?D)KYlZ4-G6-TF zii`1warz5M@nkb43^)ZSxAd(Gl`>gqP_4TL`20`Mnwo^C%gv8F77&rqj!ejB%anSF z6+SA$9P$%J1k;ZthlHJv5zU`V0uRM%M*{-` zz-8Y6V-)_XW%>78_~8+;u@1iCH7;Ngsf`6qpF1X`dN4v>b@sK7P5130URFBmzyr=AladTD9(?D^s3oX{uttY_6 zelwa*zOCir8)h_!Mpf=>z*mM+1ntBUs1D9tl(S#rRyAz+k6`25-doy@rrVPLW}08A zbcw25QuwTXYnQjb@7lPz;<(tFi0Dg013&YiECtp^ddELr(hfTC($N8^&*bE!{pJWc z@FTv<#A|t3uR0_M$}esrFtJ?gqcNLp_^_O1j)v2g!fT%u0L@s521sxmgW8Fq>ID$F zA1j!4y4apfN-`U+F3=9;qo{9O(~?oIcM#E)i>yWlPuhd_gf`<^WhM|oz(0p%Xm}Vx z#$RI6U2%q=4QMO9JFqdhtJc3S9^fg86YYW0mm*o^a-0BzX&o9$`D1M>ulElKU7v3} z7^Y(>+2m_Wak$t%A4xR%AtVIY%Z|8YQW6sHD|HTgxDLT!x2v0VveQ?*%IRFfrtA1% zwF{i0W;5ZK$UR$y2@03Wh`+j9Lv#Yg=l3EG5F)sZ{HX{mDs@CGKkl zAKrA9n~tGlV6YHkT-|wxlIosA{vJEir#eQ`90XVL&DrI1C?Bhx6%5dn#b2h`{}($N z0c^i^O}n3;_;In|lab{_S!;G)|HNRksZt?MX!bJhxIIZl&yC4q(CC)K z_LMFEBGTM}O3_`_1)bR^CR+6t%U8aVafPa-M)Qcf`R^KpTVNXPfiJYm9hwu46Cv&7 zzFV=7=V<9!>`D8b(lEp8r(f4UjOF0yXx8ZN)ZGaVhjPBBdtN4&X@yBcO^tWm;BtKN zs#~c*rIeA8k)MagpTx)Kwpl{P?5a=06%b*!rZVvfTqe89H%vBk(kSmgyOKoI!MZcK zL7QatORoGG-huK6O6|#Z=HB50#@Qn0Eim>m*)U0?e0fj*yokqPZ?ejuy;V~ABbXFB zK~z$w>+IVm^(vkOUOF{ofZR|HA?X}qaF@@y|HlV_oE2}gooSPYPT zo;kSIm++a28-1XpJ9BT0KKiTC8NCUvu zCTdJ8xBISoQ&VgA%~4!9B{+7MvgTBNb|%l`usd1o%4Bg;{$cdd&J_@)UIX(XfcXN} zL?^%dp&_wGzGAM}s>C81gyMQBF)-(0Dq2RBR+;|!B9%DpSgnzx*$t25-t|Ro=dfYl zEYNoaGw@%z0&jOKd#3|O0XGLBlBvStf#}P->ttVv*|rDsyMLWU&EM=Vhi-iXZ1JEx zrO|ude3vJl0w$YT4AZ%yqAhm2xVX52#MLsl=c6M;wt&qP8J!g3%g4Ce;wPmBp$McW z#C?}*XixS1_OP%4%H#Q2X0oLBYho%Um*>qA&+X+J^ucp3m*+T#-0fXyQjgwwf*y(O zyK=5vb&1aqq6*nNOL~w#XYiEUEErQ%6Mv_6LO2C9T1dIj3C`AJ zx>cJ(i{fqX{@O=@_;SiQzwwLXkrA-aS7xi_3pJA)4_2)Y+sOHyH}gdN_0qo*^Rv6O zNcKxPSzO8U>2e=t-wBQ@R4MPX3YV#J!gD6HZLVmb2u4xc}NzCpanS1W(WwuE;u$7V5t+vK@%V8D48Lk}MneWd|;nV8#H zFx-N9VvSj=xu9}q;yx)UZ|b}V6F<-HXq?tVZYM!)?S-)&o>)dLFftcLUD!Q*l6`h@ zZlkN-8lhdXYyINB^x3%OOyi9u))1IAjpa={J!fo?b8?Dm3w>v_Kkh3TYpqQJjz`*^ z9@yf0{Awyq7v~lB_VLFlRIR-+Rm{QCO{ zk6bn;F~V`kLKyW+pBcE{V}@5p2XwH&t20w z93D<|(y?&k?uxyAJJ7KRaoip_Fh^ZOF&?%iZ5lyt9v(L; zv&HB5cN(b%Zlkxxt@W}8!I_PHbJB5E)>11+j_A9_v?pYob>{6BUGS-h!J+Z?;R`Fb zGgcPX^SuS{YvZq4P)%df3%-%485@-YnPhI{l!<-NCklErq&7ANNW=sX3vM9xXZMBe zOdoV0U!0&)hm}x_z#uCEyDe`%qKCY5OGJAI)PMfHG6-ta02SjFFReMcV47uCRx-CO zKMxPuW|$FY3(4BaM*%ko!y1-@1>zmuKG0^Oo}r0y1b#&gdl}B-f#h!+=G)v{XOTR$ zxVWhJUBPd-!gBaoneHpnJtmE6r1yZC#gevs_6eY+*Tu}uwXJqftTn*7O=7m3`Am6# ze;2-ql2>Kn;egE#0oVopICkw*3*H)QDw|3jto9acG=BG=q(n1aF?ZL8FMohpl*8^s zfkCk0io@?K2d`^~-lM0d~V}vUbRNJf?SMuG4w`I0OSP0@G9K5x2(o*^Dmu~5YN>YCCYBqS*QXV}Hj5Q^xZ@3|pCAgKq=fBYwFlzw z)%(}^KmU+?Ya6EDE>b~#+4AI<42AneTJcfJsayYm^W3jGERo}E>eZ&^kIK)r-1@r= zteIuYvX5G8cb+ug2qGZidLf`ZLO?_p)D}j;EtWxNWoPk5A`l)n+pMYK4&oL0h?M=b zMM^RuftPJ?f`^ihGR06=o>Qv6{bg!hTAH_u9~~!CZcawSR$rJjMUXom-}et&L6Y4^ zdqLk#Hw&`_qdzLD?j^H}Bg0A$4@QWk)ZZQ*t$cI0{rT-~LeNx|$1$sblbwWFS#mPA zZ|_yru@a9OkE%nMVa1jXtv9c|?y%e57uGDWX5j=8Ma+iDOkjeV*`O zW~#nZ3i%ZiQlnWHcN8|#?sqbccV}$co`L+?PyL>~`ZoxPWZJ)tXb5dJ$wG>2bClb$eb)7}DT*vgFBIWI$z~DBmJ2#AJ|? zo|CAnO)R6Spzt<*_5N&ENr_F@{nI%Z|EBBhvX2a{8V|NtoWzq6cd6tdf;Rbh3HNUK zC0*1^v23r{k2^8laqo;cTiY~dF`eb{&4c|KE-%m5Mcx<8*OrH74aoa$L=j+|-WNvR zFcIamzm(VFv+sa>jgx4NZU}3T{>(m_^gtm!!%l%hbt-gDp(?7BYBUIy_#K3|oaNmk zDane#I>#<(+)Fk}N)Jr;kgkm0!Lmd9TxC(wPs2-A(et~#x2~u2TH6^DDGm{+JK~@G ztE)KWwPkKAOTJ6w%MRDrjf~2;ieeKdvgc*0ySGvsKs|nq-qs(67dq^vz1dTM2JA-^ z4d9yI9WZKbzWetI1yA&aGJ?#|&!EM_%33eENqIGKW>@_D62`lbz!3Cwr=j)4nv&Vs z+2b!gxu%=okGZ)yZCTc>n$r7MA7bQhxiUX?SJ|+!9ShI%@Lk`NlE`-AqgpiiJy!h<6PTG%>fT9LQm!RV6 z@?JI7x_Vw?^os$z(-CEv;AXHE&8O~e?q@3;5_q^e%ON>AUN|O1$>f&E&-1vyn;({D zoq&+>356oP?B{*_yvozu1mUV%z};Kycv$7)!~023*FCLp-kTY%Irm#J=>iWNUXyo? zGVXgFMmw-AG72sJ4Y%e4=Z} z>>Q8oyZ%N~aXs#NV>WO(UU+pis&(^mNiE@e5c~FRswDTl{>dJ+W_yTf+{sPsL_tiduV*f@$k#fdfE_gP zZ7Y#oT!^0ydqPERaMQwI^?n)ZbZZFxh#t&hGzh_y!W|#MeRU#m7-~8H#h%Ll#`2wD z;|v$83D*V1?fRGU4|{3%59Io?hq$Ai%q&>_IjKWUHX3fW4DAcX^ei84i4W7GP2|mWlJL?$;t6!%Vz>xE`4*? z{xVP=nbH}$^-T0Hv8H+t@mg1+$MXx_E-Y0K%-6+~Zixa1EcLJ6XuK!*<4*oIqNE%11VB?O0$r@6TUI(mCE>wShcvOOx? z$HA=Lc-|y9L!4-vurIORtyB1$?;QpynWBIR%lX_pY(BpeFj#?AJ9lu4=TH36@4poH zLef?>%d4sJYtlnQyX-4q-2BOQk+l$I(=Ge@4b;rSB0cAeO@-_uiRF4av#bIWWx}%5PSYOjavA@+~ZDnJVAn zB0wg5@Ic;ddv8w?k->L{A)g^RIr-?mgoXGWxtEgkZSs1E*M-5sQQ6r>w@=IoCWfbM z5D{+(_Kh@aH8tPAx(nO7+t2iT&U1bJm}GLKM38F81c{fyKv_jW*fTT5Q`JSvQfxGx zHbJxO>-1{3^1}d0bva+Nb(Km=mNmch~jbSc3ZJn%Z65aGik`0F+Dz;?bb zf8<^7H&46*-0zWXcNXQ2K;9N}v^Em>%U?OKoPD!A+2**IEB!z0y;WFS-_|}_r!55v z6ewQW0>z!+w57NechcfckzgS}p|}-yD6R>vL5df52woh51P>N+^4ohq=fA)6oXc}} zzPoj?vgTSNW4?39JH|l&9wRLr=x4j^vV$6S!6wwP{ActUl6=rW6-WK7^qd3KIjxd% zn-Z$!n#g|njDUc+kaK&AEpe=5?dndNwnKPSSl$aKyl5Il`Ih&#%~|sD`AcW`Nxbh` z7W&N&Y%lBd1>yV=Lk-Qs+|d(QfW8Lb-|D|8&;zbewbuF-qq9>~4R0Ug+Q>xA#ZAExR!OwKm9-ddG$RJ-!&zTEO zPrv9{Ziq?qS{a{>Kas^T)17Zz!M39Lxw(w}GiCZq6lnDhVVhS)WhDiS3nQ7Tg>)AX zyr|9f&57+J0$bE}qKQj&ZSyxjDa{B^2;Va$W!J=I_nlTNIj*QAt+YU(N zEM!2(5NFdGJ!Os5R!~)JbCuwLVB6nNa2lVV9wNL^O_96W8U+AWL(U}M)19Q(#EQ01 z#-83YE@nPHwzgj(UPEzlr1Z_ce4syQ6uN-t$SdhrczO1#w~!61A_YA`9Lnv zvBhzsCht>!pR8yDrgU*K1^Y(|t?|gm#^jeCn!PhIQFHXrLq8gWt3;{sx>+$Te5WYJ z2m`N<;hE-`1#IHjJGhi8AiJz#PQyoQX6aJ^TUXt=$_X8r!K{jY{h~MN2DguYbHg>wXvgf*9_Xd_U}C zmrtpgEPIkjigl4NbX3qq=J*dvkFQ`T1J@np^evUH%H`DFzFlEg&v0_)r`-NCgTtfq zXHT9yJw)eLq=e-kg1wwqA!yigvlGXLCW<~p-LfGo+FjS`9f!I~{o63>&d!eqdX@1K z%^vMEVRmQ4RX$-2!EjNs?e%Sbu-ACR&IAoDO&OHEc*5s=(2Vu#=&)M)`^JM#sQ_z3 z@ks8if-1gekqBU;-A*o%qh8gwR-b0^T8hyxpio_2_wzyF>Vk>ix3`e9lz0tJ!18S0 zcdu(5PT+!X32tWVcP6C9_;t}cB)5BQRo$cwi{{waC>pQc&TISoP))UKT)xpSb42&E z`p}0imT)+HoTB(dlKt&l35lTdkP=x9l9!c2ykd4IL7-@{=0Jb9RCYhLBT_epS0)sR zRK)O#%y$I;GPanq@4R;VKqw+La^?Tx$HzxcUPx|1u@nQN4+Rfb!D z*&HnVs2y_o^Ate$DCtPiY-yz5D`J3xzb;s7Zi}Q4)yhAJ8rmLai6ucogSCsS}f#} zKhQ7c6l5B=daO)9ph=LL1lvBCE)oz)#0jYx5|8gU$8>rmi4(n-^C>9Rd70u|W6`SD zU~bMz;-2)CE1=ETw zt9vOw7RL#(Mny22E{&F^Jnv>cx9--G?bOKCsnV? z1nQaySB+W{Uh-e=9PYC7@hg+w;=AAB%D?i;yqCXsqHa%ei6n2+6TKA`6m%QDa55q~ zyz5>R@dM8@wwoKd- zbIJoZivMH2-?``Bj5Dl6Z=ajsy&47jiHuuAE|}@T>-FWW$JfiZGbm$>s(yu0TQiOE z|Lx5Gv)=CvM!yiuu!wOH#{(IPZ%$6~N+G#{3*^IDv@|qAR>JjTZP7U1^M9{YAB@7bTug@t%L@Gi=Z{K{9e@7tt;Fm5({=?)l4m&y$7jN*_>~ zA5a>(v_yUNqFLy#_xUr|ptP`wYT_v7pX(G3e5h5+nxHTk;%`JlN65P{g=&Iy6aGi> z972DCQJ9vR8qM6X2M-_q(=d0|GOLj>t#KY-8ixf@-+*15RaG%U;E?^pZST?|HO>dG z-rt)OY^-YuRYO~SQp!!}ygq8vG!S}kF?dfT(caD;rR_T5TR|0>*TPa%XE&I?68`U9 zgu{rRS-{b$DQU^P5Ja!bDRE`AtYaQ(Q*6tgf#mCSJM>t(5x2{@@7WM*uvB88=n0Wf z+Mf@IM~gLS^8@GbEg!NF1pY_)nG)_u?=dj6rvV&&aP!carlRm`t3%!e#?lz7q(z47 zv$w|w7;J<)GPQV-_4V%PGhI&luW2 za(u3E=O5Vre}B2xZVUoyIrLp#S}c?mqti zT;+ny^|Jdv3geXQ$-Sm9WYwOEM!9Gu!omDUeXFj$`^07cG$(FSJF0PTr2U8eVlDj` zYnld|e!Sqp!2R?G3w^@{$dgEg3`#~`iKX^Xm7oGu<-!{~5I9=SY_g?UQ5tuu4lND`s7D2R-GKF!Pu2u5XTx{GxH9N=)19ofa}AUlNA4*z`rV zDf)*^E8B9{$*n8H%3|kiBIVdY>Ey^2K{Y_;5o(C`;{K8N;(D)RB+099Gf!TbwCxhI zxNW;pe8zycuCeUA0<1L^&%{qo1g;?JnuQKG`~m)u=n(T|`_R@!_fzue@~!pC#d2dC zH^OA_7lYVu^JC_PKA6EB5e);41_Hj5X$g!>b3!X2tu*uW!Ju0Br`sc2Hy8mK%%mVG z56U?rF}j1*EZc=fn+aT_eXn}UIAi`;OktuiA`2a-`cYePWpxJt`aOxUE`|K|@*A^7 zB_A)0GO$0zdaUJ z&F;M@cGpO{FMmtoYE`G#B^>VAC>%57)eo@?Mrq+ZWuM%C4X{a!OnRSy^w%*q4)d<{La48TJNlVs#tzivG;`nM{(`r=&p3Kh^~o96qx`*OEeW z*(*eb3m*Xs(vC;%FLlM7$Vqu%7|7B2q=fQtvLeEFr`uKY&`4{jUEM6x+QOC&c z^Rs$;a~%T}WqS*VqEz(Pze1%ue@cEiY60yVX93WChsG{4El7T!ht28m^p)%F{mTr< z{n6RPf~K0|lA5prCLb6~e>PJ?12|fsNx%ofQ2^rmHgrmMPtxEoOzC@J{mpJy*=Y9` zaQ=tRu(CaGlu?Wap1WPOji=(t8M3J?NV~D$>_tWiOwA|1UTfu|XM!PQywrdN>e@yzKQ$X`qya82k!Z^YUtInz8K*kfg>0?-wf(L&BhbfJ zYQtM}YeW?n8fmPat1YjgC!0`Q%#E-`B5g041O%z(xl7fwoq8)bO|&2m8cD@*qB3Gv zxl2Kl8CNIYmjnUrpZYKrFy;+ zmV!htjreRXa}6n^1T9xF3Z-@fFI^oci*2ZPxpbz@0U%0Y6bRWfT~Im&^5j@7Im(H; z#bh2t`HPs8_Z3;Q)1F_M&+DH8PGme$q5U>Z1IS%YohgdZDZrK6C;i%-hE~qpf@0@A z9X+7H`WaOx(+)E`ylK;!VDVQEXg_uH6|XbD^jtxrOw+7I-%c~Fv-^s#>O@I{v_V5! zaT8zKwP!xOv{>ilT}>|beFb!Ap)!|kRfc*)Sm4$~YhULw%&5p7u#o=9`{zE=W}v(@ zH_f{-1#tO&p8AZ?x+CRBG|u{9di+YK`H9@c;|D)pY!8r)yyXI)a`Dk9I|@>>=!nh7 zC1f1chkG`Hg0>!2c8R=V->j78BM&cM#+IKr(~=6VEsZ2z?zrdsj?axu2T?g^EH5Z8 zCRB?8O$$yxVgQ6sr&(t*Y(MQabf{$8s&N&r-!CDQ z<(XGhr}gzcaX3^A6QDCJx5VT^ZNVW_*VuZ9!JkomF%3EwY!B&9H2(f|*J8*+Xfh^C zO42Y4Y;lfc#sbEIrZh1(^x*M1z37nqELfGV<8t5qeA-j?L2mVt-z;3PEI6W_+w8-l zR{gHY=8P~I$UaEsrA!wBe)+bSQA~it`;VT<+sJR0vnd4g)lGUaE%TFrtW*j|c5AO? z>pez;^RZ1UiXghwjb+1zDn58w!I{NcbbhUdl}FcRiiVD-9=c5?Xe4~NZj$2W&Hh#K z>XigrNn1v#ySmcC+Qge&yTO+!UriEpjRvqjR~rC<04e<9w}*vX4hTe&!^fF~M9^9F zF5|2K6zQXPH$TzsE(39zC8OhMwSXHv_r|u1Bcz3j3ms^m~*u`=Pv%?Q;*WfM^v2`;X z6#4vFZ>nr>=As=T($p)hdf8r<>;b>sYCGRM+HY${yiR;@vwlfXI=O)r0$cm~KzF-u)8~oh(ncOo)VU2u$aZF2V?Rcwvn?s%sV$G?0h<78Q@xyq7q6=G>K5-X z)K=g>P7oJzoYUv(EdO4@VmfeL3>l(&b7JI?d=x1+}CiU|70(ju&)0`Q5stib&GHY0jpNtp{y37ZJkT(tKD zaNeA+mHWg^S(Wwq=85n|bPY)&ckt-0>`o$P3k00r%^^<|*zgtD6if627co2u1$}U* z)mEZ&NP^ZB1C&biASW!Kmn~**i82Lu9(#_@{7V zYqn>jiS|qATh@j+UpWh6Z;Grqh1K}-e8c8{o|~xffK+*2mo_ASc{(FN%gE(hcfEh| za0=4_I{2YB{>0@{HOu=fZI^>7ueFfu!LZor&KN|v76UE1%^0e+)QD<1?2Ca6F}>(C zc&y3TnUb@^?z>;jU4D@jyl|xbw`@ zH#Ov2i_6H$qU0Qyr5b6`0F$)dWqVrZTfe*0B1{Hw*AfvGj39bDJJ-=c-4jJrTD)v9 z`mwMv-~R9Tx2H2htiGq=ATcx>NcD^!SEr_-payJEncv-s%@VK0ZZQuSB-A?YBhIkH zFD9uvK)2enYVNBDcS%VDzP)$FW2IuJq;|?q$onYYljzfqf4#1>H2h{YFb-$kY-ckR zCf^E`J$FVxiEm?%#4N)0|uc8EHKR5tiQ`ObT;^g$j9wQ?mL6w7V0hX>Nwrk zVHvY)*x6$KOms}$(|W$JS0#b61B4+^Fiybs!ODF+s%pmas24qGtp2>m%mc@c`pb84 z%EzXutYfuFodvm0syaHmh<n5OTKR@~ zg!yA{-+ObmvpN^GeJ__se`xt=7r5UPi?X^KmgWOBMe9fLOvSz2v$rPuS{%)sGptN1 zBiSV`$1W%8-v;%1>dw^i3%G;G6DQeR7d8zsIe%Q`9KR7%!4T7DrMdzh9}L4 zx#K-4vQy2zi(u83-qEw}#24lnFs&U#)M~0qXzg`}r%P5QEns3f#);5}eJQ+YSl8$} z3bNel5+E}4NnNq8ZC+d+&C(9c*}BWA1}*Rn6I~AjfD;=TJYJ3pxQb9=yNU zc@XXf0F>+bPI2%iEkz;~9B6#qeCa?PW88O_D-g;qh2s3C{l|aq_~NNaYuMJy%uIiF ztL%0%&I3C-0w7vRX`UDPrsg+)zg1d(J}vN^XmsrJrg@vu?HrgmC8(*bDICmoRON<# zvdnLfWZfzd@3wdS(^24f;W2O%Y{|%huC2_|)-$>u8}QT;e{F6cB_BLID{8YFJ4>WY zfbUXu7$Uc@JwzL_8FpIe1}s?<-P$v}mo$`e{->#x5eWFW}b>`^D^V4U!I-R85%0n=ssTU8vf~Ecj{DL2m*vsdAZdqRVsvqwK?{@P`o^|>X-iuJLFe;H6_IZZ# zlB#Ik1Jj0^{BuFFhr)qIW!l9RPs7sI#2P5FtHsu!0}CP6Sw(tWT}_i|Y7%RL$DnrF zjLL;_tHuUeJ&@}XKn-l*5?z~%>d>30AIfZEnwycC*GGKnO|^$YRZII-p`Q`(;Id4> z+L+#x@Xkd&b4B49_I%r7TbGc~bdxtqNuec-*O%q$Y>h#Bm9k$ZduAuWYwA+g7MI6YpQ$feqpX#Gsog$+u_u@st)*+y z{9Ia)^%C99*KrR_*1P@+DW0mNDAi5SI6gk?G8|z&zscm7PC~ND&S`6>T~vH&pr$s! z#Pq-`RGP$gWU4RJAdXg}Jbnz7-ePc*m1&H=Da%u?TpAu%BP{wX`8;Cs!$N$Ldil6D zyoOV40P;vux@i97*1Iath`9troC@BU;23=I> za$TPfZ}xCPOW->SU(;kYb-RY>E#Ck&c7Sivf8=2e$pfXmM z^)+H=O6dPG>vj!`mxX2k>}GF}FHp}Zw&dus=3nV<2S%5}xWq;p{VKIOx>HUy+nMcRrGUwiR7 z$(*OU*)SlTCSYM9PU?-IG<-8LQJc**BeFKqAtqdm;9Y9e4R*mr8n$_rQ^>h+c!2!j zxdi(#9QENK)8$QW!7M)=3yxnjsT`@~ZSu2R)5g@gU69;?%PRl=KJg3pw!!YD@s7{6 zOCcHH&o1Fu-}%HcG>FjIN%R*n{;vN;t%@+dGHV%R;Ha;W=RjI(i1dD9 zq@wj%Lfwoe>oCf&)>hP-Rk<`+2nAKjE2$W+TbSFn2kxFCOBybAtEXNp&I-xgtX9^J zeDWADq{W=cO1|~h$deKQ0#ak`$+)GLksr9Kqgnw^h>-|D3f3XDrm zt1|JWgjz$jbuY^B-RTfY1rnKF=b9N|U-!s4GuyiKthFyqjzVU-bx}GHVz_oL=vd{( zcV628|Kypw(=*qTWNNa!vcbls0#gEWbkK-S35B8<-DOHt*sx1@|zr>YvV$W z*LU0Un_|mqM#8rbd59;-CFr`Aj}b6hJVKhX6^F;^C({qnk6f6clH#lv4`GUr-H~Mt zpUX8%Q}IQO5~UldgN#EX7S@MwUdQ=-xGF9!lKbTGM3?BC_Mtltev0m-#a%5<&>y@! zzzhb%Z}mj%j8j@)#avOdxaMYkogFlnOb|Y8%j=$&;DQ35Tbnf43^O<%N6u0Sc_aeF zwIOcBKWvoV9BIS!n)*yfPm12Md$pIxHtRIh0Dun3L3sbH`zO)W^E%cL3yD=-~_MF=wEJvC0ELz5NPR>p~VjJf1e6 zxgRgGQZr+iBi~qv$5c{$I*T>O#&(9tv){L1!nXV86I#uB zC~-PFoBFt%-x4hiYHS8H(|mN6ZCd+wD0r8e^fl8f!>y(=(bA%`K$XvINq^dRSi4r7 ztOv20LYRW9Z?a@IO4nMYg9KD*i6_!I6C>_^a zgC?`h!KJ@J@IT#A)TXB^P`TIVhzf5TrM4&wnZ0Jt@$hIUqQ`=Y@Xhb=obCI8hE^O2 zUXHrYhXt0Od4zVFu8~}Ns4Om8yBddQC=P}zN{QontBEkOFeK8uL+uo=ISAoL3oV4uz_}zO;T#26ogZkd%tN8-aGb=4hvJB9^v5&L)_&9=DG2I&3j`g103q-W4MPU6=m z4U<$Pp=ke?6cDywRSaM-gF9Q5OXziXYQy1ofTzqVuC{ypq4#%!hkAH2H+rO}gt*zR z68G;u{)P)}JJG%WOGy4}Y0Q*yK}@hX5L;3lAZ0ekQ!I5+XT?lT7Nb%R zcGT0qPk-V0XZj%(Eip?5Ic-O&8YNM^Uz zmFkPe<^5VRic^TD-AqdCBhClrc5#I=7te%!A`s^DVFGQw7vH&n-iNY21rm(ml!e=O zt{DIjW&KKtrYyTH8_QA@tn#UyvgejUarLQxb%&o`pgwFLaIqmQoHIl8YFCU%OyL zOphXczEdtUGI4YI4FB3xx{c6}c|IHs`^u)+zZ>jWPhB7Ir=REB_vO(ZJ)pVy z$abihjJR=t1a}YpWB(WrT%#%(xGg`3#q<70H;~4WyaYvo%lj@~soyX*cGk7|KPi66 z$!4Yi&wi;UL4SCkZ7l(1{u_?{*W0w?hTPtC_u_Q!5MQs0pCe9C27X6RQ>uKl$G@RK z)rG^Z)Ek$wi*vutk8%p709g-2bCasgY<`da^=gJ69IT3+juliJFZK7P#jn_*cTRjo ztk*HV!rt@*AVPouSxV|-yXIQjPPFy;&fE%-GKxXbcoLuqPPVT=_AH4{n=Q)$Y>ux| z{CVl53vF3e)5NScEmYnVzKLn*y`-|g{?hF2pY*`==vyI!(j1jxdpp&72SHh z(H9}k7^$55>@jy0^*yb=&sDlMw0~E`f#iee7w5h^b93v3j)vDcHAdKSyKw@{6-v*|A9x{qaOi{ zB3MuJc%j#rVEDtq14KW>l6(IhF?=}mB(K^mVuQ#97KQaO-{0$)0{;z1{bOB6PN= z()M~~%@)_YRFLE2lUbOZFd#PYD(B5j#4X~pA`Fd~Ud$`#`}2EAnBl&AN6&m(n^ee) z$jHDqi)1~!U)J_WOxDqfP8Iw&)7ED!dk-Oz`*{B4{z8I+{*K=#6E-Q%2!~g19aW5Z z%xk}XB3G;YdPPj@>f2)6yD^-tBYR)j32?QW?h|5Q7$~|4B6zbX6xbs5v_G`t)i(ex zebts0&3V2rNO4G{=;hhBpc4e<%53a$i4QTFT56A^%okHVKkw|`NK`q;1ld1*|1s{R zeOa)!lFrQ6unM;g&6d*k{;%JgDlPgW`z z--!S;>grZ^_#sziCedlEp>OHbR@#u)&MQQx?gT@3)Z-U8&_)93rF1An}u2$TH@yBUT@Mw4^h#B(yvUFIo(Fn#k$YW<-}g zq9n~ykhaS@oLAUdX?op)MUP2|s^09|cv@r0%4OIUidYHeQf8YFwAG5bO$~LWagGn2v8*KmUBCAi@B_RY&r_0tl3G5!g`FXWTTSK z3o_PMt14T%h~@FK!UQ933zaT5x;?=vbiS7X(b{d*YqEF~?g{+6D4qL2fC~_i_#*#I zTX#awEm^hM3Psl1!7XHhqcty5+&$1yXDcP{;R@x*>)9+OqCI>&SvjgXlX%eVx}z$q z+FY?a&w;{%$I?)a7+gm;6~l6#bmE0^BB>+$va9^nhD%F}&(eAsIhm3kFO0y?Xp1|2 z$2!`_AWA1(T@jt%b{Ba_L;b8HX`iXFGQqZ~S|4vj2dg@HAoq{@G8<_H_T&B-E^-a_p2DQXch~r@ZAevhl^2PWSsqZ7uPBq{W8hKbaTjWIJfqWIx#z~3 zOt|p*F0{X*sA|&YqR?LEwE+KkMcI?Mc4%UEkUF6_RY7KkK|xkU=?=U2psKC=DL!!8 z@h~LP;B=Y34b|&n?lTO~AXcAT)HLvUy)ij}y;>iG%$&&hswd&X?F&cS#~>bwa|{Wy z#;C4#d^P6pQt$HoZQ9@?(xgd}B85jb(u#e%Kwr-hxF{C9JWFe>$0D5HEufr%E8#B4 z0}ZPLka9;|Z}VklA5FA0UVqRziF6;)at^0|=Ci|E62`glf)HZ4t{I;)DQ9w{Zt|8h z+P)cEzFVMr=Dz1XzcT%DpxJ9@pBCtFxs5nrm?-X^{=WOBVTYJi`m)#rV-s(u{8fzw z@Lr0BgqC>Wx`?;#IC2_vgJzRqCtoGDx#|6=q4{lPhe)CoyN1EKvqMlD=@A_zHlFY> z(e9VFU}kuX!|NW$O_?rTsLvUQ>ZiRu&!7*VI<>~u_Om&EL=`Y<>aK6@(2k>cnF^Hp za*2-)?_l#?*BC#F*}_ipd5}Ff;jYQOKQg6pg`1R#zxQAq3M+B34Z(ez%jxF7w5VjL zc@n2{Z}=xheg;0|b6)#V;VyUb=g|7GlJ@t|whzkM)_Z^l4&U#XGE7O5+iD?Kw2fwp zC$G$oEL!+;#i%J+2FITV@O=-pC2TuA4JBUgHEy=df0YtDG*|irTcK-XC12?jcDYO; z!y|k&9@iGWK?m!O_cip@6-ZqnEd2uS_?&3kc~W6A`ry!K9!HwHD$-N(j8#U|nSNV$ zZN*kL*1QX(-X7Fmr*IB$2z__=>&34J$La;okV zu&m3o?_!tRTik00q-O(>Xxhu8HI##%GuBlvISB$BEz%au5Nk#e%@)8YI6fzQT0Gtz z@%B1|-!KW#+v@7igRifYBf}RPtj4(LJ-(n7qp>_op3k=~q9oSd7#wa5;rq6|j-hY( zooJEn>HBy68)?+ig+vG9t#ZoQL2fiH#AnyHJhPTv@b@Bjby}&a0b~gb%n;*mpk6ll zN&{dGAb&X6$6>o7f$;PLe%7~Hspj_j^3<;~-j`yzyk>@r-V3=KK1*<;`Iy*rcbkNU zhSw4~Y0sw9dbGZV=Tl=58vb0>%On)qDjhw=>P2lCTyZWPw3+#ls{3~t9-wWcMC5Xi zGNNnTp&{|!t%dLh!p(!(kSzLnqEC)7H8sIXJ(h<>gIuhe2i$WJ3nWxe+J{0y@%NGh zrA@l)y+(C|&d}mK$Eti7&`i)fiT%HFT-gUdbM5hbgYP_ecJJdt@AoHnAA76bOH_%v zVqX>Cw@>JdFx|DW2SmX4b>xG(IRwq^)mbK;?Q+nz zLHz>4N(yru&9=Y3EWl+BGejkyYfda0Pox!jj#`3|C%5Rqjp%an^dxF}v>h^v*R9q2 z7?5bs1$axzeXJ$zqR33|qCY#2o00)qu5M11fJ=rG-hHy`UGe6mjt$ITUM*q} zo*$E3v_R+MrJEY5EtvicnipH6I z=0-($%EQ`4c&fGZBV$Pl_vnGtsxC9MH*vo0j2b$GsJ`E9nyLI;yLmH`!t0=QCq~+1b+t_byLYrj ze|el;>j+Cl)Av<*8lO+|ryEL|^#1wj!578SDfH;j#n06aEFc+fxve-c`$3T`YDGE) zVSDzbD!93(Ul3E|!-gljydrwYJoxn)7|@~9bAEqJ=NBSqlin$ANn|6xa6?}qxvkvq zdcPJ#Xh7*vEuBt0p`4j@JnW_=$T|dn7**A|)+F^bJaqikH+THx!*!7R{V%9j-e5eQBf4bGXGEF`Cr{R*NDo|w3e&BV>y z%n6A`QYr`)jTqX=%PyXNO$yT?80qJy)Ea zMgj)(lh*fT#6>PAL_<3znG&0#7zaR=NHV zUe>l{mQxDpO3_fpT6rA&`2>R^B*sw2O86U#hp zVf7OG`WmD&(M#Cwjn=45XP^eDs)D?Z^jCRkQ257O(~c``Vrtb(Dfg|qMquQYZbhwh zcft*A2cy*{Jt|bujYh0GaNl}^LVIhmcj9NiF7vgMJ!||c?m|t6J(>1?Hros0S&KF+ zqfq~+QcKm}ffgJ23ANs)8FA6kc8F$9((Nzj!;zuDO^evj!e?%4?v%sm&k|Xpr7UXD4d;D8T~^rS%BZEp!oMpNPOZoISU;+{CO`UoV(>u6b4)%&NKr4N;(i;WA|J5l>f zD|1I2c#y2Pn$u80VEWm(VdBwd@c<6bPnNRF#9Bm5;r#yiTGn(P(+PGy4QqZBrLg&w zp-9rCkVO(Hnp59g>*OmrMZoduMgV@CQuMR2@+?iC{o@a&mv_j{W+eO8hF|y3iF0&J zGSq3)RWW)uFY4?0loh2D{VrQI@xL~&nclF-ycx=j%Su+ZWAyqB2&TUjia8CndD2Zeik1?^bmEl1-wEbo8Vgyj zXGDqGTvj^{PA+@Kz4&lkIUmWM4il^X2Tn9u*Qv1hj@9usM$iLmYw8;Qg*p_Ex!nel zyU_v}nys#KVDyVDCGiC=x6friJ+(*D88c(8L|bTbDi>~=({T}=1#QT5GLs8nD~-Wk zJJ0IYzc)7)<$24&Pzu8ylISpXBD!Spp7|cB;P3Ndv&Y$%?GzkpUiBPu{Ig(uFj^skeW^f08*}C{SHGo>_59mq z451D^nnB>swMEf?MO^v+N%%ZjK|ODPK73nU!1&0?C2Ka!mibl`@_V%7ATbAfC8)f7 zpKsfIXO*%ak7p6;NuM|6dV1{w7ejBfP_`6X4k0}C-`>RN@k;Dd7`UAw*enN-*Vuz< zaSARvFot#J;VW{{p)|VT=e8&;Cg>^v4QD*7~4Of~I0WG??v^QGi^3P*#-amMOh{uh>s8$iSmI@DnH zN*PV*_KE$?kuJxY*Uy@!9u#3g{*64_PvUvO9Wd#lYc9`#X|!zWoBLDNISFRcUKtm4+lq^ znWfFj6--!ralMY4L)kTVZXV)h0$`?QRFjU_$dV@>kt;Q=O zw3!9RY|EO?oOEBSZf#wop*JhA@cCUIfgWmtwSBV&bN&SKbXuCDbHgFA+hbuLdk5HM zIRLcqvYxT(I0V8THgBk^vjc~ZWZJ+z*-WQ~fOKNcU-IM}y47`3?3atj0br)d@9JO+Y?H69=HjsKyohefyaPF(g8y1~W_a%7TU z^3{p1>y8L}l)@bZPz8j^fFE#@Ms@Pbwl;Fjf_&k6-C*IX$-iPIlFrEI<~;S~=1Wagvp zB>b@`yD2Y*nGXBI_F;<&YVun3|7K;pq&9GM8Y$pXfuwp}ril&JS%1$RLt<5OMR3dv zr{daLaoQx-0iyL6QCAZB)1-8p`SeajHk=sVG-`6>HskzjmoW;~I@c6rfmk|FHOA20 zU}(qoAxk8bQCT@zCxhZ^e9C`c(q~N-n?Z{&N+S%wRd#|Ky zx~?NADBge1Jt{-Azx=PcImPK@k1!wj`c-YomE*;P)R>`XP0f{(nsrLxGCu%cX2$2# z*;p%D?ls6jh)>K+PL!ilxA%J9i1l3@xc(w zGzF^_f@aGWYOQaY(U;hJVOBFddmogKNjlCY)rx5Egaq6GjeMb3IWfa2J%64gy z1U-r~Vb{vhj!pH?)pDKNwNVIH(bUdhx2hsKC918R;a>;ZN3gmb4nVI z6e#Q69W(o3+7*e@+UyjieCL@f)Exu^yD5;<$mH#EmjOBY-IG~He!uL(>ef#*9;!bp zTYc6@ns&F`9T$CqICI3i2j6I5WLN4pgYMiRij@EKL9->qs;O+S)fCujsBEjGMR71v zTrkk~o^#|Km*lsz<1}Vi{2||+g#gQzD()|bt1I62Eugby@;VzU7~!JVOL$=T7MD{a zB{%|l^R+y@a;bcBpG>q0x!qjvLImgPfqW+Y*#z~zKJ#iCqr{Y!mQD9bNDv)!et5+0uTA?ghj*#5>BHjRv%QRLMZ38UT}*|cbZ zoO&w|0Q`TC_e3)#upb!6Ys`3UtABv%zpZrzioId~IiJlV`nl&vOcWE@qH$UqydhF> zh4@9iL=hm3y0rh#aQ*{Yef!;n=Hu!Ob4#jxK7T`*%+Ig?5`AjZ@IR{1IDqTtj}}iE zzTgZ^tF_WB;3}H5 z?+h|eTe$Mtj$Bypbq%KJ6^<(Zc;{X-u4v5Z_4~gn6whUuIj~vM-?hDg=88r;m6N9< zsz5R4+$N1~q3f(h~Z7-NfM{86EDb8-%W)UEyhef&oroqxmvv=HPF6qQ@&^Q zhxJ{fMTaQ-(-N-&-rF^52`pxa&;Np11*B?l5Lsqas39qt<^+2`Y-w3&*}e{R%n;4> zMOTL$5vE~R5-Gpm#5Ng01&ZH#vVzco%~j-_=(ZMHL^Zm+p&ZL=otb@d$?T||XI%yx zWPPW?#Rn?-k*_$pOxI``N{{|sJmpHZwRo|qgrukHz!pXY@hh&6a_Xula!k_w|% zOn9r2({Xv~_BygDwNAH*@s_ah^f0fm%lkkeq%cjPKDZK?EKI?8ETKASF_iOnD`1!HmS(8h{) zkZ{vY>Gm=9c>Qu@*ighPw<>bP{D6#iZHgc?yN6!GmUV+_W$OIq zW)`1QmW?^fHhLEj@E{2sW(bz6_4FuJ+>hMVBeRxkFSaTjVPWs38e%n9Vf{UJX z4LP$fmQj=^;(C(+LzbO7hpIlYtl=#r2!fN4DTL zXxdE6OR>N1fBv*n4bYC4RX?K-y7M67@vmsw!iNu-bl?A#aJv=Orh56xfO>NrswHq% zWR>wXG%z7N80$}Y0yIeYJClqB@eF;lZ1!IRoPvnIE$*H3ndFif<=azf*%ASmW;*(Z z0k7=VV$I8k@tya_(OYR#y)fURx@SaDbI&(E7+u>_f$H_8PHx!Qq3H`^g`bo?EzYX8 zOc#eDt{>6ABE3RL4^4T36&l-b6YC^Qw@m?<^oojOLqU!o)HmWv^l-ZFzA0aqj}7G+ z4MwH=nxz6%w9s!3yMJj&Xj;Fntm;t6O24GEYZq$xwtQSgUTZyNM8&~ny|%K}_T_2; z2+id2eeW(nFj1ik2HR5$#%~gDuV2t%Hsp&Phbl&C6O5hd%o;X&#C4*xhfT-LR0qb zCzPKM2~d$`gox-*4D`<~vN15-Hck!ryxb7^wPllhYsLmHKRf#BQ@2W(q4EKL&Sj#5 zl8qYd*ya~Fv3X-Nw70>(@VjQMKiPm$WQfLl%PTzGK-3_<#)?1ET21tlx$Ly=xq%2* zX!zrbu|6%N3K=xzj{>yJXrYC~bX#BdNIfSy3Hnx&t6sOg1U~tHvG<-~QFPC~C{dCM zLlh*)3`w#iCF3we$uQ)oNRlLyGYC2$8BrvI#6f~cP(TnwB}zsGiAoS8M~Qd!p#Qzk z+2=m@dG6=)e(Q}W^H`CpM{fT5(AL6Cn+j_WkYra?3$SuCS^YFJsnbsFH z?^CV#&B6KUi_0HIjD9ln%s-iXRkbTx5T7ZeGxOu(%PRx={B~oG&cr^<#xIT4Z^T7L zDm$AtZVgAmTHY6NSo8lj@pCmL+@=$`PPUm%=5s;hVDk6I!v?{#u_|+u6|O~c-Ya`j zug|z*c5a$zCaV|x9I>D=`!?Xnc1_-Kq+;ZA!BUE0 zZ&QPzzQeOef}+oZe*f4D6QK#?AD`(jN()(?_;rX{naKL2%;!w9|G4_+%6E2^hOwzt@BlUs!C858dLdGUDOb9_ z+5Di*trAlvZ)ukgw?Z=Q+V#BaRs?pIylET+WM1C&iHp9SH#c!|j7;WknRIQqVzTt! z>5k=}`Ku~&K_%IC1)i(N{OrO=% z8;KVD+Hn_gF%eWyR1n7ZQV*6qH}e!DJNGG0q{^bwCGXNSQFZ5&POXtqn{d;8WAt_+ zwd;P&Tc17h;4sC;e@|C~_mkZN?}Vtv3y?iHG@A_EJv^{Fc{SR87H#44p$Q&rAy^Xd z_-a<@>cXv{d32WaQS_U^UP)mOPJ$ijRXnG1tDdqUW95kWEN`uZ%sc#o?K9L_H{dhy z`|G}N%w=-i1KDBHR(SGJKF3$uST&sRANjhuriihO1#`*PIa_yY@vQ{n{?qK_3 z{S7JikkOJV^%B0}-QV9Me+#;bS45zmRYWDXa~FGj?Jg#$pLqd(yJNJbSKqUZ{2_E9S|FT)bT6G)WVtnd{xL*7pd( zAHP2{=>H5dxn@pi_x5;d%eY!_B8p`2w-n;$)%3Gg&~;uBo*{T#@Docw&{Z<`QiXA8 z&OTji@-B~bJzDB`+KB(9=k`YSRTqh}J2l-uy~uW9{}Ww)@Hl;#v>IN}Z=ZpFqy@WheW=#p#Q1YswM^$1FZxR5>KWwj z@)3DPyWXz*+Sx;{IPFHfYGG8UHJ+zqHu`mRI`GX>oPakeF0&tnz}rF&ANh|L{y$_PZtAft2r^lM> zW4ap||IB1!Do)nrLk_1)n}heZ{v5>1gBQ*3zki=zA$PcS{KIGRWNY4S;&2kY-2KG8 z>CfV(&}#7h$~Yxk$o^VS`pN#NJ>sOc8Qu@Fy00k796lRsOK+)9%UokB8a8zvMT5y{B9ac02~d9c0U&?B9`ZsyO@( z1~@thIXt9Xl|SCQcMuhFaQtvJ zgPkR9wv!!n1G9d^j(l@KW8H&|UTw;;t(n#2-=lSt2F(Wt%h`Iz2l1n= zlic5GRu6Z_YIskMR9vPZ0m|b8v$b8en#gADsyp(3R##glLx$*&oIBOC{pE|1U^-X-m^(39NB!k8ebQGzNicD0)@A7gzU$E==c$w^znK|Pb zt$vfND9H{$uU(SbP9XZ(jsGV2&DiRjpYqSOiX88WY5$Cxalj|ssOC!qC+~geC(x$n z%$(!6OEly%|f&{~=IrJoW2&P#f2;*R+E$uctlZPZkvGQ{#5yo0!YG z=3H+i#nrv`VE5hU`SqIPmoGHpf04p0E-SUC+`XkSAWR)!_j)F5{+WcEX;L7VKION= zyP5_E6?!9X-nW&{$Lu> zPl56n0+RedlX5kM|4afhYQ(>`r90<(CkYICGps0H#K$bz7mB$|(Bt8U0%{<?~E{DP^&s>_$(NS#s)9%h1F+dE6C1cC`O%Vgc1R z1#XPIj|6e(9^c_$gK!9ff3Hq93QX-K2-UNOWi_eOn5d60s}A52tF`2+@^8W-KGI2^ ze?#Iab4oV)y2Ns*NwIF+JrZHi@%i>0r)Z=M;*%8jSF<$UTUuE_7JR+SoYb;Wf&z$F z`5tll9kiYElDdnt>CS$JA~nv?Q#u(8Kul2#-kc%|h5RJ|TvXxzB!4-$xT;BICB+H3 zsSG(5jXgUJcQ4EB8E>vrV6E`b)cr^C+3U=|bCd3DTh;(`1Nr{08|`WYP0kwMtKQoG zG?~6DJimPZ2MMq_<9*6q>)NlDo8n**x-8pt)?vt^$N~cn{#3C7gZ=yfza8J#IVr>H zmy#Unp%}RfouwCM5qeYzq)MdEL-f-7p!WUNf-8Xv`YYK%lGa~tm%XM`Lu%F4yNet9 zT6pMdQL3qWdv$>CvCA5(tSC}H9xN05Hg$9MzWA&hhmGX;V$!)R&-z#n;ft5v-7x%d zE}BODxqab74$+2su?wkbANw>Y)tn&%+I-u`8cFy36M9$Hqu09i+d*gg-P1*PaQ9I48t2|$M;`WZ%t|&MOh4-0*==|$y7XAjyR-tj9U%0s1d#xN^$I5_sg(tQG;M9l){px3RoR^ zcJ>Qnmcg9Yd7vDc*@4OICq_s=$%MTUWvmvh$4!TH>{-khqs7{Of@Nay+?&q*KMUbc zF+)lQ8z_JK;9AOoK?btL5t0BMM4&w~_@Rc5M>*wwhH^&~5#_U-DRZ_h57f4nt#3Qg z?3~mueWo7C#2I!P+VuGs>9wdwO6~KZWJ6`iJ#O#>dt?&Ob|_EQbb~*(M?L`ucICAN zW1jb}&YB46N!cPtqJDpl@y#L&WA%Uu(kQ9+dX`$z>$DRKasPU1gW9fUA-8!MZNA2v z7-<)=tc6xjCHsln*~F3Xf|0Cn@G##+>R%zy*Hw}_wa0O;661fQ=(H7wlz5XV{m=eYOj>c zlD4X{o-EVD8PThVXt{&*m&~KQ#}U#_Bt-UYOAr~tWee!fSG+71F>>8*Ub9*6C^yxF zRJLs5%qe4uLQ|S^c!^}{-Ck8bDiL^^?K@E5U%i!vlR6;DF&a8IvtC)mkrJjQ z5W;EpY~;+M-~?e@9AWK5oO4oR&Ig6wol#LSAf;{Q_USGv!hI29RL|NC!{E#gNLGx7 z?IQ&kl^8n=#Z@JqLrRvGKnADzMy*3ctf@+z80AdN(;Ck8Gw5A}`*r#;*ab0mMj*JI zO?oaZ;T#a$&?X|$R3!m|+uW`9xqjYnN7e4#dnGgbRe8fcctmtVY)m;*==l4P_Bhd( zE6t60A>xSw$KPeZAt!q*kfpIf(s&?k!>Knj#JTe%xss5!1OYQwpSjc_9)$P!)%#~` zG&gb^`v{7B%0TE8m-2DB$G!O)*9YSkn*{k%@4oj^HW#7ppsely#On5ERY$t)Z6lzV z9(izB&5BY3CyZ`flAnO9PczwlP)OT%S^dWJT5NUmWoLV$5+%7+SA`_WFqJ7nx->7>_li#f@|-;UrUvg zc|>ygo=1yD0hmz814-+qWgk{gy&I#KWZ3@Fsf_n$%6{?Rj&jJ~9qAK)5NrLcte{0efVuI`S zzlBv4bc~*wTZa^uNq57jhK4yAbSwIq@vmE0c!aT}ZN8%U6dbbUh9c_GAnK0|6G+>1 zVq|5%E{eErOBf(F-_taN;Bv6z!Z=^jla!Yh|MNj9s%e;!9Dea}_BrjEifs&e+B0y3 zG5Fj&_fSX~p|0~Wy#36RYxDLOT@NRe+lYI*iNns(f9@47WRRfd3bGT%IO{y94S3%) ziV$(I6Tvu7X?Tsa-itWX6LTiIQwCj_+{th`&wq-?$Yf3&h z`bjC%{`j(0wOp%k?`q|MZLTh#z%9z}dHjKv zasF4B`lDfNC(yX(v>huZ9K?i~JI)jpv$|beM=mQ_yuFGlrgRo#m`x6K5CbxL&k%M1 zIN3J>o%#a5j`sK9r&w(TvQotYol(r|+-JQ+1Q+?Y`Z4W*BsR?o3YN)Kk3+hsK0|mG zmrjrP`i@1zcVe~DL@hRch3{|2Zhz>xM)OCBsws_6M}c zvU2K7Zn4cUq^%-(?oPF`LVx!|asUEkBDw+8=lJD)va71C2+O zdCw>>z%S~N*3_#L(f0(lQ+-Q77Nd(0)edv_AGAN<=Qf$tAY$kV{0dIYa+GSR`1W^` zoKHMwqE)r%NpztnaDnRE6zwqZ3(#vg?E(iP#-6}Es;|~I2dPK<%T~?cpMxFwY`Np* zv5K*i{l&qnZgZrfi;JC)vb1?kJ<)swv37D17-iu1lRTJ{*yeSV?R|ZN(m|NB*rp8% znh)T+g1G_uNix3@V#;AoF$(8iv~oM}hz92oZEVi-XO!GEt~Y}W>yc-&Ij z=7ZPttv9{P@*m^89mSJhE*MKZf-Jk^7bTouUjAC)yjsJPrx?Y>#UzS}I{k?kH;CX~ zV4t{330KPEgeOASE6k}!cT(r70<$gB5nu0!-%O;Jd+y*ja{JHYDIVYrXE=}(qyMV! zX3=#6g@E)4GbARXKl7OG#lY*~G6&W5Yt$@y08TAaZoW&VmT-7UDWAjzivggFOail4 zYSfZ69$JLSTzt3A4|_I@cdacyJ(5yFmFgdLgBl|-m3-HK|5=K0_Sx0=$eH#W~VP+$A7b0_d#jH9tU)tO#6%%Q#+X@eDweI)fg^QQaVk4Bogb3<-PPNABsCS6nBvgZ_EI7iyFw) zbw+Fvj{qzkYWK9cP#7KbjEu~M(`+reTt3roY54$ow_Enf)1(?scf`LZO3EOhY%24h zZn59%>i-Lq^H&xZ2k53Ve{V&jrlTHSs4;B6%g-ZI0}zyhLsL287Y9P>gToarM`nuh z$kC^!5gY;*3qp<{~ zl~6rpqP$gHr30Z+6%^yE=ufOQnFRc=;T(=Fn=$TU`BYBYciK1vK61qFg8s7n=u&tR z{rx162+|r!cNC|9GAD>V6_)b%t&tQyvIn>$C$ALD4bzw#OfI0?Eb_uqt1qOAeYMVA zDS3&q1<~-h4=a4IsNN%hOs40E~qk>z~ZEhOSUSzfePYV5d@s-|HgMF&9V(} z;)i8{#DBMrQ`;TFW%7oEtz-vw5PQ|=_{2ZqLi>Lo~2K0;l zio(w$^%+GtNYz|t7vn}LJD)8(g@b?Z1q_^XN^A)() zv^X*uG#|tmaO~^f(ZGViT~-G=(%+PSc$HK*@^#bfZGK2iw2sd!hX@;Lt8nhHb2bX% zSMz97Hk01r>K`Ffk~toyDf9eXOS1FTN8+u(vd5#1esvc%6~X#4DCM}}U0Sog=Y?~( zC?#%lKyY!g2S4+Vb*`AjX?W`XZ6Bq~=|l`lBgtD~v2#E?48&yAT&y+OQ1Tj?vu#S> zskEDWw5eY`i+j3EWjHrLpl{Nc>ORtpkWIc)sMpvo*Bi_`b7dK~lm@px}$dZzdT^3WD1D z#Q9Av^bQd&>1%J)Ei>ba^U=i|7fvGzU?&F2^Xj*8mU);{$0&mWU}AZSTQ+7na$CM& zG$6o%4Me?q1Xo!&7s$&j$FDjw1XLN%PuGQvYVr)C)A9zD6sZMz`CT>0&@`CM8=j9> zOk7dE1H8U}%|l$KbC)9)9b`UQ&|Nnn)(-DK-N(o{(#eoHw|n3gf-)$pU|^`#KMk0OC)A=6SH@$4)`jr=UCm>JK+T!Gy#*P<5xpZ~GGx zIj;pZ0$j!4Ap#KjKpd_HWe$e`TzZY6^rHS|pOfKrGsX)b;cwwrSaiXXtI3nA&y&R= zS54y*^3e$#?qRaqP`se**TeP5YfRix9A!w37VEVweZH#xFtt*c+K){30-bbX71aSJ z)d6e8^BVrOclK7#YnURyu7Gd%3|ne`(PSBJoQrzobfzw`#ki8yD;CH_84oxa5BR#N zULJBHgFUV83{(3-*wyO&v%#}o$$Eg7ge&aa?VKQeRrzeIyrQ5@khNWzazaMhHd8rf#MO^i=fu851 zy}ypcDOU}Sdk<=G0tZuQ$Ki5NTg#{Ay2MY_VWp*CW2`R|xhv^Bxgf2~L@%@W!`uAI4OB~s7u zz@*rv>(pUl`5J|8rVV@>v%6hhB*MFBB|6ygd3GeaEMp4T7%`>>i;^)^ly4{PeLV6mVx zgbPC&P*X0eq)t>zXHF%O09!wDK3Ezw#`ANM!X33>3{c>FZ(2yWeo1^XBZ4aGfmo!e z4QF1m#Pj3_!uGjOix4u9rKt&Ew!oo{8#lx|S_|ik83F{4>+3z;RG}>b!D9)+#~%Yu zw~aZ~_u9Xl)6#)-;P(K#0pa-wubQg(G zaBLV(F*ArT&5FaZ??N-b%!IF=o{>Sct87dLq?Zk!3aZzFG~%m+@@Ef-`PwZ5j7rLo z0rsbMh%FoU@z7(Em)>b|gMJ;C;39DGv;p=JxF-D%4X6f?UtIU^ckMFs#397`%FsT@ z8MGgG zRB+Whx+OZ3Bq1q+t6p^`u$Svd1f5bn*Kh#Sp063F0orn++DKia6130tP>jxEXQ_!(gl_S)oE3ZEtI-3 zaI-#P#2>8oI-^87;Q_#BaD|amO_l?YdA)=6D~=DKOb#~xcmR{1PV40Og zg6!Q4pBZeQl$E*)PP6hzyC6QwLb;g<3%{4_HZKdu(RzbV=yyp~fF4P-#+^rB5%f4| zq2*-1cm(pxj(GJLcm6VlJ;?f#@Y_493;}I zb}L{PBXdfQIo*w~d|qDeo0IWffE%&k@JTe$nmkNucP-Unc>J7?3{{j&`+4{VtX8F6 z*T|^+OfSC+Te2)NuD%{zEhvuuCW}pY&O#{}&Ifz*T8Mk9*!AJqV-AVG5l^tA5 z-({!M3eZCQbolfuBvUh#Ph>a$S!5OLqZND*wDNAoCP9d*7e?ONAv#&QWtHQ-Xbkr#j0R5m_^IjbIO{wX8~8>jpMpd-Mm3K`?UYW(2T3z} zONdqY{VS$Dm!(%6&M_QWCU=JN2K!k_H%Jirc6{WKrP=fh|j`z|q%%kfH2oH8~&Gcc^&%QVXs@DlW zVmvKr5)}{11Z5D#cl>O=F+vBx?DnOu&!o(wFy=fy_}eszhN#!MEO#$K%7A}y6m}8L zpf_0kJEl07rG(uh?AtH&94XT%jOi~sHJ9ZX`(J6sQ5fT2HYS(l`XzVvcM036t1#iA z;m9Fs%k~}CZwN~$U$(LUAFYwzZIJ-EnuArMd6C}vk?q8G^LbwBr1YaO`oCt3b6HH- zJzyhZ2m=Qd1B|(?>`DNN99-@&c9?$OC8dS%Q2AbVCc?WdWX}E|Uk?3DcfM>E##xOx zROCu9syp{`7Xw>dT=x%rrf?)h{e9B4g%O67rbdcU8-K6vu#6yC#*ieE@VlCtD>?VY zIaB$)n<)(9P_gcdv!?RPX_sLTUr%+J%~ER%hyF5A!hl#DLvdkbrp~ZE()2~Z9aP{L zjVY0Ypl7Tw%Aw&9c?5LR|Cbz`3CxqroxQz2I}UROxJfp_X~}i0f+7TIC32${8t42= zf0%uv+VK;Rs*aHn z^hXpY_|5S1wm~1i+F6wHjOw5a`odJsgInt~B8JNta35dLJmJ8|YH`%K{m~Yt9Srh1 zLCz;23QYDclnBjs%S+%@JKv!`KvQ*9wT*J)j@)HC#aj5)ZQmHVeY}kB} zQ*Y&%zLprO@0qEYf6Y@Ep)TY?y#wJXj1Y^96h_ttwZpC;EkLLIMql{K#I{))5va%P8?=LX!}?CRh0;00A>&OyMs*w z2;PNv$qyYkUcYvv=^-VTa`n2+;Va%g_Y6kkd1*-z5%xh-U{hJAk6ov4Z38)8a(e

RjZ*9OUyy&Oja+3GN6eRY5lB{@H+dr#5u{ zGnB!9hWbB?3BIN>!1?sQ3Q}BlF`eZ=MxMVO`G9Et6~^=F0&YkVdK*Vk9Q)(T|ES$c ztZ85afB6`G{z!=PeG&C}xYDS35Go&6N1o*)fX>0u;P1(`a`bnR58aXPXBEc({1)q* zG#Y|yEGQh#`w_{E(-gmYFo6gMp>P*pTVt=-0GKt@^t)GswTvKT2`7!^s%&yp z8DfF4g9W)OY+Dn&4jvcU)OY)Z%PIk=KxioIAbp09aG8a7_ahd_J`l4n8^V~)kozo^+)LJ%*naWX|0x2E2I*u}!Y}Czbjg69W+la%l?{d5zAGgc{bxg`4 zmNwN^-KrTu!V*pr%XRHanJdlu^@re{Rb;L{b=vU@Uvm`qfStOA(kKTq3%uO^2m^^> zrRoQQ5q%3t-t?-Z5M_*x(aBN1b>>ySY#0LCL=3D6-q5!vB7;_>7vvoq>x{af#O|`6 zTNN3UL1;k9vqh`YC-h=yK$a;?=#s#T`oeG`DVly!8L-Qc6}@kd>)IJ}|FSzii{6Bg zfJ~DR5P};o&>An?4u4f%_DOZOm$3y1U7(1FPNQIXWc$$%P9zqLSNS=;v6qw{Tq7E* zzHhi~PehSPKoPqO95V4%uI#&93H&#V1bqau<>1Ml0b?WyAO(KV?=u8Falj!jQeejbDtlhiYQSmv3Cc zsWdg_2YZEOFL?`2F}_4v$XX`!69t!#5mF~2=gZ1{-&J@?XRO75+9*$*+AnQxi4o61(^sjfX9(?}L z%1aQTC5I%{K(Va$Scp+Sju4~P{S;8zuENDb)KXdy#{6v-vj}gEEosCac;tBVUH(5z1YU+!^?K5iHq#8 z@$?UUsElIt#CDT!ciqN;;)F(**k!tmzuql+pjdTKC#c5)JSFO;EB@}0G=Gcmwe?B zrns&Vw+nU;P)qrLXHf`7&{xIn?ht3olprb2Y4Z*uEjQyFa`hc>_JftHK{b}E);{~h z2!5h(arfUibPSN&{|gH=5B;U0w5zNN`7EmdgV2H;T)y-helt=_($Il9%2p*_6b}3m zrcxz$%-+S7!IhS6%>!iYwOsu;TBh9B~?3nB$Kt0{&aKEm4Kn_=5cuW}iF%fDG zEI!H!z#U}*qlhg&j++r$l3EVTWG~$6ql%j@7Xbj}ff*w~_wkVYN8N-kf^dL-O~G{m zR%N$|JAKN8)?hAQrS>PhV11=kcJP(bDH;Pv2X&p2hyjU$c1IA9j$**lU7q@XV1Z2c zo-P5EKVV)2Go22C@z=W_Y)5_XVqb{C7y1)Q2=eK{)^@35Mj2%xzg#|NpQU%rBvTT1@;m zRTaoC=q_q0+tCiW<*XKgWOJ5B_7-N+Q@l%b5Nxl6_4}z#&qNzTfqU1xtt54(0=LeQ z3A!(;au9#Mp_;p%1x{Gh_f+5tLe)BKa3sD0*CxsM-Q}dkW_FWbkkZuu)X1Io$SE(I zZAUQaA{kie#MqvbSyEROA*6H{s8t=r!icr_POPA`MFtROVP?Td)nkBBDyTYOz$HuK7 znwaJ+**EW9BV3Osa@%ly$&!iiB;yeKPE$O%yix(>zf*Os_Ab3)|K(Gos*d_h#uXUo zgpR7?AlDI$%ae=?Y{JAEZ@7J+y9)xuNa5)F;;+uk5H9; zoRxjPR$x4+i3>{VJAhxxm4FHLL+i>Lcojdms%$|%&EN%&@KfMc2F_2XKx@06JM=CP_?HX|TQBMTc3@`+i7zmN^i`7#Zw`UFgK`F4`K}+a%m(KcL1~=PnsGd-mH|HxHl9?mQ_T zoIBxzmOg6&lU(I5s$pQKB8UpL=FqWE2SDcmg&8(=MvLMFhNj*XbeFouu^>hpXpq#Y zCq67u5n9czg~d0+xiZS6oOW*$6j@!>Gq`g7**ENSJGdzfx$}_qe02BDA8W2Wq3v`Y zYzz^nU1?le)F(%q8k$9iDy4XO-|JD(Ge84& zEKX~5R#oD9{aVZ=k?T=7`(Xn@5#U!!rxtmxtaGr7ghjns7=&?hA;C|eXzsmii}?(z zr=o__q^8!g4AET&Y4Jl{xiXFd%Ng)9EUJVHuDXESBM~H7G}Y|S>c>#muZ4o^&2y_e z3CgK`kt*N^J&wM0MPf4%fA?KoOfj^O9l-cMk%?`z1)6|GL;pZ-b5l71w78gIFtI9tLjPb8Oj{*MH!NmeI5Y6{_$ z1QF&5S*XWt8T!te(&cb3;h6LngQK4Xb5!RRsChr3erk$gC6Z)^Q z@;Ik=o5d-m>b~l^_~AaKIi?QXwDTUAy$j4PWPT?f4QEf_C;TA`QITL=0 z_t9FMYJpw8DIS$!$Bw!~a|Rmkr^EC00n&2Y15Po7Nfj8mprd{T_-_(v0;a;W3X#NS z1PB@XZ6`Y-LGj69EHAm0Srq1Lfn5Ya@`N}~;4tvBRj8$)BW-O={>lx*>#0p`LlqQw zJVSDazu0f4X8rszD7~)`UBaSvi){+_VJOhOJe)G)rN52%OllfsR%JLPKT(Eh0!FoP z?tZIB@J{dH_OXJEG^I-Lt>^@RcJrBSK70h-WDHXbzEH0RMs7C3&wiQZ)%#NTu1w)bFIn z^J^!1BH46*1aBtJUT)P|KrD_!xKNrP3qma)Kybsz@przqJazQnn`p1`-*J~+9m=#6hC_Nx}T){66J9Z3AueHy^k1#LvZ6A0B_S=*J@kO4DaTN)Rlpjyukrb}JxIIT&;`F2C6?!eK)#O5VNg{Cz zE5G)}-72ZQg=T3|7yGQ8_qudBT{q-}{ax;5%^}jT-hLetzI4b zCu9CjbI&gn9r;+D&sfozEWaV9y}U8t)pDD6EIR)WrW0#nxzTcTQXBZS$?DaTUiaW} zgV4F`TBV?i@jTiMjbf~ii~LnxHeo%w4WRLDYz;LX*m2YgV$@phG@q=vTU4(Gclu%l zD`H4C4Mu(BZ_A*cJ`J=zI??x((7zbxl$BRW=i@>ka$5oL&!C*J5`@q4MAJqwwA{t~ zfdwmaw^hLjWpKifB~7Fd+jT>k2(NOn@9}lCg{4TVINC+;nF#hTyZ+#@4PajhH%?i# zo!q#bUPNvr{<%wMPkr*}aTqwm1XDf@z+P$n;THk0(lsvq&qW{3q%dZ17WFT%L zTJ1z#?bK*OTsBZ2a6dE8madvS#=WZPCI=rODX@9X#Og}YFg{Tk0V3l?#f1)X{1`*o zv6JbN3E7u@JC9x2TusqO|k22BY@y zEFD|7{-1f*kNTS3`Ym49bMJwtGxWW{ipitBy%%A)+_mx8kC%zEQ-5BhaKX9Q?ji%W zon#k)@Zj;ffrVwg;P;b?dpj{jX{kkd>r=-e0;2XZ!)-Eje*hgcY4;ymAky|fbXf$T zBT|RX%0(0nAXRZ=CsL+m*Cx9~E~P;p^7WRj8LWUMb*{ugCjXBWSgniGE)>HNRXPRQ zuF3|Q8U~3l$Kx+5R~4~b%Gh=czrmkZ;O#M@`bx^Sxt(q!zn^F4@`}JI(54@{i?LB9 zIC}q0rVW~AK##UG9DTV?`nECpsnLc;C2zK{z436HF`YS63--58Ypr=YC*LhJ$p3cA zcJA5IvLqS4 z06|0XD~6Ci0BY~CT=@k&CbLtQXGIFnmM(6nSBV&Ickb)pbXy8wFVx?}Tz-$OZxn;u zY@Xn%LZr20v6TJP%2O_j;?7gsNrDEqA$NygZLC);De`YUXp6z7rDEZ1#-SG5n#tGE zG>Yh-g!p)?D&48rsAs%uElBCl6*Y0UW6?1NiInC=qn=uiVQ3l}^w0Z?*slBiA^M(z z=!KswC+*k?rtT5qOQ=-*ZtZc_lzo8Yr5 ziqzMPeS3Zodln9Eueb`twd^ z*sDR35X|)_;g=(;by(0*@6{0WMwlNqv^@hKDuU~NizK4mj5@=!oNTE@Qf%p>IkSM2jK5 z?QTeVL^mTEm_&R(taz0m2}Ro$Wmx(`L);!f0ql94QhF5UpzI{UfOV3#45&Fl)|W7; zqEJNw>sSZ|qSo4ie?)tDf@ojk4|*3PkE;O!hfXbuo~|Yk{C4?gI(NMr~k9T zb2vwMAANCk{w!c5QS!gwy(D6<0rmN*2l(We?r)B#ooINFeBz!r6q`V6o9&@zs@{gf z{0em6i_F7@qg2lr^biS8!^ge@UCHW=HUc_99%!9qx$p86AB0y|X_sW~SAky|KKd0N zT9`Gp=;@r}-vPS^yRx5>>SX>21wHZKiFUP~sr!-tgkrx$Mpo>#&lLqKfIdioCNKUB zfhpw=Ns`f*yj~Zar4}!n9QEum&{=Sn&Kmr>m;QISvj%VCopaSgLG37{9ANxU?18H) z^;#(~^eZZ~HHSq}X9CtF0ozXs_MAnXsaTU#Ug4y2{o6Xj-46{~UOj4+fcw9)D>CRo zqFXTeO9qT+aSAlC@_-jM2J2+c+xJAn)A8SdK`apXriOl{0~RU3{9TMSDdrUp?^w)H zm*!yq=33Onrw?nZu#^P%){>|gVOS?-*mJC>-eX;~D4QX%cC0R1imwx=bs^C+llM8+ zE*JYw6}YPl8O6DKY7=tNV3^-v_@wA}jK|MwahLq*u9FCh>zkOH=8#?JtDt=O#PG3o z`i%sNuT5{$lk+w2S&3~NsVOLs8)(lP+7FcyAtZ`C42G}7`y0>b`kF8A$akHDFb-Ua zXd8yPrnE+X&FIuce>(CXq^U}0kwpJgyB{APv9$49S)87A zx!Ik)W%xQ;;AAIWXkS6^QaG>CCxe>6pZD=Y_g19x7o%0_%1Kg&w-tY(oWghE(Y%0}EI&l8qYAU19itu>LBL;a$sFj8>rAufz*QV9Qkv za$#e}UaG@%iM(R)i=`x-jeFuy!&SRbav}2rK2&$lK0&P(QcwIdue>tCU z90|jxgr%l(B0#e%5iP*Rm>4@eYxnn5yyn|dgn@8w&UVPI*(YwicODMtE)_mFe&~-) zWEm;7el;AwEc%qq%@@9j)#4HrdT0oZ1nesQwfm_k?jTmDrEL=O13C+S+WxYh*>rd# z5%vwZSOz&ng!kk>@~hoP#(#bso9vdKH1w(;!t5h<#-Wk9`KbG_GzfA$V^xj*rHc@a zg;i3OnObQM9R;psMUvd2&W@=ko7$7tyZx4cIDke0fc!-`}eH`tCc6uR50?t&k8tC6CQr`5?0JD`V-Wkz4*E5@d zeWD$BNe{jL@x|;JoO&7_om;o5s}>~WP-F_72*o~$57dz@%OrU9AKF)c*h2x5sm%H) z>ehu1x$(}Q$qi$Az8K7$WMt4+ap*r17xSJFVol{X!nVZ@00@v;(Z`>!=+IG42$29N zR-)jksJq}WowgR+v(uxrh(&zHKioMJVWa_hET}Qf5>rxiE-YPN66?gy4_@V^HCu`Ou@P^x ziyz6I+#P>w6085foUR?!`Y0^Tr@>LufG_NOjilBX-z^ZPTc{g1O~^Q6@y$e6hM{sL1UQKP?i0^ z3vm?o{li+x3-H;F^#sLI`coiFU76X(!x*wS_JsT>5|X4N*WRE~F%;k^?IYPi-(#J5 zhmEwR+ke;O^jVSFs3xHl$@bkS)(`U@OMer+aQ^^%h4QY!Fw&Sj$lXdjjIj$ek`T-5 zQ$f=iyj&}BC8q5L)Bf&SDR`kcD2)&%Vv}XsU}%acUQ)3aqs#Dul9M1oi6R`3ZLi)GC z=jTAr;Sff@tdc6krk400*FA_-LDBM+-oldWUUtB%Toa~-4i>qxWteDLcTd_n7gMqI z9V*I|RdXFIr!KhPj=c&`Id!25yOm;u^Ow|UWE9Kc%6p8h3NLrY4b6Ucfy3 z79Hqyw`*P@B9ig@<%htHnfr;@Yj2)^uY_8`RHorw50y72P|YjgT?&_;Rfbx}dt&ry zdw89Lg|d-IDf4Y#WF?J72Ysz*(V-~lqV1XKF5~v^saUXm4b)MR{p>}wR)MSbdo2M3 zGmLqs}Em`KUdxhl}-Y z!OVJ*IC=$qIU&yMY$0^;warsw_-<@VpXyEQjM<`xaC9uyWGm<9=~sslIX z*``aMmtEXdj4P3H6-g~uZ7-R5Sbhr|S9-Qkxia0Kno_cG@mj-Gaq3j8u?dU57xP3q z6PYCX#S5UIwW=8lyfHNVWI!j1)&X0LMsXazs8aH%vriS!81=-&HiHiknr;@7vuavn zHy#$=!bXE)2wIj^__^PTv&g@`d5J^fP4-{iiY|487q->Ui0tu7P(jtNI*UZx7A~IqE z<(`cHtro<*1_l1$QDv4F1#Th@#TV&Qo{{Bqv*jubeH89f#=KPdO$3l1=WLcBFqinr zxnddBFr6Y3{ty51BCh`v-1rNxz4?Eu0kOXTz?;|(>lux?|E-QJ*`R9p-)d&n@o4b|6fYF9k`YnW+Hf0G4+u~7SR#`{;jj)^=<>4UFs@?i3^{k z(!)82rrJYZ+Aqv#-e$8gNJO=y#^!&DB>#8u z|F`!4LBOV>Y_js!i-4*xjO}d)sDIngG|0)3D>pPMCZw_zr<1pck zO69_fh2N#c&}so5j!KMA_3!!dFz}NFJ-77fJD;k60raPx?J{MjEQerEqq;WFU|i*e zHyI7D_n+`OCh^ApSidQ4>MwQ3?n}Ews`@1hH)k@HJomWwts45YG!%EjSweNlOswj+ zt|4s=p$g!KFbYc<(8lJG%Pj7P;cdP#GUF~Fm%o+O=A=c~>fa(X2jA^$^r&A}uSy2i2{H`oaBjCCEo)HmJp9}|oU|3}w>pn2N1P!r_Uu?75vYP{%i?)kas--2}BB{{>W>1%b5Ak(~Et z#I8c;Kq6Y_n9gT2Vt1h#{xWoJT{f9BVoyL>fv&APvVE~%uR3nrJ>rWz=adEc&mK9U z@`TC!<3g=EkDC*JZ8{F#6^*h8IIK$e6Ft`18bUuHR!fD3qq~J8@UKJb>|{6CW(Udv zb+{F|40@eah7nFUvto#0b0Gh3)xBV3%gcUR?YL;09=t<=@(2>FO3B~`fCe-xh8~sy ztxqzm5oBmBQaukpJ0IR))n{1ep(fusqXs~6ELn{L+UHU2dhR+WG}1`v?9qReKM5ZF zC?AQ(1g~#?ppw(>58%OiG1R>0xphB3ZwLx1$~wt9S!?z3e!W>|yd_?Jc{$m1@%FyE z=5V>XTlcW z%J9X{_mp8>t&tk!GLKavY-b3(evx5}O>_YvELSLh>E`KSKqx~B{k(%Ub>Odb8Qm?(OrRV){J=JyG)e^oE)X@HX zeA@nUveJjr9@>-T{cvA2_NpbT=W)KiqF(uWG1RxV`f_h}-}JhGY`ezWI``VQ;C;8h zVoMA(`214zsI8T__%$VoF^REf|5oqyEba-qLGKZ}{m<)p8n*ZMb~jd(k+Y4VHSa$! zp)X_dr?2M&Pq&PG?a!C(?XUOGEn}zN(fPU_=l7eHugA|(S+7?wyIHn+dRhY~ubxkL z>uYO&{t%v9y{^4_g$Wurpx6#P-*5J{ufVu|Q5&)DXIx3HoZWiqv(C4(~+ZLF;Ed%oPQzplRK=%8%dR1u9g*z&hOKhL#$ zKJ{T=%#p%md3m}&ezRxB7a<|C+hs3BNa3@Rw&luywnqCY_w@A*{v-rLY3MYn0dG@4Tj*q^;W;RXFQ z9Cf`!Re_~ehVcDO`-(;~r2Uhg4hj^5a+U)|{-JFC^QwpCudMLrxWa+nm#BU z69)c7%=?)B-CG61-G&l2{s+U9 zwZfdI{*K*-+r3oFlr`bAep{lzZLm(z`r_55;(Iyv_p99@?=*Lyj5X0nLOgz=%-H=* zllqX)nE2iX4th zp}4W4y#(WZMTPDzI-=ut4{yW)t4i%AYJ`k(cV!|o9@=&=5kr3`G_4}0+n0&{F)+g) z5`4`WM?0F;DjCtlV7;g7r-Rgi*ylldN%lnSZbqkZ&qPtpR+gGC(pw;kqy>>=3do&m z1n$cY6!uN2Yo>adbW8vJ4>UGPXV0G|i})!0UG=cMRlkw`4j-h#1AIs%KMJCgrkG-H zQ7-xBS2pJ^i{OAD0@3c+$$HmG>e$AZS>|y+DaY>@*aNXk;~21l%BURpTqnp` zEV;wMAo-3H+zG(;{)4SHhIzlizWtUP`8pV|Iq5WY^WoUC24VHLq#MSbM=Xt(pG`Cf zgCGe+LO{6AG+-3$M|46qS)7@~O#!3c!`r{lg1q9Co?3uwLpNvI5>k&+gRt>iG8Di@ z(?t5&pn~EEutC{x*nXpAKO(+<^xeDA<;(Q*$*ZaPkqB++$S#tngj1?|RW>tKv(Z?| zOpLn(Gf5Emg?>Py?<2g7c+@5UE%hUMv8dSspY+B*@Kk#+G-2 ztz!?N!Fn+?HGVbvo` zf0Ix0FH66F;h!#X&iw({bcjS|~p`(jaL8Vm0Djt@t z50KPzGO!^lm$~@KbjvUfo!#E*o;(-!*~sPaIL-f)_TwF;ntBgJ&8d(nW$lh$IUQC! zfIj82(T4UP57_sYdD1rXt{_T(%@$82a`6QDka>Db{U6;H{1db%ys;Y9;vyse&83al zVyZK`PjQM-X(qVWjZE*a_v{D)A>nT0A3Et3qrN=>$l)A(|D}kG;7|Ha1BVm(#yj zK4Y6=p65Bh?H$9TlhP3{9%9(7O-2ho9CH-DqYy9~Y1D4y}`^C;rlo z9$o>hs6Pv?X{!f#s5$L~4^a1+r3mqTr8OSt@0+0@Atqd}Vu*@Cacle}lNWkmALUUv zM9-OF5~|beOaPkjn~}%7-cR1S!!V6~fcDxZ7@F?OU`lytr1yCM+Gz@r@f`0mgDj5Z z@kN!zR%BHUIVGnyVb*w!k4~xjWT|G9NW*~J7?l6PiW9aNB72n7JX4s$dxcxI(2|;N z?aUjU`E_+|^wr%o27L%!%@j@jX0lE$x=_jH?7pb~`W-ki+mG9#8gBx9&{0e%zK|?E z`YK7jl!@9OO?)ZZ+}6FmPWoQlYgrizrN_Zio@0RaXo~954Jt#PCBSnWDHi0sxg2#(rGXDab$GFIgx}U1Ngw# z>s16~-YUx&^L#%pgBReELdLfTBe?^1pB|Y7dCpKkWIV!84Pq(I?V{g+M~wEnn#Ijm zelnL%?ko;jMwmzYaaBO?5-e1fO9b+6yNSc{a!ErSbyPMJL>T~mWGR)0P$8_6^N|a# zDXl_wYJhjh0O3UAMm5_^l?toEXB0NY;!u#2x?lTSRP(}{4<(5bj5_E2`9aJHWpZxQ zD0!Ep;I>XD(d(e%7=$wS@e8yk=9cD63IXow9f5K*FaZc0WO)xv9fk#nE=9GEqJvtJ z>1Fm7W`o9f`*d%J8|5OjMFxi#M}^1JXVl+ks%8u@!@EMY+Z$4F_A}2-{3)S`f0|S+z=c^<%%!3O03#9=p9&Ujyt^9 z3IGA|7?C>;wAy=`ue^cqa{9uUPJj{8V@EiA^inXI1m$FOwB^RF^7^W0=Hu=W9R>vx zJ3nUbtM{z8a;h*V0Id$u45=*otlXhUN@YsRK&4L$_8l=t;g|9^Y_oSIwR6vFJ| zQbmg+m6UU?gb)SG5^ZpsQXFk;(%~CvyEouv^r{Dl z2O1O0WM9rCb&~s}MMd2QhoRsZI0nbvMZ&|k+}+(U{6=3OkL9Rnqorj5eba-=h+-5K zh2kV8HbTQ*qgXkTaP`=p0d6TTYd&$(i5usT|##$g-_#imw4l#K(dDmgK#8JaDi35kE|6*@Q( zjZbeM9+-Q%s4iVHlE<_AZPXB4(#EE|(9)+0)qZ1Ds*6vK6)#XaF~p@F&m~8VFX1wW zD17ch+*{VsrQS( zm;X5bS#~~_vsNAiXXzpQfzIO)Wnok`qZ+Tr9n@)!ut^gPN&Vas%b&uC4(T{29jwvm zIleC!yQRi&x@oEJgl>Uo1S&2@-Q9H5g?0h4NfXn60aW{iHqH;6Bnms6L3Dv|qL63q zADTo)I9EUE<(b3rR82KMnp8+q1A&1~VYbY_ox|8{L=$)wvA(av7s&(Ju*Q%<A8H8Y{`*h`0N5azVw8i9a{Ub&I- z$E7BEMNTucZl2MbU$-3pP{UKeZlRK5g4xnUxgeW;saZHL`_HsqT5C=HT*>LNE~?3- z_CObRrT%8!CVpddHtwFb!polbOTedP7bQ`XR8`RKpntDk2uM;6=vA-zks?V2(VJs> zGDtz*qNOAZ3&V)#m=pwd{wwjydyblShsC)JBh{gYoJEK7$1%&2fut z;9s&&Cx&KzVOJNj8MH(F9SvWk>7N&d< zFs*v`t|XUbgcgd85?&$u(!3B(;or^_C{)vPZPce`S?+DpB6yM@>X4pE`;9&OCO*P9wurf4@bU;WBm}x-^S^c|yAWS|p5X z36~j>Rb{+cNv{W%FQqM0R>l)g_e}hwWud#_KtQ_Zp?joWVJz_xVrLdv#<({;vB^6y zrz&MVv5ZA4HWog=WAQ@UL_|#^XpA8>4A8ZNPF*KVnudoyX(dp{{qS?x}0C8_@z* z$lGiMCT)B^1K;9-98nted7)9(4(s_=Z~T7jTXwMUkc66fSZ z5%9!4UMAZ4zKz9BFdI-7xqa^FZ$^14Z6RPSEpEOkHcsnuNt#r~!~s^F1H*son^Hb# z1ehCS_3!Nj9l|4j{4aS_nN`U7Or062qPFUmkyLDy!0x7042t7n61r5WRXYbgaW{L7 zwe_B6f7}FcVIskZ9yvC{4`m(98oc|bkudq&j45BS&JqOc@&g$s=9)9Rf^nEg1Us~> zvr}RP&X(yjYespoAmH)4bLq~SydK`xlFj^$QZjtynkb6#`$i?>4=W@Ll=v0RKdtuQ z3SpN#0`0c7)DW;6h15i8D`=~jDLTZmFYOBc!ZZtNBXVeKzvFO(#-Fp354|5$ln;#& z#qP%+|C)ukOIuN0iVm6!s1nS zgq&W}<)3-{|9t#}3h!*hlFji<_+)e7+#7_#xez7dCwwOtH)kvpc}yI zO`mTBI3*b7#&T>pxE@N&nv9SQJy6D+O^kx{(mzKK3ffC!zSo=ySzsA&+Je$y{+2sP zRaCQinI5wbL2lQgG!s#A*jpcS2>3*Trb;lktn^V>&54pLkO1I}2n0-Aoft11Da|RV ztXVy^1!xBLY^^Q$I>~>{MZ zy|Rie4m6k`B9l+;xX)gR4xC_BJ9KSK63y73K#zt>zejiU`)6-Wd|>LASK0jU<`@2U z99!>g_P4cS-#{Rvl21_VQO${^2$6!yKw$`w0`?Jx*nbwMAw{+w_;Q<4_1;o9qG#NN zF1h$7yXQZa)F7nNOMXY+^Y}sY9lbF{7XGwb&*^bnvdJeV#(D??ioxqunV{nop^wFd ze5pUPtnz3?y~pADOVV&fxHP6FFu|vYF)*^sL(8G_9%MqS`@i+wm`$l$n3bVb2QQ&6 zd(7Mb7bLU8YKDJf%fpJMNHNEB&`d69L~aq-WtC-5fVSaN4rE|Z{>cFL|6*6HyhUqs z%kO;Yq{Wfm80N}eS~f+CR|_%+!oQTl??6PrYC^Ed5-^KFxB*fIG4M?hBs2TLSR(_j z?|0}Fy`&uAhYM-sFdFY=aHkt(a`;7qz7E8T{k)_Z^vFo;?_~@{Fpf)eUn)dcU)~O3 zwE#I**Hr0+J_@eY*c>6O49Pa=(O|BmR+dMqQ?FIeDDe$EsAwe=&He2&@$izcd~6lFmtQG{rR_yGXLl?&qsHj-?Es5%|pt}RQIUdO2fty%&g=W%%_@B z?eD2)WYknf`sS(6e3FNR?WM~`4$vGJZB?!MOus+W@3$~*)5e43n*Kn@NrxA$FQS+K#E%@r*mKG%bxBXrUy{9MWJx6*V;vSA zfn1v(A991@2V#^c2@8g=28y(yvhDGWOH68VwfJC^d{FW|2J<<}#0QVZBmL5=TGU2| zH-EFM9g!p)394W_pewIknn2-|A#*D5%ke0C<56SSn>bLH@p+RXjAsAWsMO>O{jtV zf%em;IL5PVe#yFMvxLLe8?N>k>_d`RI_+d=BiX(PCiuLNPIP%a?u>r=oBq-XZ`aaQ zt-?^p-Y!wcuohK`k`!nGq(!wlX3E*$Od}s!R$(Z(ymtd8N82kxAhW5q)~vcE@JrpGGMCvsHdtwNxLupKY)x}? z_vzCw>RpVN9=>P?hy+o1al)*_nv6q>%v^N>_9`MNp84Usd0P4H^pE;`5?rkBF1e`Q zCr6giW#-DYTSjy*BL%wgz1Khbz?JlFI1jCEGCi$eKMit_W*VE|+%2{UhN>S_W@e@J zGv}84`@=Z3J`P&u8QD+_3Whlgm5Fs)k=5=Hd7!dWm5(an;vO}y-$(rD3|6h__3>ecuurK*b@Y4chEs3Ixsfn4rVP#x9XbB#y zZQbC6Xq8Yjm|}q2oo=lEm8A#xK5#*0Wnl`2L`^->hI{Z3+KEHYJpGuouqm{3q1(4) zMXm`Lbl%rcaUg`YtVIQ64okuX27Y!x_XT7Q!*!7CV88(~_p0N$d&jWLnMo7}$ak8O zxTAGABaOHv)3k_nm1pd#IEFf)NW0Uw^uJ3mQ*k9f5O#+XAR6+m>zfvLB}=ow&b038 zvzVjIoy%8qp!J#vXMQvItZtB1x zP|l&2@t6%!;n1Y!vSK%|zD7!>YF~M(zB9$4HZ0!mB%qU0`e%sn34a*zmQp<9_;S(?K zS#KKtPcun2cc0;TQr9dcBh4A7_l%{n%ulO~N3~U^on!?xy%9sBBczyo0CW4Jsb{9CK{0{(1r(BS)xPgq{9uv;xs9s38khJ(Hw zG`ATfzk9AQn&wDtCrx`yIMQ8ElaTNr*FtB37c2&wJzf8Oe!vi-Q*hN2DOYa}`UnKi z*mGtyY}p1U(0LJ$AT0e5RV_(W!w1z~j*OlyKOLSxkvEIeZa=!E3D2I-e8Z5qc=sau zopU_Bv>S7Qcx8rd0li|H+4Bw8trNXvg4xcoz@CE`DSeXyELYiy@hV4iuyGFN@KQiR zTEjx$?h*2UGD?D#^x=-%;lO7~-rpBn%8r`LbArEAGY7do)s4s4?@%(hc&WA5rjMmH zj)(q_%>E`GP&=|R-H7IiSbqpa*KM6R;z@j5Vr_2XKcI920HhQyH8YfAvOR1(zh98B z!btiSgsIk+8Pm{2XW}h#a#bF?o1CX`n5>p%qUD21xeuBW5=LNOr~xdKV?UILa-DAi zSY~=~GZN0?mU&XL*onGq?8fY)5FC3*&3Lqs?2Q@VDTH|GQI%UrOM*0cmMdO*MeN#mE=d?-qqLD-?R|=lxF9q zQO{bL2EzASf*Z$*r5otQ$U4^xnPqQ2VFDBI3DYzI=b2q}gjdiqco`ws-|F>6k0QI| z|C&^)&fU(L;)pjjkRVMs5bNGgqm}VVmjmu74WwozagJ`*={n|?-e&1EUhB$9hrtNN z7~H^vjKXyF^|xDrMUd!2rdi24$8vg6<)%s*kJFznflrgN_OwJPlOy$7C7T^IoC_8v zRA9T3}fq4M;a}Fa!%!sgVpNK@Ni7QqC* z&c$Z4#QD$tU{`V@w?`@s8J2MCJv|DD>s3L1Jf5frbTR3#fsEI6bBN*E5jLHC-tL)dM}WProQ6uH{=z3d#`u z2EGuS46lD$_MG%L2?WbETXp(wYe+WPaBmD0#PhI%B{x{2VA(x?kv z2@Y5;Ipo{Jfzhl=l<&yE_SzF-hCab%d!2*3>EwDR!5)HTA}way2axYOy3Tj8uanmk zAO2nFFJS}!T6i2Pveo^qx5BaYV8-3*c{_vh`f&4H*?nQXs%o;&p~+ z;^A9b;(yg3rRlZMh=epI9RBgO&@$qD5-IS>jJt8YZzdgd$9Mfxw*1|Vfi^6ENy7{U>4Z!4#yWjk;{cZ8s%itp%?l=gS-?LpKwr^@S8gjcUPu zW%F$_>#Os*@tyJe=v6D>6^G0;>4xPSfp|=fwV}4ciMaJSFf9<=ak29GX>v>U_{NZ$ zSv2LQkL4ssnyWirfSjB1N+!%EmZwV%JBI~X?hv)(`kPSbQ7V~mPZD57;h|G3bLW-s5|taA;<>6>P4whx zF2;V*g6#nsV^(Mu?SLNokz9BbI-7d;vW#$oi>1YLy%Nqu3) zsCDGu#I^$=dW$JH5H@V3ix~QlZpq+;+4I?+O)`(!^N||9g|b1=NvbFVyt{VI{Ybkz zVogPY2jJ!GJ1y95!1S550*Hj>gjnyG+mXqGMY)pB25gse`lQ)y3dQ_I0}YDI#IttP3=FC7I^ec?` zR~Dz<-i7Ku?-v>5 zzxxbFx?{|VgFh%);vpsmDDQeUz1Jz3rZ`{!em(SC=3?idI_tw7`}{uXpM}8Y-DSP4 zk5)A)tqSr@iWDxCc_V0jU@TzFY^R$T>`Bx*k7MsRP@ai!*)}tonHuoz{z(|)8tA-o z$@x6XjGnOUkSJ{iS=z8(w1JN9cThyTBmfk7%SGPMTzRB3tUgqO_vr!q)yGBFS(mH8 z^fWdwZGFtjGy~B>rZ16vA}$OMO{3QWT5IVVor(V6=xrJLaC<&812-!(uB~j=SRH@#^Ny5)FAOskE0JqqA@cxh`;3eH1#&l z3=H-@V2_;yKkY-JI^6_8wXHgeBpT%0(L;%Rio-y68Iyb*I;KYu7Ei68h&H7BEXJIb z$HZG-n=G$@^B^$1n_+O^Sh;gjBayeu(vM{|*|O5$pfaLNi12MYrPhJuY9?GLI0cE+ z6f;v>6<6o?q8J@ytG$(6Q=>^0=ix5Q%v+=)RrNx{YDhY2TaybC+!V9pN9pl+t`hX- zB6i*+hvFj9m~O}^jDUYEiyMOKzYO^K+I>Z7$P4#tvE2E~qNb>R)^} zW;2)npK&&t%j6he_Tt&&u>?bU@YBlK;=-e=!gQnl}-XOp?%^r(TDm~SGe5<)Of z*^P+79#p)=)hgK^wCsw0H!);IzYPAmDd+UlGNGt*h{HXHJOCS~S-f!ijI9-kJLT*t z2tD&vp;KCkE-#Gax0FR!S)Lk37j?Tfg8vU93ULI+zxsSULLwTFv~mAk{`fa~U35`g z9e-*SC461N(9~omL08SsK;ogRzt=^6;_Ke3xLDJgQ$-~^x z3VPk-9v!UY>XU;Kb%!3<059wMA`Cy~O}#$x)p3+A2aR5XD0cDeAbTP{K+FfVP&QD^ ztD}>=0smV2w5s1XAUnn?Lq+>@YmE@b>Wy`+K9`TsSJ1X=Z^^0^tkYPv4#Ol7MVYO+ zdpvee@99kPLH0PU{4bqkBEd++0FOv3I4<PG7}T+_I;7yYX_AxZ;DlkQS9E&tfz2=nL&{b z=SlMT1;%HI)5H?T;9RcTdG#9%((Kj|ZvAjF>Wy%XkQ%)#BWH6+9ETR_k0K~}kr2O! zqykLC-JjFr)J9XH3VCfw+{Z*-TndO@kP{j4@rdu1*bZ}GH)v}!OxJVoZc<1DA30ln@h2M z_fb&XeRK=gYb;*4y$+wK?ROxo(cCVfki}ZaCQmT_Y2}e0ZUsY3LyFH!@CYjyGfDlK z=74097n3YCFUYxa>gy!fjn!-)5Jf9Hnf4d8G=3jRMCwW`h$}2!EJs2SHYU@LkoR|- zL=rd}=vq}gIL~})e_A9&&wN^*G}nk9EvenM!U?&^WF{F=(|fry(Nd#izl^}riTlt( z!E6JLP{P6SZgyLN32Ck~6CCErD92C(8Pba4F_RPTNSM4Ppd=~GVrJJfD8gKzNJXR~ zRSI}&yg4MrSJg|*bs?*Nd*Eaf+)%HkbGMbiZOD!avAaLTgIaf~bYg0BR@vzPv|b6< zFCaV?CxVx22bF7Wux_)-w+8~FsT8rBkd&qd(W=tQiO#8Awo*GsE@(7E3bAd)$en{Q`%QH1N(8`(LAW9 zzK{{u4s|sDjons2M*^Hnpo%@?*!JYnOOdtS3&Y~RMM<7$8BZPA;3S!2KBl5Tm`856 z8MUIXs2f`glqm3A2<1RDE=U{o_|c;j{gj5tUQ71R;%yqU7{0FW8C2QW!E(8Yb zf@a~=k^4RFi3raWI zXai2}7>t zHn!cku=^fuk&1c>b1FW$Ej;Yol!9p7lkxaJb1$xA)7H(?$LWpRe?1>sN!slQ#9V)x z6-~=$8Ksp2MPx1<7?Y})MPi7O3p>H2_p4L=$hF3)rLG|+vTGNBooR|7pbzCJ8~j?v z6l0~97!enMYKHtqoc^Bj!VZdZF>s+LrAy>yNZeCT4Z9*3K_))Ks*GB34n(5}^8e}( zPtD^0^@G&bCbZOVq}ni6@sOjWsLkc4&TR$3kQzHRK{CiWNX=|P;;Bz!{xizJ6Ae1n zSZS@5qdc`$b8Q%=fXLJK1y-@@N+-3uPA^m=?ut8aY~YEA9I=O6LmJga=F5V1^9%Mauz4fB>5B+iEzH1aw_aCG#^7(D(> zFfYhD+{%$cOgbF@IM*K8c)1fV|A@CFVDx*t9$-Uh^uLeEYqs&us*~fq?RB`k_ z4KNmW^QhM!30jihbyx}fryYkn5RUaLRmGmaqdv(lJ|n%^E5+m!AH-}<|1~1QR?l|iC&nOm4+;e*1Td(@DwcOUP^*ziK1?l0F84KiCLAUpcUV_Z*`m+$ z!Xqvv+Qy2P*C-dZhB;{MKw{L7A^{G91&Nwy{|^rS@c;*@hbh9oW^ti5tr&|0M#5-p z*w59?5$GHPn=EDoUm47~x~o4H$>$D+6&0_p>z)ag>L`;SEhl0pZwm1IDZ;e@;w_ zU>o&5CACawWN3cEkiKv@%S6356eZi{s^Xg7b+A02YF&uDu-lZi=^0SEqpgIGaVm|5 zU)8F#JXDwh!T|piNx@Qj$CB7^rGiWnP1ciV-4*W>bjdw=7wz&TRPFMndXPKZdg#7^ zYMKS%cZ=F=8dRZDu5o{_cv?Totb;<P7xH|pCJ1&sqCw=#W0WZWH5UGyyhoStjq+?_*@3S~BH%ZmIvZa8WD4CuK=U^_4b-Lr%~pndZ&w6!Mff$)H@z}H z)-g1-h1BbmV>&T;a5xntHIhSdl_zELdy6h%JQmr$@f`;(GUh~Vi`EybDkWmMvF{~+ zv`sFochqR>(6G?xnUcg?ThFv1tt`w5SraOP(-1Ymu&#z3>-sZxOM?#=g`x4-SktfFwt30-+a4Nxd^??Fz|wNQ0kUmOB4j_n(LUY=PmP|YmW zC=^4rLS|h5``M}{O7htmQ(Et)BlC(G_i*zK8LUtyUNxCED_Qo!cI`)>@sOu~2&bGx z0SqwT5j0?c>BmLL95npr6?n~!S!Vk>PCU=h&E%7}{&YyYB*Yzp9-ZkY-CcjkS5*4R zl<_E6`;5cl!wosm50YriWYA}Z+q5|LFt+GNAYjYyZ7}M5!Uy-1ihNRA<=`JU9NHRP zCTq|}0ZToCM}h8XGUZbKw+B35M%hlS)>5m@iDPU}A++THi0%~rseQ|#QhDGwR+q$T z#aL-iye)SKI+j@>$TD~YPydHjd_$W|Z_RdFxFpi$P(Ia+IgJG`BM~^Bt5=C(tt2Q9 zY-)+?@-{fKyhc7dHTkUjX&-)9&MJ`gLETv=uomJ^4SH*^nS9kwmtUAh-Uj5Wcp3tJ z`5dn`9>ZJ#q4D`NV-0O$(FHP=oF}23)^>^82zt@qi5WVKqTFO%XN!hPb@BA@(cv!t zGLJu*s8l@AjnmA{#au!ZW4~k+TU_*ll7XzP$7)yU-=0$UXu)Vve}*)lsE~{seGqoJ zSkFv~2+;iuaiOyXOg-StX*2u;Aabs55~H|^&tcJ_fJq{RRk;`dYelj>z-H6+9I(5V6>(#Ff&O8qG(wbBJ;aWd}YqbE>$b~jk%T9{f06< zxs|we9;~H{$@;;3(`NSyB>pAreL>?^MBn>Hf3VutCgAyR~4EoGgQQlndzB?65v)F)Rb91RgynZN^Dc z+ZU?FG2ZE%EZ`7=EzAo_Jc%ZcIBUPx>U~oCN>ozlyNhagho0_ zNQG_^ge^skYBVSE@y#=ZJLvb0*bx)BHa#fBEsH-p=RC~jQ9%?tPC`IIr$9zmq5X+? z@h@O-Qn3JyK1Uca_7|Td0l1XvJUWqBMbl-`EgQYV^JA9FU!t)K@SV)BUg-;~K@2Z5 z2cTN8FRO8yKNP8Pq9wWz|6n+L^odlS>%ar$$RmggvzdVWZ7uilC>H7Zo8mPF z*0odel#FN`fHEZ^gXhG=X-R=9WkxaCXB{DZtmZT2569iwzm*;a_C;QgWdVlO7lQ}G zCd5$j7fEznnQSNj1piuxcEZk4d<>3xl%JT)kL*I!LKAxtElT<#y$9IDlk8R0J=7Sc9n;2z79utwp)X^(a8N8g%cqU72}5s3 zRKz2!Fr4q>*VMTirv>su#n}lQ$P;x#88Dit7bZk;#|eok*r#Q7?u#GOD!{w~?rLnr zsTLQi=8gmugwQfo0VrQ=RP2dN2>oLsjscsK%KY2QMSSvzmoZp|F55iG&1Y0rJ$WD6 z63Dp|gi$`RvYx7U31otU;4Ay3O}e@{brS#5;T-I%ZxuaVm5kgo$GdYIUx+HpM~5r@ zb;l>#`J%-OrIzyuv<~*7$G)fxiPl@CZJ%d3$5OQ#ho$JRJNzNKD=J{a&F!$af0$U!raFXTKO?F!wwvIeTw*|gyl`920(`n4tL;PY2bCk$Mm}oS zE>ocjB_HjLro6wUS(B%Xx;li|KCTQom-le&)Icx#o5G8%F*w^NOzpwnbQoo8-|{tL z(N;&5dl#C=w{03|(U&cA+G!u+0DB%^0&tE6%DG@ZBQD=*RAU4hQo!YR&6`w5T|>Xm z`PAbU`E&ZfE+96{seDtgj0eM#pF!+N;$U4s5jphjf;axT0Ps zD<-td@|`;{Q>=sRLKt*TkMzRtakGrm3O0#|cn}b72uMm)O{$!pz7OAAK?}ig%uQk3 z-|NF~{zih9hL#LkP)|j<$)BJ)qcKf7<<1Lhrc_nJwIY)z94UCt#9Po+5u4o!ck^oz6^I`h}0l1ExMy0J?KMF+u4s^{)gHc~zb6f-ukDg3n z%DPg-`bg#o&0Ziyo+mI0ee$UCcVp7Xl>rZHR#AD1`b44JygE2nv?St-r+Oy%yxhJ& z#m-y#>8`Cb;D*pOtJm=}+~@fQBk1u+-?$gSG#{S`vFiF*LhY9nOB2rU3YMH!DTY;+ z?P5(E4II>bx^3tIr0OW`AD(oZWRSU!H4atz<{A@o^%?rNPelevRJMKROVfBOYV+eMOz!#aMUUq29M%l~b*e@9hY(7ru?N404j3$7dVt=~Be&Hp{IMr$k6IgP+WTIe*e~ zg(lv{pD`|-^Uw3y-u=(v-xVf&klvI`fAXL4vBnO&ALmnd;N+(4(?6%?ndio0uilgR zqtD;d$N%z>c2yGYefL!N+dE=N@AW3A{q=FI{pF=W&--zg*c*p$hxlc;z0&=GUzU4_ zcx?b5+Mw576gJWDaz8cBQJdS~w(EJeavXjGHx?qcj#Pga;ch0$9_b)^#g zed{CZVusbGiFp2NSvw-$TStBw)>}FZHmT2TsW2!diXB@Qxm!Co(Zb1X1U= zq0wf^otLe)7Gj7d1-0Jz=}f|>EQe*R35$>;IeQ|19|LETz#Z8m!yTe=pM1GE>VLOS z^2PaOs1w;e+C#5(ARsKsr38>XQftO8|0a3F50Kn|4sixS9HX(gUrh{xyh;xKy@W*s zB(=B{R63cBTeaMVq|;?;l|o1Gy}Xc8+5gZN5+@2uq|LVjAmCRM!T*D`>GQ}AX|C{&fc|K3Q$`Op|4NfnTmz0yge9$-zs7=euam& zbVpNM{2bFrFEXqQH%)5R=6$?FgDO6%JE%D19D{<4s2LGC(~wLcPUs%jNq+j9>bKCB z-FJQ^vTobgVZ%v8ERy)+n_*Zpbna~LMTK9m2uB6je)k`2;9%CM5dQhNJc+zjJm1YS zK=C2T{D&lO2ovJ{V{kPJ?9XN(oML0G^|;?acIALwuA8ODKfBzJ^R3h6=@Z{hni0Yo z<}{hV6I-xvaQhb^Gl5nc7wOiS=_TI3kyDNDagFj-K=lIjK+WW+^Z=Fa7$YYqAcM|q zZB#7r!+*zTX8MjhuuqHq;ng(b9SoEo%8~t0js>6`4*$yG-VKza_$z-*(1@1O=J@$s zDxJM%2z9}F%t3mNV~m7Zy~^?S;OA{gl5NGi)nx%e6JJ>!d%}Cz8>Q0m+yH^i7@GrR zNP!#)s=YgDs9qU#^0SaTgO>?%rSI^B?tDz;Mu^rBSs~o0JR$$DzzzQ^@T8i~0^umX zG-T+ddx?34Ed$#j;WGOQ4gN?yZpXKZ(oV|zMeNOb%$+>~R^Tf`X)ve%vdus}O&7za zy?9DRF|(YTjTe`~f+xcypp30e6XQ5lRH{#SLq3w}!6u2nWe%@16)S@5=}-8g$z0dx z$3ELJSClY*p~7MJaa=yuJl_e_&>JlNS=vT>)2Q>&YU_Abw6W`;D z%00IT(Vjq+42Ed(=_XJ!kQp}`qdfQ1CjTDMz+Fm3 zGc)|udQId6$Ca|xa+Ec%Mdwopt~p`l0a2gtw-0Tho9say>S?1p>=Hq9hpn$R?a)a! z3=hjj(K?8{HqhKvoPLAwj1&<>YADv4Pl7cS8DDuH1uKl~MWXv7a7?dxP_}Z=KYOwm<=0M0M_DwwK!l6VS(G6 zV<5*2U9u|{n?-au>MNXPs2t;G`6XP-8v?uj_!$k4S=4JRk2m8fRDVCzFtJA@*yc1@ zEPMJ0wcr^X9bAgK@099@ew#G6M@?mxPi2-%o#XTwu1Y5>R4$D=X>i8c?Y8uc+?X{u z9LzpxS4A|9l9uI4JE`hX)^WJ^dkiOEB zNAn1F3y`nf_LW;sjkKbQw(j$vBnHz%X`F&hRM5$!OO~$06o|! zzd@k#rqRO2hFQKmfgq*aC|JD8IgkIi4m-gS{P}1X!jXtQj!1qyg-9Ya6y8g`E7k{R zCAI{pwtR4=;`1$=a*ul>LTusg#YTOva=|SNv3M)J%l#a|tDsx$P0d;>|BML(NmW-Z;k#-@=sC%Zs~=0pJO95+s6Pg#)W%hG}Ze$m( zd}4*0;a6bI^jlo^QzA7AqBXH=LVV!%{!e zzg)YT7)3aho<%M5`lKLFIyrAdN0HQi#WI@EG0!-?1tL^47EPIdHP|$wS&fz=VTQ~v zYzJSYj%eiZP$c_Bg9ZA~5|R%F{a6m`RStx5PqH;fL@6c&^y}xee;dMCYQ9$IpS{Us zd0{pD+)CRx&&@G2m?xH94a&C3tVvN|NR{L_b5?YI)m*{22Y#91nr`2)C(OHSpSc^h zRMzpM@&YU55#Vh(?07zc`P-VJ#Y3xFh2V`W^xJe-ja_7kF|+vVTH3AgV)S>feAFq$ zn_QP>%ygSi7q{+kW`9}a-?grlWAobctmHJB2=TaX9WYB|B4_AVKFweWNqA`vEr%V= z3%LS;)EccmopKJf`~xjl@bG2KZEGd=_`Ub5ug#H8IBR&o(^=0TTns()?Q2*d_fN_f@tR& zhE*xtFmw(o?^fn$x0gkGnnQ+#gBJ~7`1Uwd>z7DT&Om@Dp4r__W3w5SbNMy-FNlXJ z&@Y20KblEqjVYjiKBwH`73Nx5bOC7FNMfZqtafj1oc%$OB8U#ugLt@)x@)Tq>tqG) zvzub7Bg&f_S}^cQ5(0-jfo0jVHLGxB!F6}fAYU~O^01KJm|O9KW7cu)+?-z*mG_aZ z98;cH$J@K2=eD)1dA&K)rn*U74Nt)~j#ab0d-|0*Px~~&fTrdye)`qV(T3OXwLIU+ zkM^1r(tQ^~{+yumwUZt=)ecYy4L zmo!)QZ@L|Y8%UF5{^wQQ&lW~yZQ-BW%d)Pee-WvTS_@bQgP420HzpkZp3j4%&p7@j zJE$P!$Z*saDtjx)jt`rDwk7S^h~w+}WELkEePjF+#y(=KIp zW@h^a>h@3k-*R*#X_^O-FZl741A37$Wk=Rzowc;9{UKo)d_-%G&Hg(*-;S0`ag5Kb zxcrdoM}MUf*2Vl1eDW_`4J^sxjSe71cg%?LF)%QLHzqcBaZ~l>pv*i<&VAdyZ_G*2 z7=FoNbyURgr2X8rd$Pje=#}_|R31CW3E9>+M+uGO&@p68vQf++H zR)z9@v}lfUrjiAx{Ygm!_d|^c4$7#q1t-L0-?*I0q$#_EZF_E?E9DLTWbTdO4AEFl zR%k(4tR$q(5P#cl`~^)b1Hd(!vER^z&Q|@poZE0}^{0kA{^@fW0V2-8|A$oyN43#4 zj~w(YVx$5(W(vIXVr5Tn3@Qos3&S%R7tIp70k=MBO6M45c=u>Ds~73t`mfK8v=ju# zTvSJ>_a7kw$&)4^H{Yj;)F!O@&@=^^t6eOw&<*#w1?;O=8C5uPS~j{>PkV>_)&#y2 zQNH*Rw?%X3cE9t}a46zrgz0{8GvLR1D!(>06G9y9(XW})u!Y4s$+ktzG4?zonLz9@P)(Z~BW3YhxnJXP}#J?GH3{bwv9!jYwdKlHT4V zTk#a3dA!-B;&VzNFo})_cN(_qPVeIB)6?Jipjp*XuYeEC0oCs0+0@Hp7Nnb_kfV=% zi-`Ja?-=lmm6=S|*!x5w#Rw}uHqHMsbTX4!Q$~vh*T*Ui1gyY}4D-Onu_HL=KhIYa22Ju}SmdcfW|! z$-!JJuG<)0+`+15cMJ>%ksB z+y0W(h<0bNi+-0II`kOv6qSo=9#dpz%YNiMqi8168;fRpk*rjN-YIWJH_$%nx=p+iOo!*6V3JKOGecFeU3+R_{B7*VJR;EgM_d4nc`p__UBrfCc zm|}FDDC`2i3?BF6H=;||T&4%wSi4fbuStB4|D@`KmXg`v34(R6OMVim8Trf^_ZX>b zC>{?=Kaj*kR9hU=MIOBT`kB{i^Sx9N`E4G>X}8pfR>yj`bR*8o{U`xf-Rlj&wZ|$J z%_YSxMvkFnPMo#s&m)p^LS>`f2A*@O)ux-u#^gLmnd|S(I}@J`M$RXkW(gbfHs#gc z5l;AL?%WuRTLmk+9iB%j7sQI4f#xAe6l5-7wFW^8+!{^djfsYGH?E-Hy+!;J(6L{`-hy)25lWhohLo216 zQS6yF*(mmro;f!xVBy6W8BZhR8q9i_v$4AMFBK}xrb0f)$8tq^D~ed(Hwu_ByzTMl zaD<$~t-lPAF?h*$8cESP!~48rx(U^pIq|EHjlbLH!+?nnW^S6EZqggDW^9{f`H!WsgWN$r+DMfn->9;BTNe=xu?vWk4MtkCOW3(5#N9h+kM8~Oonz8?IZB8 zGl*9*XMd&XRs00_u$5a6x=$|E^%WJ=kPLSRBh0h5bC$QCjIWGu2xp1ZlHe@BM6(1+ zod`ToTz%wYR{l3;tGXtgafa20w9=uQI`&SCKa8>>o*&{lPrWkd!(|HM{Gy0%_BOhy|LV9{LEw? zkD{Rf4?sx^%88eZ(+-9?2aX_%WbDA@r%xP2zy5HKEU<+d=12rlzZKwrcD6Oo*bVrC zwS$3xhM}PV4}dR3FZk+eaeIUZxSRk?F0QHW{xiS2e<@ggT z#KkMk-AuBl?pns9j((#izURC*+mJ~~H(aZW;&pw=M0t25Y8>^b)C)b0COgNQNW*-D z2llQH}Ib!;lQ5E>$$MCRbN$IJXfR??wMN zaZ%5Ju4d#^JdpgRby(Qopz4Q3T>64RK0zC>CedSzAi@N%d|z~!31Nr9C7`*DwS;C) zOx)EEE0U86X{8P>=c&lsy@Af*1*Na;3Ty^OPjwJgW6?k-Vxz6gm7AimGVT&bOMa1Qi}jezgdaX7b6WyG|S_`WGgbnViUD*z&=eS;{g1h4WB>nvE(4@ z(gxWoasH-u%>KI9Xytb^(j40?P6T8QXd z05CPZwsA16PQb7R@ANcXtuLzjP%_^*R@L8Vw-n#bF!uh7xG*5%KB4VflbEz++DYDc zVI4AN8G0jNlzUEdf97wCSvC)I>Tub56!W)g=(+}Dzsoe--Es#V@OP5OI>>YkT}V#w z4ppgz0d;_I&?MD<4cAQ+O6j15d+-t~+Yp=Ofu+KB^6PZ#pV)ZGFDItbI{Zycxp>_S zN45`jG`OdtHpBh$G27N&!X?Ll3tQj|fhAWedw%!}KtG6EF#B+J37Bay3+6-PA1)fP zzKCn*7&{#h8pP#1k(YTTI^Y;TGyl&Yh(3ac=sVK4ILG_DP>E&$Szy3XdcGBbxh@z^o*uiV^WDH*X>eNvCWe&TViPh*eYH)47xSD?L!>${?H*b=zo{cqgB;JdB$%#=4P6`_3A(wv78`Rt8a0!|x8~J)4HM!S-CAH+ zio~#S6zl!NoEH6y@{L3`8SN+Jqb>cgD=kR6uLbd7J@6aqm@763v(8-g2E_718`ufk z$o${chCv5+eExYrJBDivO4C~#Px6|9cuCWCBVdwpOD~Z2Eyu_t{~0vHoGoa&J^k4g7@(!`~E?$@d0S|kI7vb>;+{UiV+F^4_OA%a;Ww4=_cH24@fXRwBw2bHh z^5n4*1M(c!O=L=GryX|0`#dmH^lvTW{MyWX)sjQ(7cDE-+@SZ3zlds}yr!{R90RZp zT9}jVv4s0_Rmwx^sLdFBWFQNa$_Z8B(AAz=TvI2nFk5<~4~M5mk2%XL zl{rLv(ua5D`;eO2eobDi7`>x-mrhri19VSBPn7dB$OKOh3O*tv2muiIW289t!3R4$ zw7{aXcedVg`H`(_nVBT0Vxl;`Fl;Pe?^kSwV%@wwWR(7Y0wVB&nyAD(XH7eAvwW6? zKa`v{`kc*`vgUV4V#n+i+xzOcL4btTKjjnjLX z{zD0gaXznbJ)8-n7iM9zp_(lz+3@UOmVn|}I&aM~a%u(1yb*4jA2qQ2IeuR z@6Q6Ec)R_snGzeB#kbaNx59hOem!~WQ?Lm{7|@0ka`%NU4j;%K zX8tn_n8bo<%?kNCH|?WI=K{bcgoe!8Al(zW6M_Gwd&KjQu0!lg_GuBSoA0nBBHsVl z$%CMOXAOdOyDuj-Il`MOxd#VVl+Vj$nB20H{qjaZL0uo*lFBCrW4DgXnuOT-uO<-I zz&i(|c<|~b{ZW@(Lx{y3(LJ*eZ@0lamcnfC4OGwruwlzM+4Pxc{r>pCL z|FM!jnI>nwz$@ERyKlgBz>-&c^lSZ_ePE(;|}ii45ne@5XPj4*h(-2M8K`J8fo57`*C^ ztS5fkqp5QX8bs-8Gj1XFl{3DbNjO4(3>WVK_iKJFtX%1dX?(R7@+L9cIhb0HN-XE* z?|Y1*R+JEhev4h17&$t}kboEjj3tj61I$(K9RgS?$9{2>Kp(o<=0cN96@0_R>;t1t z+L(}!UEy(8$kP$!MlUX)8KW{Lc}*> zdfMh$nfk3$ipWY*%M(RYC*Yt$Nd`uHZtzt&aRZo8)mI+%g zQ6oeR0ZkAPk$)9*>|Bx*LBA}XPu`Ww=G7b@p+bqOw{9~DYM*&0fewO%cy*Z4fHQni zL?t5D?tdIF1fkt%vP)$keEKzQrb`g3F?@_q#@3^g^=OI;d=84aGh}WGecs|ogH;D+ zu!#k{HYBL$OMTL5%6*EcVG}u9(OA9Y^mT8gdrlUM38mGiA5G*;)`bE;eiu2R!r!kK zJvlHwn4V+8kOrqSvS3ILeZ^N#6uo3ZQ|IGb|oOiM)5W;lj9k&9#7<~M`N|-A9jRJFDaZ4N~O!LcyCMT zz1k#KOAIYlpE_PF?VM?v8W2($xP>bGJgH`O=SO$v%gc!dr*Kcf@bV4Q81#CKunc=rz9<*D)DsA|=R4t#$mp%mjNaPVn0 z343JYdq%jp0^if*FRgX=zv(el)AX*o)N6f5axAiu3SHo5G9?2#wXezEd&T{t5jXp3 zROgS;iSniTN!!6v63Khe`Y=3moyB0ysjvP3*?f=Hgs1yMT+6+GwGs)fpF^o8cQ<5~ zHB2dzzo$mixvod(dmegMD_B_K(&)bg^x44bFmXf-v?9$$a5*qG| zlu0t6*l0ab}qDzuUbgq0b=gRz-iLV?nucDLI%~~(?in(iLDOu4`SkWo8W1i2H z@J>p|e*|dcx^zcTN_!2;Oeu^E#Zu81mBqI>7c_13!v|#pJQ6PZU^$DGcu^hP$2z#e z)r54_3gD8U#1PhiIWW7QkLYa4Tb@Y#>P*FOzQDcux)H8~0ot}xhjkvY;C)Sbi-JT^ zUEIgIxWcuBbhVa#Z!mYMN*)13p{WweMvn$j^T&DfcIXFd<^=o&_v38Sv)r)OH~^qt_{#Tv@S zs(cy1yRxeGn3uSGlWKBt>5d+ zy<`T`%(EBJOp-#^+VI+2aSx6@!u#x7H7je5N2`yOIw2rc_|pt zw&a$_?!$O*wyC~)pZjKBTTTJ{#M(_7Z_+~JS^A?`u4s#V5jfMS4wGG>vw=VJShQ#= zyf}oPA>Vbpzj;6P-TX^>-aTtF_B8jq(Q<}Lx%YbfS5QSU1>wQqUz;?()Z?AG_^UJ3lcDRAsikInv!FzjVq$@6`Kep#3aT}A^_&c`F2 z7~NanU*Ia6>aqFMdclKBIsIy%)s;lrAw)k`WkYU3x=MHGrZcC~6E-uoEWo zxvr-YB^#8U;ydlJsS@MH;tOq>+HVFY#BY^4x;dyCVAEQ@t(Ue*Xj6ZVFai#y9+(!3 z24Chc+p7J)hEU7aEE!X9?eiP6@J6k*HVX&KTPB9Wv@jg>BBjI9eM5=zQf>wII>#ny z#o=nEH#k$UH4JNq87?#;3S9x^Y4@w94Oik_`W(f-7^tGH95et ztn#+HK^_CzGOR|Ni*Px>8yiQ654rbi@(QqKhQ#2qDKX#)%)v_fhBHI$8_eToELuVU%$LiST6KknMY)8RoY{P)VdEtfsab5%#t%@ zhP7ofLu^)-Glki)rF9E~02^VypB1kj*rEgP%63nUaq(T7FU#JlbixYh<}b^xrF6Ag z+Q|4`lI@;|pm&uLG$V2b&gXZtT^^uo-7ZHz-@|%4@1K^yV{(ulTnv?`acS&X~(s z^Yr-9B-QvaW^{n=OKUW3#0>FV<=}ISiRXJ2tTX~`lnN~h-}vGrkSS$I?j#ws!8lQj6#^MXF?g;D|P6eXJ8d1a0u<9qDAqe(;-Fc+<; zfBX0gXg2H#!Fx}Yz=~x1Nl8l1N{0S-JNOuO`&s_ZVYuhh1MY!?^d70I88y5v-j5Fm zRFs+$fX`*xkcwc2u3|`>p-M+t>$+Y7MNm40`R>mJbVvqCALp+wCVpWnQdSeqBH=(X zIxRlZXvwaLk6K|kVWd6B1MN?aUudn=pdtvI({$8js9bBKQ)X+0PDJGe$z2uR*iv== zCE?yDP{#J7p!q3Y)oA%m10VGZs4DDSb?W4Jnye7|15B2}D_F72A3(ya(|)=^S-BR~ z_{+mc2`=!Vyr#j?-E&`4R!RFMnxtvErmSuPq>jgpx_RVZ7hg@}o?JK)T6d4TA@=9w1FBWugbPJigP~TW(_g+x**S#O zOl1bJ9%2O>Gkig3(t~-YdcoQBwnxJ1CvJ-63~o~%rGCpk9usMNPiB=LulJ9@8P18v z+(l8m;HKQnwTjO%8; zcPA--WSgsrAn%h*&2deemOkOmVSTl>WKl44rVxoJ3|L?a217#*qC19p)p*nRKjswa7|}A zgadnuOMT5Qc5>OjdWBGT!*(bt<+$_?y&=mRw~gD>&8N?SLRd3wJ+d}9-A?S_x@jLv zKNpw8H{EJid*}RxDZqg5!&pPH!+}v=OHiXEuVA@S*}S>YAAv?Z$|oQ4D{viktCKD@ zJX6JbVD~a(gw5iZKwqCRR*8zm(mG;8{ZUjW`ORP&TOwuLoz5y$fE-_&rrL_a?Tvm# zhJF6?`FdGk6UBe@Wnlp&OlL2p@JdlpKGJ7v9{;UwcuP}wBCy#pUl!R^N%^lojtueb zCi1h2V!fiF*vho;!!;vX16t!>TCDT+)l3+VXLDGwc2RU3GH9w_$GSsos-J0vX+_x^ z5ZRU+R|l+p7>OyS#xMl0F?|tiF_E7#g*xdU3alV|vMRIXDOQ`+rlkA>^t4suWb+DC zzrFgSWQ4AxdRUlR*=`pw7@@KL2dcE*LCNMtHGlnjl1Pm`r~U;nt`e&n;&msFyhMMb z^hzP&b7TE<7Z%FG_66pycdcV_N$GX>LBLx8ob3j{S&LB9X97_^wXYmTbqU%J-H#Ty zEL3m}LPCUb9ke3#L--~!o76b=^`L~PC=RL|Xy=dEpwwA)`V#^<5Io1jsO&m`ke!hC z0jWHA!9PB`v_GrK0-&Koan zfzhdT(E6L^y9p!9C;J=e{rWXNN%Z?+zdy%1NQoY+w=CHyv-u*`=$0&RzE9-=R1p4_ zgQ_UnxhcHf`vhrTrE6$aM>6#L2*P?mXuGsg)|p|Omhq_X zcjB)b7%+WS(IZxTBw&*l@)3nCoAHs-7Cn8kiB}=xE`zw#mtXlTf2H;}%k{#t4NIa@PY-BD?Fh&FOL~~M9u{LVm z8WZlPdwjD(Hd%`S@b8@Yc@+Lvi14mGMD9?>uPa%iIKE%!J_U5hk0I2xBRck=B3XE{v#+7b@zwerkOJZjB>^?bynfRewJW06C*H9Sy0 z2|}2~+_f z^j`^7dwfrQOnSQnP$vwdt9fW8I2dfkmt;5Y3JcmKEZr62G^Pu!Vjd`DhvCd`%nuZ@ z!vlrvpeZWMDIJ)+ueK_qdrDI*g|@zLr4^aZ{A#EW*}!bm#1HVM|8G{fZdMpDEPlQd zre{ysr94si|Cwk#v+%>~ZJBqTwJ38#w=+NfH*-fPV7TM3(X6E`w8&nYNK%=Q#B%pa zwxPJ}YY{Nj6rE)HZ`L!PQ6=AGG%)Kri!b@bXR&55ACxByWm;i1b^bIk%B@}nmEJMSg@ZBSorX|Ly@3Bfzg856 zz3p@+c*h4K(=q1x7NCZBdW>E}7>M`*!!=^nAKT?VE#!`M;z+OmzJD346=iPF`k|b- zUwp~U+CvE+H3qa4avo(~A0&e$BHS4XKUa38XoZci<_Q(cO3HC# zX#Fte=f9~+jUBA$BXC|h;=`#&(afv?oP=pzajX4>6RZ~!k%?UL!jB=Wb3 z;PA9pswD0skv7dPeAkR!v_&hwnUD1GNRdwf#XBuaF#V*v(ofWMTAd(?n=5?r{jMOlglc}nwu27e=PTO$8w=_ZX# zbeDdxBv*g1d<|GKBK{9c4mXK=H!6L`l{z&lqhlDq5Qc9zY0lX0^O<}dn4?FBvsbmD zrPflV#5{S8ec+mg&0XN}Wov5N3uGb5y@RNAN^H9RtE*O&Yh8x9*Y3X~1B@>`@LC6F z>(n@beG#iB**BRX(wT13nRm%${)o53?_-!UN=2>nEGs8Lx&U3R8!aOEJKG@~#x!z!|uShb;i-+KO*n z29|2Q6L5nFG%$M~|4|9V)!jRMxb|}UX!%d%SP<*|tBkI{`*=b3m%tD7?wq^+GVJg7 z4X`~s(2-iqH$En`7Et5LW|oIA%R%PUePAA}Y5|-qkUCZj_?#89M0OpnX*J$ZO~+Z{ zGGxGUaRV`nK4;>aB=)^;ZjrI>N9A{{kYE6PwH|(M-K0wi-cNkQn^rWpSgU{SHPOn~ z{4E_g@TA=GA(aTi`;%yY3PKn0uCd790ydrIa;6Od5K~jK7p9^>37)eHV{}Y6KBx4m z>FOKnO5Hg(Rx95QY`R|>RJtUUyk{`B8hm3f&3KCVA=20B_*h@KF(giWrf$sR-?=-o zH%2-W>xGr4QJ&jZA9?uPuSitHUVW;BjV8tY_c0t2F}BIU*}kF#DeIG3_$h~d?N!Tt z;&eE4%qvdsHxcUUClw-0o=ps%8xFj=b7Cz{D28Q|ejp3bSe6y*7Y6lx0qnPTEH_3w zVriS#G+p&=DoB4-p0Yjy&-}Aj4U?=GkF6^H5#V~hKEvN^LXbRP|4)FJgzmbzB6bf9 znYDOj6}fGd(|_&$kRQ}ypN9p}SpVV9BEpVgSu#ZB|O`TF0a*1%?> zueTexq2sabcsnvai6)~<0NavoBv8Ky@7r@W$*V6DzxU|po!z9~1_1}>7Pvz8)je|? zw7emus$)==O$OfC<4X;I*#H>;Ku+79RQt&1QUrs99j8HtEV8D2EcoHjz7nM`=6mKd zNcNb1O+VDJyOz+^iIl7QNe)14*hwqx_~$iQ+@|K7AQOulW2BX8%hf*qb9?;YMg&3R zyf+oDUT$llheSgT-b2Qop*`>xRo(4m6B@&MpO3h5kpj5u+&D@?`8VXhzT1sR=;MaC zEUO9wFfC%gor;pobFydYDmU?E&!{nc>ijh)WTz`8De!ny|CexWw4Q z;Ay~>+wcO1b<#GQ9wOn$NDqm>34TdWYRVCiWfGxIQ6snbyvHF>XL3%I?X>*>(G+V( z7BTLj8bA!7CD!1XkOwY@7-pfW&qZ;G!mH2Ky;uumSthFzBpoQwCFg4){@H>^vfi=p zoM6e`d-CAaRC6X2O;X5~QH+$hB*k+w)V2d1w%zjx+!vZzNXb2Gjr)LQY?O3-nrh4) zX`!SQqneoypmi9Isinq%q|koCjxR=zPZxBQzlzL)Cw#?>@EWTGe(7+rls?H$yB|5G zRFj^3v&nIu*N+sEek)%}L} zM|QRRekxp99lA}fdtqRVG2YEBZ@|{5sEiPtfAkM1 zT>URl_|sITK}RmWrkBB-fqJE5fX_Q6*Z4rF{eC=ZE%(xvs@Y1obW|x%Rz|53`i~S| zu0;F?Cp3Ox6xBSV_!l#r(r|sl!R;w01%_xkmq~mcoxQZjH+O7#^!#9oS);!uKW}&e zQW#*ovmKBB>zk|*)x5M(iay&55PjaqZwxu3UefsnS3b{eAK{S5W>8Daa7@v2Xc}jy z5*`iE0O;mz>r!Iv*R8sV+sQF+Tlbea#9D}#+ENPvnsBG-271QzUM2qo+?y?`LLPtm z$A68Gz4F=+KuG~Mlvw+H()QY*G|A}mMdBSAaYG+y=?G`#LC%A-@!Rvr)%4LwX9 ziV%F|OX_Pbe&L$6ANgvy*k*=yYg*9@QKjA#UkTL_X4#$PAC@%+hQ51N${MzM@Uxw@ASX$_&DoqWK9 zt;NwL$6kiIX#F5}nK4{%cXXTZAydlD18WVtZVBfB;*-u|d?$HhC&;)PhGx}fk385*Js%>wss%z%pvBLd3V?H7D; z>lbG^-a8Ej4_@}ofY;{`zWgEP9v?u6r)G@7ysc&N9Oy0)yw?I=WqS#OMtS^25Imn6 z$5d-yy%~jAk3V6yI}L^pq?J7sAgw-!gn{P113a}UAZ(lfo%jwwfp!OgIC;aB*d$ql z!+Ve6*iQ?8cBC!wl8!2u%G!vVbpPgoFnXs!bA14C46ctN&1knHfah&*h)eI(wzk4>pI$|)bkp#CWv#^a?Dl=Tql zjCP_)N6fN(ZHmTKK^6G8%*UtL_Fm+F$&H#FR8Ht*1_FlAjJ=1SmgegAzdOUMQ?5p1Xv%VjF%``Ge zMumz61aQa-Z8dG}Lya)EEZiwa3;p`kArs4wWwz;U2jIRn_-{1yw@k)vCGM`4EXJ?p zk2ZAixH~0zk{2RGi+TIArSuNC3OprL_1jK_T=#6Cbo!-VZH$Ver+Gg|@I!GQWRZsf zS!BTvzfQhoJN}wXa-NidY#zpZN>d=g`+klFTvV8{PW!O$q){IW%aQYW;yPDkunc`> zN^$bOWiF82y~HInke$k@$wW!66O-gQahTGb{*Qay4=sJclkCuG0`p2F6Xy#hoiTCt z)o5s(!RTCI)f)gvw(Qb2{YAp*8#KyNY3!+_x?x~Dp+wo45qBgT85>ZGr(A0nd4|08 znQuGy*YVf&-C5Lc;@&OKUFe>sQPbik;1~p9Rs%A$2nS@k@bY`^P}cm@Z+F9D+B{NA zO#y$TPRfvD@3I=)e~iVp^K%%S$eYPcZ3~3)+dS8Pkm$r<K3`-8mTA_^6Fp%-}onar)a&iGNwRVdfKqX1_KlT++SFuMc}&=TbHk^i~~QG zkkq*bzNSkwBR6(D@t?cA_w&u=89LFIu0hqQ%t%IAg=W{POjn{s5i2O5ACLO!8O;vc zEKtYEvV3Ut0Wy}IB`HxO6fcy2D1QHjcS;*@THkcs5FWTxtXf_A%$4EPB77SN#)K@D> zoJo<0sT%+jc#jRxbe2oH4tb-c}XsWFgUFciyj{d09c?d9%)_&ilo%{J>}Bvt)( z7TXhUg{eHz++W2*zb2n{13|UL_DD*u!bTtr((p)Gt}{9l1yX}h6wG+JE3ozT*?G{H z6xG%;Gow;&(-d4PpDIxpG%lQd&bs;y#%7MgRt!#T*J+Jj_{HN652q`GV(gl+PrWf7 zvYq>hhNIi-W(wztfw@v0ZpKZKjX{H1_L|M?C%Zt8b#NWOJ1N_b`=HvpWVkJVPELBA zQ;r_%RxQOXCUB!BOF5eH4z?|1bs={$>_d@<*!Ov9rQ)miSoWa4$VZoq z$e@1T@FV^%NTHurDxWurZ5ZmGG~TC1(U1;Ci>brgFr-Y5q_;b-My%GU)jPu)T%A*9 zt$J@N1elsE3jqaKNXk1lo-=NO;35dp(MZ^ueG7}gf+`Bou1`?>xk~}QOteX;zwE9P z>R5auH@z6~J)P|Zb{IbRMYK$WxOJ~CA-JPMX`r&-@Ij!MJ0o%f6s_N3o;NEeq1JHZ zsOO_XoPr_fZZIGGi$={T_d%g}XZPV!kyVft41cj|-6&m<-e4rOQ#Ig{0Q+OdA8gRetssPH46CxgNHV*6cAJ<`}a!(H5F^Mo% zyp6t@rxg%yVm#Q}yqmT$i54A*QeAXpa~SoELVGLZ$|&;vSM6cIIBH&P5t2(8y(14A z@X!B6MCP&a{e|dj^`WvNdb6F;^s6QZOnPj|aDqAk(k5#&AZiLyxB%VY4^GcRW2&dP zC>n{~!z1eOa#}~EP9V}%;*xk%Y-EfzCoPK0W!!BAMynV9T5uOO`U?=$p5&s;blW24 z9)!mCxsU6^iOBz>iS1%@p5*VAo|gYvueQm-m$UM9r*!jiE&oX0V;a=l4KoLMNpLJF zsu8-m@CWv7EPN@dmQYW*jhb<)=$VE}^Ue{~IX4q}Y}!bYZ2|Ho>l?uByK+1qL0=NH z^#NWe1SzTxB0wS zG(fMAqov#Sji>j+k2vG{5dEw7^|fvU+~N#!inq_9ZrVd%bIJz5Q_~1ILA^l};rXj? zyUvbpfCh4dKjwBX$q5ytSqd|F_7ybyJ4~8$_{we*41dneyNEQ&tFcM*S6y(ENuNdz z82{}biS~=mQ*?5aesH#Se|ip+uKW{ui#Nwf`uhi4K50;HFRjh2N>O~DbH2_};JkB? z`0Z!BAcU)FIX&ADJUk%i+MSL|Gr9It4sQZyu+0L$Y<&1l}h!VRG^HZ+p-E z8CTI(U>$;`y>{M={yeK!c=Q0o8__(omixd?mXZiv5k+5cpaDdVJO+mp$9!Zzt_pVd4gcbpTbc!ROZ zEp)PaJZQ}fziglYb`nQfXVL$1lNDkfN()-|YOFr!73)fAb-_b@f16@V9;Vxx{7}6> zKsHq-g14O=4Yw1^81iruspYobipvRvk!NB{#+Qw6Y)holR+>_sBAT6_5{sXl&HiRG zhK{Ae>z>^@=p8+%2|tw(m!o{?W_k1kl=n8J`2L++r3=L=;u4f@Iw0Y#{`H6N;zBo^ z=AXb9s0jan{;^bkF_t|-i%t|AhS!CbxozR?5YSDt+OGcxCpUlbO9}sgfJ*~!!trI; zKSAW-|BJ1+jH`0_;=Vm9Eggb@$v|z7E8nL%}Bl`v-~J%I4P~AI9*k{S-ol!SKgkNkXw#h+qJuyAhWj2^hdV= z;9?B~^YG!glG^HKhk0{dQ*N4cmQb6GQ5;yo(MpF;S`voEmwdYVEv9;?bo`cXE|P@b zf}hDgst$Acz~CJ|>MBb*_+m}|?fWt6w|K>z6w7^K3B7KYWIDGk4}Ip(Qg3tF>N1%bv5uV?8VUq-!-gXYciMRPEsxn3+c32Ua_c2 z*`JPrah&3oPew6cy`UsezUtqwuQ4wTSts~#>TM+fe2GaVAm@QxEQ#|)fh|{xO;N=*;w{%-VF_E9bGbBXTcxj0<$14<)K9 zuujm4(6)?k%zTXs!m-D~mI=mTT&L12EY9zg281j#rmDj7eED5Fk$>v_I(>E%rl_5% zWt5U>WnyutA#$HJU(U5wT%^6sqN!bt)=Y}|z%Qo!hgqn? z^lCU-#ndA<>(ZCFPa#PSv-y2eB^qJdMrj?8X4U+MFvd;aHnq`{W$=0|o`(%l3zCSj z#Ue83ctn&LHzSg+KRy9503_P$p_;sYoZ}5yihle@6M{otFOx)Ki6pb&%M|<1$MUo$ z(rocr44Y|LK$0?0UIws{FYYC>Bw|Khvw2Y?2Z+GF^kdDWMSfMi?3D@z4>qu)M$@xCiQHRkq3(yWO}iAah!lpfLeSv!{$& zZYFkx(RdeqvRaPJX>NuK?iEW9P2A>*YxC+KRwgr90ZhlR$1JsGGfC_oi&W!eB(;94K|AwYQwetXEOB=`b=$^7 zQjuHc8a!N6467ucHOytU8IrZw9#hEkpacVHaKet|v}wLCDYMW<>I=*uF%1H#NaSEK z4MJUqshyE@^~>Mhl5!;)Ggoz$<1+EoiML^|7SuJeWn@0!;Hl*0eZ|3p2t48a9GpbZ z84|~^_R=iBJn&Ujq{5iG8`c#)o->V%ZxR8Llsu0@_+#m&xAg~8Vf$+dOLF4nV+4$` z)b&p_yM;pQRl}$De7Ctou3vxe-F|%U$X*}n9iG&VNkD!)#mJ8lJ{GGA|A&EzU&i|` zZ<~tfN7dIFJo*pRm+DMBXyN)OZ?pWyTjeWWtUIm0@=d}AnkzUZ?A-gAS1MNTxRW#c=5c! zY?$+7`o4<5I3HAu_h78>*Ek0l=ly340mjiMrx6UXhP=IV$YJk;Uu`-%|7m~vE!XbJ zl{YQRa)!;^TH1!1$xoY)II%D5?`plDI%tn_473}IJ$-j-aCuqC;Gd~mr5@79F_5M? z$<@CVx5V+u%pY@xJ0{aAU45MD0!H1>D1khYZyyv^v@Wt?nWZ$+drpj4bejxvSOOx2T z*N{w(YXkQ*u&%hZCq920f#G4dE*m1ERsCTsJM_tGlD~XU9o24G&*hl4WRq&ykDYlK z8KD>yX)L81_~qsDwdGJ)^UyjIv*#gyXX9%Ahoji4?|^<*oBu!@cEWqPdo&l$OOb{D zlHwro{tGu}GvE@37wBf2TX&Keq-lA0B#E*G3HMK??BEI4YZOQWm}##H4hx1!HEq6m z7*!`k*S{a4e_e}xKJc$kb!g3i%H!v-r{jdWkZj{k77>>T^kp(FqlC%K#_o%6LRN%QDd4L!>+esxOwaoLBhf^8$G!#D@SDR zbEsbv3H3E8H26(7%h%4sVHRL)fC{f2+f?KlNL0t!RD7f0zvNq~C$s^R`ML>XrNU3x zm&@a?UZPtFL{#pz7*`cv9r7$9ry(Pj&cZK!pzxWVI`-a6tVM1@82YA_J(%gaqd z+*C#EH-kVJc4dsKv7qCyUB8M|Moio3b%45wqbB@(m^pLX%+s>Ox!m5I>uF+| zwaSNl3_=5ZZKk@SHP`zPCzeB9=%u}QYfD#YHJzm|MsOsX1s;=E$h;`uD(>W>=r5x_ zPW@yDl6i?qu;+Im;z5dH(|)Rg18Bz-d!^jPD+G2EG=4vCR+)Lx($Fb3a4DEEbyPdz z=7jpwEJr^M1j=n%l3Ihnqx~dT{15UsE}ewVD?N9;felUGW^SF^+Ln?Rgv$##7+*ub zg%}!YA1k{1>+UhNp!dtF)uP1=rRQlc;7q2-{6!^G{Y52nUTLdkDgcqTRs|)UsP+x^ zUCtJ1bmde72yVwS(A9?J?(pZiBL`Buk`0 zEdlE4X*!M4j$E-BosyU~wUSW3ZwX;-5Sz=d?w?D! zpG&5|ShcCq1PRPw`e=6>D?c0ZIyO*f{NDT;ALoinTuOQcvLjc*IV3JJ*;4luQ&7iH4blW!}EjU8Nnn)-M(=C%_1CN@7QfsnBK7e{NZB zY1XP4&y1(Pt;Lurd2<}Z_EMgJ&n-P4kM+B6lCm|*V9mmf*Gm_u^Ai;3E<%C%azZzg>N8fuC_D4S(* zL?<(8<8p-R={J;3GuHrCanLvP&bk&mmp^Y!r zXpBfg9GQ6jnUc)_2P~#_ZOR|=2MN7XgV)&a95q@T+l1Dv+_tV2zYJ^}QmMW}<)Gnf zF5#DgRGEkTeCI4ZL4M($eqiCHx53juRVOkYN>dw+ z&kU#bGIuZatxwE8-1nJ8#r*jpI5O3n3QjhrS!~hCmUI#Y6BjaC#7Ei+eZcd5E}EG>PYL2wVVbiQ_*p(L_HSsZ@PSd7tgRJ; z@JamT+>dlOB3qk}dvWAmjv2B|}&I^yQT{`q%n+y?vPrlieH>r^DU+{PNnuEyOUMX9<0 zYVOu|Ao9fC9DSHR)W~zDW&#td!Ay)poq_*W}$JulyjgWjED(I zieZXOTdKqNJe4jt?%D)>nxD^iP`I;c!E#=_Ba@I&tX?WeaoKi(p^nd-$JQv}FS1zU z0a^}sTl2OXGK2gOZivyF%jD3puF)u6b`ktzZeqwunSsr&omdr;D>*wbG^F`LMh z!Qw=sUzMUxtv~mnzvtX)Iw8xC_#UCiB-mJ!1Q|30*-ug|S$CR7dmNL^BK9har!CBI z!p1EVvrkv~g}(&{32;sSNL(6Ql&vtG8@{pp{@yDS_G=a%U#OBd>z2%i3bu;R5l*wJ zKX$_7ZW)w=ImDDljcAnvIJTs{zqzaEmj_~4lJ}PAIHowe*&rrTB~TMn^SO8AUUOw0 zz1FOY!h&YG7jl7&%lPg%HklJUF%_>HU#CMNoF7vKrFQW>7&acgelJCnsPMhl=bagV z6KC4&U&@9!Vb(=%vlwK72Q)-BDk+X0?-hkTnNNxq|1Jt_$CY2Cek+HOlh^VN@r~74 zNvcr>almrufA23w*)r90=a}kZzu`8Z7QOsw(Ig~zqAP&itX^rY7v+zuS78eG!1j{c zsm)&UdNXS?TNrsuc06Upu#ki=(2T&jk*xksAl->~J)U3lhsCFw@OL1Xr`ovXDhvZn z7SzY6MxTO-p$DuxzDsNc>b$P7i2Q9OdFlMTT!Ttd;yG&LZz{ZkxGnRA?_+7!AW==g za82%4?0}wg;u3xLdi749cc!m=t7k777c-yzH+M-pOp`g0vKZD?Gd!?@^}$H1?)Kh! zQ5KbKzPljy9i5qLrm4Jthg$bnz|j^}@^g5Bhm{(jGtHM+cVLH$|QPPJ!h zr%tUWx#RhXwHQgA8t3$l?XEO~Ldb+&zRKYY-#fQ{t>kGI5fBHh6YnUM^5lF`4DiGz zKwt3~1{ICeeyrD($I~`^ww>#Znqd(J$qkYPJ%C3^L2o#KwU9FFpkm8ktH8fj!N5ug zJt)Q+iyX->27*gA6!#+*OKY%p0-50Ql4YMvp<>UVF*cu9DGI#TsWfsQD6AA7q14fO z6m(71me->oiHQvg$!eCpPjdcYHyn^JfoibzRpSSWK^DhWhPp-4(`x*-%pzj&ekS~_!| z$qTX|ZiPRvbpO2m%Gr4bv=T7fzCb9@Y(9q_VC}Y{q>IuR)ahe4_iqa>uMigBg`eJQ zY4)F`1-#$+-0H2zH7J9^hjVF8<3;T%|2%3Znw|?V;cp_W9#4G_c~d`%Mc$e0za9I} z(=>Lu{pgYnLYvcv@4nggSS<(TJ!tdl6 z#40k)HH_y(=6?F+j~x_4F5HaIgkTVMfgI1_VoU^9S_3ih+<3pXC*;wwXd{T0m67*O z2G`(CY9YIm6d#BZ4)O8m_H&Cd1YF=aFunHgn7VJT5NawwTKMMctnI&9PT059O#!oet~p#5c+e6vH>88A;R5? zGVJH#6)dfbz8T9WBRluGm|IQ;DZqhdvLQ+F@F;yO6>hXmV7>#)g$m@wnrlz`RyNDD zAkBP+b(}mOQWcYCo<_M8N%;|wcfJ4xB3~-80?=?67H4cnWYxua$s}|0PVD+}uqBq) z7BUsi^=FJAYd40#9c?{0oV)pC3#;Q9zvu7G6>Ce2?>=2sbFZz&8&n~QJM;ezX8oK- z3&Js})I+(mI+{FgH+G-hS$vNzYnvy`iP-M?)x!`A@WF4))Gx=R{Sy1%-u~*iJMVMt z`**xI!kbi6aHI6IrRL-D%@}|W9>*p8aQA6?G>+?1Jx`ciP-uhW{$s$mkbjF6q2mp> ziJ}Xxf4i;m(Cx7BDk16zEHFL50*^x!6j!BvqnHpfv&h=#Eb0$FVU^@i$n;6{$jM2_ zpuk`0?G|vFH9NoKZr-smhQN2`-wkAKGJe3x8$2R7&EH8WzT62d-l0t1VT$D5Qo0yV zjO4zrl&AnLuO^5_Xn|Z`$z6;)^krTx_UP*gYiM7iW$xH!g`yQU4E1*7!8}P}GDp8| zwy9ob?B>j4JvxyffjYivhkmW$rmW@T_DahwMrm4S-eM^EFrRtB;Au*ydvgp7d z4a}#_WGWB6vJa1rvJ1z8hE+}=S+=`Tn1pHEN!wVzQ$W3^#Agl?QgxD;r=!`x~V$_O{LcRE6E~n&7Px~xW!h7Mp?J-sVYljq}IZ<`Ow+0;@XM;Z5cCQr}U zr~M9U#Ig3p#;s;u)efcb)6KOw`i6I( zzYxL33Qzypfhq#iRbaXXOc{&bVBBbg!|xL(f5lPz&K18KH7h?`>h9fpeE-)l7T`kS zk{=BF{~D?${m(GkqWsJ^T!#Q=IIZavz~Pu2#1V_5sVqr+o=*T1Wi4KT0D7_7QPzOI zBg~yOyVl5HjPkAGvfA9JwNyAl1wYE5g*GZI2*(1wubSdxild9*9UGN}e|UP{@(GEf zFR4YCEg6AmrUMnT4-qT0izRh0ql8&j_qR#(gkq-|GLT>Jx`TZ|mh~y@ z^jjULOs~}QaJp;0b}(mavG&U1aHBEWOlS-}OYs?M$RZ6(Eoaz5e*;ps+jz=vid}3| zwFwVV+%2jME=G5KQCu6(+HqWw%>nx!8)T*bmHm|CGgK*F{AEvZ$V!G&FNWYoVhE%@ zt>34)(moM#Z+Xh9Fj)7+9d-Fda^_U}Jn=(mS+)O_epc!;WX-NNCrQs4PuOGpLHECl z?DyIu(%0Rs%7b4#q4cxA78)ZvU4}s0H4mkOwQ#sSajqP>cNuJY^~JXEs3re4U7d7a zIPH?RXRK5q#;JyPSgU%%Q+2b9sWBu?x(!ZuQl8{SlYCSkE(uK0(Mt^=G2uayW)6i{ zLz^^r)`@iEe%7<6BjaOegb|%IyVP2KN`)U zlI5Nj-p2YUdSz^T#W0_U4F;$|#R)U37sh5|WXwQDFK~&P>IM~LGW}%W{$t)6UZA2r zfLci;Co~*mJfQGM_Y#K$++%GW)CnPFFfq) zSPWE^n&Ye`^xGL(klmgqEnh`10b^M#_|1&J~Kjx3$JJdD<+DQ*ZMj^Kr}{ zW0OAtshO?J?c@dNNm8ztHaF}z_oX_42j(0Q0rX8y>bAf z#Kwz(H&U7%!^(LAyKw~ffNX&SC^dRAddzp^Ik}Nx)8&2*DUR&pcgEx47VU;tDY$`f zKO=5qo;h9c+gMf{8Q7Sw*RxHE$QB>e{B^kh!C?X}Ee;CkgTqIR3-Uvd>Fin{v;f3v z6xzekoTMs(a_|239}67pclE9}?I~x;Rro(^Fatq<2MnHp{&KxIZ*v^ekv1Ci)eAnc z$b`C`lY*}@5t0meSg=c-+|RKFDtYX>vHycZwGis zO_8nNNU9#Qzf4_&%m*FKprv5F-^>s*U6G?ZqN_LZQ_zK>IslRSL3kD2eqF?sbYckr%M@fCF;~_6YdWDAv zX;b#+)**FeZ?KkRzx1-Kg1v@I+?yJzLM3DL$%+dv(4w0fb3EH)F8L-AtQ1|7^p@s6 zCX>g$?AURe$1TH+pzhXE6_kCO7mdZ0 zy?C_)iC!J_)QCJ(PR8!m!1O1M()hf=ZF^|z^@Wyo=B^!U;ytPLLU1J=on|}q36+&n zR03<1@*Fioz>SG$cZwr%*w5ADxh%^xCs_9Yd2q+x=Z%fg!17R<{SDOg1i@*7HZHLS z&N6VExX4lmlz_>pI&kBg&wh<>W``U8AvV!(>P|cFVMS=@3)%o0q>_#f_U`P}zL?-B zjDE*JNMO^t*DqPMtt5P*WV)LJ{j-2l1xN&;UGShk-^{prA3LKO%fFU}R!_leFh>W*nktCv)c0 zaD0}rp>NZQ>R$3{AHFaPH#*lb&DPJNKV;bEi{rIkXnM%*PHXTGLKd2)eiZ@L&0uyD z^G_q2lAHHz<7u`p9nKJ5^C5oZEh@|LFbF4{=|);@3^R_@kV5~*U;^%3NSezm zZZekF2TBgi7Q?GSSd>TVs;QoB$yS_)N}GsSMz99o%8Ob1y)Flrd=srC4{$%2N@m|U zJZ$7gl;pHL@uaoX#%1|<+Sq;>v|BN>8QrgUVoUpT&!Dejq1QLzVj(CxXf%C`?*K?u z>3>S>Sjtj$e-bLOnbx6OkbS-+l254Ih{3D}RCT0ce}h+;X*y(6$22}=<73#i5dya* zYXS9d>~da~0#YwZ^U93rYFYkBj%R6{pgOnnLi6KMAe@KwLeEy{x=kVeo_3n>g%{a>9Cq@J>(pC z@%qp8;GgRS*FPqv6$)%=#HhKUh}emq*qh~IrN!_p|(fZeU&U7!am1^X(~r;CBIoi-WKFM}C_ z;%OX0`0P;bP!I)Hj&tu{xUxIHJhr*wz-r;~FJFbjBRz)=mI+aF-^aH`V3xkG`)RoM zPODA+Go`7+EZ2QgQ_rD*$h|s(#8v!kVyI5ZXp}2zd=iLTp&-s3+1xaY#fCq}WL$FU zNQ&}_XM?iICto*w`s3RSSquo9mOECsfVW4q_MJL4_;{ckygq8|tPsQiW0=4d&!vW{ zC;jIvP+Pvkb(L(Ls5(y*eSPqTRdQk*so^yNL=&h?$mICcrng zraT31b$5nB$12UJ4U{H(4{n0U(=esrs8^(2CgSz3w*04H3;Ng7McG;q$4vk;u08bv4j^wi5{LIyy5;J>|3`X;i^CPfAnHX+# z%%z!j8LQm19R@|oujou(>8rO)Ra)P=PF6HImd4LimZMNsOqetcOcrXWj!6Dwb6(tw zv7NyDFSsEG`_`=W&VK&(VvOS(s$EWUy>7x!!;gtHdI#&S(Vzbl{We4P#rnOw7fzkR z`IBao<_j^6|4!R)z(S3iRBB{yhLv2f(t@VOu4~&TDy$4%jlJP>mYbM5r3g#9AfIu^ z)n=ZwhjYmxE%jC>v2=mMsWF9MLSm^ggW$p_eo30(fB-RfGB-S1xb$(WG$cDmxRY$1 zF2WTtA=<+73_nf+ z@f$Js{MOHOuIXZ(y87eJ#*PRmkT^@y!*$J3C2iqAp8Ry!crd$}ITL&rag#H+#f2?7 zr5KpBe_V^8>4qm0&K3w$GVSv9Hdq05ITdZ@!3Icdz00x=hCxB<+p7ZRHc+rd*aoP5 zvlJok_YSwV*RX39ubTU>!(IbOcqIg*eOL>k(5jJc^)3} z>mGEP6%YCLIw^`TAK7yCuky-s;vBhWYemof44)>5EO2`olrWZTH$;X3ZM3~G&UJ&e^3u%Ht;$F~su?+c zugvbMBGU3^n9D`)9NtJ(17=KH8`~Hl+C`#~7RC3=d*5!s;&3z0S>-I=p2hs?lP~4= zaf}FqMw#cxowTlcg6Xxb=-?lt{Mq}YM-NvqWn#Djaj92%y+LrUzAZ(%Cj%WtCYlh_+Mv(fj0x=P> z)X>vvhOIae$sr(*9U>$u>hlYOrzHH*ddaTq>8}Zvu+HyM_Y-tlvIGYQ)mQJ+9Z4~S zH%c8wYQcKl0ZTunLjb=cFJ*9sIW$!xB^n;^?UY~FqLM$bbh0Il-k^0KKKi*ez8#$v z&AW4kj|e;}PFwHJu~-Y)u6FiAwhk*-?uxK@;ZDa$+2_l`+~~sawYQ`f&LOX4145ow z4QPV}ir^IU_AZr@4f_6p^_@{_*hlQ_Sw4clHKl(8HDRRz&$}}jwqAH%!}n@Tip|Bg z$`a*h6$os4F}BV12>3*;ym}0hVq&+SAK!YJBNDAl;X83k(-3jWWHVb;|`CK})scw2w}>R+o2#LC(&UK*DM< z5&#}x%6Ng27Ui|iu|B0UdAg@&35o>|G=pja!+>?DdKq*UODVc>;#fWWDBA^ER2vAO$vR%_rqcL>6LV&9Tc`|)Gstu7id+T<5zUjLsC*ECL=WU1`rW2Io4f z*1LE@n(sd3Vn^@b>10JYReAl+4e~Th`)x;tUiC^g3sT|_w8lerwgemWEI`W;O~xql za;_Zt%q4CzwklDtlI=?RHKy_91)~(mpo{9B_6cC>|x+I%CG7{Seq{< z+(lN>$8shqHxP@N`!ej>{Qv5L$(Xetu4JPiGe_Jn8XSgeF!v9X9Vz=*W`HT@j?3|x zygmv{5tLJX~cy<+fv({lonADvl0|-#b<*_m6rJ&y+7u z${pRZGh<0z%O!d9%3QRKa6@m2S@ASb_Tq}2&M$l)qEZ`nt#v{MCwhv(3EA5WaTKqK zPgV^?6DXP};C@d}^KbX6Wh?fs8dg(9BWxd2O_|}1=1^^JYlLse(Sm!)YzipxNzzsE zeOznrC(@%AiBre%iA9Dps(uLkGjLq($8vhsCzQQXD(t%CKNceXGsN?%W+YquNoHW7 z?sLj?EzQv?w2A(JEO~8@vL?+{SOmAM?pK}mS7P!u6lx$OaYH9C37x5E< zRH-M!KKt3v#(lJyS1m<|WhGaMUq}@!_Gv8}z5)_knskI5djA#~paJK|+Y^KnxWCDA zH<8(7?%&RxrgqNbH%czx|0}T-8bm%VlHc1WgBun~xLz(0Fmh4@a~ylZgNzW}hyR6zrn%7e>J)XM27~65WP#2i>_KNt*GhxoWJ7~FZxx<*Ei9~A;Iy->B!n5! zr{Cl9i%azJmNdnHai~PhLEBpyr4AIK{wnl$s%3h9b#Arn6VK;lu*MDCP^7Haj%MHZK1&f4@pn9BnJ$@n-ebZ``D1v(_kyR2XQucM5td@6_?zYZd z;T9ill_{-DJeFz$u_PEn&yfpDQOZK~pd2N8R2%s8(M|%-)?CwSj&xS1B)H%YlPVbn zE0of2^H(#dXEpuE6d*(8uxQ~Ze#p7R%(aY!e1+kOQ(-;l$H&=3EahFPV7eew+yXI}tnbMKVzBX!&5)USBD}JoaA9`yXD4dHhN>9);jf zX1~SyuV}=O=1uoy0qNE_EelY^%A$>`N8&M0Xt0G*|NihoC4h=so(H0d z$d<2rH#z8S}G{8F9=@o|W9wP45c49I$=L5+k!)|)`K zTTYro?LPw%kPgFRoakz&4gZ3Ir(yx>6kxs9zXNh%d5vtygIsu+_c7vLRiMu!{ZaO} zwUNSiM08p-)H1(wl_TQ{LftudKgUxyyq6Oaxt5&qN`xpA8CW|#E0%H2DH#pOlR$k- zC#hkM`W88-zfU1YJ_N39hewdgz9RONxA~3fDT(HKLSdnm^_E)3>#YA3@%mfD3l!P@ zTVx~ksm#{kg;$o}YWWV0{SeIViA;zHYyl6|H;W+%!_Iu?MEmtmH^-puOu!v(%Z2>w zHFGstF)jn6PORUWLk7mYnveJ(teJW`S zjOYGJRCyIXoq8HW3)ydstJ);QW@&|hELbH@`xwy>|1+82Aoy+iW|D*c;a&qKIp#k? z$MCoqsI_!5GlBsqh$mLwB7n#e*2eb~sE;2Z$fN`enjaUej=R^Qek%VW;Jhw0sJg(v zy~_75&(lYUZAGbpL`;)P+I-{qQ~Ce-seN?D8x}i66%=2@EW1}IY;Bm;BH(h;E|z@Q zjA+25!Td+||7lh4v6!1LB&a}q#FPZ6YLPeg6R|p3dm2+azYXs9?Yh4>q^RviP^uMs z&izv18#irC*9VedoFB9l%xH|dd~P*ypDZB1rEBmMCn!8A_8aW``@#jvE-|i)55DNL zsQfZZQb*9wlu}r~rblQserOg(YN9Hnl28=W!qY5r+TntbSS$Vx;euooh#!hgGGia7 zQco~7k;dG_&wD&6-r%;JM+!dO=VCXZZxZ*ciE_5ujj=s^qmEjG9Bf_A5U8)C2Z!-C z$1|-aFOhsN`8^QM=5p0qQT>6HSS@V%M?Z9<*1sEuyKa5hobEur@CYc?dK4E!Evzjz zEg(SpKe}*wSy_`5k)od&mM9PxeWn;<+^|OVHL`5Ht*TrG_E!&FY(DqYChgjQs5Vh% ztI#;m8h4XZRZI96mDNfA+K*+*=JZehH4--!zqt}VV9}4>JST9{HZF5R zCD<#CC{hyAb}VrYwYQ??Y1wB&FV%#FqWxshmQ`-o{3C8_+w?>bnla}&-iFcRuc?n# zt;ao??}aWoQ(SAF;5m25@aFI5H#b8>`l z^Na&vOoI^Yvw>8YgCg7R%MNj$pQEJ;aP8^N22I9f4=_bO%RWYE889GPy7GlLwXzL_ z))`9_>Iewj)W=!=(dJWnxtGYTu4SWeArPRb)B2%g;OoMQM`SDg-hGUx9QN^e;jUm* zpwAMO)x2$DQMt}HN^)PAF52MucydLYt)edQTl|`@98dS3B5RV2;zAumihUuheHgyc z7uGH^-$sw@>x2mswc*JEO?32TuW&`QEkPXBsj?E^2rA)Axgf zhN8D?pY?Hs&H6{(keQC2G8QtHC2+`}@DwLhlMQR>DrPY42H%N3Q*V#7Je*Xp72#IlM3oN=IOFL_AqyQ?RBPFKA%xhdoMdz{ zHYvWVmi_@@(*5wU3L&#BN#k0yZ)rAb8RIHH+IRV$@sN!44n9hsc|!&#E7aq&HWFpD8_6EEQMy*iwzBP;+C|_~)gIb{Mv&i(6OK+tK`BX6}da zinb!WCh@*Xl9C~b1LLm+=9&OQSl`|F01JGEuS7aYO*0Ak?STYy>zT~RtRA&Vs<{L;hRqa+~a|# zvna1EG-l&um-RO-N4q$bBLwc8Nt<@R2%}$I6$zk+_3WA=c4TR3~N+86$Uj4-I&QeQL`w~kuJL?c$rf7U6(X1HF**f@@Gy%yX> zexpcjpIUGFA(8J~pEL=P&~C;JAAxuV>L~dd8aMXwg)N#93HA(7+`m6;o>ErIwh>xS zb>~3-V6R@C^_lodQ5rLEJa-74r#;=`cTQeLWA@jCW4M5l=bRs_TI3t9aJalS7@raT zm6CI~f#tQJ#XvZMyA2x5=zNgMM-YGb`Oa2G*|BGXl&XFzWS3<$F=8PZh1=!`H_(2* zl+GdBERHCfRvR5}3OuH_XiPT`FFr{LV@E*?-l8e*pS$xPM$@^nsF6N7s?kUK8SKubf-fw}d79Pn@ zeNd*@lL-tV+ZMscDV|-=I8N@vKUQqipd*(fq+H1(ykmEk6if=^&4mtSAa; zB&!g8jc*;ZOqJb5o$IA=_;yH$QHj8hV9Z{aI`YJ|>tbuME!-KFv%2 zOg^J_ywQ->wEqc}e@JD7#m5(a65A*icOtZ&7J8?k%C)2Fi`6hbSF1+AYM>D$DV2mT zV~iD3!vN)fU2n>X=^GtK>G+Q7WaSsTO2%_&cKEpFMgNQ#wp%Z^oa(d3wK?XZgI_Y_ zir~kJ-BjFg$E40^@q*Gej;%_gf8>G;bf}*--l9GG7^v zj&NOS#PF6!UHxjREB`G0Sb_%A$`{XeSdr`*UTsGAD)iq^kf>~H+P7{o5&4uYaqrl; z|J=PaFbJ8UG5q|YTy4C(K(V9>BQWR_M)MPzzE57)txd*#tkIvQA#0<@1_YwZsWde1 zkHU688=VjJe!|_qd>*OezLTl_;>z5oe75P$fa7Ju=wQat6eHW*F+PDCt-;D81tRXO zjYMu*drRuMo$GP&guCrm#cj>|ef(w)rF;l6(mEUGXUO)dTTaRxY%x~k>k4sE;~MCX zIp|4!#f(w5tPD_|bF9dxTV)3t)L|h9zKX+W7DRATBJg_STcI|p6TLk2q!psqA+E!S zTC7S(MQrXxGLxIB!8GU1PRiJ!(qwaEO2lCgFb<}5R;DFg5@~K?jdK@{?nuuqoQKt_ zeJM9s4UnWx#b+~iDK(WlnyiFFJGI(EO^HO7D{g_BoSN`s_zlPVm_Ql_qt>06>>HvG zfkSuWtg7U8OxR`4**v|)$U6swbihaTtyj;YydNnNalS0{WDAIU_33KdSnZMGi_|1R zXMnss&t1HJI!rQ}(@mN441LB{k!@SUp^}qXmem6!5*ZL1ud|lHMnt$qXsTf5>tHairN4vdXuWw3mNtgTnq!?JG ztSLKWgH_5~CW6~LvGMw4QvvJKO;~Uzsq(lkgf~&N6iOw$^ zW;Im7U*eD^ULXEnfU+}6L18oeoH3WREQmwi7^cWT{QQfB*0Z+|`hu=Sm@_d|xs>sO zth|yt>?i&!BVC-=F<-WxYH+Z<=@|h{27`Un_WW<@2gLFnKrC;~7e_Rfvwfp{JG`4` zz6kQ|5fyYom+Flxa>-`1%#)Rbo^Zm-Xyy$; zwOqk6!U_{E@#PVNc*|Oaaey}#c6hN%w@{pRUheRXGIqGM2#jB)N;E{A)5Pn8PsM^p z*VLX_n0uFk3+JkapVOVPz2@t-&;nmQ;Dz6QV1d)nDv8PpDMvVUiM}TPGZqsjQ*03F z(>c;tE52zRncWwBE-(7icW?Jov1*;d8JJFs=Ojeog*7vdSvCryt1~>-q{m?w-`e2a z-Ff`Ub_JwP+1~SYhiHL3mas$MwGB%PeFxV}I5@d(q^rifu?k;l+xXV~jl_tLQk0^s z{CHDGI^W06GeOVb*EmM>h1iu_uNHSw0p5pUM6tQ?qrqdeuW>#TuMI=ig8jY;-BVHH zW7s;)MNj?HI4btj;3i1&aeAGazN%@iwi5cV0ayB!?cG}fI@?OmFT#i=q<o9+&xv(QQYPw}IjO3C&`Boob>6yy3go@@(M=;h=`+Ru22)9%<=`k%R4j5h?yE^n{}YKxh;ohoF2iOe)Eg9<7b z7PyWl2o-o0MG%EGpiC(`N0GkFuJla=m^qOysspZ(7 zn)c3cSW&s4UE5+-oy)mOWo;aG>ZH*|Wd@STJ;dzCaqp6`WznB5PRPp+thqjz-SyWEmTT z9IiN)K7+5%S!*mGb&tmdW*KW&8yZ1};#;5>+k)wnCuDb*UH9^^D7n*Zcr#Y(@AdGF zes_h0_0$9gGFm8O*tgB1bs_H#vzxb@iqJ%qtGTUbg6wiZi)S?PgNXQMta9~A`6%OL zX~8UokZ+RI$xsI4sQw!1qm5SNtIZePWUN1dA5$>3}uP?7jZj)%%a zzHNq*2@|Mckqz+5OCGjw_qe!uX4S!e@O2U*V)vm8$3&xx3kX5^4Na_%pno2qe*y`P zF#(IdS`kYR{X@}Z&@27Fbyl$a|JCUT>Qt*_RIAh!gqmP&zM~^YM+q|?$bAFfEy;Fl zg>Ir3whvpvY(56~vQ6I!wlHR2mY}opDG3HDCDm&5_%tW9hQfVhD80`Ifzk$v z{1uZN4vd^>wz@ZLjv`XUjk`vh*4>Ctk1AAU8k*=Jc@W3a$IWOUARjWBV6_T;$~jvG zoo1$-==GypHhOM!eLwWQo=vY5xjT2XDdT8pl_2mDCxiazt55&D8s;4dqw~zfe`|>{ zUhq33RL7i7*IoXrT>(;!T3c&-It|5Gs@aMo{Lt)D&7OjoHdOE|U=x)(49DN-*Sx4O z_(bT2{j0Ro7vf6I6|E+3oW;~O>TK^lJzH}xMY3z!ArduCTDa6R7#?yTB$(y(VzcZ% z;WK;7(cg+kuezDCUK=29ukue=d@r^PE|2P@1W|4aaV`UAQVJ5cFQ*0~eOy`m= z*Icm$m4j~}n|fMRn$kjiEo}P3NuJ?#Wu$aMyE$eTsm;(XT&o(zmswPXi-tI+H!V;w zuH!5Fw|$6TD%}ta$LR17(*_I5;D2&7RlR~g&+UZjXmzCQaR}CZrs`Zbt8n0N_de2( zIjLPZ7_wEJ8Ra%E6cd55?6&+MfqH>h5YWuN;tdM!V z0tjFogy-bnyzuF4Iox^?@U8uW!aA5u+TBS5SO)yA$Gvp_akn?EtmAHl-W$pPQx}PH z(arNzhis#63NQO&ycI9dAJ1u4dA<4}()$sect}8_HMd%?6;e*9;n&1(F!9t|6!S2$ zMdm_Z0(My>3bjm(#ML6a|Kw{Eiu~7`Www@V=-bAOhQZrtAgMuA30)!`{w))4tLW_5US@2OVMgKKrj>1V_QsVUw^!{>n%8swvwvLBF4d9+D^+7l}lI3tmDZE^5P>|^}mJ${KpQxX9?xzM=)MErsZonxiV6^e^niZjgX*)+XU zv99*(kSA}OF*?nWE6{Gr;x3pgxkUKbWsnnz75TOKINZPA1UFlzo@r-oQfbkHqM!Px zf?4%WP0}+<>!TuYxUwPPp>V~3_vNueX!n|!xUNL_)MZdLEpY`23DbPRz>ded6L+ua zwpS&n^+#t5pm^;zf`q|*Gte>mGEC@&zpL^snVv*nQo(2AII4t=wi6GRdiUfhsz}zL@&jt6>#?GA;NO5g_z8f8uqB5STXD74RR#{yXXta{geLF|nHR=9=Gn_%d zl6C+ORsP*+;UB0cZnGladYbsYhk*gKxsXD!x{oM5A=w{$MfR^dENgivp;7VES%YhKIY4pA_8~ z%AU-|9|D!LSwmF~KjSz$+8aDHCSEmb-h5FnZf-$qJ`pkyz5#c`s|vjpG+kN4KbC$S zhAxfbYxbJ-ooXAq$$zKJ{FrNZ&y8Aaj9rA!umC^a#&HLr0X#H$XBkb3^`-}?Xryj% zWXZADps$d-NsBZ1aVvJZ@f>qwmf8(J)hByT`O7;>)3Ymm3&Dn!Uh?Sy;>sp>qr8fq zg*EOT%d@XleY4!H)@PT4In}FZ=OSGBPHtKyyYvBa8-F=Zwy;>7a(97a;1-!NK-QII zp6ESGqv_1teEbepZTM0N`Pv*e{~J87zE^h4%^f$>59Q@<_s-2NV~+8E*JHQ^*rt5I zKnov$c5!j3+knR|3G1KR8s#qUsGau--aVL&+%J$;PD0uu2dOQ$Rqy=ycuIJr!&7q!CssFg>8H?Vy0Bd| zmG)>ePoQKBLXt>JZ2IsHG(KX^T;=BEAgS5tIUa4!%sE%pblDC=n=@-(xT4TcO@#cm zQEHV=z>ReepD(G}t8D5eH&*<{SSgh@qBCP-C&x%q&-dlcUVTz~bid0l%9afpHsWeS z>$O4|>$O3bG+0@xg|no=!_z#$)VTRS%IY!0+*#k{g$gPl)1J1@ z;<5MxL&#EO$Sip<#yI5>2}~KrwF|YV2e`utYHAFK9AnIyZYD3Z8;|;E=2#V+k0QH_L72qO>E~plJy!NBQYveD z$=MYi7)agmpW5h;DL(4CZf*)?W18t?_N#VE|x6WvBusv9d>zXr4=5t(K z?wC*jU!uPA07<-P+HI_A#H)N}@o_zhDk)~srVYr1s0y<6Oz@~%4P=(dHRhcT zCUH18n)vI=(bwWMCK1B8nZ}&rx`;5w1D~y#537Atj-o6MzM>y|MMWJKWCL{Hv+cNC z6xg6DT1W>OYZ9rvx6bRnf8bv(RDq5QN$HPBgNlC(u(Jm7ns6InhWVXo&@ zj53!)j1uiuC5@T$y^=Yc>pI6;5jiF2(tltCGwSXB5Y^TiK{AF#S5T}8ziCW(pPzY$ zUsxsw@E5AQDxMG8+Sa^K6xuilyvkt#MzB*9Y+d(Hf2=BW(DW#jCjFC4gis;>iz;Zf zBwxeEHeeDN8B>oz+95E9LBy#+NWCqT*FjnG9=?Iz>=!^mt9QP$C}}Op;hw{l zKKj2VS35dLS7HS?7lgV0wXL3tVn0t=alrS`qpjmyR1}`6mc|d4+0|OdY^*JOhR%Qb zV!}HK^xmatROvsQ63Vt$6x$|g?435cZ&VN2mJ_VeRxDIj_L3_rj+Pr4s**4 z0LQtgxu08Y;=s**<9^*Y8osGd@om={eI{}HUPW#`Nm7c1tD_yL&D(1wRT>Z}XIy{_ zn4~R?N%8qC8k1wZ`_dbe_w_Ppr}(XE*H}D;e#D;>XitxF=m=!*#(!$HC*$d@_CWwB zA9Zy^5kTf?XTu#-_5hD{KNSQ8^tl!+0z*OMhjsd{PiTtDG*pha!=Qn(!FFSN)+u*f zr=dy%zwnKliaGq7H~W?2Kz(Ito8Kd@TQ&j1(y6)=m#ObtO=GtX2h6d4U!ZG4i=Zpn z`S=Q$COChvzt3ZThb4f&6u4kyO=2Dpzu2o&i&`PuO2vDgm`Ls$yN0MkC6HTU8&8WD zqdhs*el0Gg#Af3Y0z}J4ivp~BCM{cXei95|N~4qT=S+jX(u8GBtJ6>M)3&dX-rrYZ zoR%lvfkvcs#ob0ex)=y0^)MG#DY*jIeijL;T)Bz$jQBt;nWbuUY{@rT3LElwR0C1# z3qJ~7UbS8u^obex@pPY2#Q;}^Z4~)y7M)F%H~$()r{-S+H5%w#gmCDxiewToYnhko zj+zmCJDryGoZARh*H{B@Y8eo)xZxI%E>}(YXJ5?OfEpyS5)qj2-AlXh9}@Mn4pKkV zbk9B?8i-kgw?@+8wQlxe$y}v##n3dp8%JF1u|LQznV2 z{h9VDNhzks4aUIjW9A4LW3Lbe2?1f;wD!G|RqcT_sen0>lUT^VY%b>ssnj}0(H^>_ z9D%#fzrn64HTGj30s_E%SIf-U2NYdK&fNHhU=MADI_G_ZbvC$$ZeBzT$*C{+f8d$` zJkZ1220BPXW=yy{C%B=fd{YKI6&(*2?F9swKOlrG%RfZ0HG8!>kK^uzAnpkGw{Fn1 zN;R7$9qHtbFq#dVM~iT!;dfzu~`{3X?eJc&0+ z3M@L7CiGh0)r+!7dIWOnSE)o&xi8blrb4|L?9-Z!4e$2J37Pmf&wVg~vgv4P@Nua} zzrS^|FlS!MUpu?(RS|Dx+NCde<77)^-eSpO4O6)1BdwXbjJnJyO5KkVfi&LH*K+3M z16fG4;^+j>$1H(D@g}r}{Mw5c#O#2;scu2%w(*L`sZfJ` z{jMkUiCtm%CJP*Vgu}3GH6y{_Y-*axA|uB|pQ3*T7J=|c>z4iXJNa^7;>(kA$Fzo6 zyEEFaS8qzZOmfJ;-P^4l!auo2tlzavT7_zjB(XMRyv(rzKQ%<86UiUGK9*}JqI+sG^T)yJJOPA3(AV^IN4 z6EZ?$0G$S)@2Y}ZDSrOX0wELF(F_U--2zE=9!tCtf8FryVBEN#`Md_IoQ<}cj6pzgTD z2Vm=EI%oJc{Tffy?wEDG85b7v(kt+)bseENxl7f97%hGYT%cWDhM>IC!|-@8YiJ=T zMi5y0(o6hh@B8<91ZKiK8}JMRk=)4a=nXGsg^FErw96As!zLAPGWTUM(_Ik^Lj!{f zN=p5e`U$)-W6=#Pp}{|PUA7G0FN}`IRtW10)^W9tB!>NVBO=8%6elLe;-Q6MwFO}!) zPtNen1RnYg)&w&VJ7isGb)`zO5>rrQOL&vJ8R7tdz zfPzjYP2Byn!KI^za;vl z--3JHo5CM7=HqocUXE(9g*>8siuZr{QvHp_LWbHD1_ZHNI$z?CT$2wnTCzQm!JG8K z(*F9!)@kt9rrk?!yqjkl6ctXLz5;J33A2+07Sa;D6&iK0;iXZi??84AU7#%Ex>zI| zsBz{eLq0~UsZQ`7&O7pXo-l2TcTFcE2zv}&TSHC=OOmC8=DC&SYlD}xh}3|40>9^?KQ{tuF?$&4 zZn3iHg5#@QlfP<|r`ItV1HSjNr}HlDi`gX%Z*4xI$q_Htk8OKjw(hWc;AK_v$74nL zpljFY8<>i&Vt4Zl=QmN*^LMKvle{NQJfvOSbvG?6gdrwK^OShxM~E-TrQ>PG2@KSr z)YG|y*-XA*i@kdoGJP0vB_JoDFY^zePMDC%E2WIT8Qqh>O;WnB4rF2=qs(*?8<@7Q zhkze&j{%>druGQ|bkdZ|S(FhBnA)t)K;iFk{uPc+S7WY_NQR_x;69^ ztf0b2pBX?sxt?YBVW_xutT+51z>$NB`w;p`8ZS`1nZ9uRtnmOf8{ufYWRC?D&Vpcd zhG6nWUx6of9AxDTZ>Qu0n571OT726_lVYCX{LySKE=4&_yiJ<`CrZJ&ELGaB{hq2} zfy)O}!+X>-`%yYI;GbvStup63z`S!V?p6gbSHs+Ai9IE)!W7svEh4PYtQ{#Ir9NHj zY+BTH5}ogZ+<8x6qbiNgycOdtO6MKDa2#fY6tVm1-1?;F>i&+JIPU4~B6?#X?4~st zLC+L!**Xw54USb-*b2tA#d%_=FuAH|jTf_Q_%^DBJfCFVHshL6Mqyjb7T&;PT^vw{ z$lOehp);p00Cg$!{UNa{ZrNZ5Sg!wPSzbm_1y}-L2K>zF1QJi7j~cG(-R8^>41aEd zakH_0OpMa2vK#OxgUfgP*A9zAAep_?`4eqrMmC@2Ji})4YoYO@+L6%kY4g)00$PY_ z#$irlHu#(L7`;5@N@doELDF(sVsS+)C`$osx7Qb%pUIKAs*e3obmMtusHv=tVKx}9 zschCTdlA=#cqP*Jd$#*6t65Tah$64co)c18WoBgQJiLVkJ$4H7GSch|3cUCI`1L^Fnv3i^pB!(XnRW$dR#|11p{@K=2vbokyH zl(*^Ariy~BN?1JUD`gEL0=Zmj9D8w+aUUy_7l)iuVmYcCu47p%?)x;|9tIVef$trH zRi^YNxXYtL)Shufws0)z$s=_}ZR{6DwQxqv8@}@=qB!ZD$n$6&ar6!tp(ndd&fM zoSTX3$z??vZUou#hmViE_jl4V9v`~qKK~VYzd-ipUM@~|s|=l_)nhmC^9SC$DizRe zzDoCU-$~6nN?W(4`lbCrQi(X%l}k*6H@#^BYx>mXHuF99&c(lGM~}1p*Fd3-*lgyU z@KM@)$$xPTqUb}T8VqC^Q}8}P_}N%iGyNSkzND{*X{r_F5t0c-eT1LKf6rhfFOxN- z2jwg#=9oO9f9^|)vT`!g>^4weRl} z6K!W z`_1KrkrT;%1>Z5I=?i227TSSh8i!Z@53h-JTmb*Rq3v?4DzA`M9zLEeor*eYL-uZn zbocx3Mn{JnkQQ4l>wIONDpu%dPm@ zVSVvWGaw@<jNFzcHA^LCpNq_ z%UC?bbu5|7cwGh`Mjsy5S|}yYe;?vTkYqr-J_P31@BUW$er1=dm61;|_45aGi`A;} zmyqT-t}Fg8V?;x4J&c>Eap!d;Gy9you}fu5liqgB+3LEYGE=D^C=HKXSH|(MC!6S6 zIZLTh8JSmz{}|N$63nt~13Ca}<7jaO#YD5JwZciBWp?ts4uHaI#GNo)&|&kd$;!)${8dmDbT5d_Q*7&5y0%(_qja&G;*n$YGG$})+0zM1r zN^pbJ+5UkEsBC)&uc~?$5SQMf7_F_52dkN~t5(BynA(|C|c#u<}g3xuU)! zhfS<(A?JLwT}YpTn_Q{PD|{ElgJfQdYxBB`D*;}f1Nl|64enXUqk#W-osM~rOM-b) zjULSiGN2*r}Lg-GC(ozBZ6B`3gt}1g!`-&On&~r6Oq?rPoA`l3QTF; zGRf*V+lP-;H-qin2EX`6G}-a)pB7lsYW#e-Hx=W#OC)eX@vN!Wvv?A?3Wm7aKk+0| z&i*`e*M`G;E1TY1|0+lCG8E;^J!}_(jVO8WA5%65?`Eb+dB2>_X*ubb7-QapxN&j& z@5cy{{^Sor9SOa436YLlScQkTS{Jl_@o^O_c4t;r!ve1YJ3#uMLPPfzgSks^a6uUM zD#pg5_v39>M1)LJT`$^HSP%d}_RF;}=q3UD_um@==uPc4B$2QWM zzANvjF<+aj=&eOtmI$M2MG2brgGs8=t&wiHXY_7{-wQbFi|(-?2$dPKpI>9>OobqY;`?w!x>C zn*0Y`Hm5yiLb~she9l?5$}TOn;mjGEs#xH%ry9jBbHzt@h;I^;qDN@M+$ulK)au|g zwbbuUYC?ies!q}I6*}%lcs|>9uGGq4aHn8!>$JFD=PXdgnJbp%0t}1TwCt4JL7m!g z{A^r1)G%E|q+|4L@xYV?PpTZUW45rGHG_5Se36)TsvGEGmpN9b|7o&Iu>v~&A)U6=7CnB zn7p<8=Rrf4EwVvKM*tk2#uKW&b~M8=U*pG+CoF%~x$*kuNBX(hEZ<19-~G3IZ&ibh zkM--5+luXtg{Qcn3%x9eu9gEyMYp%r`LvNo-mUA{+tb!G7(Th(GV>Zrn+-=#ZKoJ# zE^f{t`!KCSO>=dSTWX48H&EM7e5?65N!L#Jx{&v5&6aRRHZ#!Y)^1CVx?gPBH@fOH z!is*8E^p3~bmiJakrMd=6H#=u&@I@;m|uCrpCV6=Ft2Bq!u@=ER+CmPODD{A1;>;t zk-oT3xWTI@5Da{t!kUeV#uuoP9m~}IueR0?yslmjVIpaT$!5M;Oc~&qC(;{}wd8{=g;uO# zq}=thMEVZWy((EwtLl zIuQPuSRiduw=U^2`vSDtsA`yfKlgT!`T|8(pewBas~SO9&K!%&+tEqnyF!$vn%28N z8o>@P-}d_4JeaQPqJaF;1|PHM)2AFK1S$Xy9Gx7U(q&$PMNEF+eOJwF5$y8o+ajzt zGbrP}vS1-}I7*+C8!5fth)JQvtZsk0@!A&+KhK9Xx~>3|^-gA^`aj}ES|BULPW}Nuc7GgPh`6#- zZ$E|k*Rmc?F+tCirCj!pBI<;9Oy5ks)hU;Y!>TdW+7M9_!O6eqcn`{3Be%2#B! z+UXM$k>levaKeN*7xO;qwervzoj(FXvl(Xvz0})sx5|#9y+b*OzkgUj9V2+j(hc8u zYgehMe?HDj$L&&#gcLJlf-nrBlz>^PZ9Ft$cVwo$XtAeZ9>eVQ9o`Rh8t-r7oXpkvH6adx zW*uHK?oDBa&4daTR|7ULZ6RoQjI{c#bcJlo$&9>7ie2{P{`h{JdA8CQC{AIW-y!Nr6_&$za73|k^`WoK zroP;fgnYjUe5&6N20 zc%W@rGDrZKieVV}#CUx?B1$aoqmf|$aPey9%>;k5tx%T905j5<^RnUa8WLQ2PnS@g&jSu!v;?H9% ztOb36&TItb#`2$hSrW*GrcW`aN#jt=6{>y+0hKPz27XayIFxp!K>4C8i+KDCqQHe` zRmU^eIm?iJkF6$;IhR+c3;&Mazgz|h-lAM4BRyi(s}wZIiF1rTSB@!5GeMo_>RFV% zi+cU)E9MWd3>x=u*%!tV0cRqH2%0t0ye0_df@mpXRp9{UmyZ+B93Hte@qd3^LRR2R z4nm!pW3;khutob)qs6A$@Kxro zW}WJBYC8?idKn)UE&ioUz~V{$AG@3T^d+luoF4L{W-QVySFyys{Gtrvh` zDYm_`Z(D(ls99-a8wFYR+2MEzxk-XK_zP4N75qv&aUzl|kqb|xMW`x4A&%A8UFpe7 zul(~L-&Ygf6s%Ln>9ii#BTuVkIg$JV`g7@1qLa6Lz=R6>DRIxJSG5!p#qyz9YM7a5 z!0UCKH32-Qw)Kse?_uKKKdT~se`m=;L{K^A{Lrp8UtWg%{^oW+?c8<$-O2rXUm_w% zHcR&M^mkI1{;$BW6b*H5Ah6LI(SwQ=XJsYpk!7A0n01`0vqnoJV?nO)qoLdD*fuQ8 z#e4$Vl2}h!q0fs#Tvx5pc#ZwU**w5@iOu|Dc0d9t6^?jRp+9=Txm7}YU7N@Ne=6I< zgdu*z>(RG;yGiCc_#aPa}kgd|5PB+qODmc!0u+&aQ%>|c7*PJ!usTHdla zxNeq*#A-E2rauj$poPv3ro}Q6Uo70=V*k%wz{uN8{2x?WoXk<#u7}dAH1d>#h5Ee# zVeubRUs1Kukd*wdJ3WpbUP+y6@5n|r*Ofvl+eEf-{6ro^BudFMwbxMx3C>v{$?kh3 zs`AS6GCk_9k%5vy`zqdn-^|ETC4vH1tvIOs6oqL?QhZ!0)NVnH#A;Fkii!D~PZAgt zIA1C=<1JZyIhiA}T@Q>T-ZU?=g<~gXOKYLiClG&*I0ylpOLX5yQkK)VM9DjoSpkj@ zW+g6ve_52+`Iws?ne{e8dBih)lt0fMo(M0R$6cT6a_^F59vte647slvsBx=tY1Eb4 zA7Gr#U)pzrCD)F~`6*Hk=+$80Wucb1RU667bb9n4FiV_!8w?XNgh~a=y|iI+GwKl# zs9%qrQyRV;Pl;W#jsHHu;yd@YV*$Y{szIkDaQQyPBO`kk>=7;tH%fMQ(HTh0w5|L+ z#d>m~fmUmRWa_3ihb;_eo!AfU^AmC?ABpmYUl8^v?=!9aPQ);87yZ9NSLc#Tovucy z>2D8-4pZb*<$2H~XoMsdct6G8pnReBaXM9!shgoS<+UCkXj2+CJU1Ljz!1oty9~GayzN`^#ji8~wZ6)$RpjC)ZkY?Yv zbGIxUK0}~OXm1^)-~U>0IAphw7U?n@>({!f&IEkqy7Zkz##iXNIL)(1{0B-2S0MPc ziAE8c0m<0d^-9sY6rPvxjS8)VuepG%cYJZ$$w|1ZXM`F$eSJGz1kA4bnVy~}!~Mh@ zC881XV}61+v4GFHEt501&7hx}L^&`ahH@_~A3=9t0*g!Y`FBMY-b9Ue(f0zVM_qYP z1^CQx0}#@`zbRVUW;|rNrb;b zmd*(nbW$$NEo0^t#s_nJ7Q(#D4TQ9Ghb1)D#IHsPht>-{|85!jrD4+98ib!N3fg** zU|GImX8f@@^Hm`)Thc${#>sHJJ)AEpCC!%=Vt<1=qY!hP*yZTb zlAV=#(6nMJXW=d?2*a|P*Wzb@`>?|8o*s@|9)$mu?K0`Qp%-k3)2jE@vJSAE;w%(G z11zCeMxt*sPN4BM3_Hk06L6MtPiaTdVs@XO{xjRwq2&AP4|?{-WsBn3mlo1vWb%|#g-<;J!<@@4oR$L#w5}U}B<#iz zfPI~yH37^^q*}=K@?`Fln9dtxOb@V3H}zMPw{nyVpK1psPzpcVO?k74=o*9_x3I+Z zz_#zTZ!htmHK(Q&DYy!Q(LwRFsn>$q@8OhiKmWuEjyrP?v=~EoB>AO{M46GBN-mHd zI<#7+iUO>ox#>XR7GIzj$l$%~ADdpF45q38FW@ir0fQ)8d%smo+V4-THv;nf5Yte6 z_sYG5VWZv)k|Ua>s3s*M0$2QV+J4wc*QLvx7~eQ}S5ZrA@+6|Shq_PxJg43*;GoQD zCl~tRZMx0=6vCUh&OhUlqdFwOHme$Kr3CDG z6=+Hd+7uq}951l-h8X@NBBqShm;aU5(T3#b5LT#9vx?Rg_XhYyqvDc^Rn7frmiOEaUmEe0g(#WaxpXN@s_ z1Me8v$^zFpy|rOk8)%QtcCp+ZHR|}qk`1oACRkbG_?N}x|9<8T2pze3B0buP@b%Ht)y&EmYh$)BKG$-xzs0}pW?v*A+vdkUWAiBp~)7Da0)@rX&%>J`h5HSe>MNMP);l<*@A?Sd0 z^=t=!KVBq3{U`D^vdQZ&zAjFC!Mti~Lif6K2qz?#J zeg!FWnJt_X2(^}S@^>kCHiEUpIg!1)(?NDB0`5Ey%or14{zqR<>2Q@DB{FMD>fT;C z#o4t7#zM6uC@Ws6ZV z@0>GZGVv4PrBg}3v{p9WZ-&eRUihC_ihIpg_Ajy)hg!xCy&dec#-n3^N|2T!Axi1z zk6w3{&gj5TMAhOE`pIxul9oL?Bgw-V^B4s&cUD9@X7XX_?6@@WJ`!w+O&X83`w!{0 zTuYrGSrb|~63Tw~i8qtfDEV4-JVBCQ%1J;3_cx;_)6~E%i>jx=kPqLjW5#o`dx1)( zjP=DRQ~4Z#9IT7yvSI^euQKXH7N`|8++jfqFOJ0ls80Mk0gVvaZ2jG_z=u6wf@d7< z0vSM65GC=?M-px;L7oKA<3OR4l|7pG@K=*9CdLFPPpCj!~~$GgZ3&jN%b}lYv&8M7#SV z$ybfDS@5t~Y+>zEZyVIy{5-G(r5mgEMs`w5F_!6%>U0bvXvEf+J^sb|&~IuJs^jt9 zEC9%`5RVi3x_dgqgX<56Y{MvcxGL6>)ZA^J`O&hmW6r+il6{)G+d){0nINV!W><2K zuu@wY>)L{|waSFq&0shpIRzOl5+-v~E1qL1$y#QSKI0|AJO&xN9Iw2o-#jW(PSn50 zzbpmyCGa(uQBuY>6(3I9a}v?~V~*nVnGJjUlu&ruD=#jg^f9NmU|h1@65Sk4r_G*v zu9bR5vNxoSW?GovovaDR9WPa(;Oqxg4~8$HzHegcBmGOZQTE)`GI2uT^%*lf)LMS# zOqGPdMvvo$20E&fiPhD?R5( zG?7dVRFC>kq#s;z33UjCR+3{WVm-M4+A5<|1aoM*8=z@%33b2{GAEC%*!gM-)){NM zCc@6v(I>pa+i5Q(y_$kf2|$jvq>UC@826Ho(~#}eq&;D-G-#tR7w3w#s*0l;S3v_0 zSE_vhmu@canjs#H6)EAPj)7-2a3U`-;xFaV6{;t0W#K4w#aKdV`i>F~Vu z^6YW~N4*gyaP0Z%nb!_B`$-0=Rk^#9yIVX+)zK^`{|HDQKSdm>h(s`c=zx@t`XWha ziyuFT%fZ>-j!qvFoML!~F6(JnEJHe_w;L{$KErBpF8QwMD-j;ca6T%~O{|EC{7Oc2 zFP1+pDmdRtB1snJ=4H>ivlYFY@e56L#hMUQ)j88-8S+4~7H)@sreC-0(m2`vJgs~c zOoPD{6P-81K67eC@?G^kEGl$Z(aw6W*A z0|Sys>j%9HwMc!`0WocCq(q{jM8l9hB1?!dS3%wPapa5gpAlj|2(syG?M}=%?g~z< zo5#U}m%PoZghflqXcLz5n3l-UvQ+}FVbad{XcaE)WDw|37ON6uz4o;vsZy(KpaoOU zMjcJ=Dcl_L*J!0!W^#9|V+6tNtZJlc=6{%g_TO+MA)!FyO+5U?>a=QFDGUc|v|w$; zq)=kq`iR`P6z$D-E_2r4j5hk0`LE%*cNaH910$IUsk*rqW_kg~akz(8`r$A8@fnX9 zF28^diUfkw=Z6YDCI^O$nMsbif_$4@0bL&6tiAQn4a+GWE-eVt5OvOK8TIG=Iz-Q< zoI~XuLA!ujcRcNU;x7%1_TLF{gYyl;T9Hle1 z72j+hrNTSEz)4D!$+N~64o)3-PaVWf>Z$>Gzhx%PjiHw4dN`f)W)%BqMPORWlgcJc z5kEMXL-$-N17e+CE`z()2~8(BZRGzUSbmAAz$q|OVw+5|zq@I&20Z#6^GUO|hFEI~ z4+?%;tfl6#XppkFtJRR)1%e|5uW6kzgWF&$*ess$pnThRR3x#W zKgb=?#LTq97T$fJhM9h~)Gx@ia!m&yE#K@ZO=}NsIVLj{3o@kbmpKuM51fn%jJOtG zmM%K9pat1P4+7zud(5=}!)_AAUR=;-&G|R)w#}Nqd)4W9)a{XJL_xlG&RDYvS(Aj~ zStwV0M8ZWpFCaW|vcVRfD0sAyRTp|vm06NNp$kG|#zT9bmS=CO)oIq=INU_94G^9Q zO`9OAz|5$dz>#Gx7NGuIkJKuEtqi(fIZtf2+$3UN1G*Mi9utfVWpW!tfMq~%W8yON zB8ekMNCSd{#v+o3TQSL5(JBOMtoI_l&n4sSp&K0G{u?}haXP#Tf`P>cOc^PZ2BXzv zYgD_MreYXrRlQ5#eI&(YM$nFIke~PSE(ms8BQ8XdXHfD_)!-#SDRQqYjvW^w(apBJ;JRC!GX%x1` zb+h@gmY1Q0kxY!#)(Gg(YswD(S%n0YXxBA|7wYkg$i$kIuzTa4ONB_ExEiVEkx8OU zJGS`hORtUgvF1+Ypa0EF{{N5|05XYya!LY^tMlL=_K8R%pi^F9(g#(Vb5o|v`SM7_ zqa?nA_Iqs`O0{|3`Rv`q>Qu$&pN&(N3x&__6eAGRn z!7Y&9;L7gd9kpu5wH@dVPEl3x#%^_k8O(#X%z$T+xTfVuw!HbD1B}=Rplns*flR$9 z?DoZPGLK4fu~!*+eln9Ar~KA0H-68XhQ49JBN06`{2KYmy5D~PM)@qTViCidZKKvv zxo-jrwXtiDUQ7$4<&71@UV4=93X$&S8U<(DF^orO!>k* zhCHvTsybP7V8BL1&QXJJmU%!ZAm|IkBmQk_I8;;>28{9O-yIgR*t z9YnZdFz)lgb&JvFSP4TpzaZXtGIEV4r$qxWrHJ`)Yq}C)IL;k{Bkq z@-S#Z1-`Tk6a2OAytJa!ig@V*u6&yc)229an2%Dt)F&lPPURiTEI>Gnb67lR6r5PajMRxCyie+L12S+cuAyD?218)(0Jf%{7RIQyC}2D(GH&ISgjPBg8N zT}qz1);j|1hx0Y*yq%Vc9a7<?hi-UzYWVzi@=psS*d236i|HZt+Gn%$6_PmNQ)KZaiqrK{^jkRkn+#6 z?&%taKW_l~vn7p5J#SzfQ;+8{i*rFsmL8k+HikIp{vcW(?48hfRjwdRd^js2mpXKB z@A7iG6T8oDONumE!SiQJDQkth9TWQY&J3^!FgW=&j@n2f-*&B0h$I8emq zMLkStvpYPScueUp^ZoS=9OQVj0 zcI3-QIjd^l-vsJYZ|^R9ehp-7v`AG>-Y@rlk$;V2PQ3d59Kd8HG%hZ?W*yJa8b}rG zK_gh6(Ircz-yhT_Y1t{w-oQ&|PuA?awouZ%8IaB`l+f|@RGg5tNJUXIx1#8ZNLeq@ z;)L=HaNVxys~bc+V8*M+2(Aib>-#5RV^R4e;9A`uhC}k>Z1MuQfTUZW59k-7AQKcL zCYf7U_R|!OGU7)NJ2(}vbkwzsPT_6|Ei{6v{`&{0p8iY*-RT73HthzF4E0@XuQYvl zLlO-}mb-_|12c_G|Nq89StU(QR7zf@n^&TB#bi7C>9W=t-|EX7N13c5El1|I)0~K@ zl^Z=op$X*_(i@HFE2qcfRV$NjyYn3!-koeCkIYE~A=YbCVWUU8Yo3$@pK!ud2^*6G zUM|Z3;n296Tyz=@>ZGE2e&vMgx?JHPbQ<7VHSlQQsUrxnoPy|jZaNV$&n8i{e%9Vy zLj_X_B1+J2LKajH;h~ki6uzDPAe$r{#9$>EYDR)E%aNfGNW^Eq5JBUumQ z%QrUup5Bst8@CcFEy5&rs0yJH7wujQpi(| zmg0a1N$YRz>po|UGufsH-lx3mXO){KOU^#K)C9AId6!WlQmM}9BU$ZvIjwpr%5Q9~ zHDR`0);X~p5*HHTh)*twr^3%5J1e6fO5b*)7RtS$&_{-zptMj4bug?;YH|hXV}RoA z=5Y8;u=HIe#PRgwW7LZNv%*~WmxT6JKyBwF#k7cwF%MN_p5k2~7+LAsL>T&WlAb5( zZCvQk0rD9Xe478f1#$(UVE*$)&TlfiW)>*!JVSmc{r_137i0g*Oy>$R1FTq*`&-9M zQqf#TkYG0~jrxO`DOuLq&ei49Y&|90@9K`?@q}tzE#37#3yJz6x>yL)4V^6&n`KT( zaZR08uHT^#tF}kWmDlREF-V=Y8l%r#E(N7L#guNIFr(4xa4G&i49Bg)_z`_XqdGG$ zmtiHjN|zZ@YXe-ku9Vt<2SE^+7d|r~9m!$qYvGxE2}+3ax+z0jn+#`_<&fmP^R5`) z=QL^vexdep6pAHxy1`y=CAUn$)0V1er21jdIFJdKTU1lTs`&rW_0~~QeNo>y2!f)5 zQql+xUDDDWLrQl`r=)Z$T{F}S-6=VOw2E{NARS5!jFiqGNdGS1=Y7_C*Lv4)t-J1D zXYX^)-us@j&)%QA54C$~5>1}~5OWscEX@P3%cpElmZr_(fs+3a6IW^BHV^AL@3bib z-waAuU<{Q5jd=hZIeCP`ai0k&?YNb}dQg`cn~IrmqeVblg$#GflzI_BKAu3r?)g^u`=9gcf!Z1=cBQ$1hV{H>HEqC>EPDOLY@c37J?5?9kSg(ADzRk# zq(fpq@Mc~Ien$N%*~R5yEr-U&SaJ=Aqg#|Z^Sz%Xu<1zMPfpqQJoFV{Z&orh9Kr}Z zN?|m84n)vRv74$VZ;XigX z0K4p4cDq>sJ9&T|f!Fxu!xd#d;rHF-tWP{<)y3?xJwIkSIG^a6$YcyXfFihRrVaDC zIA=8xhABZDdPplBdrOytpuk>umzO&HOZNBB1RZ})rx{%%=~j5ciKGqKTvN=n=I!Re zPQ$t6Qz(@R05Db~;mB{(;j!px_!~??&bsVWKG2v6=y#<`e(jw~z84fCO`{C1L0$98;^B^PiAJ zd;EqKb*4>^5&oV!XhtTw?az*$bk02Elf3vFuvX94++wzD`)i~xp88pfD)UetHULR2TP;!EcH#vnY3M7YmeIMq1Pt2w2xB<*G zGmq=Nw1b~kS~EiTzOxI!k_Tp;lGk5!3|(zoR$!MEJ%kLPb~O?FZ1MbT>H`@H13Eh8 z;hG~kJ;X^f9&FZh!iK09m+uT+>fU?M;2%woKB(G$M0Isd)Q&XPOli6^ln46X(Y?#O z7Up<;E-tH;TY%#|YYyx48qah%jOX@b%A2!UA`Eo@{-RsJgWL%Ey#D{{50s*+_R9(? zP|<+5$>tBi9jKaYo+u2@ws$m*Yc&iJ2&&J@*Rp3k?#`w^RkQ&Z=o>?4OztL$fs@2c z1OON{>wHX-jx~DS$q4oN-&u2C4sq#iX=lYTA=#c@Cm-iWel@O} zzPgVwj~Mt4mA<;A5)PH0x~ah3e<7>a1atZj4#V4)t3^206_Azn&&uvXu^-c+pa?nl zErYT8=(2WW=;G=;HwWPSIUCj3-^_^JbuG9T+i##@8gIlOfD*iWp|$29GrBzf^laT^ zEq<>@@J$}AFfudsgX>rLP_;?DD^LTK{BH8To275k-U7M~aFHDC#~;9KGfk);E11^h zJC{QU0C^1EA=sZNL4tM)vt6PlAZQc~1nB(TetM9qMDw7$Uh=ZT8 zfijng+yf#m+gY%SYPL3X&{1k=m+^c3#Qz$Y_J{H zhkjqzg9`Ol{;s|(fNKX9Y%~gKx2Sz$p4O0{u=I2pBY6Nt5gwqL%L7>pCuKqPPU3EUpS$vMv;6f@>AYu&Cpk-n- z`f`>^&(t{M;3ixz|0kgAMqn~ z@$waQh+*3FB}l`vI?@rQaRjM*hLXB5r5Ko*CPV3#V>7_fau<})Iu!Ejak2Xl<16)vg_uaoJ6u(+_HS;lM{2KV`(bfCP({*K1)kQ_9YWm~z18isYPQD4wv3 zlHk75R~Fa0>om?}L!VcS8(Y@TDLb!h2kh~c=4|(6^IyLi>8Hc}Zhas+i$Ctk9@d># z%sP+=s#A~!w5d9+@yMx^*R-z#nA%hk@7IKT88p7T8MPE-AFZW@&E8esgbtSseWNS# zrJDKzqmchz1f!W$HbFEuM)H!efhF4=#N;?)CBaM2CfS^BC&ubDPLJ-5kkWoUiFiCY zDWSKySd}o>$mtFFCRmjKM3T2EiZM_1xhk;G9%4yX3&o0##hN0wUg7r1gnLV#!q}ha z)}{L7lHHNPFjMMQabv~t>ZNy^QZzcMYNc)+|KN<0C4E@@UkQZ0Hs%oryxp@X`J#Eal=wV6SW4No zlm&1$?vEVCMiB5kNlBIkW8EZhc!J{6>!_VdSxoz~{*yk-t@L@G;3%n=ZI;Qp>JEi`xFeJ;k02PK zO)TjxHoF~c@%pR(RqBd(Rxpn13k&khV4U0{6Y`()Ev&TZM63fcHO8@F`ha%TrpKi0 zW5Xb!RoS6gt29~Yvs7VM@FL9zV8OxlFSr`HhS{srS32C!;bgXMRmS<`#tKn_Fr;1` z;o-~&r8E-X;SEX|F@RFK-d(9mZ*5feh6qJR)7R`pk2+Q8U(UIV@>eToaQiI+Xm?`9T1y7&wZKT+8?gQw!h87d!a94`*v%aK0GB|O#U6%+ zBwCB_l>P=<5GtQ>ZwpPa*JJfWKq;*0=M69Fhq>zTXy4@I$)p~A@imd!&)q+lB5wAa zmUcT_4sBBo@Y}Xi=M~Y#f4N)l<%U0YNQ6_`IsJw+!c_o3{Qp?7M}m3;Wd!4C{pKj= zOn@E;{U{CdE}GvMM}IVvXLUMI;b_-d)R{4P$;sR3oqu<7-Koh?rd{+`9Ty`Up+y=Y zKD<$vBzC9f3(YGsA=#gLxGvJ${p2ZXz(TM)XS zw%Po>wsw)Qnf;xkuVS?^+UrggfYsJ7^>vKgt{L^WE&V8Plq||OK>?4)DkmP6>%4i7 z@+b1Rk9HcDrTsq3;1TQ%!569mM0v+v_^vGQ*WgQzDR{hqRqfc+isF|J)kI-D_t{s$ z#tOHc&%QE#BVd+ePU{ISOd^ukn-4Xj#QT+Rb*9eM+$Pf%19u`2& z!Lq@nKEQWu@FW++OyjHdQiRlg2VZfNfvugeY;)n}S%lNLm<>G$Zn$ATonKArE~F8> z@ZxsS7t%0(65nidr^G1-Fe@b7=Bv1>(9yf7TxrufH3X9Fz@~5u6z?>}W}^fek-i^S zq7CRn(N+5X-ZLbEbnPe7)}SQ$jx&j<%q=%^)mv_|cS_jP{^KTl%gs6sVVnspv4FV# z+dY6KRyCuuFoNA*2K|zvL^wRg@AF=6-d>0>7T3iRr;sNpMcD#aydOOO?>jF}e4!!> zKuCT81$cjL%#XfHkN@+XV-B~-gee4HMbMxqxnuX<9y1$QHoD^;7xSw*rR|5`6XJOV z3Z;!QaS*7~Mq<@qsE=b65OOj<G^6E|Rl|v3m{>;E?;Jr(nZIg!vuc zPuo16GG~l*pZZcGOY4VxGN+^ki6HPx*K6Wi|5G`9oR{l&Hr&(5>NMG2u0)z^-ApXo ztdAfX;k1dac96!;?l#+2Mhj_~D#s-NckeK5vMk&~9Q^0yTU4pAvAV z0K|QNr{hhbiYV92cvB(jFPPm4gkJu+$eZI~mANj<=CWTb zK5w=RxvQjym&`v7JJwHEhBNF}e%jr(v8hL8R`G8SUq1XU5-jvrCwPk`-eruTog$JG z{TyDat+|)FI|Fr5db;>|&wQKME%8YHl;4)-uW1z-2kork?tj6Elr&{JKwUCsnyBc`pzA0n4f@? zSw^hDl6_2%~d$sHabmk7pE`!mufIXBV)I{QoAzDGoYQ=`W zkSo*e%iK2F?HkS;CdXXFs*^LU+Fc%ux;f2n_pUe_Jc!woB8Z-C6)3YHUAKy& z`gN~iq-nOAc2i-*QblHkbWLU#NG{o#rOo!_-ckFj5@}GRX^wm@BD1EE1_G`v+{A00bcW;jF-krai|%Ub75#uV0x*DCT1t6qF#xvt@vvkV1JU zp&aMj=;u3Az-=8*A-{x9&`}Z{I6=Ixe%=dw8GzfJ9C^F>@rFYkcv~O|U@O z{J%50Ecx};(A`uU*u~XLQL8sgV->|Z&w*p2ZC>Yr4BS-;lOduw69^?UC_9T&Yr8ORRwsTLtG}}X{{W=#X};0`JJBBvNN zNS{?lYBIt8NNkP-IA8j^DO`f-C#bxH{zPV9M@<&j&xj zYy#CqW$pS!5q=jezog9T#r9CQV*sf!kjF#CUkMTjcuoI;%|;n(ep8U`3ZS`Y9!?yX z@LQ)aG`#&dtxrcW<}Ens;un4 zav%{G<7y8h zb6SeMNrgd0doWj!8~K~ttT*>YBdfp;OwO20bpG2rs*ZuVP?ZhL2uaU|X$?hcH6!JYq9@%N8%= z`$# z4!M#N-zJNzoU$rOJ&sOv{NHAYrtf>Fx2B?2(kC&>gred!+?|V8gzZW9BwlK4q>5#O zwg6;j;O8&@WsK?Q44E0pb|q#^*G;7TmY?0UFnH@`bNQYMxVs2>8A%Hb=YuqWEcu&C z(Bt{n2O}%^tD{2P$^^VzhL#mJEYB?IC^WpsL*n>WMN%*x)e37bKJu#fo)6L9T_N`{ z_JPDma{kDJoVgeVMF^WH6^InuKpz5`%8w}`_4uQrWWKqtg|PYCrM|-&7Xo9k<{yS1 z`Fi$C=PU2_USm$z!_N3GuiX+a{-0c>1;dxLFj{Boj&E}^qrEI#FWyS`fl0k<;#=|v z*|tC(yIu7vXB+04sMU6de(NliE3-i3ejhXmkyI0j_q$d;4EbtP%3-dwePxC6)=$Gv zwcclBvO}fU;~Ze%t*PF_lzQG)NA(PNZ!}`UMRe-nNQ%xCPOH}k{$rK?egmz5w*Y*p9{#B)Y+i7=Z24`m#mvvZzI=@o#Q^SpZY zK9p|Woo*}tb<5s*h4Kvm6T{|d(&sM$Bc{&FQMt;^3bA8wj|O`6slk7W+Sd7!8d$Tw zq)$i? zpV8K*@fNIYc@x{h2OEm-%TKfSlTX~eJEneoV`%j>CJP^H2QdNE^cRl;5qAN)p=wf# zoTplkSp!|x-03ghhRFTj2 z{Shw>m^a!(O06&wSlE^;TQJAa;^oSN!Twq>@>wk+QD__b}nY=)KK4j!lypuYe4o1x&>l@^vqhnm=SonByD!Ft`$ z&MBg_z}8yH4qLXq``OMO0!O^8Tm)n2#$BfOn8p#oP6yut#w(#AvWMQ){%+pozXUvw zJ$)8>fg}5l&J8LPAEk3s!LpuHDjYqKQ%CjUKdX=(a6--PH&+%(rm=_ecQ;yH)*{+( z5f%%QB%+^z6=?_PlYzoZ{Dc-;6#-}lcykdya7%KK9^3KAYWv)Pxr~y8y*y4_tbW<4 zl}q~wSO)n?XkXUFkL5!?OS=5<-4{ja;N2R74xSMmW!+C9tc|qa1ygEW62`7at)*5n zbGKj_praG<(t=DJ=-}<#4i&Ew7^=!6bHj%@dMuwr_)>|&CiHOIe6d1q7bVyX21hXk6Zg2F zYjzX*@GMGUeCNf`&^~|kTbVXlnw`b&!44tLj@w=heT~T~yY)yHR4DROt_A=CjV7Xt zsv0h0lB^*3*~tj~YUAWIotS4I(`2LOq`crwyQjY2gJl7yct42HQ8jCGfIfX=YK=G` z=Mxf0dQc04TBTo0KnZsX3*dLjLLt3u0h-Mqz(Tuq^O4 z#XJg~U4YqA9LxC_(b12e&#ojxB?sAQoeGaA(jQ!mhaTHFlLr_{`+p?~m;mhkSPT4& zks<)F_p_=`g8iIZIzKW+fPe6Ej;lZC8lsDq4FiAMTRk;FU!=D3B;Pq28JvnW+ihem z2~fLpUiEpVX?;rNZUKj(93y#PKN4A{tyFMq@HciPF4N(`qPvUFQ8!;Q4M6odmKNQ} z8Wo^Mc|?`XMVrQo8Hx7BQbUjV_DdN^VlxSKrXOu8{qjoV-A~Nw@bCJbpAi%qe)HjzA#s*B$TKJbDh>K5%n_5N7%zc{XB zh0))nU5+*SC&S@I0IhredPmq|g{D7O`aHo1?L$Vq$_aCvD40DSAw7?PC6G=a1 zz~LJz`32W3!{IFWGQV!ge}1vm7F>@l&GN{mV2}xwf=>4CGY87SJ}DF-IBr z|3KqZ*U;miD&+vF!N0d5+hNTWMV)rZ4u{a|9fpESJT<{9uYbF=nQJtLL0XWo-=%7k zT=#d8FrFMqesfZCRTe={^Nyzbt+@~rj-~Nt(^S<)YsqY8R*j<-|0rC$u7Pt zX~ruQ{PLsDFJSGyXq@eXza0or`-)I;eLr&zKHo1j)V_iIqLy*`t08wYFa0rSZ*DkL z!g-w5;cUFHa=h>~+0gS*+cvOrpCVf&J-w{8my$%Fa}ZC*%c}1HrccV0_4l=Z>n|H{ zX^KNnFDBpDdg6*3wcF8(JuNr;PetRWjZ=N_m+SczvesHe#IX4om>W&QpiwtMJrUPO zDB4%dip~)2ecYJQ-n9j0NXn%ApmS~2E9dA=9(e0fXEKgstA?-yz|C8;X@Q?N(TxTu zXTX;(NzK`bRU%^h8xYEN@m^gfrEA}8iGTaXVs&21{q}o^Es_97q=4bOfIsi6X{v?4 ziod$<$E|z~I9u{NYB=2h)>IUJrg7W@CH%4dPUeDr$3IZbu$Ahh?qJU85KwW@!U~|` z36}A>;ZrqBb;Dx9Z}gN3yUzR(3>5wjssR+0FxvBuzk^H=d4@7bb^_h?;a9WLCIHH~ zYhxEH{6st(wEOy-R|R2AK7-Z4u}2geXM|SlUCoz3h{-4d*kfaTtqVJ2N4sHRODLp! z*9wi&>g}eLC=P5|?I3=(C-2Ab3baxiMkIL%#-hU}l6EJtopa-tA#C4xCB`QbyDn7@ zhugDV%}R@bPElI1=Kg$Vsm+15vr~c5eSG57FJ52cUs)YH&Ezwz?<|qzl;&_9Xc)%r z1hS$!bSzP<%Z4AKyFj)OcdeCmtg>L+yWE335YI-5!vrl|8dP0j3zxsL&#*Gk^kJGE zl>XUdDv@~|!*{9i^7QMM%8R?U^r)GEjv?B2D+5{&Ou?x!a~hy$(asvHeUlgR>(aEez0@yI6EDFRY4>l<(5y31BA{q5 zAn>2x8fBq#snhb;65vFnN9hi8cnQP&_(py)^Ex^eQHXwh4&s>s&|7G1bsu>q9ls{m zpK7s##N|y5TBRk_r#kOMF(5Tp%{rmSkeB1_NXH)v$pWBB!wA+9jUN^%4w+ki@%DYW z4)7i4QubxzaAdnE_Xu!u*@k?}NXl5Dj|u!g9XM;oz+~S!^L`zQFJtDG);?7x0scX& zbzr-XC5L{S<+!gQY;q+f4DKVBrl>&aNuO>s9wXiuI%gz@Pg~tRllrc)C%H;1JP&B~ zkt=UqyheLjU^ezcJL2`otXsKvL%PPaKxoM96)?1lCNJaHrY){)GZI)E@liurjCs6o z?g(*s^P|r7m_|`kAlPh2(`sx?2J;5nCUmH-(HqpI`~LnDYkwZHE})rd6v$zh&|Mg; zIpxkfr6D+@to~7=q{{rc7+CyNSM&8qG?`vy{=*z;@F?Q)IImLpf&CqdigvnaVF;zG z!;(|+iC19`6jb3>JmN}S3F7xV{}zFUA~Z&|wJWNdqXH9pi0bW|)$B-ILE}P#?z0-f z#)81vYXp8j=T>aHXTy`TF0UvNF z&Yq+x>HIkzor!lLWuszn*{0-PxsQJdop^-(EHf39Oa zHL{#q;i@BmB;E*VXJwo{VtgbCYXjyg?KHNw6ge-E+E2^_HI>0X^^`wr23f@H7$cN| zb~)5JIj@HMOB+yonO2h#!qc{XSt_M$K!(Vt4vL?Z1InTTWzp1KS;C9Xx?{Ar=@OOV zSqN?XT%!(?ea7*PMb3-+(2AT568X2hhagctg%)pzmQ)7oo4KXZR^$Y&L|qxN9JDfY znRAjR<(Oh{lL8#sS+eFnRjNY>OxE||-m|*+d(|Lj5UpaRA-#CI+;6lPy{o_w{+f2R z2}_qv1x);_@`X>#K`OM&gzBS=G3gV?rCiKzm~YfLwEx#VT7!w7Re59OS8`$EFP+zNf>z%^24vV^yzAw`_&$5a zClSt#9dM5P@pd?qBlIeA$J36}Rt-1N@Ao&FSK_Aoor(v<=tq!P;>o8Zg%{P==MtxX z_DXgBmrvtWwD7`N%g*D7>W7nnAkvwLwByvLxE?lRv8% zt;fK&W5W>s?X)+um%IN5{b7oiUTrBR3?#iGRTEc}%FP1k>;?EryL|OU`oeRElC^fd z@*e+R2$!0e|3$dC_*yfUDl!*7_EHF{5`7(L)ZrH2re-$stjvmPGBlU#eCs)zE1!wL z2}I0p0(XlIR!wZiO`+ zwU(~huXqB%hq-2@am1!E3LodO+N@sEmF5qf%3~^Bak+a+|o23lj)x&N@|4 z?}S}420D40UHN>xH&b!2Cj%UV{ApqYYEK8T<3#Hp*tfsl;*0+s3<~o!yCP-8#1!d# zH718RY|q7?)vL0ZtzKI67buJDRIjs@#?1$2o`$Q>UvW-q(tE}&gEGurnN#jMG|lkg z$BCIt+*b4}iVnJllk;ClObhaUkP)_|W8Z{+WQ^;m(k@ z_olY{tW79qw#c858<+_S=_iQwQc)XmgpNFe-ZV`=WW#8 z6!ZI~aWc$GMtLM2IH5}3r*e9vaUOJ4$jx_8>tdb4j$o|0vCotyed;wx ze&iIH9&tl=<>3_iI+`SDT%@1NiaXxdPd3jV`V;uaWbm9A7%o`PHh9|y;SBE21Whhg zvV#R*I2M*9;J>IYtcM7Hb`5yYXqW5OMErS9%;qYO!6)({+NcH==S8d4|~q%dgPt&q;2g$ z2Ihnvr3W)sN%%EQORU{&)!=b3-3H`dgYI?a_pi!>Bt7jm0Tw}kje8!t=oB`+#->U-Q+9fvlT=SYbZl0X`ATQ^ z?87@}?c*HTSm&?DPEBtrqDvgr5(}PzHJ~MIRZd|d*ylk)i*@NV^pYODaUdTf_eUP9TLxPQ>OrJt&UL!3(~W_ zBsnh?EX0GKsK{xOWLPb7JHq0=Ob4Lv^G>%V4GbmPuGXb({unxW`tf5hrByI zWd?VN3~Wpo$*KsU+{2}xRrWEZy$ikrpH((~66xLf7)QyuY|}U5g!>k5b3d`HKS-7^ zADQQ`EC-2T&3|I3STtK6U1=@^Y`=s~+5m=TcUHK)aZp=Osv!ESlh!HGUGN5MpW;Ol#Pk0%Wozxa55_`WITl!!v`0G1}`oOlaxnPB=6U#~id{=NT^ z)FyxU^atErQbs1a`$+A1u>?s?iC|%;qYbX2B(&zAD!!x+Ir=4iLH7i6or0v< z8$~P@ivB})tmv~ucH8^0qOr~zw%XIMf6}!vi)cJ?2=lEU|AW4)`s?OMg(1_D3Q~y} z?WRdR#M#-xcEsPC()%3`O@VIUMRKGO1YkCb+Z^%&o=X$~yBh_^>sEnRbeWV0O%~sK zaB2c^r+7+#nW=PAK(fuFw>jii#jy7-{WVyUR>~qNj@NhA3*$vH8yS@Z`(z1ukdRiz zThZ~{iq0(_huxH!zS4z8&@7r-t#sp|d->zzjbBdxzby%tpz;oF6SwW^A`uHOrsUKS zWjs1*pdv5;lW99UcV9@&nYRvo0NNLa)hu<W!NEXjKL%X@YdBj@y zp(H&c{l;OZj@d>l*%z0OFhwz@)1;iLq+4Y%0LlX9`?#C2j$+Tue2JcS(1`n!($_4G z8y;dG@?y~3*v{+F6~@#-p90D=jvj&H-WQgH-9T~W{14Hf7sQYWb(<6_*T%LA5xJI% zfmJCxGP?m|LWX^zcfS=L!O!yQwxvE<^i=q)Gd4G8S;?LaynSWx!P$TU6#quoz((oy zSj|Xb-A7yD)bY8!6iTYo6^gmYSUlFJ6L#afHKz5;lLrf1P~u5VOZvF5aeoWKRiGLn zfcVi>e2E6YEFb{Pa_<(*(qokZlr`=5rBeLlXHq2X+h`@2Na!~QpEHqzP_Y4cmW)Zl zb`^P=y2)8fM_7@RUhptWbKh&cG7!?~-FN-3D)MmZ?=nfV19f%kIO3>6 zdsx73>h!5iA@qNmYgJ8{iw zB^>aK|L`p6Er~^ht!9QlVTly_bxlCrTxO$>a^l}OX#$EFnD&!L5LqGB4zUC==9(|( z1N~&eaz2|;oxvrn0}rg~6dtTskhV@ZRjB*EVwakh=TId@mc6Xnhvp)bmOSl709faVNd_4WL z{(1mFxYz&)m+ajl-k>r+owPDB_^c8DgYiBkd)$A>MqjCbm?wVcC%d0(&K@d^y(4ZR zU1CBdMc{`7>Tn_vyZ~bkH9(Ae0F16fHMJ5CF@F`~ch9Ld^@pXhs~@1h5*5>@cL5k3 z*y0vO_do4`ul3;Uc^%&L+SUg3IrV<%NV4PqjsQ^1|JzbQ)+|&}@ED4|LqDsO3Umv= zk*X7;5&}*I!)sah%(9hZMqOXBIz8=JV~*E+vG_yl9XCaNl&KZIh@46=nWRS|;uCM; zrTDwcZ%LPr!N)Wcc2iG*dN@i#2Z>SeYvvJ(c=iX+pCu%#2gzpQ3Yp=R2yv47g$>F0 zB9ZUoiO)+^I=~#N({!5WB}M;(YynCfmxj5*N~L6g1@`KdUcCEPM}$tvauJ_6wpxq^ z6zP=a>mxLTtD|``(ZT8z_tlWer4>Whuj8B|k~zid{2cOi~^sXPz!xz3H6eJ%iFfMSxYNOrQMKY4aMT@DI#-nzbm}cKsCeCrA5p-EI!}# zb?DKm!ru!x1Umh+dOvVR4UqGkxKs9rKfBiOB0?QeT31_ zs078#5K=v*;Gk02iP1Y$)s!-v!h zpz$kCx6BKJmdwe|FS%D6L^8cTmcgv}jZWnnd{I97i0!hZ~Frh!Q26oD)}Yu(n>(y!dqP(!wVLq zPKZ8q((Wt;rpS*@0j9|Br6T)e75IfpZ@(RoxFav?N;>7}D>`4L;3bN?;F26)B{`)M zs!z;CarLSyH5@1AfV>p=eNYp(SOk-?knZ#Ki8Sm&mvs0;VSvPCD$!wY|nWspoa)kpe+=$hTJ9ZCgf zgP7ZZX9$k(p~RhCttA{^H#X*7sqC^F-HUbRwL(^N2&LZcqjY^O_i4dhMTV{-4x1adI%rAkNYO0Cj0+$Unp&7E8Tdaz+49ahfVTQ@d zaA|(;y1xA&kT{`2urP`Nge%T^A1EpsTR*&pUd8X5k)V9OtH~c81VnjP=_$Jm>R}|u zfy-GtOod-_jl_c8elA{#RTTq;hXYL&Y&2gp92?^L9C~6L1L%XVnH;qG(*h^;V91_^ zl@%K~u1^jbXU&pF0)wMx76muo98Y(O%7OA_yZZ%BC3>XAgb5FepnN4Qo!7xYL4q^< z?Bfb54c{7kzTJPNm=6PRB=q7k&C^nAkasLQv|tl@Q8W|OY!syhe+C|_W)&d04Qywp zolzvQiPv!2T0X@??Jixik^c2OJ>yG9omFN{V0W5%E_{MUI6Z(++3)1Yog!QbYIOEXf+>%H@jV;$N6K*dF^2|rwMttM)2(7M8|N44ew1uwaIxrvwSg8t^ zz~7lL1)+U?B@)MnHt|`=G1mg^8TZBQ@q0-A>9Ll&Kh2?2-=t<(c~waUHyR4&k-g+PTbuGtGK!!?@W5488A84jtd8Xa`b zg3lDnrRZ4SWD&C9id73L7X0=K3bELdA{orwJ?xU=-n~ZJdTyOA19yzHf2km6-(Sp42f;(&p#!zmB0`%G;6wCylB@Ap(3`lgpek8jT|y zp_!=*lO@)r&S4MLJ^>|#d+&l@w%9>(R9K{ZG*5U@zzwWpO;i?RxwhA16PXe165Ph0 zol*TE*{)|kJbZjoiD9ebj2*C@!J-%mtQgAqeynhM;49J`sAy?myXl02 z{s^&?skYij(n}?3~IXne^};4a+vedO=8j zwLM?0rvy1e9RHf>Pv2aAWChA6#Dw+PehS$`i`FZSwyoL3Cn9Zw?08SN21B!JKOY|; zq@C7N5TOqsijuDDB@o%X7-}s{>+r*vTH@vWEvbuv%(zd0gu6opf-HMS^)e0e_Ix!) zNwqO@7ye}jW@(@;lM6~95pQx)!P5I-9!RzYbvv$)Iju9oJNxcXlu}zXjw(=`f!i;z z?Fqi!*R;;_d(kHcs>^N9z(dunmLqr<1Vb$+nyDCCjN4Oly@zvq#_yH0#t zvH#}4PNO&eXH`QYRwU%6sOa+p)jfdrzi;}O_Qm8cQK=Env1%&I(cts(q&XPsLs;ow zvk&Vh%S9+a9 zoVNZI$sM&GVS$4pKp2@PnA&rn$1hwh6eYSHyM13#VE)C{M2{Ft;kTk zE%1duy}jhPJE}I+H4zt+7m8Kcc09`j3_`SBbNR%*W0XW%MieWYN_mzO3T;i?V%sbQ zF=;QgHG-Z2@7gUN~X0kKw;!wOZGl#MFgt!r$8NK-6cN&C}R`xepB8%1+`undHH_?Ro59Bdq6T z-eO_`Uv67$*Wfb}UA!CC{5M~J_gf!( z8g6VkXbyXd)nxcE)ONI8oZ#Ech!Id23(@!zKdoN4)bhy7oJ{)wK;^MftO%a~ly`3_ z!FP8^60^JtZ3_pTG5qVDlHwL+Gk=+O?ND|^TGAAG4h;XAQA!6l87%U;UzDQBuw_x5 zYGHN-`d;q*)>@gWg9w6&w^$z=14FNmk-=+}XVcf*vq#goZAU+8<1uya`?FyvJy91q zQmuoWGG~Si{4MxC^-HpcMhC`8h6kGbsdQYp-U0eAMuoBHaHzCOAf6xD@5!_FccG-I z&035mh{7{EjN8rf9@P@CO{fDaedJ8|WVVTi!1^QLn@TH<#GazAt1jUdf}9pRgZ?Yq zCLPD>L$zv1cqk3Im!q^wo&mikrY_p1xd8J7Z?V*f_vDXlT7#NT@|J0PAdaD+r?{@ zyeg%x@S?y%VQ*6m?L}R>V88f&i^BvxgA>ho*TUqq{F|rud&l>957Jy`|6Jw}jIRKf zcVHHOJ~^+00kb|f5d>ykJP8-mtBaO)-Cg+^`2jgbdldw&Pz^j}Za~yw8vjyD8x#^e zT7^wEIcBTux4h@2%3E-Jl%I7u08nT&5nt3*`^2iKcWXC^1_z1-N^fmvX|DODC0k(RyKXv(Cew`z;j{>k3BFwGCu7L(J(T|51M7}wq+hsw zZkWQGew)fv?NuP^A3*S>YxklcLg>LWD*h7nsE?4uj_DgzWOp^-AXiEm4 z6>GalVkhIIrLa?DW}EJqeG5y=g44>C)yd!$TS1bbF5vo)!jregWJsUk{;RQn3hJiE z7(vRzWkC_@mdON3Izx|^U#ZuL-+w+^SG>vs-M{_bDhI;D47TUP?^RA)IA1 zu+T3kC}K4*b#SN0==t7p+mP-VPWFW<`u<7o<-HhgjNusrtm~TQ*Gk|kG;p^6E4>;L zEBq&jkzMN3TB%^)$AT6IukJ~4sjFGghx8b$@KJ9TfrA**Doe8{iB z{BI+$_n}KS5VAd$BVDkAph91fF1R)aM|(nkiZRwAr5Ff*22Bp`EOwUSmDj@Nx3AMY zpDLSu$CLEuiXR2Fch@tzLhQ4>7RaK)a17eBzcbi4?3EhPM|l6A6qv$6F%gs zL@?GwT9sEp8d|0fEy_)X|cCnDjlC-=tuS=x4I*Zr%!iVMMl-RLzBaB$}{uxoo= zTOtAB?pFWfAo*ov&iXXZdJBLr-m6LFt8!p;WlludP zJu@Q(d|-}2)(>#S@AJnL{PqKU@>|*z24p9VpzYhq3Tml#_0jwg^oH1K`Cr~kzlK49 zDl~8;d)t8}c4hwa`N^F()7GkzHt1UqbI(>*(s^er?hkjv!OE5YihZ@T=X7Yx(T39o z!G-;+$^WKV08BGaeY!dS_^E*Qf|yhfFSdi~g$fs8z|LV+7Ytc?K8Bgrxmnq%?9zVT z%TKeON21ow!m}L(vKVX8<)xu>5Cijp3cS3<-Ll_WJd9(r$fM>j*#4N3CPgA7(4Mj7sNep@1RnupyPIa&tuX@u z{{GP81#2`(X!fk@oeEsZU3(i%3;Z>EFw-$JF{wxP@BGPdD=85LkI0zstCA0qgBUCF zhY%rc;5fPcC7xrE(i<<)ii5|;KAJq5F*Ip zu30?6-3jjQ5G;$k1rII@i@S&59u}A21oz+&;6J?Y_uaaG-KyOxsCuT)oavc9eV*>^ zK4<5SwHgw-Hw{U{)~VrMIv}PGXW(t^Y)(OaTeNr}C0AKsw%15pRNo5mO0PGRFTBBS zXHF+G7qIM{c`wl^B(KX>7Jl|s7GKrg_*Kz=CX}_w@#SZ8W0J!O{9_~*ClwG{)^P?% zMJRK#Vb-5jn^%}aFF{$UHs)@v$=RT*yi9C^GoRX4=3Xv7xF*P zZ;T9dEe+VTP@j5OmB&wDW7w<F8~6;VM`8_jBt&@UDs`zDzpa@T-De5Z%L4jWSQB};L*^oT~7;`+ACHKUG z?Gb`muqh-2h!W*#owJGl@$frVFc@5?5t`-gguk)c64v#f&LMp~$t z!_ht*(ui>h3MfQZS-AfL0+L=@&>F!>E?d8B))xKdq>e}f4Sg*bI${EvOPZ}e2;y%2 z4mJ4JH*To7k(x8kSEbH{ZA)a)EnZ(?;FtCj=@UuEpeXwINaQ@8`;lE>-_{5;E?%Eq z)Zz19G$g85K|YTrpOS8PfxO&v6tuenDMwD@6+|Y(mK^w&emY8{Qx<8fG-6Ay?3nBX zALF>>r6$|N)z%o=5iOM3QkMsBH4>Zh5z@9oa=(ll>zf8Xn7z`34Djv5R~MZQybB$u zIg)&2;O1~JeZkRDPt%=?Hcy0kr(dr{GM{5UKj2Ekf$eR2U?;@k&i();zd+l!N%JSQ zg!woL7HN-!kO1(B+`nO)uPOn=wGVEhmD({}KhZ$SC~m??Dq4Xt0EU(1Z2 zy`~_3A08t4_+=V4Vax5W{ysdAU`T=@2KzSItlDxOMRGVzQJJ1WjBvi+GvaF^kOr`x z@ESu&VleOVM>-u*Av%EXZ8$}tmfXobXTWYrj&?=O(%|1wEM;~Ok|gGMA1@4`$NojX zj^N`{wspf0>Y5ebRi&H)QIO#j41g8m@1vnI&30Da0lnJ$cVA@(8K>N4$d|Bvm@d$Y&}h>iIO@od~a z{=x-CLv_l;ZC`$6un-YvMr+{@;g4fTePv93Fv?EAg`qUZ`1I}Zd`DvrS+mPB_wGT_ zANmkC>(mEDt7aA*{X7@ja3#b7OFPJ!vd#9LQ)k2K!30 z6aHHL#Z2PW@lv`<;1d7VMc5qcV*Bm~Mzq1akx|Y4VXlz{Vgk&}BJ<_pMA=+!s@uC9 zJN~m0PK${KL$H90if}=CJxIV=7{|&Z=OcSwIuXZ~W!Kxo^j#GyLXOWG14v*|%|tPj zeOh%_I`}IXkqxX)P)Sl8(S_T_a%8+GWn>usRqlHF!B=S%(5;$0jEq@EHEEA_%JwWW zMo+wO34yWK5@xO+&7Tg>wBF)Y@AixEg-?CEA)G2G>4YF9{WAKyluKMz35%vkw6`ay zW70f!7?R|&vi5Y;A*(M!IU=c_i!_=WY{&6V=gc-vJ?GMjBUKT;@oD-*Rt-f6*|9qJ zWK=Y1@N+9l?Vh&Vw_3$kiM$}i)=3w(v4Z4u7{38w&4`CA;v!;>Pwene*agtK_w1ZbVV1mOA4#X=l=Bh(OSsSG zgPs13Gn+pJ1n!vr2IQmFc{qUD&32H zsVie-JLiD^jG=h24_F(e5^Ay0A!@2-o#yoN*7SEjT6dIcCNiEWAE>oP*_UZl{EMu9V1w_5{TG zFVGGE-Wks#iMu>SVTAv_J9kk+1zeRI-jcv78htfwRBj;psWP-j18C^=0#)%FH{6$4 z#YhBEia)Z!D{A5|&neHr79x_sjH_sr3%&U?n_c=ls0&}sx&YILy$fq=<_>h-vd&AA zj%+V6xH3D`v4Z0Y*JcWV;n`mjGljHpN@{4I!z{yGDL<z%tn89Nu_ z#>dcw({)QFa^c#EcWAdIACS@MHgV}>Uj>9s$i%iLNSW_zdPVXlG`=DI#BF0`dT#IH zCyY`K#6d@TXm)6fv1yEBXsoLmq^R@I)6>v&&E6O*v-u10jYtq+zI3oI;w6X$%L3_F zxQWSV82A#fP~3TZ1c{ZcS6FYng{I}WbUS`ZjEu{1b)KXbr?K>anOv(5PM_1F-KM41 ziD@}-vP$_>gp-$<=QaNl3H&28iF7DOzchJHmsAq2G0>s(Lt0$*jFEKN#=4qi8VqtZ ztp^mRmZ$?LPJK#D;^KwQKSvRSq*kjhc6&UT{o;~U+PX;A4UR#j%}R(QJY7K2f``~_v)Lwpeh>n9uZpO)cW@V&YPEpHrg+8&%cDHCW#aodX|=? zQFnv4T}I{r=&Dz{}bz4=NkTY37y%9Kde6m?kOWo?|8s zq3+X)Yl!^7O^S_C<&?WbPiq&%tc09Ko0t3Kx$L^X+)(!a<_;Pe(l}lbe z|BvEiQXAV}gvN*J1)YavtX89LFV|oI~JZYsohtA8yk7$!i!ry6gvvl(4=pHsL&Rt~M@L6S00vsFhf{xLZ zH*BaCh#O)?Es>8fcIbj7i-MK(n|E~FruTBm&zOG+?`r4eNJ}E)5xpRj*hKyamelFB z$5OgkdI2jCvDzQ=cx35Mim%Kc+P5F zL{q;;2=lJg!mZC6z_Q6#vUArgC0f(JxZRaRjweD+OKPMDPFm4n(W%c1h)iB7ulmRs z*C28)u#vP|O|DAwOL!iQ09lxcF|4f01Vu6Udv{?~-glB#?o>^`#xBMZfrZ;PQa~_( zrTQgYB9ND3(QC&v8a)~NXB+&MLw+=H#yN76O3FymyxSg23z$EX%FFL$9iTDjj|Iz~ zMlBO5lh(J1VXpB)_WBqvp@RzNbT2)34hi(V=&&Ew4zrLIr26kevj&&TPguLht{_Io;ik)RF2Xyp~rKqe44MMH1p=St|3SJkx zs#Lz{K|at>if;;_rlp8#`A{KuL~KJ&NNOSCMrS&?7H@`(5;HQOWVrLdU9-UU<3Q|- zQ3UXwmw_JgLX)$7m)nx9sH_tWlBGUlXb3hBMiIZN)YhM0%?n292G}#${st(S7+5_u z5&{bJChOPJ$izL!QaLP!U%u>#p~3)Y01*sBwX7RfF_uzZ(2|NW-3w$EA-d>OQ4mXL zEY7SMthX>~*ilKl+@vJ6VN=!DB=yqqM{HRo3GJ_Ixk!Oh1Q}8H?~iitr>DH-rLA;5 z^&b0Lgnctm%KOt4jec_bwPELg!cv>h5ZUtMX+|{TSjCY!-F>D=zCg%K0@9p=nuWPM zor_GqvyYA0b);D|f_A|c9A=pxaL-AG$~ZeA`$z@VqCqmBI#anWgFPom5hr$ZRyFcH zEX~AbE6kQ>?!7oWDkl@D)mT(DnvuYY0;PIYGzo90Y6x~`LhHuZhrbmWJMQ(7#!0Co z77)Osa1Obl+g85I4!Y;HqQ8VJZGZY~9Z(@rS&fX(Qv^!r1hz-kp@+DTM|w?Ao)z58 z`2gj@Wp4!iiE&Tn6eHV}$A&qU@-+7vy_Bv2=VR9t`hr+uLJjvrVpJ}FxwyY}Oj?xJ z#Xx2|KT5&rT-Z4grh}Oqe5@d=V`K-c%VlAwjC;;0U=vwI<1CekxNTp49nDD;NEXe$ z`mJ8>XzuT4+zj(&j2aUisO~w#qaF2EIUvIzKQRFvV?C+}B9ktl8>St zP9ty9u=yJWV>n)s3uwD5#py6{Cv@C+clL1e3DXy@F{-Uggmi!YbAge$354~`%f6)Z z7P5r2S+Rh$fx*K)^UO7>^Sp?1(cTS5o_HlGvG(cX@WM@c{^y8$Y8md6wynBy2Q%&U*Fbd*yx&#m+bhUxODs8)$@iULe{H zLCbtW=W07lyW{pN)_;P5*T~y5b5hWnCm`lwWF;ugXyal5I&*j6$3*hy`m2Z~+??3N zz#0|o{}Bp7O9wt!{TzEW(B$tdK@4A|(oyYlVkF`7GL5In z)sw$hwB)9$M-(oZuA&q>rqb1J^X14+`!2N2EmX)FsB<`CQLzMu$M;cYPO!@qaL?%$ zW*9bo>^Ju7>|^&o+%iF&Uys4E@8UkA6&@zLZ{g(Zcn8-yGlN(CvjRr{SpgnfKkt3` zr;*4(A5L3J#2xMKtr#roV5==e--Vcyvw}Yy%5s|`i=n(yf}Byc4>J4t;lRsQpBKdA-gz= znmeye=yAS;kKKL$b;o|M+gSS<4%GM`|H~+h=Djta%)%TtGT(r37GyW6-0`W69|b7% z5S`i>DwTMbNTv@gLe1d_bcJ=qFbKrJn!a+FU{GS6Cqd_>xCJ}6yM<5RR}vlhLhd<0SYg8n5AxYK=0wP3#IX3|rmYHh%i+@ceu0FWwu825CA(1OqXZ?2Yr8dBbgio2g6 zhr>&AIYzoQAs{qwVEsdo@dPM%0;6UmfL2eSH?UTJhYSAdeb~`4%|4D zI}3Z+Ydl`jfD8p3uO>W7=w)$Q>&W$j-$oQ~ePk~8OGUh~bUx*;CsvO2l;qsW(a?~6 zPZan*$yp-FS%!#+aCDH#vSi|jKuK~R@W&0#m}S44LjC8if6Zuaacef7=w|Kbm;i(VNs(+RH$1|O?Kvo-PLYOvPNq#We_(U?tHCZTN`Bj5h@_$_-82?|- zRKbOa3SX($`#Xi=W7W#m9&{#hk9uqxY*tsp@f=2q1pE35_Ej8a85OoiRHtU;kr$DG zR=mCjcP>eifQJPryK#;SHS43^!-2;jM428zV+c=Uh*o1tJP2@<%jyJ;BwrzE zojRh~jA?|QOm{roQBpDn_2(c6oRO7Lo@=qAYOzae0k#4;Bd0T>6;Wekl$z-!wjp=t zEC=b=3iD;H%C+?QTT(7@K;J~8xQ2z4Mun8dqYiKT>|F(s=pYEC|8UbvQxn*1!z!B*J8RXmO&YqtiNx$+~h}0u} z_(;JlGg3^=VPb_iqO`DcsuoLWWMdQ}j#tY>`f1Gi73YevdEm#bcy$iSAQuyrK|^8F zzKdzTUi23R>yR&l}bt0V%xy=-y=}mH@)b@^g(Jkc;>y~F?yg^qcgI!&%{<@RB_Eg z;pic=f}?G?As!CDa_E7#`XEbHL*h5D(Xpe@symR6mg|h83yLpVW zU1j3z;Lo6*%k(Yc8a>R!Lv9~FE_U6q=dlR&b9Y(7ZAo(|+yF_IsW;yLY^K1x^9!Dh zMy+M9x4E$>rlI`hY^w5i51=lb&tRE)l-EsF_0+GNaA4kL9|!`Gt>(M2c-VAnv3LZW zqlqYtpV`!O_C-x}E-a9@MEP+X3nrXIkJu^A01nekL0Koz-Ft7%)=Yb{?Up&ac{1Ln zYz_}mE0K!F{44g1#?B9l8J&Y@Zi6-K+i#$K7e2JNYXxJS-lbkk2Y(yHn;UAztVZlR zBScUel9?E8DXAkWGQuy(fNf4J61#$8_cKjVzNcWc6T*d8LXB^df!G7z0`?0J0Kc%A z*-AC^`A}x3AY=Q|l^@{Lq5}P5jIhIuV#2Jd-1)Oo(bF%OY?Js=bc0E8kX=TQ#4TWH zKPi8qPLBe)*s?HS7xokbQr!@H+I-_31ouwWTreAmjkQ%xAZx;TPyCzwXv}jIN?uf> znAh@HGrBQFzA_aivd)d8jXAI!4pq?Dxb)!_)H z-yI6SkyK|OHzc1KH)Ql8Z7^vsjpDDw90w+E0)+2t5C(C9w$ueKnJ)4BEef?KGIr!& zLUyOe6L~{cdnV@~5ak~z)(c{KQ#Hl!BfH+(b%t&r!N27V=nFPvmotAtbdIcT`#EA(}#?=V4gZUoAB99dWm`RPqglznRRrKF4C!seThe zj$C6Fv!=w=uM_-KN_d(7(guLVhAxwDRz7q)?;pq)qU^V}7C~jQn$mLGql{8M`r>G#@wC4kMM$|x zA!4>G5ww&Wbxlvq3iJcCRpIoZ1A_eJO_F%}ju3WExVI!u|3m+(|A(%gpXkV3wMT^@ zHwV!u5Nowfk+h3ayU=*?4-+KpuEhe#`$S_If=$%%^B76fG-~%y^GU1cT($UpQKZW^ zRsa~@DWqJEJ6aIf2|$NvDMe>_(+SF7RG}u}$OI zHLjw87dSI%DVNW-+vi1eF0IMQ{w&mYOfI#U83m4As8%c4%|+4~7$|GJyr1@#E z&Sg1naBWxb(!E?SDcffLmpeHE%*w)aFVTwFtzGsV=bt_iRuh|sV8aMT)UA@4eU9E3 z(nYG&1U9;&`64n-dr!$}ISXG`%!Mp~3Xaf0+hW)ZVCbD`wlcuag`v)w?bXMWxjT6n ze#{C@Rf!Q9vG2pGEKc_tn>^XK?$5y$cw%82$eGcUN+`u7Um`WK2{>*Bj?6f8IES)B zBBaINu4s^T+Ld50*Z@xT6Ws`w=UFxc2YlSbWo#jbMELT0^Q~xpAbnM=?PB_(PjkxF z<|lh`%uk;e)+$s+;DDh$G=&arw*tgj&LsEHN!DI8YYm#T{BYKi`K?S7I1TWIF=cv& zODE(GDD!R4FeI;A;V+C`pvbMi+bqZ((*!jGVxqP9m`?|9$zU64P@ z1w4LQoHA$=he$$=&{WOfFQHm7F!etx!a09hiPY%*S4|G&Z*H)U8LWyzt>O2S#jZbo zJK-uRgC&Bo1o=warWuOi7pdh4|L{r*sD87R3}dx0Wr4Nm^&B`qd=eK{0Plo^MZEY^ z_6Js!Blg9l;UA)lD4bl(ZF4(KvcTbfjyP!>`^>QdxUR?<>3{3`=24G*5>&O5(y2pIBhQ{6|Hy$fVI-_YvgE8 zSSTo06zz01^DgTv8}w6b7)Jv05vhPpgYS8&el&$t0CW^V(YF^ix@$8KwX&*@3jlKk zLaCIColeD^KORI$r$H+#rm4xx87bY;Ps;v{v&$`=rb#b)Fk@)%@f`YkOdLwi?~ zc5}&9DetI8gFj)SfZspSZpdUw$DbLBiz)j4rQH}+NP_l;BqKXZHE^a=o92!OXHsa; z0J1O-2+;kJ2O$&Hx6J)#&7(n2a<{cFN&rsj4a?l+H+Vz(<&q?qNlgsKYDKnrC3I9&N%bJ zTR+>On#Co)rI(z5^iG(84MIbc5AmeKL_%R^l`+&qReM#6g~*Kj0VwECWm?{Og40)F zoVm-5MIObO-Q2sLV-d`691Q+ukY1L2Sf!qPXwIa_Iw#MfW4`a9A@AGPI{_?SPD?6W z=7&yP;17VREPbzk?Nul~Tc)I+YWw5Gbntw6H%y&mx$#)1tlwHmU(S*~OkG9a5YS3H zt?HTVjB{uq(f)GWmMDQXbvg}G4#)9;@-^q{zJ=p2$u}~ahV3iDbsgzCtUbfb)~gMY z9nP(af$JMU?c$tf_xM?aI^=jRo+w-^ds2jncH(HU^aup22t2DHyxmK?cZ<%&D`vXqqk004qUWFb1{$cWCkgp-}6Fcc$snG!v#@&iTVnW395_C%O z_@E0dD0I5*YB4We`t`>uZg=bT=~mSROjz9-O`Jv{7QjVa%hS?jDgr-~-K77|RkC!2 z|8CFv>O1T?kS?c@?D=YEPrmxQ>agP~qG_;a^;P`6j+;mmM?w)eAzCIyEX4ait0Kfp zwpa5ax{%Mr3YH#4f~$WHVtVCD{sFvGI8VEyhMA)p zm9x=|cm8K_kM*QuE|b{+-f#CQw4ZZ1)I$dfu2-N$nu57?LBi6dba35<(K0oi8BvNE zq>4`$(cHZ3>+l{;my1)}7OCx%n^V_F1q-K>G+WXGxvfXWK_n=%C8Wc0ytBk34i%Ax z3t7#EO?dsrz1izyo#`g*?dkRv&3fEA3nKNduN!rabu0SWM~;rlk(R95q^3QcaNn2q zVPMeh=yLE=xINpMp^@LS(w%-RMS$16`2vt&x~*p2it?Z{1mWYm29d*#J7(Ff%q?5B zQ8Lso{6sxlMKm1!Unq_JP&c-urqx9bO=?BUAEDrpYCYfM&Anh3{ba9|&%z-a{Bv(W z_b)pK_Ica|>X=yd;gX>t$npF{5?crGoH683bLi}ji>sw0SUMDC0m~c%B%*9;Lsav(&JBrlVx(?u`X6hCk!VqOhG)xuEJ zNWX{3EBnkCJGE^X9~xY}|A|Ktal4bZ-4> zkK@`iBk-Bdg|(Jr=H3S+j4hAVY1LC+k|^HYbj@yVaD!ot{fN%caa-O>x8C+HPPE{O zLMabSBN`Y~Z>@z3u2n~bL)2^4?>o{LU`A2zC!6ss!La%C?9%I-(Mcdh*G-_FsnT|W zPb;vG(r$uHCI>XPXGwx7NFF(z!;X@}j;cB~swzummo{eS@kcE5SAOtI7sX8P!y(y` z@ooec^~$xOfo~T&ON$!p>Etrrqh|J+s3XdiM52M|LX63;wz??Or*992`>n{of)-qF zv;6-)m9o4wx<378ez(o`_-8-X|9*DN|Lzdzx+m-#$RTWV6uRnbE?||Q_o~gs z1vga{eBkne&P7G*7sAM~;o`O$P|h#vmU0ZszVD#&`0N-@a>v zrF`)yTFcHXpi_$u4Tsq>^Yi?!~_;@8aKmYF4PPvO<U@&*v!eX^ z?v`JFu$s-xBpQ+`A!D zHOA!%-voVUk~EhI__f4)7G0-s+4)igN4Q>@cg}py!w?Ab^u)r$R>1YL3)q3IeaC+s;maj}GVz=Ps4XPuD+C>~j2yb+<75hOQnDZm`75AJh?xXbWq+u1M z)592z)?+d~$+yLm)%rg-eqnuPmAwHNw<2vgk8SDp=(L~dR5xQV`W*bTjUDnyoIsh_oE=u3l+)fju!OZp8+7RmGFtnlJXUF4 zFya8*7nkFl01u<+NM>Ec|D)+&PNQQy*dK|py82ZIeN#rF8Dr$o>SN5%Nw*U)ew3lc$X*^>J(+S_d-Z@wWnHo&AM+v)q4*G?Njjsrk z5dvDFXxBd*6WsAyS5v$YX1Y6T-{Oh*JUf-ma&nOyE=lY2z0gb~8yDMtgy}wet?g*S z%BZ3(h{O$Rt&nD|kaFD&1JQH5Yc3n^Ay~KX>j5LIl)XCB3K{{iU-QROlKF=NUjs*-_CecX9#VUS0UB`p7A;`0XH^O_=|qT0gS5vJu%vt1ljr4b->gkIESA z5}j${b=sloJ|iVe;&so1DJ zpvT`ZUfk`ZlR#~z%TvWu2fVV(K0ql+2#K%Js!rRfZ{C&}o-GkY6HpuAth8u3 z(!SY163ctn!z)zi_~Px`8HG;Q&DU8l!>)*)L}Y@Kp0(F(VGYj9xvqRCw&-s(mwYD- z>b!5g#8NPVgUr$s32dN-Er0M8)!B?B*9Rf!o-oLu#!s(_wI8*wQ}r$?6A4&I9Q<55 z39&!gW_s@qF>&#u>C$69mmdMC%1=VdOUp3?+Ji!8x%8td8?;dWiYue7h=9(PX(b8H zb)oWrX!+?kMv{4hs`Bqu>pwI&&tx1;JA9&XsSbFPg|e7NoOE&}37YJhw~FPNrgn-; zSFMxQ!p%^vm)2nK{}3wf(r^%8`rzxb4_T|9;Q)QhT((q&CiBVg^_IM54&$3Hd0m>i zQP7QGF-+0ChxN_twHl^IS#a$nsU3`coo0NPct4bONoxxuJR~@|dWQ)vzgNWo~BU<8FpkoV@sA8=;-Y#~Z}h(^_Lz(>2w* z28A=1&BCQpYriTw+I&bDW~dJuS^7)C>;oHx6TpUNzIE>Olug{vB-Ms4&co*e{5EOa z$kgdgzlxi_^FSk0z?l!<9@skw$4tp%VUiA7rM=WRuygGC+@s)MTY@M?32=q+amv{7 zxgE5o9`H}3`NEHap{C7>J*KeeTIfN|H0>&?lF`U>w8l)w_SJ`N@VNBO>#a^cbw83 zIN!5s^#e*ON&AUTTanL&$sh-!DmjP9ViQ9InLW(Nv7u!+xNda%C zX|tLq!HU+A^}#C+9YnRvhN*RHku^t5B# zNkjz-2A#q5v{o-=CC}UjHulN772LeUmD_Q{q15;K=Sm;rm4XSNlPq;?G_^-$^Qr9N72%%)b2wl;2+fyO6>!O#Ju3Z#4zItz8vC->bxK`i8npCdlhM zDq888aD%e~aM-)bZ>TlzTX{V?NsLHq>PA9O(*4#>ZtagF&rYzMpd1V8W<6kQV`VZU zuurRGthjvC(7?>;l|let%KHnCp{k!!np-Mw$K4rcKXktm?w!N)^Aq=RWh`QE7bF;-dH#$n(^e4;?|SZUN~S-He|Fs~W@4>p@@DE{+Iy!*b_x?1V%+lF zb!__EAQcE07x8))k|F5DR7>?wtY z@X5&a=F&2U$*Cg)LW|NNfKcFXb+s;Z`C-yYukZSj-gENTZlU?A(txh4rtw~t$^0^& zQLX}MxP2}EhB)I2$bD9}2gt>i(&~H0I(b7{6Pw_?a{Er|b&LW9;Gq71MR!FYrP>ib z)3Ezzi0wZ^u$hRGuKTuCN1j#YZwRuioxx%hNS@&D%6ITVE${Ta+{eo9|5k(|b1GLm z+`NjI(1T*!Qs`2Cg4m`9uN7Lhs@=Z1_Uw;nr&)egbpN*lkMfV z3?HeUrzm@0NVt>SuL{Snsko)w7@m)hWLnYgb4uK)a!G*W;;cf#Fz7hABmnR9mZkKQ zaQt*-)_@}e;C|+h=^Pn@Onql8{3FC=o}e?K0JKize><{dERqAx(h?L2ty&n`*@N@h zd4uSXAURHcJx76vmtSs7Za+%|t2`1$;&_{0tz~N}K6$_#<1^Q*rNeuN{h3~`BKx3M z7TG0Un}zqGmex&l?P-{pbeegKhRZV6|ur5$gX1l&f%+K z4dqDEh`&YiwR~mjF#7kjMx4y7-$P7yK-^FhQ;gL(rb(x2aQZcsrqJ>|d2b;cU(*1! z38gclbT}BxCM~uHbA>EaA=7#Db$76LGpXzS=t&>q?*F? z5(|0{!DgO$1%A$A=a4`Njjx zW+wLbkgTT3S78YaS3ZEwdR^URYQyeg5Uo7&er#PpLW5h_e)HP-FT)J|FDq{pLOw^{ zZZKWx=bM5OsUR|-5L8LB__AREDZki}(<(n#h(-w6TNQ~5%X zlD;a>zYBtv92&S+o~S<3xxV&HV_MNZ?KnS)h4fRTXem#p`yN!8igumm3(*Auu|$=S z7?R<*$h^RO66FurWjKaP|1y!dv{CQ!?E1C6#le)Krh#{&I%;$kUHhO4n0`1=>OJvc zVy0qbnRRv(O?*33NJLje`yh3$FHi+^GAU)?$qmQXW(+g+qC_9a^Qk$ridWwxAfd1E z==FS58)5GKV|DNqkV;oN^tOzTD%j`IYmS{yu{TOWg^+l}qi;H}%NM@#XLTxpX-{g& ziy_aQB>GCKS@X7rcW>%rJ}ik(#vxZI8VUX`46cMZjl;ftNO?Aj7Xt$GU^O;rQruB@ zl4)0OeTS-&N5i<*X~6jrb5?{BmbTG3lW_9+w3T;>w}G09mQ93i3sg~8T+Mh9f_8gP zo3L5P88^o$?&+gl<>uuI_V5bQB;fMo25%HTOUDTLMKoL|V7K>GSknMfG(=q%1}~-) z>-M5;5(0ROO*{kP+-dWjpb%NSIzdw4M<7}RI?#bMwfJuE9v3VO4!{L?E;n=u@2g6Ks88wdcWo zH~G6=0|zJbpAmaV0D!W>^=KLr)@n|f zFXG+or69TA)|slUT)SW2jK1+*kDVS;AG>PT^HCcMz)~pn&N00!c<2XR?hS352sW6B z96jb`TdhD93ISucx?@l*uU-g|edYKq*DHB8fxuJN_1ljUa)dD(1VjCF}aO=?C5|>e_f`$4fj}pYG>lD z)8J_y5@<-Q^R)*G`@P+;5m0}%?ggT$h+w=6^b4C6ZLHBP%Jzgdr>naFjpQrRnaaX? zoXSwcQ#J&qHq@fSfct1-Y(Bubr8Ri`J7iDx>Om-E*U$2h{P>qZ`D~dED>lBa{c90NMEq5h+vuL$c(N-6zT27(SBP^)POY>5T zm*!IpnsTKHH{BSRCKgQdDU0gDN94y;?#heYpkA31tQu_(R}cDw>o>1tp=kh@>*Xed!9?f9<8sm3rf!=^GD4~O>d!l*+|6pb z1cyw6mO0&O`#+f>_TW<#h2+4gGgxkS#N64J+)~y{4Gw3cT~3k|C(&8S-%i?em9Un* z^Y@EdTjGAH4xFt}Ruk!!)K3EPOGzo-2AKp;2$tbAF z{>`I$B=Yb1+%^bn!r!ls{`d0kKJoOdQ=EXog_{;$GwOHjCXDYtlkJ@Q%}O@Zowk#) zuRM}(96wDqnm26Me1GsjLuE`>aPZhHjFIk?{;lp1DqDHdONX&_{6|;#>UYBFLyW7g zG9wneN#!U~+LQ4*#DH94VTh=L6{{-huoXQA~ELg}T0 zZ}+0CrV9dzE{VypEy14-^#n2ja{X4#&0Y&{C2hWW`qQ(zh(n;x355n?kq5&Hv|u*Q z%Ii(tJ>y@UIcO%29r%OPo$YiHP-b(82P?HkK3{|g2+U+Zl026?R>@+>e8B-4LlPmY z<@EaXC(a7`PFGF258QGI%fn<^uTPOAV<(bG1N}1ePWdCZtM(*%wewJpTy9nY)qOL` zh86V-14@Y^dy~S2W)`!S-e-);Zz8+SgD3ZdrJWWTlI6Fx@*?H8CNWzd3L7w(4@UtIl0gS5%w{mF_Sk-+*?ZeRW;xqgGt+hH{xa!1@v%@FHx=jG3x3u%|zXb#mpu@ptM$t z8)uJn)iv%zH9%xDi+gH=bfR*vdz_ql& zP-WcQcnUE~54eZU{T_O`-^Br!UWC9QcF1RPrkS9b-AtaT4^vh!k1oJbQNzn!`-|TO zouBZ6E`|ClWx)Xl!E&$oD@F(f!7x{@+fcrIk~C$3f{7PWrc~#7bcOf6l@0I8l>OR< zE+D!9czIG$Ma|S>TMXCQk_7qvUYfBA0PHD&G8V2zk4AokTr?rB0nKp^^a%;P{*|n$ zxPBq5iy^X6*`MOefI0EWwD*ytdPhU#u!7O`Y4^SIxomBrS;8S02ErvJ_I=13?J^=6 z=Y_KZ`Xfaxq}ce}?(FZM(B-Jgt%2WX_cX^0p5&H5djIt)YG(zaheGm#cwWJjJ0m=U z3nJvOmXMW8Ekb_&1AKCW)a2J8r}p%-^q;)TRU>U-#A`Gc=`hKvbpett2H(R4h##l3 zPUqhb?N+3{ue)Pm)#N^E`cp7r(rgXks0pExGjk!{ce{d(YvNc}3Zc%MNtqa^U)WGe zSlMNQKy&m53A9FKC_#}r+(shh>5gtHZ1U!086x569xqb#iC8G zAN_71NyCc@!Dx+JkyW@+FS!&MFRILJ|I*x686SV;1YTE+>iCefk~o{Vp1(1HkXSL@ zV6myc`qAw7g}84LwjB;j%p-o7vPL{2yp>B)dl16RNRCkL{0Zgr7o}1wrtn6diImJUmShE=x3sDhjugTbGo! z#_Yc1CEYSPZI_r#o14bARm428Ia7TV`FA*O5R7^2qj zmA=-t7>^d1zMDEFeIKk8DCV8|7tg~@WM5Tu=j^~5CN+E7M(kP-s|P$EnrbVCvk&d_S-Bsc##-oF07egD1BY%hT83g$SBsr{`mmO+^9t zNR@@6Ue)ywwzE!Sq$&v*P}}PZ?k)`=?t3r-#Kd#~))Om*&ensC@^!WG7LS;%G_<|t z&yYx3U;tL&lpQI(EwQaz21bj0pe6y2C$|ycv1ed}2+|It%?Tt;4uM?~V;Bx% znQ_da$RgI)_m>AedJ!$4S)~nvgLoo>D!09S@o8yFdRv%CSH!;BUw6rc1TD5!nWJDi zMO}Q7bCM6=5FrQQ@|lRvosP1`X(SCde%5-`wEO~CfPRA1d)(pvJN zn7;iQ{r{MH3!u1~CR{iq1PQuWa1z`df+x6Uad&rj3qgV}?m-e<7F%3{ySuw?S)sqSLVbO3ezbSJ5pS6-lNB9&m&@^IRnz4A`kna8zd3D6$od8sX?H>K9h32;RNTz&rw zaaqtmP8X<0=PspU+*#m1dR+IHsq2YA)FKrkU=hg@QwL+?y5~ezP>Dibq(X5~wJbef zW8lp^g(1c(S%Xi1+7oWijyTK!O_5F$#=eITu%L~;YYjYJtiGnjQZLDTIWoR+Cb%{5 z!C)B;aOZF@oG_in$CT#Uwxe>0r2F zZj5CXuWU3-=8psORguL=J^2AnF;IbZb}N5^(5V8E+7L%xV63HOzeTUA1}t=ctf;T7 zxg#NPtN@=fANb(e=y~h1tC(n%njIKL(UHo@m2mjCB$yJ;uKZRG*7Xc4qVKFAXU_}o zQ%N$cy-pT#P1O#DQ%-Z_`)goAAIicoW3*7zf}rXRRI62{^)wtaP!?Z$*DDN~u4Ky=IDgY62&Vg`l)3(;Qp<28(2sPlnxNMRh=Vxu$pp@U=CMs(c?951F(d zv}cvL$kR*MKSUP14U*kOa2Isjc)bpWa1{~)VNPdp4?x`s>w(3sA}Mo``|Jjg0#^R> zPm9c{`OYk@;Zf>fu(s=V9-f*lu38sfemIgwt!nM{r#2PHt6gK2u?`QdSM}+=fJ-o0 z_|8u<{Q=#Cgg6&njRaRstPPd}4EqWQ`+#B5)uvTk)eM*zjf0{uHO4OGu4Z3I{T^=~ zHuUlLek+548g_vy?+@I{f+BMA0s@A|ss5Sg;Phh9xeg0(d327xy8(iyt|u zXuEh*l`!!GuRbgy{5ZOe^Ff_U-Bm4D%xT!w&GUIRnc-ossI{!w$#nMvYwriP-VZem zZ-3TJF%zsP8FLxvO%1D z@lJ<%8~%i-FMu-cr&U(3oc98bPF%D6O841=4y-}^(kRL}RF zX`A@!i00yCes@#q^PSH#{R7X4_Wfa`P!>La>0IJ$TU?h>MGAa{PHY>39%|c)GzQ*R z{O_gFLhTy|S1nb8-6Ri1SFia6$sR6sq6KS?gvcU(Hqi6eDhESy%Wjn-rH?e^UTc&| z8N4AuFgVRcjChUOHY1s3Abz;*G_G!bqIDXTK?b~ov_Su-_KYX*go@-`Wd@cFC3d#~ zTbKbGvOxp6KN=_g_m+54#&DKb+GM@~c{z?RDhFkix1t67#thfr;+ILS?^DxV(p0A5zc`tX>RZyw7k>)b#{U+F$D~@|3shhHvk=mb8of76>^%~|rQOBr7{{hfI zoa%G}N)J(?$X7_Tu~zbKE#o4lAlE?(U&a)W9VW($CB}12|1!E$*r%jroX5do-Y?uZ zoAe!jxLSQ4mH$jB3@1rb-0bB`cIdQz9A&yv$3ISVFh!SE*4z_Io&UFSkjtM!oieH& zQ*Ak;w$_hwd|l5~o&zz8$Nh(7@@&itxcNsV!(cU!n^zw4GCHy-*ywY(9$ldnv1z#p zmvhu!;&%!!D)mWU?3x)2=Jz+oCy90}+RfVF48r{Z>nB=k$};39e2d%-d*EK>0m6Q& zCs$l9EC(@2SIL{+hrPeU6IM0%m6L>DVO$%O*EtrDfbgkk7#9p^ug~Us9c2O087?2? z=F?%d>l?*lipfZ_h+_iLfO0Lu0>a^yYQ@wz5W|v?zGPE5aS?rBkX31dXP9|CPxpgb z^PMA>aJUj}q0|RcIzZAG+8?hdWj?A`!JP{Us359A-@+#0zQW#YPzK7N;F?G*p6t#9fOe`|cj zDd54gEV?4utDT|q*XNF|$@pZ7PhGF^X^k>=%Vaq&g(42mCKf2TUigP#OY;b5k_Zq> zHR{a8BzbaesmEm)nM*W?yjKU4OGA+<=|U*`4;ADWc+Ha4ZVr4M#p3o{|Ngx%*hf!B z@t$C}&mg^PXqY_I@htr~KJ!6h{BUg{G`1Sm2-+fduhKPh_7sV)c(}G6bSA`S*Qay1 z)Z{O6IFzBaJ7A4(TH49=o2ZD~h>{@?-;uj-q#z7bicSj7L14zOGZrGjaXy;jtAe`n zgdNjbkw8O<`v*Qq62FDHrV)=HtgZK*2?-E0Rv48IS`|#EnwE4*Z_#S~BXhh(aD%F` z`MKwIp25PEdU2n=?XCy>MyZgCFfN!%H7)u_Df1uYR4~s*dUWaJk)#Ws2hX+fzKelX zTX+o*&}5|P#+NP@l|9)W-UmXo4y6EJ&GCJWDs=hlu%$syf*(<9#1xewW1f_VP7_Np z6Xc7&U0dUEt8srhkTh~a7EPWa2XwJL^lDAzE`ICF{1ibOeE@ou908QTTL?05^o1Mv zk1sz}9oh4QO^Nvh;>Hq=^kH&ceyWXnc?y05Ir6sC z+j+3MsdN&?2s2%$bo*(cSwU_jIw&$X2AkvK3K; zgP7%0(kHVA^sPZ9vBePcL_zTI3uadyITcHxRLgodPj$x>$I;~x8v%&r1&_ZGZ20k+xBv7;prupW`rrf5;&9kxj zW^`9>8tXac_ijKNb@JIATW%J=d~yzj;71d}x{9h<@ZG|D-gK79(w`Dk5W-FQxDJJ03# zb_nHu$i045x28K`-vK0V(S>WKm@IhE0wSGm5B2M!t8ZCC_Vp9aOZhI7 zHTmX^XzQK7XTbJu+gvjioiR0g!vQs6Tw29NJ_~l|W@;R(ftzOyTQUnnBu7HN;xpOY z&bXTor6NB|qfNb{dVPdq*q%sF@r0PIj;GAj^^BRUIm(c|VPAgYuHy4O@Qs;`%@z*d z-llOiv0~EcV4jqohCAx-&e-@0?Oc#rlT2b;PJF%QXstV`HY*Y6>XJUP9#4B~t*nnY zgQ}6kRh0<4`JPt8I9&gs0?#Z1I@9v75`9?_x|{i|oy0Y@u3f;{bgrcD9H-$7J2^D4 zHL&g9d8mZhZtN>Wj;QPQ1D@AuyK zFXK1MwP15VWpgl&&9qlU4B)AGe~yy!jas)_e&_N=TXi&|WZ}7Dc4vkVtZsJuxk+P9 z;D(2Z0^JJ%Fxw&6xVC>%Grg;XX9j-8pDnNlJ(8e8!q{y0`HAGGai12hS=m+u7cI_U zvu43=j=i_nA8?)CU=nF9vE67b*wAgerbhxTxI)|z5Be2Cg2eG1(lMlF)t2N-fY()b zG?DBtTxoRrG=KMM=Q4Mc4&)a#m^|803)cT9uths&?cSinaZx&sOr0*?kjt!|4#NaV zEz12eK||?zo!SHwH*rS3f`j92xc^``f8}Uub43pjG2`TeC43~elMQ=xlQkn7iT>XqE48Oa4 z1E}+a5+XK^)0^eDx7^ndt?yyy9K`6bPQ6RAG(1v~;I}67u->9H>Pj1fB#1`RS|Dwb zTrNw6D1QRhh_A}O74Vy_LJq~a0BymPs7tzwcHsjw6o0%0Q^G~K7Hk}{>6GOMPa~oF zSZ{Dk05#RZ=NBAh#*lEtVhhgs)c3GVU2pO?c;R}Aq@1sbV z-^WdCB*aaHZVD;+j&vw8%A|tYp*YXe?fUzUj1BYTZVZ~r5b-mh%E1aIGsMWbuS{GB z@*D~C!jHfDTByx`vhG7}wfN`Cp#W#Wl&(vfl2PVkS!ht;N7_BZDUn*GpRDqqK!%EV z4KRlOpmdUPIG@#1D_e{Q(rQxlQ2II@1pICSnok_>=@vceTwSaR z8OlEGN0?%k`)#AU1M6g%w&&?@j^ntPt@mK;{W?3 ziKCSH*{I?3_AJ@UeR5fQ)we@tWX8?F^*OwlqbhzH(n40QBUw=ICx-tHZzfA}>dMaOZEyg22XeEt+i2j=_H|cD6yGosurR;%`h3w=f;2`b_@_(M)b{fQN=B zDl(#(7J40l%vCzt2K5iNpNkdHgD5QK8H6c59Ar%)#?ChvMwRX6iyJRTNebT*|@ z0zz~EAojM*ba+|zh2ZUh^ck~NAliJ%sumjx!cU@P&s8(V=*y|vOViCu-=vSXudVnB zW%rsdw8*l*2?xZDAHeDCfBJ<&p$hU;AGM}vbj)sYnKAkp9h3W^kidZqvTQOf`3Mo61m+04pGl*F#md6A8 zCJpuSz$TMLqU~!3OC#hi#&|BzE~_#Xx$$PWuy2SdC5RPIh$$(6imbrBszc?qE<6gQ zKgOhSspR(&VLD4C4O^N?z0Rq#@NSvWyuM+a9wzeiD^#8Zb{S5a`nsA9j_FcoFwVlg`uB4*ACw2#)D`8on053_yRgp ztr99T0wz@~ZH9A=#8h zi2@1=ph_#!KGmVhiS_TeT?%S2|0^K@g?D9hhZ(N(WZG7q1`>1)VG>g+A`Mwr6+!=YTyJAt(n%ilhZLc&(xf*$uL-g; zQOEbAfHGofIwdq6>MoZ;0mZXfu4??{Ea~9^!9@o@80Zn1#GwRhQx7&*l13YYC0K_! zA^RLjuJwQ76`JcZH!1IJr1`8hsU5K@!`YD;%ADCIFC^XL<}Lar1vQ_pI6i1jIG464 zDq++xqbVx=3vFgd-eN6%qO%R zObYZjpdPKM$Nr4y7xgdrjsklxif(pI6PHpozR9htc>-iwM3ldHKZ~Q(i%UUj*N)vy z)KpDOyu>{3-%DArkzCj9yekl7pSV_BSyM!I31D9SR-bQWOwmSwIha63GRGo{zyl4k z$qlujfFovD@=N!^>hTEN5z0)1NV!zF&Yfm(wEtPUAE`P6yPWH8j!8LyTaqAsrVdKD z$mrJ)ZX;yO`OsIr4@L8#Qi$5|5cNX=A~GqOEEOWq$Oj5ywQLA^M>{b1N8%v~N}d(@ zVF?qyxyDC<>d~7q-iQm!ij$@K0JVNJb(NeAz zT=yCZ8NIu|U##>#7lJdRA^7GoZ0HQ*lAuiku}jdQmxY#i_~z4;k62k?>3FZXA;v2> z3^mipCk132_X6KniP6qOwmVxIl5-0ioi>Z zy`vf)DrB^ceiusI+pBy5>PN4YAj>jAO!-j+Eb1jE0epMlY13j=%=T(|fx`>mZ^s$@ilBed@~E3kZV4ACXU$WnK{M@u<3 z=L~cay1)$>TF-q(&}}?*7+&nH!1BUTg+MrWr>yU2CyAqw??OT2l0Cd@#>gg-19#u8 zgvdwQXSOz{`9^!o^MRF)5Nrn!s~HJ}^Mp`jM-Mr-NpA73C=LVPb7^>d!YMRcBzvf{ zT5G8>kT2#5{(zFDKzj~ioN;03_+etb{KW)eVu;!~v2Vxeq`xCR2z+#=APO6y#U@e9 zjwK&o54E7AAYsLdjdEAvz={P_N0B9kr~s&ra6Z&Uf?&S_3xX31EQum@|9fnoOLI;d z@Lj=0cxS@b_F6z=x=$jXV?Zt>(IU6cg@>H5UjZ>vtZQJ`Y=4?1ATKR_R74K0ST~OB3iY*~FW^wbV4C9=! z!vcSW%^q|hWz5t(6}3zTTkW$HC` zvasm(zQ^^CFR!B79fGOOErq3LwUAn3s7(D0OoM;#{Hnh$q%QiJ;D@hSJ=(*<@nAEC z>^)ugloS};QmYp`XvjkiRZmI(ULMLZrVb4`gIm51Tw|E&G_amaM$~Q9zPBW;gep=XFx}I0%890Yi&zGooI^fa=r5dz`JG_19@u8~kxC?jb<}bbrZ+@#iIipJ( zeWsD+Lo&Nwvp9?nythVve*SzvmByLEkM}CB97?ILsky^&(5L=hZFl__>IG}9-^d0x zhN$%-trKtqSd?(`PKmY99Ur7~P-r3Rev@d@b7-(-S3=Agn0DL#HxKo#3}{?kgfpdl z_>{N#rd-W=S)wiv2C%)ps3^7^W4F<`0{#5FG-(BQOxacA=UNq|? z&K-D1uS9%AJ}BM<&6(BbiHyBCYhMO>T|i#!U^j;~a|sH^+}5}50q^Q~^uHfvfp zKY7^n=)L?f(-8YM!)sWBQXr+09Hpa`%{c6>V-Gp%d6X4FghwdADlY*4t3A+{wDNlW zWf0x)xYn}zLBi%NL6vY6QolE4-9rv9Vl1u``HRQjnM1xx?7yK#OQ{4=qA!YJuUP8cqP07!&7+t@5O;WJ*nG1!%OaGtjRf!wq*7n4uv^-lXr}tYzdMaMXS{8et?7qxj5srNut*7;4;c zjz^IVLH_cZ2=w7D^n{z7`Q1X6_#5G5noR)GkZbuWUe}}GSeRq3K*)IeN|WPP?(3TK$xz zKx&AFa9RjEiE;@-#mK}7yFlZ;@QD7=p@Gc>i_mwU1PX(N4q9sEKIs6Cfkf93`K9s=&HXG!Y~Q`N|n!Y*BQOp6+Kxhq?vSZfs&7 zzk>T~uxc8$oQd-+8@oIqGG-Mw7|5w#L!kTAtx&j^px&3 ztk#eeY8+6C1G1$eR9^A4MkM5)mz7EV)nx8(~;lH&?5PYV{L5~6);SEw26Me|DDzs=)1H2Tr;HR09$;L zUSyy90h(v1tck_Q@S-!;l*Z6dOB%_JN_RE1UB?MBTn`#PgF`vC4H;POcwa-_9(d*y4Q^TD$>U_ILhPEbB1$u*;l%jjkzL*Mo7raVz#!P{YWlc(jYL9^H zkScoBcO7+AUnq1g9B1^>ZA)~QIP6+< zk2jIkSJb{NzpFaKeiD#Jt2oAxB)aeQvxVXdFJbI)PBGg zhb`SGTXess?l@3{XvH!cq7M?kGtQn|;^obl!uOvXWhZk=YscY*7!17l-z2*4S1UMe zRjz=wzn*fJKk!_+?f=&8&d@(>;f^a(E*A_kW&go8Zdv9|UI1b?1nbL;KZ;Gmn+_ZFPg^2V`asRiM56 zxuqb-46lAGH6^v2I4GD8u|!u>*B8;0&(E0?#z)(EK(rV?-EHuTzLRUUt}UbGtx!04 z)>O#uRu(0+PGZOPfU9KNevg$}Yq$*p1rOv7K(9waK5wZRb5;|g6p4`ixtZ!Vc$HYc za{%&>J}?$aE1}`;+6jKP5A>gqenPA#bh$8 zk?9U^Z-WhSk(D$Z*Q5=)=@$sX>RJa&?cj}nqV{NnsVU1VxJosAq~-&VbT z$30DqRz)bSIng?&f~ea_?>xL{`2h1J@s_n3Ji6nFA!pj0ClsCs;w<}It-b1Z192n$ z`?EPv|_8v8mev{qCnE0?IYFH}-Q=-Oxc!%9I3fHSou zNHCNe+J{dN1`qxk;(y`t9sI>87BTs$mgUp*bmg3@d0B(mX~W^QZThhJ&vxY;BHsC) zLaT2H%+I9|sU4F-u^enLg2Z4tz-wAP)GtzP!C8x#lQk4YI_VDPhL&4aJXQO0wGfxU zrgkM{YS{|OvrJ`z*~WK+;`~S1sV+wR?iiI}m`wL_$BxOWqHdBBeq5)KD^0T#+NFI) zTPC$i<$^6e2G(6BfUR$ewOm)$>Nb(yy-Y}AOYMC$t%>|MC0C7P35uCI4EuD$_6pWK z)180PjZU#ruyPF%cTlR~t+L7OJM~U40+cADZFA zWnWV8tl@p5#%jV*Upm}TbAcgO`^gBV%wo#L&~K#@H!ZyzGhGHffd#Oe(hx)3G=&ME zJ=Z3#Z1@H=Wp`NP>VGhL;b^W)NN!AJqbV1N*nrJ}Cb1Fph?QW=shQP;K(&4SOP8z& z;(vV0nYJp`u*gixtltq83(0An9H~o#q|Y4=K0f5PfZ~CTu`A=|wur7f{> z|3Hx%XDFB68t=s32mI-|`zO7};x<=82JimX(?isiv3AmFn5Mv;zuc;lLIvUBSI>%W z8J)m95goAN^dvf9#Rb?h2;jj402JHRa=;FyOp;SE^oa02L9X1qPND|%JAXAbG&4RV zu=EqM%`+Rbt8E;8WgFjzkN2Nsr@k)X4?Vu(%N%}t>Di@eT-r*lK|k&d0WqowwN zCC`C8yF%@!06@2z5EYbNd)x%7jL8FS1XI$B8!O63WsW^q&YRdNp72R)rCm9@}@Yc zx>=@&X_0iW&hPpx3oyxMl@36u^Y)KU>h!9#-kK6)mx8~{=M1c!hA@~cAMnx2X8)d6 zkx#1eJ1NRx&Y?-(>FhuH>$@nusP69OR7O$}GxKJVZ50BhcnWZWxo>UQzmC`1GLi0c zgfEDdgA;5p+PQF_dd#O$B#77AG}+dmE%;L@#9w-4y1GGtx-8K&(!SzsGI-i*y=h|K zk~B$Avzd}IDa}Q|Q|bgOxzGo5?9%gUM&f1kT#E~f_%gm&RZV}I35oxDc(~&NqdaWl zmb;#@mMBSyG|nDJrhb#7D(B|_9o}E|4;bAhZ2tix{0M7jbf2GwsCId+pVzV6 zt*|>T(`ww^HvOn{HcpEPkk!Jqqrc56F z=0f5%2^x;72l{yc2;wC81FCJ}0}ji-$@Z%MO*STRIMRP)92GOJ_BmzTzKO5I_F3pk zNvSHXcB+uFBz~l~_hM)*jG^Q&C9N{JXB;UL-n4?xQok+!K*J_yJ8d+6;RHVg)!V-3 z>yg<2v!BupB;{zz8a$YS3d9t^W)xJuj$8|Kf2Jr3%zrH(z|J>(Wsx^2Z-U5sEO={e z#qVKLo8u9(Qn44)nqT|iP3R09Nplm+ufZ}dY5WE0fc%NemA2&74z%O={%?L>CS&%#WMgzTSbA^gUkNe_B1`w-~r+ioY`v0ABE$}sICkLQq2X+U5>lx#I`#(Rm2k08u z(!X6?S++B^&9y7k_6#y9H{E4ZgKO^p@tV~P^#c(Bz*qq=0-~0fg7LD&OH{#Xs0eFe z)nt`Pe`=W1r19xqoW1mCiR}N4J#pT}rO(<(BO+5l*$QG67a9 zUZ5%mu+N2AuYearlGVZtLgMFXJOfFTl2-JsSwsm-li217G^+q-r35Gma3H{iuIftv zb5%{vW&J1SV1kM;gc&#WmQT#iWr`nvpOM#T$} z8Q9Ntc34PMEeK?HP0ImMp$x=KNlX1E%}Pae5Qb94UZahR0< z+t&o>kR^tuyB00=ro|p7UcBQ&Tn4=EecS? z*PRJt@pd@r#`l4kU=oN4{KlepUB*;AEEIau@#y}C3o4?VIKK4ULNuNu(gqOraSwug>pQ1_7}zTF%>l z@)Z^26afr*9zgid1AGC15&S%KsmtWd1{x%>N)EwCBxPa{Pckcr<>}eP2mwoof;(*RK&KZePm%Vyo|d8d1}^vZdSQd#B6PW zFI-D2PKGpFBzS@t9QQ>5QVE4EDlEctK!Gd-n6b%#0%dVA-x@YjIQ|=yoO3`dG;uFa zCMYgO*AdC?bl@OrD}W1N`?3YB@NeAWd;5hzX8rpmWQEo`8%m)Z9lUNC7bT_$8Iibn zjZiVou&!SIa6hExI>tpZuoH>u{#M>#{5jaiiH693l=cmoT6R4BUul4t{_k1L4Hp#E z=hxFZWo<}lp29AWMNV2DY)$ofgIlVJ45@g-WW1E9KekJ&&zQ}AK&@in?oAK6-l42x z$v|!7q|sG&hJkM6*iQ_p_=+|%DJgl2Hb^l%2mAj{zB}>14vC)=1l~I=N0v}lq&Xkz zO-*o9fmNEDl9GUYLYFMC;>kq^x-oDD%XA4Y32J(B$%Fh6OEl-Dyr~<`LlZ6Xv^*1n za-k}g(IL&|d2-&ro?;WNiWD*PgW9;b7>Eo42>cfDcSb2OzPDa09c7v@P@5NcL>0wp_mNpoS=NBr&O_xkY0;ZwWVS{YK1$g1bbioe2% z9R+5Z$%if(7xlLy_*l#09|9X9zVz`IHx2HEIK5A-_~wv)$^N8;hF%R!X2RHqoM7CWV!9!Q20*0mec^ zP(Oe1$Z#qaEV(D>TBrychr^?e%bTcZl2MsPExU!@wIjxYMTw%i4hn)TSe+Ky*>@DQ z=_QK&7*Y0F|0f8gRgyH$KS9L)2_lWP5Me60qPV;gr0L&6pYblEK$c;4>c}=%xk|1; zBka1^<((+=dRggd2#DE-v6M8Vns5S1Mz5E+VF+66XJZ-lLoM4!pbE`_a^SUtO0T;> z=;>{7opnnUhT)Dxfa^g`BBwgukEU*U=jV~&5-diX>}9ElJq0kv-DX6=uLj>BbT^K? zgLb=EbKK3q=wCV);A6J$jlBht&J^Q(S80pv;~gpW_SrFeZX(qm8dyv-mxi)w8?dSB zAp>#WZ%?TotOep8M(U2H$^{yTK(mY#%xW7tW#r7LVQw^`C`V;*dB)7YMNG8NkJ zdcRK}8-R?+6Zfq1SYnH7urDHUuQt3H*zAlCEDlX-sV?=y8WBt2gf(tD$9Pquwb*6% z*JcH$dZ*^3@pltQ?ZCFDR>eI^P<`E@rTn9-pNsEBb>g^Yiv@w(}FizFyJe6Mf_0mh0*yUc#QPZk``NZ6gXn zLVsXsFP9lLvNZunS@e}~UIZV1(U#rWlpr?!v^hX@o-3=X#3q@HU`>(;ay#J4F%1IB z8x|54vv9#ejxJuh=f{F=%n7Nd#ISFBn8gUS=fB!!_qD+i?sp zThzt5dTShfCYyk)*~GRJFpOK`rW;DR@WGj{Rlgc(UTmCH2l9z`{UVZCh{#{!`6-E- z%DkCo{Y29yttr^~uav-5ap?elR%j^;0Q|Tjn%*buSad3YSA+@Dd#)2EfvQ(>{Z3%7 zT9YQMN}crDa;bH(gE5fCnu6hOdZ)p_P9d7~Zf%hK=gN>v8hZw4of~eou}rw_|zDVux`p z)GHFbTrM%RA~94$-Ynv6Is}9!dR;mu_5lrTdT`Enw+GkcI~~{c&|HS5i zIyDouy>huaR_c4%kB)BOJ-l0nF(xwoW&K?3InpO41Z8#%4C)8Go)O!U^Y z(PPKL?UT0RBW{ABeb90LsuAle9-W-+(;1`+Ab~1Jt@uxX@l|+(#JfY^msc9X&Tll< zSY9*QL_g~dPcFwIVm}E=_4_^DeSSGt_uG4!)BgFgU-0>5k?iHk@8y!r@2>9UR(?^) zy?mT|Y!{{R55YZ}A&#J*X4su9Td#x1?fhL9Y~(m8abpkj^f9Sz^R}>wtsa!Hj%{XV z|DH6NPF8Nf&dyuM#l-Z3^w4WZc-=;6r{RJ&b3faM3CKn3qN^cd+0ggPnLZeRlTr4; zj+DJm!D4?vWWQIF+3$yM!yW+}S{GXVID3}!YmloBO4?(MaqW>@&m~f-Tz9OQ<3!6ab@_2QS!;^}n`OXSC8=q1%sq2N_L-$=?odgu976*d9uXjN- zBB3SP^dsCUd&k!!$PH@B7COQ|03b@J!|4nAcrV*mYRb_ExWz1d2c*2Bc~myWo!*gnFPVu zo0CT|pgmVCFl#Sj3@N*uEaIpI^bG*bff*G6kQJJsOG`At8a>emDpEJDO)c)QmN%#@i#{LO| z3CQ*#`mKIXe%1qBa6VfJ{oJ0tV(=J?X^Hg$ikAARUO=v+|1RvA+(5(+g2k@b)lGC_-6??HU1HzNsIx5{v$--m>>`QM>v|S@qU7j z)3>pUu#r3IYK8&ZB^y3a6B*kD%LzYX@jLVO@b9xbp}%Coh0WJ((hr6{(Ds-886h>e zuhA`|p9=gftH;L|0Tau1rm89!MUI&R8w zcUL9}2D^)G*J0`Gky_aMUa=-N$_0oA@-g+6E86~ZTmGZjmbjaBAH#LV?hT2jZMkoH zlU>@5Z|aSu_Ve?LNu=}M0{)zKId2&|YgAYi4X*y*SMv0&r1cLT-?8B%K0~5Sozg$z z^MYl*Q&wI)B7Z9|SRS+sygVHqeW93lLDMC|^*-e4Ri*D?8$Zj1Mh!^&D9e=jSt!I`Pz=id$AQ{EuqX)kii+d>l(f%I(~=^0Lv6u}NiLuhH(E(-F}S6PUzq z(^$0NyizO-J;H|(nK!6hLTL9)cK}hy)5a`n`aK*h_lXtPy<73&O(H8d!_CO(dD*$` z6z-w&pSm4ZsC|%OfnHjirnFslTs~kI>>6PQW(vW>>~%Dsez!EFRP-D2jc-olyptcN4yHyhV`HuKL8cm(QU z0>F=>m<>CdN7pjZ<)rs-YWA{NTCcRS$pb|ArNi8eq~ug6rHpTv4%2_xE(rR;^?s(+ z8z=DdG9KTqMmfgd7Z1R7@yz~a+;Xg==LR}5F;^X}I%8;(v>O`~-0rk^n`j%DOJ)-@oqFF4} zd}Vy>VG}-aGisN2Lt=c}qK)O>4SjJEX2)Nh{vXcXGAiotiyJi%Q4u7hLm0X{1%ALV z)ButK(%ndllmZgM07Ey@HN=pDgoHFm*ASwlq@?sc_3?tOb-_;u+z`{dsH?6c!D z#+&DA%S!G72frmtS3d_f^Lwltdy4&O`o4M6o66~b4toMF4>!vv;QBYfR=04vlk?R8 zOIa-n6aMBQv(ZyAm$knyR6Y?+hY$Dqlwg3P zVN2__=97ZGHbGkP?f4Ku$(LhVj=?Gt`!v2qeU%T)%}V$ja>rG;wyWpQ^0zq<&YCI{NZIKZq5`7x_sa)847gt2yfZ*=y?&oq;!hA%>>g zpQ_Zf6F#@_n;|pQ`^9;OL5SK)-O=dEqXKdD)R2w)A8ag?ng`-_!#zvjtQ+ZD%Q@^- zL@BW+hdtVr)eZsEtbF;O`ZbT#jRieCpY$i7G(GVmkY#m)gT+Z22?@)bY_>EYR_ko2 zr!w&gH#i)lSt8?ekcdg5qF*1?@)-0IecrTxIXK*t02Fqifg0E~wGjPfW>@Oex6KEX zVK`FF@5A_Bf^>kwo`gWILG7ugO9N}4v8xYH&Oci$ZepHMXg=k|=S&&uAq@SGQNKSU zuD0jR@T@Yq=2MJ$N#ZuXeX)e2VGz&v32_Sw*IUm8H1aho7}@BbrN7ZGiFa3ZqJJtQ ztjuQdA$mdcD4QbwHq^w&9h~hwkSoN0K%+JxJSFwAeZx?(V^|?Ywb`m1p2EXaz!p;T zhmxCg8Nxbg-1CY2uFb2DSWU&1nAwEX4R-Y`ql6v7U`${yj_XIFwb2NVbi!Pty(O zM}JI-9b(lZ;LmOdOKB=>1m8-DR3E|bQ*h%!%$#3M;P^q=AZCG<-vwe#VKLOHB#>lg zw#sKsL0dX*&IB8(mI#K?2lAAsD7~>Tjxu>6E_3M8JH$%>S!HvIMKt>Mx);J*t(IUY zfu0Fv6qH*V)k$}MpOF1Sk8+;U!bt6sXp@Bw)aauYD|BG&P&MIf%cjKC2C7tOVw#y-lbzCbgk_9g$4o~9UPCC}je_dm z_6T2XuZ;#5oU!}C%r=?T}DQ;C7FgY@!vgJDreM%g+=-H9P zr(sU`{d;2=Yn>Gek_4NTIO2pgOhMGlQp3lB+F27nGa)G$zSFA8KS~i^Sh( zJNT;1!KpM$I>8JQhgLF9Q5BYmEDGnDKZeJDUgp;G-4TN*@BXJAzF@YNT-am6qlUbF z8uNQ0aT~Gb;xp~=FhP!H^L&(JK3jnAlR6i>8DseeE$mLZ5#?Z>bw-(IyTv<a{DHYYDy z!chYxAqF-UB&KLWuz~+2g%7(u*@nsd*_*((J&h?n?>|eVhSL_B`Uo7@WwzhNKb|Sb ziykN@zykIlJWnV&g$?KD5HCM+W>{d8*O`Ik;!uY`hbt6#6jN|=ZvDPzsvq$q)tOV~ zEwst+;Y{5fFhm9)F0jecaD!Nc(M~wqP>N;Q5=p@zzVXMVJ_Ccyj{`NZ@Q=~_obg!{ zF2luB1Mx0Tx}f~z_mL?IPQ&nJX`sqebeV&X^URP= zstDK-=#lhZpLBecGm||xfQv6(xdOnEvt^5P|d*bXQn9| zG3X*JbM;VuUJZHy64o2)E_z7&q{UVo!R?oOx-ARyjZW3BXm2!xY3-0Dq?mvlB>9*U za4iv$B>Z6iJ^YdZw$4rnxqdn6D`ym3=EMG)I}0s0^TNB}ll(bP$cmuHG0mdYl1s{2 zv$7O4jq>(raT3asQLn#mRDTj#TaMz&4CLE`IN*QRwQ-DKc2L>;@eIyvKINM(XycsJ z&-JTjCMo2XP+{DkIfXcIiE!l7CP#`giS+wE%&ek8?{Ks;IH(QLE45FqZxJy{{|UT* zE@Hn(>QqNxH|C#&&idjmR9EeviYEbB1FewAW2ye2i?5X4oPcA*Ve2{*b82BeF3nayj`7&SjAUW`*{igO1KHU%SdaT}LF*J8^}Za!bV~=hA$oHe zYb5V!Yt?@GpD!oK-YINKo$9aQXQ(p6sd^zd8HMjDc+kK zC8%q>=-Pf%%S=na=(20cC_B7z`u9IYJ@vjh1>mF>s_0t=35d}TMDNgAx-R=I9w2Aq zq7|ZK2L6^j#gTncz};e~=_4all_Sc^%|`x=-Novu9)Wykinf&;&A|>sEi*In>4)Uj zXm8whU%O^f(tOR$QH2oI=J;3?14K`+fMK&o;iXOzN}9Yt2c#FsfGi6W`&lb&Q~l;2 zsY);|#50fu4C{LaCV_l_!?vaqtt(6@{iKc=LV#szFR=e0@RL(p&_tvImeiwmQvIz; zLVgV_DJlYf4Qwfz1EJcGEbKi^C&^DoNaVOU#VMB5p8vO-=F86?Rgnm2tUjkA;)|t^ zdW~IpKk`9CNL+G@b>e-~blvc=;RlDq7kdPBny0<8!})3oQ@$)}SC5ZJ!#u#Y)b{Cy zf*BDLAQ;L6Vf5pF{&cq96(EcVs}v<>0p5=D*DCWpu<~k<9*^oQ)?OAP11&2-%ZWe! zB{2HQw$;6#V(a^nzVS~iF+KSNo9S;kX;(hdfg%e9f)Q8_pABU4(dnBKA^M57Rf}J7 zzlRV0sCtZ^4df$#gS1ds%J0|kN+f*_0?Tq3#(}^8N6QgZF$|*Tp0Q|>{Yd>@+Aly$ zi3Tn=EHq)EHu@P3BnJt#99H1Czkf46==8IR9|=}lhAs_i)f_UeXHnFlbf_K-=IO`4 z6eMYO8hxU9M390fBu|^QBK1P)M;n`DIRd^mu1v(v-Yc(@NCeW@SDU%DL< zgyRVn`r@{`{{oSPXav+cA^fKB2Dxt1>A|Wd^?HeuHjBGzdoSo&UY~VavHnt zsfF=W_nCwwh{%34!3MPsI95G^So}A&4tYG%=a^ccXzjfo9`x73@T&V(1VOPw=RR=$ zl+%UMO~rJ)k@A{)(un1_GU4~4;ETu9_*xHauc~iF00mv-VH!Z@$u2%=igCs<@?G{? zjH$xf-X%SfPF9OOnN2a?m<-d?A+N3^bR^<^1cPFpRL3}m={042aqQ6wtTV&J6@N9F z3!11dLzbZUv`rajnKYh8hSkw&(_vytz`&R%*;tO>>X>ETC+*Ro>@br!>L5yZVa+(x z)#n-urJh-BpDp0T=_q*YZ|8y8(|mR1_VPb?Adg|(=K`l!5dIkpt9GRt6$>WC#qaEo z%CyE4M(X|3X^!ygFnE17R5D5X0wg=u>ogxkLz{^SjDBDnp5eF;V&-iFX6~1si%p;2 zuAV?tOo`CGIxHhV0nU~uNcuEGud8^*R88RZX@(JsewEo&_$oGNCQ`e{f#7R!=7H8# z*IBaTV#nk8VHH1NhvV(jWF0mq#Pij0d#nEEA?EGD1NqM_gfs{RD8nP8i>!pk$oMD| zEKT36i+oMe4WeF7gVH9qmk+J3a!LW{U>wHsXzJ9GP8I{+&PvWhrl-bfo@y6CWi zT>r_mvoe>m5n^A`d_U~fM`>`7*|T;fICD;O?W}|!GDCp|#^+XIzZb~!7J{%>rF|yA zAb#}7YgJR8OMgLHj6A&18^0@vCD{~>>99|K>w{R>?Vol$i0<};ILum1cPhc12!t5@ z;xN#(X~#~L1*0Qb}y&9^LtBvB(|8%H)h|P2Um`VcM59??CmW;7_;Az zL2bRRrzp0i*D+9QOGtxlw|EsS(g`92sn6ng^eGH~_t&x6OB3+Cpc&%u*=eO1nPkf4 z)XBln&nlfU)rUKxF*x;2g{hcn{6<6#V$PqQhvoa>lHVMSv8~W90(Wa%c?P(klM+_q z#5R218myY}d`lRiJ*a=~#>;XSzI1$o|LJiAI&w=T{u}dzbkfdekcy{DE6yc8=vZSo zWybvFXhT}Y2OMW4ethnp-uD?^cho0jaNcHewfX(}G^zDW_PTqa>q_eKa4q2cSL^j|*3~cW>tovM z)5Ug|6rHbp_Q_k;;)6Pr%4i4hZ*WX*GuQ#tRJ=Ej~QP2urre(ns6(dN#Oa<^$ z**h4&Meq#(r*WG7b^hZu?&GhfCq~zTx_ifOH;l&6zm2xYswO;V3>zC3DA6EYa$mp8 zii)U7wUT^b>48v?C>1&-x+r#vPw>~fA4gAlzi)~Qra2rnZ=c(obDTS8CdG&DBE~^N zlo8}tdlN~q-l*`3hs@wt`#h@!&2RSPsV@JCjq|c-M*U3vPUPdw>EnFxMrymRt?pXU z`VY*Zu3t_Q1+ABJNIX<=VxGpGgE_29XwM}UlVj(_EA7npIKE!V__c? z%!0kqn*aAHYec6*QfZ@ZxK%_aARAB(BTq(j0OJ{0KsNJ+y70*JII5p& zH{`TCt-P5aIpeM4`w%kRL6Z06#}bmtO?a7s?sh&LyJbR*IKS#5Qlq1#;)4oJJjgup zJXoZYq|#d@nj8l;Jhx^mf#>gYGE3VxsGdWy?tLz!_GFji`+kezR~=72Bt^_Mxg+(j z4>+w*!TyAm(_$D2!_?FW$FKHV<4VAJ#%1?40+i?IuFG)|?lhi-2VgCm&78d^VAVz6 zk80!~!+Vh?X(==e&* zUxcT8r{GSW-5c&1VnZnz-C)TqjnjD7|QUyzKi9 zEj$mz`Y~xB9`il*A3W^Jp_@l9rv5JAVHm?2I{YA~pl+@Ml~#K!$~4gpfL&aH&q@@h~qx+ zBQqbV#&od-ftbTyyP$J~7rV)T^=}y7L_gKX1RHcuc5Il1i^dWb2_*bqYdKXDbYG#& z8te4y!S0_MN#78WB}wE@*+X`0ye@@~bQ{K#Yb@Su^?nUm*(8Gf2xTm6ku7@?@OZrbut#5=qH6rkMwdg0+@ z>{7A#5w`82y2wZ->rN^Pk?)3k&Ggr!3GN$$67!ES_f>FzKHH*Hf$qyN z(c_N#YY?G_du&>1szu4Om2YXerLkDwrEYfM3OR`QE!*OFpi^WH`O|R7ON#vUDMI>Z zkY8>D&dVOTWrN zJJJ+9F5G!>Ja~Rel4Mb-v7xxs2{ud)9MB$IUX?pIly`6Qhy|p=M-aY>El$5`KBBuf zii?Sc!q{?wB1J3N>28#CIxrBsd8Cj*Q z>w1ah#;e+q8EfW=YKqNqJ_Tsxp~2boa|$lGpUFSiAj1a@9T=+XcRtK%Y~g zPLU_UJY(nYM}+4q_dFP}WWU&pGcT z=Kgq;Zi~_pF-nI>o>dxbnXp9f_>4E!*ci~4UUFl*^wQRed15s-gPhKgccJ# zGd$C+3%O0$9W0$ppHrs(E>EJcPQ$J8X?W~|(+oMlz*ZWAj+-OY)h5!#YE&yK{bEhV zOv^K~3h@Q69}}?iz6ydqfRwu(a|RRB77drDge*{@{k3QMUXsFWNmUr16CU51vZ|ZGcF;*JXSbhD=zE@Kmtj_pSf_+%Zx^8 zkRr**x2Ft?Mot@&2?4qZw;576^Vf5QY+0!rqFh#ZU=JG z0=`+L2Z8EmThAJ60f@+d|SLY(d#fjlRz({7vw_M<_fs-KO z?*uubc-Eup{GG8HDe`Z!ajUZsI9H%5jEzs`t1?nVl-c^W){{I25uIzJ-43`!v{4U) zG@v!eqDOcovmSQly{@X1$h~A^cA=I*L*h?uH4mj91};PA{ip9SHcUNKb%Xr4(Gdig zA2AeI&!>eO6=FUZb_PD%W=Ww~nsQS>+@XfJzZ5BHFiaO~5E;7oUM7=F`FIO0j6sA9 zm`){u08d2z22VszdYaD2l|K-{X5hF8k~DM?r;MkfsX&mVo3EVwFC(;MDWZ3 z;0RJWGKgSAf#Z-4g8XSCB?v)on%FPjc6JLe7_5x?(x*qkJCu))C`B>Q>gjRmsLM;1 zRMzPV%2exqTdnMSKUt-_GPHytgt&*lv$H$>ED)Hk3^3_&T>%ULxOLkfc%apv|HD&Xk$-Ohaaivz)N!*EcUpj^9{6_dqe#DMEpn1$%S zjTfD!@QjA7S)1!;m^;<m_;JDRfrGhVj zkV)=H-zFMY^W2V7YWA6t|$8MM1TYbHD%Pn#k zOriK}8pllsD&XGq2zb3BA4u{IuzFF?dQ5Z^cK4LuO^XA4e|Fpd`RsY$OuQ-m9i7~Je*Z+L1Xg%)v$mO~Tlb1B~ zA_C4fXTzMh{2YiM=Tb&JC|8HNKUOyH5k$3*tSOef{xLNsi2B>hHF@EdbD+5$uI*KZ z97pvS^GvmapM?7#9EgT&IbAVmZOC3*Xg~gR3kyh2ZG1njv1=K@0BVVzQs*ZQITk-K zNo09I)8r9XK@-Y!uU+Yo6UT^${w(Cj2VdE}oXflxIxF7U-HO=AVOoYPuHSWnW{HB4 zdb;6t_x@ilvYM=MpP>)TP69Fi3f(FxR0U$0FhtIJaZ?^esE&sv>Z8< zv8{E$tI?7t65>P~T_!cTLMD7t3bOmM4bF7MLdYL>2fJH@+-aeo{?Az1fSw0V%c5w# zSL@(sW%HyI7%89BP|+2x{uj?9D%K1OgXW+=jEK2pJGi&oiV$sJT$fJNo5(mTM{Pd7W?G}v*Pu)%la-y#&4%86?S+~W36#!aB< zMi0jK4nO9>Zjev5uwVUB_Q`c;eP_4xKnHKq@QeD+(Yj9qY^>~hfkGW9`4#p%6o-Og zu9eP*2`})@KXS<5(7A`c8oMLHUGm=RFU3}!$4nABZDp8V^!Dq8MDEQ3*kttwJ$&|& z>1Ue&U*$C8?wIUWHSK`YQS&?**rZ_FCRb6xRCfn7>k6&MufSq z_dvGAPdgv_OT-cU0nd_6aqHZJINopa9dC_Ty%+q1dc31BKNjEB3Ge3uZsHw?2Hey` z&8sw?P;}zqC0>M@?iRXg87?copa$~lp!tX%$mP5k=oh=|VvmI~3 z5=2U{|HKd>Bi;W#Aq)3a@KHiQDJ*Ih7dTA zejIciB4Oq-GOp15ktOLLko{+VIpgwqQm|KlcnhU&JrJ0#){*dv?H1}E40bi%{cHKw zAy3LD85A8I@G1nPhb`v@1$>q7l$zE24QZ#zE&H3?L1S`OV zAn41QO|XQ|=flv1b@M03A_Tqip~nC#%crJrT;4+bW;AQ@celW3LrC`cfq+~oDWR$i zi5p|@khjN^=Vx7F#W$_wO7hPgLpYqb{u2;LE!C;G9Bp_f_c>_3W9l|+O)Xgs-zzX` zUS!ubt&qW>?oF!M7PJ%1^<;SoVGr=dzrN`+GT!R&! zrMFKXZmSt1ui{CGDKgS3N*esA8%>j6iu!CAJU!h5>y-kpa(l8X5L^Nekg`ty^#%8B z(b}gY1O@CrpAj9g%kzjy8S+yJcziLafoR!eGB>FCxlAd_L+}6xo8O#EAQ}Y47%76g z%mk5=(bQeuRG=WL<~#oVMDB*jQMpGYBa!nf^dl-<-Ki@~j185;)E_CyN8YE0NN$-i zs-nq=P>j_2%3(NVax!^pM)f4c1a*bq#}LD`5o4)2rt6b(ec^a$4`cZTf=-V*0t#wV z8(>@u;UIYE#gqqdGUP1sF2^(EB0)TVroQ1-?x!|)?Iw;(_kl}3F4x-XXxb=PBv23? zE@TiFc#q!4upvS@8EXRijRQbcc|%3TaXV(%q`rE8-(hk2ipE=x`NW3$i`0lvU_Jyl zQ8!$a5=)tkAcL_yc!*wS)c^Moy=e&p5s}Q6$xG-1YLHiHR()#Ub$}R`WCVhM%La6#Eg5Dsr5(eghjU zDPpBdS<>>z${ZkjOXS` zPQ?h^oAq_(xlrKINOyV^AxBiWs=0zY1sySb%z5n>zP~E}D4V=9<>0D7J$LW@=PGr? zBGqC+`a$sVPy;NXa?GrnQ}fbXJumnb7AucUgBhu?69~LfDIJ%QsuAJ#JQ)_ zsw7p)OQEkaym?t#S^dDF8Z|5nsaQ2XVmeuTxE-sf|C6ypLv+vQnyo}<4PUb=R(QJG?i8ik;*itj@q^K=$WX* zpgp&7UE00>S~%=G%-m?dnMDzTTH~CFxrS3dMbaOtZBKPGa#^b=aa_%%f+fq{20tOeHD!St@`WpG73(n7|UcTW8VI$v1Z~o4U}cs z1o7aK88dwW>U3=H$3L~U?@x+&%~b8%`7&w&wjquf8Mei;yby4m)a3O~Qq%lNG~wGs zbE5kDq34XLN?OxK41VMs$_Z+DcdUf*T=Gx-uK}e2aDqnSMYv6PxqN;D+`sBargJ3! zvxM1Jr)Gu-O-zI$ZyN|UUhK&0MLYgtdgAL+D)=F}Zg4zFGI7FG<7OhE00h8PqaY)| zO$^=#7uXcg$xT=s4VV+T_RI=pm2&VFJh|24ao*Ce`epar599YjNFcCEnbwV>m}J$R zI9@bk3{H)0NpX+{7G{;BS6D2u>aM!|F4KmzeoSLjG|GCzn47z1*{@d07r9cgI@!EDcu*hRDS{5te31UNovQ!qSEGZVveH9 z9fn9jjVijEie^^od<)ezA`$8W3yOnRN};SN;Z_+pXLe-9$9uH!axUm(_Nbd)yv%RT zQpHNA%UelUrixAum3h?3zebmJ4l?G;!R&h3a9fL6oIeWqUkEQy8INuTx1MqAPT zgOyvMvPRZ}l47>O7P4fqXu^ztWUl`sEBr^MdY?}34~KwaVT=RS7t7e^yPO)3;rL;+PC7tKE zl|&PB@eUiS(y@BU>ntLNy1u0VY^Epg;X4-g8%?6OZNk^{n}=zv`@+hDEH1@n@;3_; zI}Ly=uyZj`~%$(2>n&-&F#N7%KB*Wg8$QjJ(&Z~72xX-7KT+`n3EpcgJ+ z?-3vO6#wof-^ARjvfMQ6w(MUnJ+@!>5vX$|dxvE(RiSqfb=lI~^nnfEJ|nFMlIoUz z<#@#LE&}PL=uZQ-#ttQjp{x>3xX|G-v0m|sms=w;4ulqL{^Gd-w1AHK4p1q^!#p*#b3NA{_irzCVUQOckx^#g-22wS!jcyw@yz*%1}PBR z%5OFNNN(qpc=OD7Q-xox1>Ba329Ob>-RXFwai(y%ZHW6a=-YN}F&&IaG$=;BZ1Ju7 zg_0C{r}o6ZrQY}Y;HD-GVG8e3f^V=exrs67b|ix>;1`R$*#d!j<~JHzakrlKL?}3WB1hjKwjX3_(Zaf%C!X&X z-3!2&Up76R84v3PkAe*zrjF$GnxNjkrzs&Qaq6!YRF5-Y@R041jSJIv88($C6Zsj% z)+ZAy|7#CUvLo51Ruhh`6Uv+7dG(JQm;g77tHb}t4Zf(%>OYufQN@M#HQG0~ zwpT|S;75Rc+P+Ae_$QpDxyh(EWV#8(t41LHRi8D6h;eu*3$S;f)E|H}t{!|?%ca(y z4Bc(=eZbt+2#5v0x;sTQCQ0?aQg2P@`C$H>w^vK&Y=K@>Wzr+YIWH>B8wukD za(IL5fydA<1d)*yw2&yYzh|)TO(Nfs?w_kyND!N_)p_`9&HZ8TG9{jOH{FNJ{cl5T zv@>V48fu96f2aHpcEXL35^zu~IAvEcI5@UV_n6qH-({-Z_2G5B->O|r$2e*&LJhoa zqF?n3j{`7CgZz|pB%?63Dar?GPZ*o$73Kj~T5-4)jRS&4^ z{X9iy#(Ti|aTFtqvM1D4fp*mi6;0^^GIqndlXiB|;=k|2S$11zZZVWHzrsF^)tBsy z3*6P-!Q1cNZMe}1F%u|;Qgy{&^<$#CWqrTlj`3UoCPP4zG9OKGgHP6R>$&=1#<*+D z2!}O2RkJ};eV?J*4*Ty0FX8=ggD`_#1~LtHc><65?u~SdU-P}ARQV7`o7g7qig?}SS`h(jM zDjr9A79~1^D$x9AOHIU1F+NYNSb6sCp=+=gfHM>k3Xe0Q0)g1NiW#UB@U}8~d`<=W zTJ^p(P`vSDYAEXh5`Wj8V(ooK`PR((ejn$W)qj+#q0;1ColBV8mNDQy`*$ni{<{_H zxc?{~=?$f;M)Xd~r5l}j$2YcF#@&53XIItm|Gn4Wj{zwFynpl8jof2d0=ZW${N$i( zak#K@j}6?8HK_qGkS zYt}xCJS5UJYTf%qWh;|C)Y6SC0ZrH(l>-*JFBaJc?xc#2BCtjyO`kd2W|^b_d(xA% zsEzey*(TX8C(%yhA*#dsdoV4bQ00GDu=>9%7unVc;yHdt@x z74qCT|Euw&wK)rSd~KnY;BxUGO8_7mv(lC;RdCtKGQ3ZGQ6V}IwvJ;P zk1L)^t}zp}KR@Pr*J?4(KhC6yY`>Zh>sx-FZ+t;j4OR!>a1eAW&j#b6J*9S!ZOama zur!uv376tR_MIrw@HM>C>aHPmNv|lPS`$zwHeUZ{omY8NnXJ5%@P@ZGB3$GZG@qXM}?ozY#2) zFciv-T#8A$X^HcHS`x&9mJH=F^bAtmQ!oqQ5fUfViA^fXdk`lZn^b~w6J$;v;8-pc_I+nOH86zw$4LkksoS(D7&vvEs zpn88qtIWYd(*E;Bc!EeftUpVH!OAlJ)TU>=kLTe1abd!A3)Vg0T(|7=#g<~HO!-b> zB?-V?atA_Xa}v~7bLlkMI|lC0X6cyuRPIlJ(|9Uysw2dgB{<*<>`+(=e&|hOdD#M; zkQ9LAQ3lT8VdUt&dnLtqXvDbnV@-fxl0r;mtsHvx)qy-;@+`hM#q{^xZ8d(hkA7#1 zOhBZcfHpT}_IHX9FfMoQaHy=A87wpXm@l{^t;;ruKw=PS$LPAo>5 z+EQKp2Wxd^r?I@=mIz`fLq_{RQM>+!vwi1HWX*}}t|{C-NhaqDcRKH)jN*~GI(LpA zbBdjR?V<+q%k-E?;1?9f{Nwoh8wV3}jtsJ|K2wAxB!3|$nrEbIjIh9-_e&7+qUOVD z*koxl)Ji z-;UkDWW3SVbgM_wI-2?e_lIy_G=QLpxBz$~sdU>#JLR&eUk!Ecgz+?gc_t$$7(kgl zN)n=kf(GQicmV3naXf~NIT%KxeqV|GeQ+T+bkCvPeTN%0`kOw$bRsOJj>igw%qYLX zZ%S9;!N-Z;r1$+*#7i)nw^%EMKW4($xXNFsaQaa8j*&2_p`bpw%b?e0g{Wa84q?#i zu~_88EyO6xSc5W;mS%N50nE{q44^p*Kg`c`NWrTZePl* zJGcOoto?8bphXr~vf5)x8zlaS=4yT*AM1&7lt}4Pj(w9O9%@&hy*d_GYJ6(du4#2% z9QXS5fGfU%Pm5bpyf!C!Pn@3uT9^=}OlwAkVyIVF{9-~Ji(x}GI>wh{s8oj5Sl=WT za?E?if53b@Xe%TsIkhW*Dsy96cBp4czxD?{kL`TdV8() zYJ2zk;t1bQ_;N4J*f40KwKu;Snu1+JnP3A7Wt|AkTp_Blxxx?M6$fN;({fO%xC#(6 z2p@~b&KF^QG0qTo+&u8x%53>OAJ%ltvkx*psO5|R{ETM|>E}zf%j|SC$>WtM!q~Kg zcM6C2W!E(Q(PCN$e|&@uB(oYR>85EyOi<9)+$XrQIg5B$cUuqmm?#FwjggB{gcnSV zegmk0Rqp4n1W#7nkpP(-kbe6DLp($Ya>0~W@+1Hp&yev z_$BO1nUfm5=(-$c?*(DNbi_m^*mx1g0+IZgTt(U zFJS!l9{`V8Vyx67%hyUn%QZ(%;>+b&4F^_99p0o<>$wDZzyusYG32T%`ZyBDjyIx#WRk0B;OgSd!)y^&1=w48zNxVpMXQ;4_cD9@EH@9bcHJSO z;_b_k2_l~Iz2qUCXbhe85BGQJw)GQ=vn*v}hXPO)xLeZu(pCRoXuMa<_5S$%X#D=? zT)WKw&2VknSXcq~#+bs?@CFNi#}IIFq`V)yZB;NonZeaRY%zoQ--{>7rcykA%iOL=I4htc_!fTOAXu06`%E2XY_&Q(l)Xcs8^YZIrzH^Wftsg@G zHRIoYrD^)=Cl`JnYH!c7HD7q-Ak3F4v|H{9)ZY*24`q$!_Yu6Kn|HBh&3bjZyZHI! zMK3k8$~`D>t1hx^0=Fu6Rk`aOf5_xzSv40k#hEfH0+ZW%+7bWv>@mq<{bLtSi9mLi zCvNe{t$4Wou(3sDJqY`O>6UyhoGPu8adaOM2zGDcI3N$p$8dO4ps@>*?y|EY7X z12j6IDfPT|pYG+?@_o;rF%g`{ry@<8c8M(rcfUh)FpMcAL|lm{J;6exic8=^Tfd_r zBm&nf-b94`U`k_m5q)iTI>F#A(I}kUgRnqAylO*mFg9Jth;@gUo?*VMvb{k3Ag zYG^}c1l7%dv9&FwH;xcr+O!wXVSmnJpnKyOo(s+8Er1Jc*m$ar0$C(*$sS>h7elPZ za`DZo2acdPY{RxMRaXN;zzQeKoflzcSNTxoMeG*IGhHVLy=*@Nut40cetn;Rthg+|&YC1)nbIFc2ppjvq>k}cHLJ(VHH91*Fh)_w;Dxjz zIl+C?xC9rr!@^P@$nS52wnTqzPHKJNDs14f=1(@uX;UpDwcy$3 z_RAZ`?K3IRU&;1=)XgD02rS9HvCX(PqowF^HzB+c(>)J4y!YH{58`-_qOc+6zlC|o z8j>V6=1o?OEMCX>q_kWXi~KUm=x+{z?RbEQE!C>g{}~}HdDx`W=u82?aQGnGP*@aZ zZ@p~8>@um2O9Ya#k#B&zc4snV;4Y>7}m@~g6V$*Tdf2o5I3@1-?S5t`zR>`-s96uTC|J(LwZk?A*-7yemB z7g?_xeiibEqzf8=6wPi`sISRwY=zhNEV9h=WdvN@JI+o$lW8PyevFgM6V&l0!u+QI zoOi_3LUo;Il+!P-u>-VSx@mj)szn_cUR;jKg^Pfnz`>b zo6T7|1iu3Irx%%%3%t)pUeOx?KglDX^_93l zbG_xD6}=YAqZU1*E~3fK@Ap9fAWDi%;dt9QgU;%6ZZNJjqiEEVhtvTHLLF!cD-rfy z7p+8r<^AOg@nihQZ~b0$Pgy2%(B@4DP&p^O!fx$?{RQXcAG$;eu$8<@T1}wf!>8{X zwXV=QP;qR`ZYeUxy-%3{ObE9%2fvncOwmq^`HwR_Co!WWS-iH>KgI?NqC!6_LBKiP zzAnm@eUNv=HA;~+YU_a}m3OkFrr!%|8dzdA;p^~?`EQIRBMc`8jRfHcoJJeYAtkDA z>NnWGz$`76)ol3qc>T^Ad*O{e78-;+ycy@pwe=)h~UJXS?azyj-0W0-|)O_mf`_hw_(V95e_IyxF(9|4e zx$Hum0P?2gW{BVto}3`=V1DCr;Pm`N0sjtUP04Cxfj=ge)AhTha221E)X+CW^YN=- zCirll%3%HrC3wPP%UsXYH4ne=Vg& zkCshjE-SkWpAS<;dlN3e zgV-P2G;!p#_^k8nZ-b{R_0n8Fo$7wYD%t9M*+d$J?PPv*3T1&F715xFSzrU+;2k%l z)dv5>ASWhkmG9S`NYi+(t`~#d3+hoS^TGO@82)EIr3J-E10c=Krmo)rxE3?h^kxiu zC24Phq~`nrc&>9Fsom>XVnf`9xPS`^LXvwEWisaK-^Z%!>#|gutB}cBKWFt_D-7qiSe4Q7|<_d=!t{SddT%H@$%9%6m9IjFhD6@*Rvus~YEGf(sKGK-F zy{+a2A}s-a9#>7N?fIsZ;`RETcAd&Vnyo(*MwsVh;nw%4aebqgBH-TOx14$CpSZ0i z74)We{lY@!&uEp$7`=S5s_SbE%Pb)sm`I)c-@+ zTSrCxL=XQ45(>zI(xEIV-6bHkbR*r}9U`TG0>XkUjf6Bvv!s+L(%p^H-JQ>@pYQiP z=Q+PWet*DWIrE;Gow;*o=DzQJU6>6bZdyJ=J=qaaG+@}Xd_o(|F36|z`j8|nZ*aDv z5AM4@)INiKNE<0zuyF)n8S@z#T4r>V^{9H%oE&lSG4KBqTNvLiAD?I?>^U;&ws|G7Xe@_Y%a*mDUsI&+}wTg%%!G+cc>ju z!V_MJHJw!toHG9&S&Qs+J+LWsbZ#{k^&qnuCeKwYYV}Z0J0xOlJ0>!gOP6g%dWqWm{>p_)6+Wi zoRgq1=_q>6q2Gp%0LsbL5w9RAs?1frH2bQ)2W||CH(&?RMgp*e!U5t3E*+gKE!bq` zbETGOU)&XL5ESK5FX6rjtK$yLmZ##3iR12i+l5afAjhsASEV|J*~{>#Shiq7`iU90$i4iAPOIq=)FTis)qXidoF6mXJMXwHt05TaF3HXW?5Ev@ci zLAD}}-<{N!B}(b+fn-|>vgi9!{Nfl?h?KR&=N0FQCS8ZpW)+?DoU0Y;-+V>HR|D^3 z-% zB{7DJ0(XoVBB{d+#iF=S@ZbXaCP|Fa+}%Gn_oa+s*&DsMs%Q|q@%c+pw(N*{d`x~8 z8sBT3R7v=dLgq{wovJmPqu};kYT}$n5RF3(rdm&4>Wrsij~kzZ%l7&YXjx30IekDK z`f$F8RfPdZGhLk2GB@x75`xIKj16PXW@z&8!JIc+$6$0|);mco#mQqn>PpKx;uDZs z=Z_{9d;wq^WUyS`myYa?Uad11f>(j)^=@t_QE^6Obptt3=OiT*;Oau(P9qBW`!yZ& z<5AK#^*q(&A$EJ^&;6JNiC>eam22Ml12Y&Tsw@7DP?!(ZuJeBXVFW$r%xs@m=p5y zfm!N9Dt5v+W9E$k?Gh4dvvNzB+t?E-bdvC=5)*>AtMoK;Ycsu{Y$^YYQ`B>l*Eqy7 z`Z+%;{%6)TYXUeHT7d4*8p$Zdj9@o`5U;0KfaFlr_72RoL)S;g4%_thpTcvSrt|!T zJv+7QQr_qo=vVSCWP*bQ;b5O+TPA*l6a{H`89H1_J3F8&xjgh!84t;qEb3%+bq(&G z*}2n8e#hEleFw->djX?vK>F8BqhU#aox;qa8ftAZ7?BA=gs#!#DRk93>b z67)rj^hicjs1LhDIj-z&tnA0YD2q)liJ&sD0i!9J#O#_u^`=rtX%Z!V*@poj2CiP$ zg~%aCPkh8si4O|5Q9--YSY!*_=#g&_wo+St6~?{Q8Ro zfY0baC@38EJ@xI;!GDGUe@&)EHaOV!D%2M{3mS5ZptX?p7w65)gx|#@A%RJe6GXVHK#0L#z+0213ScpwCM7>w8(~hzk0_d0OEMT^+-=k@}Ao}mNJ7v&7*aW;s3{QWmpv4x(>zXdy<3~cYAHXdNwply4Ywdp#8c}d{0^;r(!DGCY8-p?!aqy09Sr^tHuBfO>jzi6hHrh}hFlt-0mgeFq1eDyAE&Jn3! z)8V03kD-*(vgcvoNIaC0E@?f`k3X1FsAU`Ziy5ENKC*k9eE$x~fN_;eHDrIwq;-*@ z6Xnd0in9<85{VC8If_osijsL#CUBvRmxhmRT?SYe!B&q6K&2w43VR?_7Ksth&a}pq1xm3rVY5j2L&elYB7|a%jNaG*^Ph zD>X#m^3dpZKmGRbi&5w8^#WD%jo4cUa{+L4`}9%Xlb*^&pcI55fa&m*7hWNd+lKTj(s>~glMrYhaeCZm^coYcDq!dm4LyF}U+ z3_-ZBksc7c;&?}hcyEyYB+9zJIT^>iHkaSDZJHblHHc*Qbcr?B!>b2zLpbG+CO=L{ zUCKI0w3${uoqpJ+w$sa_?PqD1%`BY=u4xr4GCJ(kQy*hL*h_SQ7=-HQY8+Fa90b(f z7uTW}0<6aCNOp~X)qO)%m+^4&qsqVP0#Vhu2Hs;^;?eG{u5vPCpzNJ{5J4 zAlqY}xKc#8@HlLUG^8ho-==-ts^>N$uklRscl^voLtJ;^d94uDYI|WjZw!9^Bld{TJGC6pt4ID<1?PH}*)sDz!=*4w|udxktw zJzHe#+#%#x-yJCD zHjm86oq}M8LXY6Fh?zby=+o#KI@?x90^aX$ztzF7zfO0QcWleQ`EH={X>(r$c{0)n z^Ql?Ag>OiHJ)dn$7P*)y>ecu((^pP6%2%gY7B)*a<$kQ;1~?!!kbvlEWxCft;hXz? zJX04_^jihUjG2`!M~w$>59@JM{f-1`NGzkL1tfD&U=G#tX|#fpG+ReA(KTK*F4xPj z3OPDg;kosbt0`rXliQ#B7X4DXWRuDBIu$vwOP-PT1))p487!V(CdNkp2Ou&5a}>qW zKA&7Uev>!-OWx9LJoE>y--|CF@UK9`!XiGTy;fKz)>^x<#4ho)1vjiT zb=n1MB#tL=uJBZ|HNr?%cwTfjR^8_KmA1WLDrb8nV%WbsUb|bqGN+VZu6UxiQ(OtYQ)Pebp@{0R1tmh7RYD7-12!t_-32`!QYV!?O8nwIlMLlA|5Kr zTa}^?OkKUF4?PVjU*LJXr9JUOL=|&dT*6*>uBo#=q^<4fa+Urd=sNg;V{wb>$nVmQ z72U)cMGX$ zpisfo@Of<>A~KTK{VAdP3S2KDu~^k4-J>TUAf&e|Jug1oVsln%i+qmwL55PBP}C5C z8PtDcm`6`swllF+85K~<9L!7YdjKK}K`+S4-75BV(jM#q99cyHq z6{4DMZ7Er_1R_P5^>%qJH%kKdV&Lzd>Z>EmAtc8(=Ko5Ppi0^$cfinKAdh@o#j&GV z_171eqP+JwoE3Z9V5B2?HlI}xa9L6iNepAwq$Z1g;0?kbyT|I`lX3;mM&whR%97#m zlssiO$_yH^n3NFc$?gJX=wuwgb>zHZzBqM&x>7pMH+LU+hW}X|$Rj6|>oC!b$3;exds^^>1aaE))d>p}#pe7fVpbI&=p^^- zZU1X=9sNrJ`b6+ZAY@odg`9xAEp)AnA@GIU#APHs>tvk8>X%?!TqaunlwhgnnJGaA zhb|LM#+PxeLNV6QV80SfCg{#iL!`uIWg|FROh+<)%Q#q5pX4>@MQn3~eZU9r024ba>+0WrI!3bu6g5ua1FclZ99Xt3}deAfjEgYH1_;Sd`MTh)vvfGOr z8yBc8=}^8bL+1jG?Lw$^dA@t#ds35_Qw^$osd57C6e*Pqw@z05!}2%C4XL^`N>YxI zjQ-x=*hL)+G#?k522EAx0YD=Z#pnpfr!V6V2aFDcUF}Ncn=1z5SAVs8AxE zi^CwNmBU0z3cxDvNm)}@Fa@N&2_9T^vb~KlY9@_&I8_$L(0qX@nCj<6H;Pm0kZPHg zEI+?%YBk~)hiT)HyX}S-gr5<7oNUIOY@jS&VAYc!p_XsQ%csV8u z4@r2R=Z#!cj&C$~j<3ovg9Zv7F%o>hhpB7E(`7~~xSKd|0nb&l|mK$VL7YJ#NW;h`2C zzboE!h`c@acSKTOeXmcXeI>@Q|ISW{C{N2NPjO-#KZawiQ^eu5-4}q^0K*iH9og}l z2KQ&vpcD<;67|n#AniTiWIS-Nkn|fP5wi%w5HhIDGOa#kw>Ow~ivJ|K@*B3mmHQ|v z7@@C#PZbf$O0EB#DEbs|+=$A17_6CC4SSC_Rtg2Q_=dZc9FS4)ZJ&5Y?`EOYaJY(< zf&@hd4N;5=2DHTQys`XIp}dBq;KWt=#1y?8v(V4BS9b!HNk`Nr@ltb{AK5D|=U<0p0`a@~vA&xJ+I22vDt8$YKSNP|t9 z!+PblGRl`aCg=9m<~nz~ zK5a&}7(Z4l`@&0+rr@%v`$TQD>ZiDQg;eb)lYB&CB;yLSLYzl;ri6v+KIZ3FJ{D{g z|9(H`#^E3_{^2#;0bV0>iDI_)8CVG&7UDVK z2}+JeFUPRFLau8$h0F$>e^pa~ob!FKcibF=fldt{fJ~3w1zUFX9sE^le45?09qM~o zU$5)1aKP^CWjs=RNx^(lQbZ*r)Oy9>v&zpcosppS|3@Aa_*< zZanvGi{18dLoaSDN{dg;@_2oYZ5~lI&e)(y5|~kS{pNnQkXSa80apCj>eq1ErSh7z zn^)j;fC(0#cMJpif${2>`0de2)yrvfj0RG~ICNtMGZ@#;*6@j3hm>YKYi6XryNQPf zL9B_#{pP6+bpI-E$R)KJUNGWGZJPmk`{~Wj)UyHJ=`YH^k5^!Kz~u7g-UZ@B2E-{e z-Ak48?RZTu#?|-f&>!?y7eXXKDu}z|DVtwT?Q}gKOLGmt@lyZ6YSy%GNS4R{)6#(6^6mT9yHT$iTu*|ymtx+IOF|(ctES1j zfL)2gdbDa!NEKlmV0`b5*xMAzwe(iP>v|Ar=ZiGaYWr}zZf?IMz@<*A{Rfj)5#IUs zSp>iRa@+ie8ZTNq?+4a+ZAsB@aLFH`7ke2M@HCX*3f5gZ_X@n;C@7Df@3HZRg0l-^ z9^7jok5G6G%me=g6kbCfh1W>T$2&mbHSYGMlwjh^Rd8TAgL|@!%I|Nd;rF?O7yK-< zSInXDXdeHlc6#gdcVdo z#qw6WFop($Y@t7shB2jqEhh#OWy{e%l;EXq*+(H9hFivJqkP3F&bT{*UQ3U{Lb>vu zN2(yAhzW*JmJ~5^^4HOS&tk@XCBFp~54Hzx#O9H_0VWrDXq&)Mfyrxz763050bB;K z6BPsHQT(ab#4~uTT64KCql_Mt7S9<)&xk~_r@j{s`B$$m4aG(1hnMUn7hH3i0)NNt zQpH86CtAj0qr@1(-q`^*L}1E?eeCl@bOCY#-|Wye=zDTft;W^*sF4(3$qE9~8#*B| zhH-%s0DK5_B}C_5G9z7f28JJM-09=(zx#6YhBrPxE^9B&j9cceF-*v{!umc(X%_~i z{#xN!TPpd*W7PL;?`$a46&$(WDkQA@5BgO*85sz-@PIddJ6J7Xb_--pVR&EM*(PZd z+5T+`v=qsCHOr-${Y1>R=yA@rTS}Vu)rBs2UaUM48nhL zJV(iL2LpzEs~UL#z{Y`~eK6k)ef!$!_E#om&@P>!-~8gTlZni2AS@r61wbFFk*DfN zh$?P%Th+#>e%@m0axn5LeSM+>^q?Cecfir<3QSQQ%ox6s@r&0Z;P=0YS&qg25tNEt z%z1P1|5KE{`#lrUOYPqFs_13%i;*J+lrgM(9pbT+^~laA@)@=du05^~uC)Vmh!93R zK``QOZSIB{v|DGGSsIwPXu4a#oFG#;se~8ccY}=rD#)!HFGEvfq7qa%?>yE#E{|R= zvWbVrEx+j#Ne1M6{~>!E?WOann5#-c+CUuBoa>~s-J(__ur|0{swDm z-ibC)C2u+_bS1$FzGb0^B+8(fM{EHWhEs=O2cJ0`;Mwxgu!!mH7e8ZJ#+?nK{n!Z` ztH{*}S3x+*js-#n`OI0C$SMfIDTWLY_qF)!goddMdTNX{PdeF^Y{?`p+eAD05GFbQ zx%jhFhbDm3I?1R7RxeD)WdE3aM_IHpJ=UQHR4l=>*gs@U-HLZMI{1jjP8`LEPaO9O zw`c!o=_$Hul`Z0m*Ri@N{;Yv{R^&{Ep&IuLgskqXw%YkP62a!T2tHNJ@G)e$go;uY zdoh*cee_{FbrYl4dQo!DZ!@oMf4SN`eK5C0AS1-B)EGKXs?(LxzYJ9;I^gM41K5eD zcQGz>O$mGmb}42LNPJoJb{UgfnZ)wAj>t9_3sawqMqXOY2KkLU)Ifr{Sg3X>t6>wa zYi>=sCXd>KUE)n1EivKa9X+)P7gg!iVvcPY+f(9Ob8nhE@8)NYFDxz5BLvRL$;YZv zdQiB)k$}qE1^p|$nHDo21$~f2Zu*8+D2%79-wkvIW!(~anpS0&uqB9Bw| zCsd1uXQr2h4ljk>FOUVr(Wm4WDa8sO8H{2YFfL(wVW(xqn7*Ld;?Q@sJd+oauioLm zoTz&?hh9&8R^>1};&I6lC1^zUejpxQTwJz|?mZq1w24_>E)xu%D(?ubs{4$ih27CQXuXyfD3(a^+C8 z)w^%Yh9_)pcRjA=uWx%cj$YJPe_dA@ixS~_!en7nq(aD5G;qAT@cSSqqHkaySJk^5 z>*6@w=i=DNvH7Ey!Go~S;!*MSp%euhzh=Vvz#ox6sd=FqtGqPi zT)`ooC<)+Jc#vsr@yq~DyDlRyGAxGQMgh~>Y;AR>slWL>pPN`&=oQWq4zWz<op0KuXB&)| z>WorHCo>}D>DdN!=N!(~vic_ze@j!-O@xB$drQJcwlsRR$5$CRd0Vk%wG=X{NR%HHND=VeYbTD!Bkx1b<|`z&JFXfeR-4`B1+&4 zN}U-Mc=IkwGN2@FM+AQ}Z0b{#@|ZgHd!~u?McyezooVCR*`1xqtrLv9vk6{go9An8 zi!aolA8@q4m7HJ8dMEq`+LBh7S05GZnOVKCNU$A?_UGY=!O8@S++R^|)%?aK#~F9? z!9IFd$IV0uA##_b@PyQay^oe%c3YY3JGar;KwemQtLC*tW^TM2d`H$l08>ZO*Xu$m zt$LN|os>$0(AmZ;{7O4XaJY*5DvpKK)#Z9OT#$3@1CLn{J8^ig5GUc(m-0+M6Z?Tq zc$l4%S$jepeFJ^H#}I21A03mQgE;`q9%Is;Cz}fceEM(OXENGRZ>IG>8bKT12Y)!J zFO^CDw2PgoL|4=<=(kEFXnmvQ zyjiFb9~*jl4jB0rc)@~3yUUWPjd)**7R-@fV#n%g3ZYA{W@JJIS45Uw}e@ zuE*1F_QplG9y<+ea6G$i#L)+t3uHt3s4Fufq(qkb30AGrj0@6$tk0~R9u#XoksJH- zcoDj9o6ySYc{pjka-%EA!kb~>W$S%>sj9ph2UmPjXqBcDonV!W{6TVh@x&*yndA8rUZ;lMVx1lO50$4XX1y3>S0qbks;`>PyXT?GHIZuI-Eq%P627S7a}@JVeU~?tKsG&vys}&SE3`djP|CIx|f%pBeKMeq;*Z+h%8D&8=nKg@)cQ3 zV^|d92}$%VNyiRh*LGN=>EB=!nS6d0OWew{`saFQ`)TR> zZpVu5+;JY7A+9{KyISe!`r@(zAQhtRPD&9WkBaee&d4w~?3WE`SikXFs%geuNeW54 zy<4a$N`?L^4C7MUVctbsc5zD4GpNCDYY$pLhNYcek_F5}AOip2lrdz3DSPrMrOkSc zo0{XcFkkT6m-r4n<<{a6d*j9Rm&lsN)Uw;CyUKMJj*_N+-$#Hc4?GJvAQCQ%zZO!* zYjl*Er8EglHwSFZ&9AtZPpQP{jil;UW|Wmny>EZCZrnR*HJm@-N^6Rarns2dOGSlY zrxHeBrx1>6e;&bttvuGYFc%}?8#&|t z5-FBnr36wf%ro7(*14gFiOnZEHZYKwKCfJOE8nicao*C8XLZdX!k%q+vh-EWQrUJq zX=4aX2H4$|9?|lH%#bz^{1i_Mk0V^Ux{DQS?zb2g&Zy{bqW*h_m3AUZPNfA%w!g*s zvxd$S&nQ1dQ(hKjL?eKGYuH8(1-}sM>>8Yw7)$j>Fec^+kP53UsltBRUFn;%aJn97*k09KINe4?@u`6l~v;R$k!C zyax7X?N9<-mz_8A|Of4b%m6$kk5Al9Dv})~l zj@J!S!SH8h$#B`;ZTUO`5A(U8s5#Grtki4kbk3>EBBiJ~c!a&ocr@yZR!1rXXU8gW zaYmhYTU+YyEpSSPqYxX)^cx)wAu-X4rBzhLE9T{o|Fq31l^_n?p-{3!UonBme{wd{@EFj!#w@HWz&z-_I>Dj;0>y6q>}Ctifa@+5tXbO+BbaB@jSd zTJ(a^@(grRbA!}4IU`}i?kea&{E9oiJvQSX;aRnl7s42!vlWV&JnJ;q(4ae>!0g2J z>)YU_LBSE;nJ>TGe!i(m|BOUhq7Z^G@u~d&Ch;Ku@ncW%ir&5hiinuW5I*(hwT*#t z)M7~)Rv2a|Kt?FIE6IXhQXaPNQE)$n5yoW^r36gfBw9?%43D@kwyji#CRTql&UxKF%d0RS9oSM>e#o|pLzRHi#v z9nV$gXxafp8<-V+H7;dn9y0b{qq(5b1R(vWRfdd3VHslUR@~o~sTm77{rvQQQCZ z=-_8<^?b*wx_hu5f`G5fac0ouA>+)cX;4!8ue&n;l!9NU(zpJK)g!*Kx?bG~-)Tis zBz)S(wp$3kb*H9U83~NudBbr)8EKhkBCuh*+_Z;%KpId>#$8ah^Pe=3b?2>r9&Bsm z5wgiPH$yG3<^L8K7?Xdp^RIOB)Z#}$Rk;;|lwJP#abqvtNiQAs=78SvuCTYZt>)l} zH6o4$g5eRm!DxjBIu`U|j0xuC@CjKJ^ulss9Rm@CP9=S}ikNF>_G#nE%P-eLks=MH z0V4=Scp}gRMM`EUPR1hz&B%Gm3P+E7F)l#QbC6U^7p6bHztg=QJcAkwE%z z1PB!DCr5A!_I7}WMDj?0bo;fP&lr3eP&%^^ur z8JYlF2ufH`3kt~gza1n7EGNRQH6f^8{CF*uVb#>N;-)>5lMXpJ;Z;bacZ2-~D5~MW z=#~la92k?l;RrA$N`RhVMl09Z5bl;-ttaO&u(J&`K!Sb6F3a*BSctjYGz4;T8_YBW z&l!PY>oL2j018&T(%OR%5%>81(vqrtb)(T`(#EbolG7Oar)#|qweB_4{%u!sw*PHc z>lCqwXcul>)OJNWt*%D&`2L?(o_WPFOZwvJQOwk*DGfdj?$GC7NYuo7ff-@&2?3li zxQM*5@$mZ~mU!FXfHjTz1SK4tDBck~_H3%IywA=n)RRk=(7O@tPj1Z3_kX{mb(OKX zu}5+=kQf+{81{b>V*w=QM{*AjRiRaVt7m|Ku!85adO!X8&Wp@{{Y@FQfuWcmEgfCq z_Akwa3)%d0LUy^KkFH^bb$((>;&!rN`kQ)46Be-}<|1L*+f5NlJIEE3Vs%r>V*)#! zVDEDbXF&s5u+zzHxYL5EOjY8nSkPg}Yc6j(JUV*ol+}o=bc0-&Bw37h&UADDt@>|L z)+&w7|G1+%+?=AsRe{GM2xvQ=fVN`>l%urMv>IEuLw=1*xtei3x-@GOklCKEpT^Ap zcSHZN{{LO}DK~9`Zg11JbvcDv{J(6I6*s=p5S*3iT;T@7uIp#Tn1m^tDjHaLsxs`yj~FkCEEz@a4kOFt`IKEGtT+3Qme25ljF@}Oj1!(``4N*r~nA-=s!hV_)ig=(tF8Sh7dN| zpQP0fmeu(6WX$WaqSQs+nE5|tQ}Lg&nYDV5Gh^k#ok=f7Qq*?B?GL2q2uP3C$VsP# zmCdZfNoNj)65ZtK5M~!@r*cQBjlu^EOc>6O0lnoeKn3Z-zoO_Z{UPsPCt(O_Su9SA zEU#^$Mf53EksQx%$V2JDddwR}(OZUzD<1Jh1}F>de;%|Ef*toU-3$_P68*fe%rN-z zzE?JN@nIPlb(JfEhX#P&pFn-&M z4S9zVQ`8Xub?to`;kFX^kF|k3UK(*M!%V~h0&q7yWz};Bseimy- zH9m6S>Odn7uFe+8m?jEG_!6WzbxuFF51%~NIj)f8uZFg)Y|&Cb8*KW6CPtqiQX+u$ zc_z9D-T`jvMG8Cw-y02-m5)z zcwdTEQt)=N1N8q8So*b71sS=gTO_`{@jOqD%d{xs&z8feDv z(AfsP)a;#wu~%~J+)aKK8~eWy4rBD$##j!o2gHFhPvxA6;+CsNZs#;y3jDl5GP-(r zk+nRMI)lawS%fK(S>IthFk8{kj#=X6PB!UcPN;!3qj-=tP?Pe;0AM&ER1P-2G_gyL zgj6On?nL`I-$5+Foa(H>U4Y@B(f#pUeD&=@BNy#?+{jpHEO?2tU~wjSVi}F^8F@mD zFYeR*;;XRt1GT^m9fp=UX3K}E^4x!ubx(NJa#<9Uf)QK2YIN9PC)Bj!KIIj_UTRhP zN7dLV{^f^0+G5}rGzZ(O%xMAZsZnPy`1znAnzS_=AsNVG@ADw@o)41!g*)rrk9M{v zycPK@y}&}T)my=Us!kqMcLS=MX3Bp$@nu;ZIGI!bxzVE#cJun0Jy=~_4%`Hj!|FJv7I7(j4lEv-l2Pv?3&Q(aZq1Me^53kg8p-KG4^-BTZa)@JfD$1Re zRo%S1wGBIF_*&8ZZE0k-?Z=o`{Ch^)^Hg(Va{OyTZ0sw4LXJV>zLfAQLb*L5+13(K zzG${j~rv?4h_NLXX_ecQ^48iTTf^9N%V=H702?V$I{u- ze;zA;SU%n78S7cYQE?1TbaJwu^dux9lJyUu_v_hm3=_F9p!FZ{x0LXaoBdb4I|tLz z@@_kI0TZ)rJ)loXjI@)f=9c96+k`#XTTQW3jw`0-;EFdZ8|ZnR)a*H|yG^z=6M8)X z>aPU#TmP${G^CPXAT2#X|7SaF%f;zPbn2B~G>b#cAM-L!wy>GznTt@SOV@A%pLjnV z&k(EBSs&8`+KH-pq=7y6(MH+W@hti<@RdzYDJMHm3AULLxQNK#Xnfc2k?84h`7H0x z;nQtF37IN3KYx)&7JC#ale0T)LRlVLA6+Q(CQE`fhdstS266qmtTWI6okI^r=U^?O zb64pKUa|J$7vE=oq!+{q@Er1=zyV0!dOT&?R*2`;VjOo0r^R!>lg4EoS5-F@yd|1U zDaO>}pquKsQ%qhXY&yGw_G;1E`tT{sR7$W#2G#M<;zhmS`1JI}hLv8t!{S-Bm(X9* z_ZWhkq=Vq9N7DNlejpIuSLW7Z^}es`{j|i*J4P`#CNyS@ov#tF;bA=f0$?&5@KPFk zYCeyLHOx zyOCb+ycOb~M|UI}ZTDBPs+<~XaEVk3s(`v~&=S4i$SQE-)_upx4o);z=NmAi!OTG& z20}r#5A;;OPMXJ}2D=aZ9fEGhodk2pNOTe`&BbLIfmjja|1(u7v2*TL@3`y4S=L+I zN5vc+ni%^mw)#}Gjd5B3^v#xPlW7AD z!!a{UR~u#7cDmD`sgjkd_OZ#y^2CRqKc`fj(#gEF6IM*bWp6CKi9bpPNGXz>efeWD zw+)SHF0sd7}gkyMqC#8U{lmILTUwNc|YiEZrK3NLXT{9`T*@z%0%KU#z)X2AKJ+C-~Bj z@*R|bjW)59SRg{qJuz;H9iPp;)?CBqg#&E4XL#K5F zs`?1npAWEvP+Pv_@cIta@KAYT_xzhPl9{&(+Z)YmNl-y75))9Mcm->ZDA-I! z(}pJ~iRQ$yB4hCRw3Y9mziXx1(|bkj_8sDPY;#2Wf19`x50Tfe5{lR!G|4~CSHbw zx>Bqp_a{2URFYPPz$n3~zMy9*0$b^jeQVa1B>bKO(HKsXvnF@qbFKVZ8Be4W*(va|4H}*S5#}vV2)MLIeBQT&HeN+=CmVdY7)%Ul^H2y5D5=bl{ zB2kdjw-+uSKa9~Y#NNj!%5#S9k`6V z8F(YD-!!S0eb7|-*vMW}vm3c1q!mOVE+A6<>g1jdLwKX}KxZ++t_kTp9u<>{R-?3N zn*O6xZKgch0W7cibu~5sPT+a~ZH6di%v*TJ@7o6C`pCu1N3?V}X~z2-34#|gzB^v0 z)%}mEZAj;TomI2xjWP@GjAZ{!ECY+}s@u$d+W$4y458j8e!2@5TY%*t zsxo?v`#ow6v-xMK%ccTJ-(L8Y($CU?n!Y`utBPGc453%nzxeArWhWWdWFj5dOSrs}Kf5R# zX=?Rmb!2sRVl$>A77Vz+amu&M+v-1#&WU1DA`F-5Nk7GY9|%U`81pj-c03x zzF*9OHRZ@s%{D1L(CHU#r(`#tAY$)UDsTN)58P9&lAXYKsefkQQ{Q6&7>jt(VL#Uo z(R>WQFgj-_uNvNt7hH_`UZog$(*Hf9+-4Ag>de-5$u$;0EP-Iw*(Cnv7}Wo$!(RNh z=Yl_iJ$%}%B7XbSoYqS34kQT*9+ltQ+<~|z?`=9o;lGxpEL>5AW+f#x{IHc^ zV2ncZX4E1hk7*Osnmfew#0MV!bmH#IB@&lo%lRO_KEKTDs+l&rYk-D$C<<1zgt z0A~zFD9D*Te0rGd+FUwn;Qb4G_c&t)E}_t}y-o0L;SkNbnT@^HGIwGRJ=M@?hEa;I z_+sfp9Yg_m*O?0A(DBnnMo`n8h26P(-6}^Mkc;7YPZXGy(q-R4+y(h|@0eBi2yC(D zEDF!^_M~3X1vsLS0$F3pdfYY2J%HC3BJ@&N3-a=74W>Xt-uD_zky>HsZ?$C zrC*;Cnc=NVz#^nbKoA)=_9@YrMf0ml=G$F9Q*wW}QRt8ChudCu1p!ld=ou-m4cwY0 zu$-hQsjise&dUR19u9g-mU2zTAZBY`k>K@Hf z+V;(Xx>Z5Cm~9w z%XM4w&_>{CtD!hd78wRD4aIUay^H-lOtL+_V24hP(mu*jmT^^e&mZU`BBFF7 zDR3xh<JTzE^VDtwL`3-1G?PkoMV~PG9kY3t`&Bs)p*ZZ%&UevTcdMhHS#;zHOw!B zD(%!CK7RN8(%|K?U|YkIkcXecVBL?*)1-gf#gnV5wb;V0@Jl#N>f5HAp>g5|+apsN z{IrM!{b)q03>BBXFMv?^QwH9-5Mh7UElLHUi(dS+lIEfK4))>4v2uo6OfL#bE#S-ruF(M6;SQ=fFW)7tI zB>%=(;0^X*+SOQsEY0Q|as=>dB%2?0qaihQ&Q~G*`f?5fB)xdH6%}GbHoBqsg@^m= z)FI~hw?YXC#oV^(ef?FDgaE|Gndt+CXrzkEC|DwA{`l^sEPuxWup@{tSXnSH+YgE< z+4eUvJkBmui`aJbdGKApd;3j>r6StexHOGvAeKn{8>+>wnd7~Kk$5}m5XtjXNXUP5 zK-zK~%)wMDdDP+dUaUpWGHt^R_yR}*R z3R~1y0$H!p%rigW9$`Vo*d&>qKx7Z2ocd&TP-NBDSpSM$Phb|a(5rDCsFK2HDiinL z8|s8!KYl|RhVJf-aVN6xS6&9(?Evn)MEdeBPOt}ld%~7}h)#vF`Y5G~>EL#8cCgaF zzHyq1^;l?j4G5+&(WA{k>VU}YPhJ@gzqey1>*E`Yp6qA?m;R zez`$?fvlw(GRgM$VL^KoU1EmJV}$GkW)XsliwosV8T?i{Ry=?SyPJY^f!$gHW8WUx z8jv0bh>bs@QGUYePEQE*0jvOH;86M$#RUL!&XVoOB^*!Gf(jilbveiJfVEvTv=OnQ z4FAFz`TFM5c)8L491 zx~pSm z5~#y0MZ|ErrPoohhUo(23x>WT22dhY+oMVYTO-dx(T^PmwuMadN3#jk!e8hJgo?TQ z{m+F=EkuL^$o4%ZobFQ|eu%(^*F4*n88)agQzrjlHEctM-a zJjZQ@X_UwkRhD({zU!l(9->0NMH$(kZ3lk=WcjPPoGY&3@d=ss+P>ABgC|8ND_(4> z?y3hogC#AxB}gl_uCU5B1EN~V&mU~4cSod#6+gdh&c#H&Oko=_F#)+Nzh?Pe4u`dE z_iWXctGm5akw#D%pir3*ohiu+xvwd-6;<=iY8a#SO+K8yQ^?RO@2s6KW%4xPJ!s*4 zu=6XD$0xlZQKbm^kCEmD<0d9!0VQHcL63Jokt(hzSK=S-EXQ^M5qXn&3bnK_;prA= zd+RZ5uAB0$W7z*OniC_2%>84G7ULqa_AFVcH#(X!CDe|Ba(-kvDkArXCT=9| z70FWqd}_=9 zn&u)sDok8zH$N)GuIZd_7-V`_x7YR4_@J&lfmo`F)p|NT-Z#H$acCO5D#ubGqFdt1 zjM18fwGY03ZMj2HtWP_$gg?r1*;OzkPz5eMHEe8}XB?Lk5LZ^Ec^?9KAHod^340^k zHGO1HE43E19}{9|#tv`#xr?;R^Jmy(^^&OIfL|^oCAcO-W75dUz2;qRnnze6tL$g| zsL%NJi)X247*0GLU}1?^51erF;&6$u621Ey4mnUiLu_g=GiCJJmV6{Y4i7(XL~ zsa1i@5yUfM$uO?m1&t>aq`Q)+h~yq5%pn8Xbb;~X4=yTFl2~(fH9Hqbf;S7U;NNf& znZI=3ux$nkvMmnp@S?hK#1$ZAn>9?B2C`Rc!qmNI=1JUhOZz^l7T8biZj=^bBG_DS z?GZ^THn$V+h9Uv_kK$#U(@gpLUpd#cNO$}#KZ(vKJz)G8NTig<`TSN9@qI-OK#C6U z!jbqWT4wypP%rpxnhoA>EsFV$kxS!6;rA8#5)+6KLZ~l#3JL2sn|-oR5aAtP3)NoS z;0kZ-`u$dYWjMY4Bg|tLn;ve{-`9%`+S-ntj8ekDg|8^T?tUpj2(2mPN+kOr{B;*$ zc;YjMTUrAI3o#zx!VogrKF@;#57kSM)89Hl&hhhFP0C zs!NzXm76Px|G__?Z@BAnun=-HuZY@rx8IYaspgwGg=U-mEuvueu$FL;?j#`BmtER* zDIyQGesHQPvY6lz7jU+cu^=se1Inj_cPR0RVE+mum%A7K46pRx-V)q-Oxt!6_zym9 zdUL)K0DnJA=Tu)gg9YKKqv=Ff7J(Zom(t4bUGpiyw;gRG=+1T(5HR;$ee6l={X_tvST#*PQWWT41bt0b*!(P#Dc5_f`3qLL{LHAt*fdhq)?%W zhtWCOaM^iClG?n`F6=6k-*qs{r-FB|)y$c+2lqrKquOOx2~6`%o_*jU6&#qim%Dj& z%N4HtB8~n7$(>lP{kr0`cqC$2GUFYVeaEOz6>SeDs@QAbVzkZ1{pb4Z4+G@BJCflE zE{+c=0!0oYa4wn{bY;y=eH`CGAI`9ODpQ*Gh*aGQ6EoQV^&F1ajDEc-CA2$D?fOJp zQMz@yMv=8_)b9Ookk;~e8F$Fp@a1;d>VAIN`z-D0>dyQA_R9PIti}5-q{-wwZuwze zkMD6Y3|@qKO&kd_SH-Chx08UO_6bcC>t-uII^;h8h$+S_e+lGXG)q%=G=~-En7kC8 z7%TR-KmZp6PK-=qf*rtKe6||28XxyD*7fRSu6L%x{e)$&=1lx~s>E2vbDKgX6iTR@ zP?bf@w~Ydc+}@>a$)Zt9_ju)AMzj8{X;My6&+^|H@3#WcZ&`70vluPl# zetB?Q>0ek`R5E(bl?Q?xHO9(yMLYas{Yo>8PFxRXzUKQ{zM5Ce|C3cq@Y}#5`h%x> zK_Ey^N)oRyaOP_PCP(xKfnic&qUeYsU3Vf})rzCe-5DZM$uuWAO2`Zx{S^ZxhXb82 z8foybeYbxb$dF+sHAHticAY}{yb5aijYeGHm$V3Wscm^^CU_k*ld=SA_9tN978^(@)}tC40Hsj*DEQ`hV2$9 zZg*q1H^bSN_hkefRi4In>-I${%2Jv*Lu;CmrcoODb98a{f##LAWZAIl5K}=s+*(w@ z#;EE8em3bfb582^N>uw2Gftv>3TURB#ZF4pXr4 zth}jt$zq1uBXaqMh)8rQa`=LSfh98qS54n4Q-&tQEUWMTn5=CglB> zwy8*Z249ZpPcDxJ=m(g#|95pB zav}da-f^CW88v&9-am=m1clsUg`(v%y_DBM-Qxj8Kx*3YnFP9pmX1BZzNQd?HmUny zBx%O+AM)hry&8`kE)!$p_^M-ot!gi-4{LjScPrV|+;u{25vuq6P=|YQIxSSt^#Ezm z)cMFNdD)I&5o*b9DlX8?10AWQDaA)RC`*X+JYK=u+p=Ldh$bTtQi1&Zr8KJH`>vP$>7e z$_tt`w^urcDz5Lqvy=4|{Lx!i$A|6C&@`2OF&~Z`v_y$9H9oTu5z(Jas6>Cnd^SHR z>E^y7!WWs5`++3c8IqEFa#NKc=x)7t$Nz3m?L$nNd^+ikrU^hZ?K^~zfF`>pl>WjJ z*VIb{Z^q2q{}tBdc-jy76aB}V3-{{Zm!*~ud@O63N5e!9v+&`x* zuxG|k=yP!@bQtN0V8!{}@RjKWQ8MGUkBYFB$qra3(aFNv_Ih&Zfk9?bm3yR0 zviNIWpJIg31WzxF8M+h^buPNFOB8r^6W&QKam}_@c)mVTxkFldx-TXUq@)d^q{$$l z55R@Iq3C2FbdU5`WQonX((dS8d6|tlF?da{+&;6N=HvkhHGAp+zo1eQ30?QYq?)4@ zOjZ9Bo8=tJ#jWSTJcV%gx6_=EcyO%4DWIMW8e2=F3z!2~1VW=RSWR$pIW)j9?2gy+ z!}}??h^*cE2^!M$e?phN<8aFvxH_-ko#Z z3tw6)i z5v#Lbx92R|sgl>kA;M#z)GOn7i@Y{RCzv^}Bk_dPrtgT0xoHUDD&y)4KMFYJk<&ru z3{InOB9jE=2Slv~Jadq}Mb5fCN!ayu&A_=}rRfhJZ(pbn5Ud))SnOiq=i`*jpi0}- zi$rWo2JZdsMP{NVD;y;JE7-$x$&`D`1Gv?&(YamGE(b7HiaBv?9Cit>ob3>}g4Wy}kL!NJEK_|#43sx$ZMTTmbSg6$8rBRg6>Gc;MoM9i z8vBw0f=_g+;$Rw}V?~X%x-$v(@#>R=2Z~~2D#8VnQ34z&nN`GHHu>b`mg{Tf!GmU# zAh<7~1%mzng}$bbNX@ucv~vd+8CD4B{m_Rz8;LP3m(ABF zz$pGA(wgJSd+kp)FvTEtsPW@TN|vl7kat`jj`GOXug55Gn~lHTBoMEX|H(@F)#Qw5S0YGDhrYGSYCP6Zt+?un$n?GQrlv&b|V zQcl(x=V{s6fF`ZYU9p@qEX0XLI;`8{j#CC%Acz(O;*QRKX1E=wIitUK$W>)loTE3s z_=+s){5K(L^*GVQ-CCHFsJr)b-^H|476Z>Icd%tl9zj$w@|IX|o>AZ`UTBjlU{*f= z#DhOm&|Q2t@uIt&w@9|^kL;BmDQyNm6+JU%>H}CY`fe*&)4s~t!N^#hC|^4K#J%`x zep5cLuOlA?-K*~=vVr3kJF$-Y4UQ?Ot8qByS;uN)ZQ`JOyr{O<43we{3?f*L;luX1 zfxknAF7KR@DCn%M`0NGNtXUcaJ?D|EoOl-ftzwAZFv4WFdbZpm4>07Vc}SDztCJeN z;g-X9WQ9u$>7%VH;fn2E{+&wVT!e_9dv=mi8tTfR99Jm_Q;sBEMwMIW7xyjflF5Ma zl&J070bW6r!o&Jd{4#T@LsY_x@5CA*eU%7ABK;NcTa=EJP0FleF2~0(E**uV5YF6V zz7ZDq@( z9JH*H&f?idz7jVL!?oQ&a71w3IWhy~MB&v*uyY|ewM9JTNufBJgMRoKK;`BfX#-nJf}2enHTvd#?s;p5E9z>HRC z{gei#Ww{fpfl68FHbBAUySR-U1pqp=Cn^hT;*=_gb|fkZ3!D{cw9A$FzbxDiwqY&$ z^yZ7%J3f1TEuAba^#)fDmT|tp+fievgQ&Pb0Qevn0RLaXf#AJhk4;`>B6L-GGC%mT zTpI;llaI-el*Luz0B#A*D%5^;=~6dhan3Y+>Rg=?I0E?NOi32dU$Wi#G#ZmxqU+h~ADy4D69^wxWoE_eb zAq$;WZt(G-L%C}cmFNnwFbk9B`|Q*mC>7J^Ne@`>6t0^SkiBNd+5>AN9rWG(1G4G2 zA+#N0NtHP&$U&el(sQ7~Kup_NbRm(Hb)3cQ_kbApNcjdIN%|&RbvE$tLZyz^#$(Qa zx4vSlM#%sxgf`~@kp4XyC6PeG@LC*s@|zcn6q!tKXG`SLDROyFtU`F)jfAHUrn_fv zM;^l+zFTB5J*(Re__HPsoq}j~U>A}G7QqXEjXsm~?d%aQAb)sAPI*V#DQdpQg02Ws%@o_Sf{W{#$ZRa7OQX9lTK_zcl4THJrWgjWe!ln%ez_L+SHr zVs7)2N@)tjo+F8uUnn7jQ38MfiDC12NOt;t78q@MH~IuPSOzQJeb&q_Y%L9C;oJu> zx@wi*2didr;*&6qtS9c%eER|k1Topzt#1QZVi?Lt^1>e%vfAW|h*xr*+;lklyBp|fBZ8-sxfO-fBb!A zt>DSD{P^zYNwTCQl2g>rQC<}yv^3>_WRJ(=0ay6s;>@;n^|{^qe+J1i;D!eF|3Ic< zetqh?s`EmxCE1cgF;eDJWS)bKRcovbw~Y_w0j%(7Q} zu?P_T5_Qt3gk_!Aw01n|I5>EcVS}hz#N+4z7HyE250qk>FGL9CSFTSc>al*Ihxxfa^sNU5_h6|U;yw_5@Nbx$mn*rGSw%J% z4`seP!N)t3ghvxs_gmk4T$ATCU#*>0JZZ3AQq8_wRdq{m zA~$n5Id`q(!?#r6HW6@Emnk4o!eK4%dl6d8XZ$L3V>eOIZ|%m-wQ28c1#g2G76>?f#?6OJ-C??}TAQ5v61j8ecb4j!X)8^f{ic1cQnf$_+lF1oLQkX?x(#9+ z&St(XVjPtiuuJ{)B%kS&H)hs>MI3uxMCm#bc`WY#U!&I!+?^-{LS;nV#iJV}H{S$< zK{kLZ;n_iAd#-yh%ZAuqL4_V*B2EY$4&&plO~#DA;!e%CvvlCrn%f8j8m%WOPDaVuGEtKW?>Mk9VLl zX9bkZmQN`pEF%n1UZ40nDz04B0oqMeT;h62Y}3CZ+aQ%7>#Uv?y)&jD2Ff3YD1p>yw3y z44XHz)+jRV-eHd}b=lB{lj~PcL?4yRVO_tZhzTOIm8FOX3V|S5EhdAiXb(V8Dc7Ha+K^!)mE%=vTa#*xdX~%% zoWY=Qah$_1$_9vsN}xgC$_pp0b_0}$K=^4Q^$;<&?jI%Z&e)*{D1RD$hzK<3Kr4c_ z81&p=&Ofr8b=UDGooRstqN?W6Xp)3AW#!hY}1mdb@H;nR&@Di)(Xx-#Q1~T6_WwyjLLME z*WCWzpX!*IyIT!+iHhdY7Lps1=}PaF#6K|)D9Hix!GB!|Uxku?g;{XVMWcq%6bCte z)ZW{lzM5;=f4X@(cdeBlJvS4jf;*7Oejq9ge2@(Gzr!Pi$$eW3p7IxO7ssN=Bff05 zGp;1_9Bem_n}Y7|huqie5rbvZrno2}x={>frIbIZVePu3Yu6&+Qd1`v_8*?bzuqt~ zhQ-7>z25H};?1>9)UmG_xO_F?wNR6)fP#M~HV*iJCi+f7h#Y2aHdcsIIRUMiyC*^B zy7G_5rU-Y@g6UX|GjE*Uam?Ep>|I@1&RPsiEO}oNjM6<@!;BVG2uaajxHx}Ozw6K) zMY;hx-VS)~_?ChdO?w~Ff>*fF@(A`oX<_}c`skrQ40w)DX zs<)0a`6p9obrkV3KjO2POWE0`nQFC)iF4Owb3Jr+e-aPdGD~51ToM9$W2r!I+xe(w zTZ6M6t;-vr@o_Flf&5^&kS@lB*#=847cniyrD&Xf@N$l4{&tw7DK&RUJCV91PdLkf z=QJOutT2$!PY5A2FXBG%kWik`Z-3h8CE$;pFo*IqY$bHn0N=Vh zLxnX1cZzg5o>~6U8nQFv=Jd+|Fp=R`S51;ZFla&3&`J2*{~33znOJ+`JxgO zK3e?j}q_xmENX}Pu9zEbY<79>rX zSZg>!`w%eLcIOR0}r{+cy&|0Drei37keTT?vv{^D4F>r;0_MI6mwf9YJ(UiXsI zcJwd_%-lrcH|g`)U*&@rcl@T!1m{1Dr3vYiDV_!;@d}^zD+1+ZmB1s6sBNc?Ykg1G zo}IhYVN?_EIhrY_hH= z5cn+iv~AB~KY&21U*cjhb388D-gZrDsqoq_`5ZZwyY;eUaEW#23Fl6Go{fDjohr>@ zrVyI2{=F_%)j!~bv9<#xydc{j`xnetA$aCtwWvSyOjsVL^B zsU@xm5CG?33aq91{tM{v9`mOt|9ZFL>ySR=ZmO9rIOSI~?E&i)|0V4ki{BB0t8*bS z>j|}^gfKG$K$K`?iKq$#bs>Zls^_8ta-@trAd+z1H1szMJ_KiqC+^A9liCKriv^%q z865*+(y@3a2}+1z6#5$mN;L%u34Ap8up(`U@|$j|*<2+A;+4+ieM=Nv>2ulNMU3Ut z2IVHiMPu>RlFvNK&pdER3H+3QJgNV9Oc1`Tbjp^uTWIq%3|!vLPrq*ZF+8)K5ax0C zAxT@&7aXud;pb(2<)&#@`)DcX-xkHmarDb08V%CyS7vmjS#(6Ev;RpC3x4ADwo2t@ z$N56lQZ3y?AkC|U#hop*Y1g%CI(VS|2QmLd{N-0l2%0oF@{^owawjF#-+RriGtKwq z_Fd*Z?>eIib&x|N#)pNS*}${Br(*6=HCq0>4cOgG%H${~-C~~{*X>DDI22WJAodVS zCVbKtJ97%@DeTI^V|fKGd~~pma!|>|_^4BPbq!LIcQVagwr)kZ&ZMZTxr36pfT%hs zBbN=5Eed&m(7Rj53)-kl`i->{fx2ZyrUPdVd&NAKdPC79TjIDBhk@>CZS9c8;d+@$ zv@sbu94T9(*_J2))LS$wbI9K}OVfn<>GG3)95rrL;sH^aMVplxR=Tk|C0q`;CTQ1B z8+$ugSeqO{x6faTDP|1=e%XXsnjaVo90!^(th5}YOK*nP=a&(2IMVk>Yu>UD%CR}@ zk^bCjjZWfr**u&5dt6?! z0+~7V$h^=$Pu_LKMdX2xkd;b%|126j`*yYFUE~$V+-V|99&yTaw39X^Brl&PbF=qN zl`74vypSrX??k^T%%gQ5(=z8Khkafst#%5Kv!mU`IqawILs@>+)I9a(SUKn_&ix1i zMdkpLr==a!r@)Kwa-(w@In~)Hmfco>DWG;6C<)*KBX{z44*zY>FiEbM)HAD^nY_3OQ$l<)4-d4rakFNtu#y^Oa@8I` zEP!@5v232a;xKj~HSa*Iko*9FAJ%xf72dC zL}N^7!ivWz-bt*v)KmN>3k6r1-1}RqSuXorafMaSImK$k48UUdd$uHUnchu_jJ3gI z_z$S}vRQn7L9*(LuJ3Dyh#Bm%rvRspa9zj{_1_X_zkS5gdN!h2~$MX35>+sWxBj6rD%R zG@D#)2#8cgtaLO8=z0^}k|C>6{*@^+=OpmftoKjKHSU(rl$*l^SMhi$%-ZvpRkWeK zIvlV@h9p1A+tqqCgma%5K1ilS7;2)GOwjcLM+#V|2V%dP5M^&ooIVpU{=0~;45f-` zJBDd-yJz#fjV%&1rY24!iEUP?er_8(eLpp3CXQdw8M}Exz0)D|F>R$$cAjar{Ji>f zoa09&i<+;BufSBw01OVStX1zAAVjN72@!@P<9SsP4npvo7s{Q^5@KU6>>D_aghlSR zihKJzgJk)GeomLOzdT>avQQ@xQ_n^Y|B#jXSQwPvsqpc?lvqQ7o0?czDPXEUWhKj3 zRktZ0R3(j<|CGicSMZz83q)2Yr8i&v-)vJF^J(Dta8!w0>ICvl&M`9xeu3y1JK0e; zwneW;a78Zk)5zfEc$uhJ^~vdo)JYS&WH}JVH;Y6Z`zJw~Is9r(6ey5<*;=B-2tUL3 zu(couSJsUJoMDf{9?SV@$Aq}iZwU_?%{%sH(T3sz;yg@%&;nf+?whfw(f(UrNEWF5 zMB>(!Radrg24iQk`IM(9M`*fNV50o2rtwOf=y{SE|0bE|2YNYS1_6Yf+cQ8~6z*qe zxmyTgKt~z~GV%I4yl7GB`TYRwUY*s_#E=oSoUideUgH$8t)oH^PSp4fFB70Kg4`p_VGizResT_5lX6zz$G;1l`;<#f95?MwI0dburnkPkY#7V<-=Ig# z0A8%h2*dw?_4YWmP9JCJ6{6&TuO^5 z_E!V=&~hdy{nGGalNa=hcFo*D3LpLg9F|+mjE=M)WFjlaF~_kccxCX~wyw<-dj3y* z4*rQxYGI>-doRz9FTf>1#Q!c#d<-}vTvt0~$5IYNnmNy04QR+Kro?0bjLjZT1mM{$ zqxZXmdeqIjj_fjp;;13TJ9nPny}>>|l0E{suDz+^l3Gnr-os*72ulR?@oO#^K)MM{ zI~UENffScsH$}lX>sA8pS|W}MC8kW{L1jMq0M~5ZlYyJ$D&kSsPji=~jYg%zEE|3R zJQwW%C6pipyM@#^)Iknz^a%hMOaRXSbRJxj8Vias6lllT0ji1T^SaM!wG3Tus1MeS zMi%V=MQq3}JrEV`=JX#7B>l&i$q)R`ZYc`|h5C zQ`+$)P2XBKs+ z&KGyTfw=A+F-Ua|b%F#opn5pe`9O@~->%30+w~Y=*P}N(K5e1R>K;)iZ0YH^>EF%I zaEP7y7s|tn%pf#yUmgZvph5sv0R!Ew1OWs6r^NmPy~6O>X2V5&jY8{`CUv)jB?UP2 z86I;}%SE2$MfUIi-c8`#nl@)q6Hh4xKwUnIx*a$RTv=^2Hai7kEj?vYpx$g~m+u0aMwGLx zCJc#_KGZVdKz7Xwg7W-m+#B_~7J}ro#Xad67boc!F)w05wFaNn-)7>pc;M4kRBTGi zfrd*+5pgoFyNm%X!OQ>kod}$F&xjWbfGokY{4q~bC}L$&yo1m(so644jHjua$j!^l z8s8nWEb7l!$*HGW{yP#r18|`ygE&b2`hT#_2`DuHS|eP|(X^8WY_6*biXJ7G>RCfp z%?D52B(v_(zp<+SUx}A`?s5|@!c+9D{eT8MD{)j}As4>+j$F|h&hC|^wK&-Uzj*hw zliN*v71$g=s+a!|2dh#Qg2V*qu)qz_qs()U>}1wG#p%t`%lrvNFT5O+4$KYGc4uhg zqGD+^vS^<%a;M5r6-ORL4k>Rub%6HCpXUI8n?Rnu-aa4t4FH-G=kWcT{h?I{Tbs=~ z`}mr5QAP4mz+IymzPZC5fE4<6Jnp$*KuyGe5d+fqPc>gS15=E;2q_XRowl7}7^k_T z3Gh1Fo6742;tgOFu+Tq7Az-NgK>BXJZ^fpv|g-Cb#$-)T}x|yI%&`Bj`-7cUIIhE5;K4>`W7Ij|5Zc$!Klle@%fR)+!^8~SfH~4Gp+7*tatXAg&hU9La zT#>m-b$-ENiq_~axI>Y2@isO!7IiO$i0dmVNhd|$a*~#;j-CFv`Hpm}{)Xh+u~;Za zfx8I-G#^wZ%{+%q9Z7vlUazX%+5^A9DP!zDVvM?_N0N*6i>m!N*=#v3Q@!YRi<>kl zqlqI|ri!hW`IjPAg|*zUMTD{cgttFiC%Bb7_LpPrN2OS(P`~fiDF;2~(16;;Z1}Ya37iKKcHS7hh z;bYgFVOoZ#0|zX}9h zfF?!YLRbIw79O5t0Zs0a5w=8i?6hL}rd#zj9F5WuJIcjP@l!(RD(VBIR(HU^-5b|Q zjnuFHT$36pU-_ngLrl%rq9=yR#Z~{Kst%B%>?=GtfjdW=&A(i8j#it;`8kH^lH*@4 zf9YU03&e2X=Bsa%d&sz2jg7*|H-N@2|21~$n~n=KmSO3@uQhiO2+A0!Cu0uMN^s=Y zJ`MYL;HG;Y_HoZm=P>|V|d^h89c4I*6916Wf(L^V>5|C=2CT;{rP_&dKCkN;CEgEHiu-U08818FP z1f@HRVsF!QMn1vQ9J5PlfIOdi*lL~$DI$uW2z(oulh#{GEnH5C8qIA36ugtej-QhZ8pt=JXfHV5YIW9AkfO-9EdT;x%_sh9{0W67vM0nIdrD5pJwVqbVGdg_-v>XxGKB z0-;fj7msE-Tr^D|+z4|jkejEE1Od>w6lbKzL>qdHLR>;@{8r~p#C{0|cIeS(e6*H#&Bt}zC<4~o9)K(y&NKsl_Qsz&vL-_J z&t08Y{sK?anb}dz#>8S_$KNp+IMUhn`$i3a<4o_o_Ac}ACQR80?zren)qhR*%l(=GV;j)hV^`?%BoeRq3|5wovsY2e`E}*^`m~dprWv5 zj3ZVnifv<(lJGP{zHs~t3z&v>vx9RMn0RbT8uZ3_Dp3#8!BqI}Z!?^TGl{K@3I3gT zZ{*(j@$@FfWXO?9hj|Hx50%hhj|45Kh4@o%l{R#VSGXM8T0FX#RGP&`Ow{_(Go&>L zSCvj8lgr#}`0keNUl}=j8kZoY>PT7ZR4(c8T%(hR3#Qc)JI+N+nLV4Yz(;f`O)|#6 z+smjV$ex*zAL4T9Oj4S}TKe&zoNad(HSlOOJJ@7#6OV05gMuullJy`UhJkkxMMaf! zy}>cMpD!iF%DKoIAqT3L=*=1*=h4kwVSA<}Vc?#mrX7*RK-j;0Q^sHk1XF3aXzTkQ zm%10anY@0$ zgm6%gd$zCY3m0(u7^c3^I=oX69#N@6PMjd*=L-m0-y#75Zv0{6#&_N_K24x%4J3E9 z7|R_oC5{}W1PKKx6Qy^t9kKWYg?!HLy(|TchE@zO`t6@xb~PqtGU-LT&LW*gxCOEzyxE5{NV;lR!`)NZB~>f!v}cZ$Cp&iWU{Vf4>qW7(YkO1(1=sQ%Kehmr&nkd!I65AOKA{S7L$>6_m0@YTB$O zgx@CLPFt4b@jUHJ>{;%Yq(ikHffQkOUUte9umKl09N!pKf_5NYPJ>pfSgc|=*OpH^ zH|@2svtil*J^$SSSWSxMtWu_*YiPRU+Qp5G_}2^&Uo`d<%dSvBrA=$U(-4U5@CoNF z@19;8fcs`QU*Pw5k_8XqXZf0!<+^&DoNMyqyLX+2E^f>^)wRqS*FBvz$gV-7bq&;i zKEswID*#(Stm2P5HCUUX^*`%6R;aZhna-*w8Op^8b*q94@#1v6lMW@srQ#3(3GJ2U z|E$|QZz{vj*#C-Nb*`=+A7Qls%wlo~A_5I3)?!_E2{B(U_^0s+@DFSs`n?%l8ZPKSK zq{PJTz+$gE(Wyc3l)Kq%-VYqfGRIt7a~kZ}{ARv$G6MJ)Nw`Od4?Srhfz&C~K~r(g zHVAZKJ!Pv0+1FXA?HjL%yI-vp+T5&7_bzcYcrqqcv1Kh~@Aw31h8bH(vOHl!R+GRQ zs@OMgD_(iv829HEX?qEOJRM9dV%5Aw9|qlU+!oRwREWT@jXm*WMVi}8UM%|#pPKD? zjGC;t@CgcHARU%8s=}?aIupnC8UVV?&bRX!WPPhwPS!u7u7)e(p=7JQ#Mt(3otqRC z@0v4**6uPqUI$4EEa@5#|Djaldl`^?KhXP0khy;eIa|Om@m~yiQTNvd-V_NkYplqh z?GVi4n9%RDoLIV%h<_jf8&BNLg)656uS@T7ZOtcCfcu1aQ36NST?T|uYAjYFDnv~p zT8;CSmd%H3>F={L{L6Y(&Oi?6*58P6QV+F4VY$9X=!A-*x(*-#qMo8IwssvMk8e+6 zyUe=#e-|N_NC-XYV;>7J;cNK|CfvTMm)Dgs`#}vyBz%ScqN^9^fe}%YCzq5ptec@! z0zp@D6{ajxaFDr%t>*r+Mdy?O$3Cka*yB%?5(s+IW7P3d*m`oxM`c1EHGjJDVJY{* zS!sf7kW+KF6&zi1=GyJEI)RvXn^_33zrcLk;xOLo|8$$7ZGi&kBT*+(a<&pS@;DpC zO6~x{?8>+oa{u7>O|ftw!0$WjB9D>P{j-8yF3eZnkYYuFe^zbIq+rP?AA~uyTliIB z7k&8J^W5W3yreyuco0a>$C4|VZA+XPSH%v>niE=8`IuT|%a>XuiXCY3D(>m(`gDCg z!A*{{zKHvv8n7>j7V$6GUv2GBfTTUI7iwZXSi-?|)x}gGDqRNy&nFv$YPgR{rl+E4 z`B!oZTJmJT7M;1ZTb|sm-mIK|7B0tU;R?o6|5Kx>Sd~_8%Xf;`YZv}rzG6K|HD{x0 zh=svxWj?Rk7+<;cDN_PlM>9_JLF&tT2>zQpg27nwyLK_*r(m$gAA+cjDBF0AtE1eh zxD43ZssBu()!uniOKt6@joq09oLQ~HU`sFb7w|B2~9V09iNF5)Vp?ve5 z4Ps)6imeM|YUKi%T5@MD^~(yqr*5GT^KH!g7pT}Bp9ImEz?)-qbpYyHtJ~?xbo5JA z^>tGN#()NMarwL%S-8t+&gdHUlt`mo_p2mtm$Kc5^Rew(fZk@#7C0rOsmr|OZAahC zZ8bv%j>qSB3s1e&sWZGQf*GQtYcx~2t?Smc1*Eb@0l8{6%L3%8gjIcGKB;lN$R{Az zh+_q~e?ny9n_T-b=lgniB0OBf=q_6o6!LmCA__w~)z*)`C90a8s0fG`4jhIQ|53~8 zjJkS>DMsz*+y6@Wjyo}C>OWs@h%b;PEn7Hyx@O;I?TKdjIa41e;!Z{!89oMU`Ds!qj{XLV<>vVX&uN9M5FQ70y|d20B?q}qHZb=hxuAw89>!_$Oa zt-<;bOcO^H!1TlzzOHiJ311YrBoz$vj{c)fbPDwkl$uNc0oP{jhSIr%3Wq+)gwXTu$OghCT z>r!3KxV5{762cE$0kX<2S#N|{2;BG_uibQ7H4A;bWOb|XV$?ZDT9f&4e8170OF^5K z%4h$9`DVY8<3ll3+TK*CPIHS^r5aJ`OwkP)|+NpEmr1SydGe5SY; zuyLIT6z#NRsj||n(LkesN=1PJVs>EP`wAFA$lye&%%V)*@N6e2>f z%w!RxBcVb309+Dg7>$dXRy+pNidVMjyih+^5l|!rS{Ii(TYEUdn}E5+DW%*Gm_peV z0eJre%_*fxb(obNeWesn|2@dK4?!srY{|X}#;DbZ`23%cA9X$1KyiyYqr1fgM(?*m5GqZ@{2^6hv+;~!YV$-6 zJ!$E0s6pCq=Mc3ip{Ep+P5+9m_9|eS@7e%w0`F;_G9L|dM^FD?2^U!;VjItpOJInO z$jbxSbAuB0`gZZbbnW;t^W*qE%(W{ zFJp^uAux`^U+nu^KX~J>`1pdKsy}K1okuh}qy(F*nF=UHnR(wxSotC0vI59`Y9$rx2-hFV1sI{>GNe2kT6_~a80%dxz zum?ojd^aiefE^kH{yG?4FiF8_q+D&4wO^ha6w9vs6$$@3_Le>*`kRCeP9%1HkVLP0 zK|_$loB6CH75g9xzL{Q>fN5LK3%RJ?+}|2h20$g8Z!(`~LWA-@2>q<fn#lP)pP;PX%N7 z=ub(S$(W2}1)>+%PI78=0Yhj`i{+G!5>|`b&J|`6jro)X_VT|pf*Y-n@(Y-h7d!e) zhxuma+#IpYdU z-~2W`wiYN7{OcE5&=1EIfl^0hi82>(Cku{BB|m(Wri!&isWoWCXzVlGd22AX<@a@Y z%WswhcGL53f{SxHb2)*vTAyO2ZJd*2UDc`|%USFZhsyfl${Ity%tVzx*zLT9Xu6xk z{;W%=v8?H}#CQw39JEp;5|uB?JR1dYTsZ}EbV#*6+sh02A>L*;i9V@3?ftBh;EKO* zSvE8;%sJ7LiZ}X&{ib|cf2f9_kmXOJRMnUNo+{7O)~S-1-K(UhEC0-xbF2l;I-!`^ zZ-mjWhN)|_kBV7ylhGpT0K0t5YYYRPoO^ttW`%vz7l8lj6fw)Ib8W3H|2e($B{j*5 z$8sktD=Qijz0cHyBndHdTKCM^N1N&BB9<4+uL!uy1OI!hp`u{_Ng{vi{8dZG^$WlG zQX*{t+`fFDiIJPV*MLBIvYy`>Ea2{0P4Bq*RRS`luQ^v$-x#)FX>W>;?p@4|CwpJe z=vK!?0T46+cs`gqy?XbFC*&sQ<+(d|M+X5o6tngxHx4QfByT;&!`=V6<>k}VPZFGV z@3d*$=!3Lnl_OR7Mh$kTNk}OkGH>NaNA^|YV$81j%Gy79*~jAnV8fiZmI1{yra#AL z{pRDPnjJmjM~UaOVtcGq;?wnUI_XEB!=yKuwORK!lQvR50UP=}#H_pmR~F3djl3AU zod)Ozp!=+Hq7(;q^m&-N;5GxktN=p%EN;tMdwy(vs{T67!q4Z!xM>x@xFKrm2139EJ?w<*^&VLrAUaYFFxu(A= zCy~+X%rSxpF%$sQa{%xQ(7IV5%#|cFgtL*+z1XI;@$8vz9AZg+RULko9KO7NQsM67 z_~oEwpECPLHc#QgFV}=%sc_Q11EWo!8hec`y)&Q63zq!tk5)KP8p-8B_^EcrPtru! zPE{P%mv?9(BAAEgXEh72l%mu6;G0!DxGBNi;w3vKFIqg%{PWu94Om+} z2BtD^ug9s;on2+KomA)MKDOVHbBi57`c#;bS)^}hk|=cL5JxM}P)4a?!vS8j{8u_zT6GS3apLnaTh zGvswbqMyS^=vR^&s7=`rQ`~`BVU@E)jotR7lb|z85r?iK@-zVA2ws^@sxYDo@Na1W z{w)Vt8zSK|4SjbqtsBA2HMM7e2}_J>nCH$VTKM^xpWfonJHdp^b0Wwa$D5=~LJ_6H zOXg|I8N@6|CKG?1AY@4-U~VsX5}Eo=-UqPj{r&3EFFyP6HEQydbMfcq1#|%D^$>p? zgN+vMP!0h~p)X{J!Rj!x62r;Q>;NB^@~I@3FsbuJD$@tiV|d3V z;32XSRv5}5&QLJ+Uq6+!%Q@AWtd+#cC2G-jYYk6V_iUj zn)aqt<@Pwh%Z7Ae(P@QCGwihDb)GZPU2w^@c2^!ZKUB{t$QqN#@cWEh_$-{0|M5N1 zSqfAY@F_mB-K?k+fo%|NpGDZ>qF+ce7%VT`k})drlwKG`{&uyM2bv>PcAse#!l6p1 zuXwi6_a#<_Lbza>)<0x2DR$0p({iNO-{ZNJ2@Pd0Kw>&eVOG4UclFbNVyxaN(Ke!7 z>MUXv$8fBV1;9w@IM?;bs5%q+q(2yq)v23pV>cN!pqoP7aJ(z6pm8dyT5 zTOTgnA=DM9MBKqw^X};p#9mG@%UgP821~o+yXXx8iWW)D+R=DO0rz)%^8GGtu{8{G zN|AzzL)h)L^R+6q27K=kJpI+Y57qYLC$7_o(C0hs4R}WYP@@p=6dN-iIcNbNVK)|p zZCR6cXU^~Yw@LlU?(~l*G4c<)m^fq@L^TuA_60cj3l2#mv&K|W&c!5$jjMhUa*zpt z9;RcTw&kM6i`<5P7*3u>%hv>Pu?2E2w#?l~)NX_nxNL)CSVWJgtFekp@0bTeUfW+T+PyI*`I$|ewIp~}<*ae((Hh$A&s_E5IQ3~NFhyqMEbo@QpFZT5-}r~Qg3 z{e`fsd&5(={ew2ShkYI%gJ=G#gI_Em4?63=kJCr1ms~hR+#XHOJzqEFJhit z{=s4VE+j-pg&0bKipwfXTYyLYksaIfvZtH4_p<1D^f+~Zd`|EnA6=$A_Oo}`MQ77W z9$kW?H^jI4Gr>foinsYi%PfpzPhS{fu*?S(cTjt=8d-O?srPd*mXHyOv1d0VwJ>@@ zs1fF{9P9DIq}b0jc&^WP(Pt04Jk=xZivRns`XcAvs8-!3VCpV7>k=2a+P7DElVA#m z|Hh20>k8SuY3DO1%a7Qg{1qQ+)J{x8H|!ZZXWSl?;Ue_bu$dK&BVO0;{e1o_^rZm* zyIUB5m1*C5n>sq8l>Q6-)WZqDD?1g}kLBo6;?GJAxN2#QFp8x@ZmE36PJl(g0NHOQ z?}1;3R~Kf~by3$4_K?{&u)*u=WSv(y?>ylYCEq{_cPWvI8@^>5p0cUitSM%-#6#ei^oFfxy#o)J7_jJaeTOS>#Nv+UKm(%wo zoC$SnOAy&=c3}(&FhgWEV7kVqxIYty*LhKg4*Sk%%Q16;#aupmV&;jaMD!*AmMrBO zCPd^`gJjrZ;xEi3{z`87fG}EyV&6$gs?QR)j!uI08e~4Ji2L38xO_)?9fRzp_td>^ z&sH1o&DEDyT{*Lu)}&C@0nBkO*pEv!-QU7%*dKhAY>Wou3TIBP>Oa@Mnj8*f_FW#Hi%0_CdtXC|=d7(#XTR+KaD1hk zyeLDFv^Y(x3!5XX8zgGoeUiZ0E>wv2I_%(u7jdbC*->Cj8s?SqFoFo;8!Z03my1in z^lSr;vA&ktKVMIuC8-LI&)kw)vyOrw(NiN#w||+f-}Vn^n(BPvXSm9d;tuHn%cD8< zV9praI<6;_-=6zK&O;N{AYTSnKUvmRedh>Ch!UL2aEdLfL${F4feinQck@>?{L)_i zh$lO5PW_N);&cUt<>xw^7@OKCY0t;HqNe`eE~5NiRvnd^Bc7gH!b7dSW}~BDZ)#q& z>`Z6Xa`jF5Qta4@=(LE5$W{SHC5JBiRZrry&&{p&@-O9{5G>v&jrGm!uDC*l?3xJR z=Gsa24uI>WQ;T{wCTL7i`fm9rr`b0WJ9>1H5+eMdh9mL80a50G<)GB}Q$eXRCJ=!m zqIpc{k8MHzm3M1Ui46~vMb#wCrjSR!lF*{utK zn0(cPce?zfgkGgX3n!>dr>z~VwKJ*4i-UsQTmnxgMq98xo*9_!*4(G4y}>R@f$uiiHg(V3;q5=13|>i)xe4VuR+R`e5M^@R zHczB0d#KXq5RGdc@8mOyOQG?r)cLo4fP8g*!jov<=b!9-F0-d;sSFJ9?|Ts_;$WeS zKGb0>i#jY+A!HK2>k_QqLAjYL$WP$h7W(9M5mx348kdkKk1I6s4CA9B#ra}&+$)HD zxHj4OvKb%8e}4eUiPBqD;5KPXi5kx^;xyc^i*P8KyMv7y>XbnLsGE+cBzqrk27R6j z^jv^lLH=>YnTR_@n!4Wja9L-UY3!&g%uq3lyJn5--DSM5ty0yeF|SGYxLFJ>TU(s{61{ z8-Hrt!2t$Ut=|IVnq7!+`r0{ZOSGk+_!k zLA-J_^sAKR!!S>F;c!p(YGJB6_mr2xn%u5NFRCgKN5z}sY}t%d@t)e$6@kgv&%Pbr zI;QPcKwn~832OhBQK|jGZ)-93Ynu~KH|G#F@R|6ogJ%%|Z?{FVr=Z^eE^1^Sc?7k3 z8_gaS4YQ=>SFNRk{AdEpi@*2;H%Q`rKYpqf9-S7Qi8c<65r$K>4yTod1G6NG`&N`e zJbF!WgExn6e^VGctKDcrUM#xLjfC=iQtT4$DeXZOxaIN}@N z79xl&N5!`zk?&;w{5NdFjX5~Jcq7SWO63X`NArsZW?tUF6M8~TS>P*VfFNo(} zI~zEGrZ(32qUp80_1Ow}6ERr61xXgy1#-4S$s!!=(S6Hr?^cK-30PsR{(0AlvX6!==~ z%TIxbKra9w4|; zD0sSRf!s7(^qPa!Eh_p0TQ&OYEd#fY8vaG|ouZg>zFY5#zMAaJ^}=bY>M|ddm#*+~ z=k7{${0;P}mC1;ew)~=+#Pon*>>2 z*4C+w)mmy2LE4fgpekNnb70HtY*TZtxe8yMq8R3weBIO}>g~kSz!B(By zPx)5M2<_!jLlY8zQvD36o05lyEGkzf3)ItRy8^aF)evr-4&FLKaozO)Pla_0TIu1l`|~8&GC2{N0h!*2iWWo`7^1L_CR!s9{zf zA^qjVA%ty+i{Badbn3g-r>wU8v&oFc9k`Q3(p>az%|u4x3l}O%$_0JFyabp%0luqz zwNPYOX@s}oXR&FOV%D(Y>2ppdcD8oXoodejxR?Dd=2w&2kzjwx;DM8+0$qR;X+{YL zF`qf98qw$^BS-z4W;E!bZjd4$taFk@lD!T{a?(|5e0T2m3y6)UQFq`eWRH_*L~o3O zOsJ4*th`!zB12AzGPrHxUkiF!5)yCG^Pxl|{V3XFFUCK=Jk~DD-YkfDz<&cOI({wIR(ai|)Ch6@(NF~K zjLF_D!fUHPmwzr|-P6tGE}Vz-ncH*(5Etww;Su7gk+j=b4HuuY=idfqa1rhXGTzyt zv;!%Mx|EVzl%mYvl!!(Z{PppSIU|Q#(gfBf<`wefe*U9|=O;CGmxgVcptM2`%4X9% z;2r==*a#LQUzd_6H!V^hkuSDkq3q-JxWA|&N-4N)VlgWH$#}0%x6J&Z0kh@3`DUt3 zd{*VhRIZxIT{5!D+{~^Ip&&vK#x~9q&uW#ZpC|jdC7o;iOXH!6`cj&^%GcMWGfNGq zBavzPk6zvh!otg$-0;8<73;;~nbn!Km7>1|heLBs}Lx>Dk^SBl;wM3_IZ6puSxK3d~_nG#v# zRwucbnm!J5cNlJ&W&2XZxMd6(0J)9h=ad*1HNAXo`J&rzljx?k_SYfx=rS)Z=_`s* z^Rd{${uTaD$8U@BhJI>!j%*$eiA;)hZgE*c8aK&%6HL`=evtalDbJ)7-CYLZ$>ePW z{N)3WW0LFpJ5eKo%|6D?7nkLR%`m_a!Dl}SBexex5)Uq1{}CQX+UmbFiRSs^q{ z?r~_cnPwn-0>=W&GY2&i>KI&MZBX@gz!R#bb*iujugdaSW+IfZ4ad?z21~rYV9OHH zzL`4keNc;)jV2xs8-;Zp4Mr4zoARBTV~=if z5{#X#5gQOB=^+t)%;}3diF?LAu+S1dI*`63JTTLtqvBJ~>=Fez5oW%d1WLt+aDVv^ zD_7(G@}pA|git3t_;!FxOY0Nx{{I_awM4F&b%-_oys-L@yK$Z_v-~@` z?@fNH*S2_osQQBQ!`f4;Ux6c=3WFk(xK69)2roSIF$z!M1$5e@!;Mst>6XRA&7(rH zJP+!^ghUsHOYUKp?v5|X1F$6=}q<1^<1!3Vw!eqC7BzeG}n z+Q?r{JVJ4leeC^oy1L08t1yp9xF*uRmze4%jg?Ff5?KGzSZ!Fl&Qrv9g=mXD+QZ4M zl`P4#8K;os_aHg;5#~KY9lQ&}^FkrqG8Y%h&JVX>evd{rU{q8U{n;Ax(;>tTmR4d4 zIWZ3I=8j^-A?9MYUpa!$ZdaFaYXLXT8fH#t!hwp4tsl_FB^7W|lQ`r?*iz{ZJge~? zuALV%ns<~dATIqoRP!Xk&vk0t(LRLTlJW}^`ioHwwKx>{dHTutD}P_9PQ2$15a+)5jGz~6fux^hA@fT1rBr9%9-9n_g?5|04Z>%zO3eiCn z@5rO=7oZX^Z;(Bb)-9spIDm%2=`EgN&lICfN&6kd z)0qvJm2Fsf+i}_PpUkV4V1ET`hY(Ictzl1D2`uQiru=WxUhMM^37yz4k4U#I%Y`KS z@WoMOr{^gZRS-=R%cqVf+T}E?1;Y_kRD1&<~0NFQ0Hw8VJ3GjGuv=_p1*PXDV4?0SekHcfOo`*ap(R98E5I(bWfb>(0aVoNI-b=rk3~;8T_AZ8jUoo${ z7#4m`!gi`Y6$JXPZ9a8$^y-#a5gn{TRq>(IKV8{kYxX9NjVt+qe3WG$nun_1nCk=YaBIm&2!S!H4)ck3OC&@nFqfJb=bKqnBNxkym}r3L#c zT?M`myRj@&u@h_c2=zqB`kl(9D54@F4C5ewg0kjKrL6{%TKouVyc>$%uCI0z~ zn)c{p7L(+xqkP_@(y;DCGs~R&-IgdF(G&c(zYK&mg2YUmJ{UUt}yd`PsvHK&rT<|;(qO3|4n&G^?o#=6b;C8`Sfes zL2EM6-=U1qg|T_)svMZ)XVwq5Jp2>()X?@7sK@{#U!%#>oT*Z{zpcvS!+-6p-n8?d zycy&+!~UidWH~FVWLj@23rXoyzE5f6>)Ax}=9u=?1?}*U?Q}~BLD~;du<-6?Bmisl z+$EVM$l;Uy%{|DE%&d|>fAXHXP-kIFfYp(U`UNxzRqb<=>-K&1Zi@spgmaWFKQ^MKL zom+D_Kplaz*tu~Qz}bF2$3CS7DXEJ4ue|9HyCFp_M|?O;w_OJ7HhsKLcJq8GbT8gr zO{0}jKf0kc0sDKp~skdixpyV&a2 zY{Sw{c}Qxm5pf<*jD=F4b|x$=%MC~#kzQ#Cj6M5PHZTR96e!$|3_%_W^}gX{IR9|` zECIlWSGdzPW}@dGACYbn*7BUD%M>0RquV#P{jT34QG>4)lL7okKFg13=(#}QW~?T% zLirr*sp#G2KbXI0g)ESe`4Uh@kt)z{4c9&dOYfav?BlXQX~E6wE%$--e{)d4wLT}p zvP}&vLiA(>Z8?8Dq0^AEtjNPbuTcJpj95w_B*d^aoTTrn_;E;Aq?atj55Xfq1fB7G z>XECOOAL!!=iZm?^3I}&BfFW@`tqT6gr$~=d7@CP}nU` zY!DHG%y{m`7#%T043)J(F!(<8v_WtJ#+?)8q%4)z;JT`+0G1BD{b~cxQO@noBxt$E z#*6q0&7g{6P8Q2?L!qk3=V}+q%%J!ANwG>_iRbyglZ+Oz0 zQM&%{yH&`O@0IrRkr>>iFVOC^x7p)djLZkW&oUqr)3|e&^1|$+)DwU&+!vo0qY6QR z98KYv$9=$@P7RnC6BU z3NvhTKXF>sQB8XVj*ba-$`{tTyBR!Uc|SIc%w8w($ZX=H99qCB|0X4hVl_R~TaORf zv|1xhM_^8;DY}pkw(}9DH0MSt0-FrE%8^iaC4Pehp7*24+J%C5xK!-04F0M%lwjM* z=u!>5&1@zqxgv6!@;)&MbBx}#EIgm@&PUjSo=@22gz}BPCQ#OmB4#PChbEq6blIki zMSLrla{Ll>aM{4o&uw(1yk++lDevdK=QHRT=q@J>HJ~J#${yB7L5;{sN-%M-udKnh ziyjR8o*vrOwG^zTOnqFVSde>=|tSn^V%X&8!cJ_gRS3dB-1f9#;v zU<{1&p!|U4UpG*VZ1slV*Fw0iC$FFOB1co$sfn1>z_u{ubq%)R>=snJhQBz6$}=qi z92$Bp)A!`_Sl)odwH5e7sO{+M*Ri^f^NKrI7CP&g14_X_V!vjJ&R zF+2}2Cl;&6^8=px2io^^3zbv7|MqVQvOO5hnHZ<7I#=%dFVp97;RFihR%yW2X4`pu zV$t$e$itD*3T(;?S#s6CvQbXm$k@ASlrK;p#cV}yP@OiLJE5Ts?XN7uSRS8miTkBC z&@I|Ojqd-`e$&l=tcnx*+RU;9Qzvb|l+zM?2TVcR`VnL$n3J`Fdg$(n&J0b$^Zx!A z%JiCS^tms^?yN2n(8Ar!~od)$Xt$Wutltw&al(f5saq z1~iG@z$0yT>_f3Qd4om+CVpJ?w9@ikZGPsPJBwbmNe6!RSl|sOk4KO9Y;m%ZpvD5k z@%tn(JVj$!K>KuUWc0;SkRQKcIHf6euxKR|?W$UC`AJAgb_Xncq7s`)!T|0}^%p>q zT6=*aWekL$^#j!h!#bv~u8VhXDboH@tlNR7rPPbpdl4VCTe`N~fQWaD{$l(0UsrWO zS9Sk&6{y3F+{FLMsWZMVEFV5WR?+N8dfXdeZW?~Q3Zu$pulzSr48TOu`=5zY^lzf* z+KB1%ksBli1f!@*b|=tZ{5BSjzCC8@$#BYpQC0Eqi$4eRi*k@YTyZll;G#or@>D??w^D0Uv1L;U=sViYKA812z3 zXdwkqAp!B;o(~n8vWpa{Qgs>2Pn*QmhVQqh69oO;5K!l^+7#rV&)4bsv8k%By7}p4 zw3>WyLQG%3-DvYOmg9=c!T@p?5eJc_jQZranGIKTe4erU!ty7h>;6Lw{4tTz59D># z=3n*H4|~cp=VT9u^vL@i)S0Mwb)Nr`%k}M!X-> zm-oVdF+8tzM1@eW8nC6re;0plc9PI6z%TI*W7Qe-Hx>pv(X4Vk9OAFkSmnR!-C~5i zptrmECkGhxs%TDVlrG?D$1C`c1)Q60+I7c2A$7l2Wbve8sIpugY6!vqdwtbT_xJ51 zomsR@Z1UuF@83U_5z&b$4Q*|36{b(|jIzy!!FOz7UAPaueVnKseQ?+H8 zwJ@`15+ZzadER#rxc%mym$zmhxT-NC&jTb z4K6$)aW{C#|4qvVcSdNy6l#MDT7at)gBI4fw|`{tj+=BuU4PpB{m1DJ3@q<|q3*({ zNl;|(c3cH6Y#KaaxAb3bJ=Z0R>$DxUbGlw-KCal|sFa|q3jSbnqMekOqZfHSJ)_8G zrCv+KU!<$DSXdPj4V->Z-1{-Tv%BjkBh+=DU33_llL1x{YZ_jYWSO1NOj7CSGc)tp z>rHULuuDanjPJ(`RP=&R`p~~FI*lpI7swJUd5|HD`M_LMfbkg&*f|hVZM~tGnP~S- z-rIF2snU5<=9O}4TS(rUu}4WXldUlbxT8<)UTUjH#Vu8H6m2lFuI&ttvK9vOivr^K z!l;U8>J6AV7<{ZKGs$x+Y#}D1`jx}P&b*N9KQDs+&x<_KPaUJJ-1E4NbQScVq^GE1 z@gNTQ5;ySWsk7jCN^ieO?aq#2fvzQtXMZCPOc3KVBrX$^XA&|pE@9kG1(;a1MVS}b zFd2$?an;_w)`SgU*O&dsO}xs_FKcogCtE){d{)7dc$B}Z9qFLAd`)Msu-50~MLRXJbGW+u#qEzFlW(4%fGyCvYWSoBwlCT@Sk8IzD8W?q>tiWO zcX30-lgNyI5G9Cl@d9_<1?%Q9qr;SCs9OSGFOKSfb?UL^(^N^7i2Pz%ZHm3ZC@OmyMD?y9qZ?vkl&`qAsxl0W=Pn1p5v)_ve0^c{)% z4Nm}W%u658i02~R3_`F9jrFZqWZ0a?sNvJfn)eDTq$=XK%y#I*?bV-%d+I-sBz zzwK={F0hGq|3?tKPI8i}G&$sr+)aD|2LX+(Cs{mc@GYO^w6U$zKb2)p=n9;u0K@K> z_L0*qsQM)EAe!311*GCA-*}VmOAyY)gK%bxlZE5noqql)e>yvg%e{-i`{z4+;V7#- zmV^J5LQc%Q<|mj5#r9gaW69-MX?mkiS155E#pT8wa(s+2b$+!HO_L<4sCXT=du?39 zX|HteFm>V()6U3xaM&TI>{hFOt?xUSnW>DnR^lX(q#S3eYk`z*T5 zy{|?Bit{*|;>+lCg^{Jw&+9{w#REugf=FFr!?xnakWm%r3z*f++gf6DatCC?Lw8|x zl8}Q+UpLcQAH>4e`efnq9FeryiB^%5(yjcB3>@I{Nush3sfRen{=rswBE0;IMmu{p zBS%&F2f3WYknoW{Rq`t2<|BRmn#Gciz5XidT+PBY8Vx(1a45Cs#tRYEY%CrvX18Yh#MgE)hQ5YJd6u4PU#IdN0t z_rb3?`HjDuSCYrOUA|U^g`PAdPfPipVW~Z%k<^>$hh_=pZI^;|HUEPIQN}lsIM`$r zw1<04hpYqrsuU+_^soQCVBjgkWHw?IgLJ$JpgMk^jo+BSoUm$DbJK<79^0ONRq}N` zsJvh|Ack%nV90rrU{5#ovdKYSR*n)Em&rF(L6*AG@39R{Y-#ZV503$0FTE#k0ysE% z>H=DEgVebLjNBQX^x}p=S3!!PRy9lx4A7Yi7$7o;mI1@zuNWr{Z1C;UPW`GbHf3Bo9=0_s@2?Dq| zCAgo?2QDex=0(E|}{-Hk;;U6Y=2r@#THc>`{R0V0;LnkZB zGjQifW#{8$c`_Is)Y+v{KNKU7mkM$U$@-Xf`q6&QqhE2}JYxgcv->92sTvPos~@l` zBYnk$`7`A*(<}fjtUQzJ?f)6XF#NXiuue>m|G)8*Gr9M(TXhMm^fQ-5HxvWjfJs3r zVV6A5-6OVB2yNw-mHs1`9!+{xvfj&%`S@fF%$*F7t#5LGNn56!;V`XPC7rn_4g7n8 zS}|dxk^>3bmUSjC4HM~9Ldm+{W;#4nslzGO(z43n$q2)$2?ZBK9KDdC51iBGBrZ=% ztKS5Hv|h29^c4Nm#W%P2dI?OMPOC5a`J(V`Mtaxc?1xn7b!NnbwX?vo!ZYxN+tb?yu5FjokXi;Y0K-ol!2^xz5$~`QSV_!dzhgJ_I>87(|a3xyO*wI;X(9 zN;5HUg(Y7X)raH_Y4+S(Fh>;k(NgJyeabbbdPyA1x#3UQbuPTMjgL^c@{Xzs3R#z8J+>9-XSUn6 z3Rqd&3nI{`0jW(Y`m<3gZ#dX-tg?gc*=Ot(ORh6pu1_oqXdV#ogp79Ymcf*b%WOOTw5mTg+7wTc)>W~X z$}D%(2S(2ib|-k2H2b3_mqWZ!(rekmnM+o2A}+6Fe!-r5-Eon&Ud zZY%PGK|Fg*?yt`&o2`?xptM)HF3Xn$GjF5~=}PYS-!AbN67T8@(QtWtl_?=yraBap z0XgwJnfwFfh4$8}HJL&$SHhAoyXx)brV#ICz>YVhf@p`?Uc{C3uT&b zjJnkZ9RS_MZsO0RqMrrZLMZNywiH_t+3NKu6?Ug5Ss zg?MQPSJsBEm7+V7tZ29AEYP=H%1ZWkpA36e+zA!OZC{6GfYlJR(3KLbY}r=Tpn;*D zxjgy8l({o?_TGQ2{5u1YQB9QM4_*bny~VV#>eVl_4vt^!*yFzL77}R#Cqe~8@Q1+_ zOjY_(qg%sIqJZqHN5SvwlKHLqYIsH?uW8?Afl%?Nil+aZa_3RE>r?glm5r=8Otb8o5r~t6EG3M;CGzUz~2~N_1A# zX4D8Ie;tFDJ6L1gbGCoLB=(%ob<0}s_=_(8muo=rjK_LL1lOMVvvGkzEG_r3o9#~IBz3WZfl zoF0r6APs;`-TtE~%qrCpvtWJUk~p*pl@%_;1+k2}4K77k$Bf}aASct)h^`-dRlVVn z6c!o->jgpa@aM&OdwjZgNwu3$Vd27=l$$;Z-}JGy3-pod|N5v;Kqmg>3L$w|Sx4A6CIC3#J^2#If9 z1mltn4gO0O%ofXb)XI3}*kSrWj!VxUq(gxT3M2~D`g{NK?qBAEjWZ^1oWo1eT=I1Jq#U0gR?B1*tkJxAk!q~rmy%HiYpQzzd} zFMB7+rt1RCi+qA-5=B%UY_u9%sS~pGGSR1UzWkrGrKLYvXt0G;vL4`zn;h;I6<=%2 z)a|OoQt6)?`#;4+5qAClPs;N27h5##A|<{Lcm3j9*}efyrAu9YJ)P2^(9S2PCV`r( zg%3TuO>|w#YE*B|CcgaZj_{qV!vS|8IGc03Um&k%*&5pnUzaeDn^w`1WQkyw1 zhiY)<2K>jLBH#V!hUCk<*4cntoFQWdV`{3bY=HCaB%)rgmP@sA}1D@%Q^mMSi{P?@JKosPl0= zV2gR#?ZPl|tK}R;_QhFv_MA={_MG{gG*Bk4{9sLKSGVUv;kD2Yo?Gq&g=}P9^5J}p z;?d+$ZqpJiO(YbhUG>yG=J{CRRlMLVyGEMPk*A*9MhU_ab)M0#*2o%;ux#ZVMCG>Q zRF3>4mYU(*mC{KbRly~&an;3P%jB)=ni}ojEz>D2s)bg9Hew2U$+|i+y5crObGSSj zL$tzIjD{4%z+;NCxlX>l&8_Eq_TRSHd{0e{AQ~JXwSyTZj4>Kvu;a>YR2NRUm>Q0? zWX*w%QfQ7S5&ZWFBpx-&zpqO!<2(-xP~jDz3}Aad|k^bDqOK(yv{98bhM zNEH$7j0O`Pya+#|tVf%^c`$)fUn95yCW6F+de8;>B&>GFemGzLqTN|-g8%8hU zB-SZSrr@hu{Z%4vr7tqmDng0zpiG0)tc<~6!&w7tIBU53891|9)h);}F?l>x!C6l8 zmQ{_e6OjeQt3>eYc$sH`nKywMCA2J@!d*j)YTaA<){?Y?n)JI!WmRr3r`0w+ogDLn ztcV|r1&>8Pu*_+FM2rvZ2)zecJ|xm%vCYQ{u8IK4p~^kwAN6S>x1$LGK+rN;{_Sa) z%2fB|&P%QiX8lsm!}Gzi%E-D~_=d9=-^WFx{r5DEKHED@GOFdQcq-;8(Y6GhXFG8D z?eTSL>k|dQHzFjq3~&>^P3F7UtIJ5@GslmazOhYLKet^^)G{yhZeCoiLoP2pw1{w-wPyDW>37?U!4jNOMKbE$__7 zi23}^aEYrG2zxsBpM=*=2UcLmh@%P@^}gERgQhAL&NEW+8f||(x8NKVOJn0DOHn4@ z-umohJ@c1WAiOw7on?zge@5AN#r6Jh5RU5_EiDTo9?->`$ zt53DMXdhq<{U964$~}l4*cCdR=XYvvb}DKroc&DPP-kzc4PLrY!K;MN%FImS-D;$2 z_Xn7mJ&#|C)H(#Fq_1jdeX{KU_v}%8-j3CqCBweGMjsm0elU-UyIhpg@K8Zm^a0`!X7o}_ZA(xg(1_=|lPyH|8|=@-y6k1cm=>!R!hOQn(+QO49r zLEJ(4wAH89^J;m@)3k$}w%V@D8^;%CoUut$kBPlb>@w6@UPFwwC@4m0gz%GjnVH$c z8J&r^vukmZ!GnQc=6=6V^p{_L#1{7}ALcCH{{-j#JWM7!D68C`%c(|8->Vj)Y|Grn zxc}J+d^^Nin+!6&J21EETk4S0amvhVE;>X2Jc z&5jNe;-}AblP*Q87lkXx`TRxqsQIwfcdViIJyajH{ee4gerNx#T7stBaXgmJL>U>jyA!jpUZh&|4VxKTTp#9 zm_7n8k=kehHBtyD`=Sp(rf)hZ?Z4oS2zt8jn1|*?b2}JN>7B97J(<^Z!2#!b66N@> zf=$|kC3?h_%J7HrXA&7*QM7u6P$u0|U|m%9lu<+@a_?!k8>N8NQs|PANBAnFOVdC> z;5?zGt8r+~0$FKG-5Y&U>8HVWF$vIIicc(b0T(>e_qM+FKuR`z!syUkBc@Uob}o%a z&ub@s{j@IL`JNlDfQ}YuA{_NYi2!H5J*@T5<};1zUM{-COWFb4s0@7r!~!uP5~sHVhrH$tbUZ>c8G8hO1;bY+*O;{m0b;xno7Yr z5tNTshTmkVf0_$e$riZ=di9F%f0BG0MHG&T6$P3>N`V0rdYf^%U0+z_nGL0te#o#O z!a`kNymnGeG?06jgL6i_dn$4GJS5R`>P076t_?HK{lg% zGnFH|QL#8UFdjdPlqA+6QCx!czBUi=F|l6(%K-r_$I9BbqQoFkIq<~rzrku<_ zh4`+%g2evJvFM(D~6oF@u<<-%E8>$MMbIOIWu|M zF{_55?a1ZozaAQ5cxP5y1;44cJvm0BYy59dmjV(RI~CCJh9=%rUX zLn>K3TjpwIe+D=3D`<3jCpvq$x+A=05A{hI@~WWHT#UUI&zGEJ8?rDJDWyO?qvMNx z5*?jgluxOnrPe>0hISRW->hO{*=To2^%;pbzNqj@x}mILs6G_N`v+F;2xG!=GHZJe zT2A@D-y62rNweTlW|T-c(&{!Gx(Hp76lxm^8ZfX?S=`<{w!|C)S53aTfOMW0^w;_} z`?;{OV{X~poHSGpoYY{$8Klq@!|oC!MfT#ReBa)GR9XB<1Lr7$2CP`*g07b zGD1!;mKoA_kxO}4EZ}}Fd&Kgt2To1A;0lVH7U&LIB2QBLB(T)yb zZ)RDwHSim?&e$u%*=71df7sPgMzIs>gP;6wQX{m%h(Qmm+abV;6NZF&&g$e+a9b-Q z++Z&n>kFF}eQQuUGkt2hxX+U8R*JVm4Th#DNNjf?Aa zX|=}2xY3Ho-g=eAW*!zd{AULLpf!Y390M4m)q+u+Ld%)?hc01Uy0GJ8S9MCF1A_!qTWJ;r z8*(6L;Gf(h7(EheLgX7~oey50bo+iGy>~DOOpL1G4hEQoOZnvKBg#>NE?6V6o z(3h4Bc?cMXjW^0nO&-h`)=hN6&|JA4AMnQiAg0p0&lC{ZDnP zHT3LzKA2cJOC7ve@I(@dPbafMwBP)cpZPnJZWGF87bJUkL} z^-1JU_z~K*zo@{%hjH;XzA2K;ahip%PeS47hQD(R`vM%@2ykXusg0tcsXnS4K(@9^ z5?>{J4$jK}T{<-S@t1Sev6m9`SZ{~6IY3Y$XMi$E^E$U(ok(pUZ?M2@guze0<>z;b z4091hWjl0KC-*m#{3kZ(z4k5RsbqBMyfv%$jD|y5)-Y5~p^&QA7Gx`($fJt`Urs)o zzYidcBJ2-}-@ePS-ybl&22lkGGrSGvBZx3iE_j#4M zig~j6g;1hSA;(FaFCA)4%myn7j*&zlh&6U%8#LZ1s*y zD=?VFiTf?~Uzr8-e`OYa9-c^hs&pi32+D@Cy`Hr|G_0>9x2GGVUGw~YAfIJ#K!vv* zrE!uLIg2n^KcBqMUG7S}XAxwnvDb8aMhhzu)*-Ix$peB$-0!ey$-<25r)A+zY134~ zJk%;?P2SVe9|05Kh0NbO?`ytbwELl|5PG=|niDds_#hzkLcRk48XTzq1JK}r0~-0r znEboajgymov%OBCFmBS&y#0?qhhVQGiSzmsesBs&#wTTQ{4W7B;CH>N|8(x%jkO4#q}9`>YH^%oDJXsSG(g5XwXsKXJaJ;3TFC z2UQN|`8OlVN{TYn7^Re`tyWkZeu=DS&lozR!xd?bmik=Zdwkj)i&^Xho1=PU_ zA8qRi@oZ~gFpRv4hobt0PlRFh#%kpYVcYsz(;#dO>5$%+m~Jyf0b_ZCHOYlA@bsum z)BT6fID~a%wTu^^GRB(ZmW_Vy>Bkd?R28L5A%Ju<;u@yhrjAAt)VYLZ_J$0 znrKZjg4$1Oo5UmRIw)_URLP!IF}35-wds7StEUg_3)ItvZ<;5vr9iD_{TBiH7b^)wwJ!g z$qc8?tsaf|*{Q%(cjvYHTtRp|sB$MwjXGGDQy6#Bew#P+>h>p45zBE~t9O~O|+|6lk6emj>Yz2Ekbr|#@|e@7*G4OX_NJKs5?8(e4(<(@O;6)9Tbrv zVOn^QB*S-)%pg@fF`#F}UEth33ky=E{a(=BE|MJA`LkvUss7v{8jRxvNiO+D^w>2$9)argquG2BXbFsZm@Fe}X#u|k;!(mQL zkl}8t=$gjTO7pJvo220!?3Su=xPVJVS6jqcX zM|v*i$-J>^9rOy)rr}jChu!)lrA#?STPCo1&Ve!q?+V<=p9&FB0vrpG`Jv~CZ#6vx z(-!n=ES4dc~Ju>f=4Lvcia8LF9#& zb0tMYf<*Ih7%GuCK`$mF-neY>)O(8DsTw`}*bU3$+P|gM=)#Ozc*1m4YQe1JLGpfZ zYoj>s?HC7uKQcOy8Dv-TrfOD*;7ePbmJh6Oic~nLiDX9^*kZ^B_?wi_nm-CcR=D4I zw9F@4Y_0Zzv(LLBg`a;JkC0wKZ+6CVD%*vSNy|#5^~a_)*ako7tD9nyXPrEYrbSC! z8M<*h(-9jX8u(qY0GB5XAzmRWUdcrSj=WfhW2ST3=VlYtMZ!%V zG^!4Hv52vhQpMziB&h+_7w%v}F-*#i^)M>*CdEJdT;ku*2D@~TZN*LE-W#6*jOMUx znAGC^iyKb7czA$hkB>)Y0D{Ai2za+2oEM>I|9tnC4bw(QE;%stedaocb>(xdIuC;V z+aRsM9O%ou58ohghvy|SaCo{bwo?2Fx&f4?Y8I;0x03!cYVS8kYIOgldQ3xAEO~$D zv`bow9I={ws*xyos_03_$w~S#QN)nrhvQy#9Wuqtw6-%mL=g%=)I4>vozfY#5D)1S z^X@1}92ZaDb3E_JmPvS;9NwE3D=j_pGWcK8hO3}6PF~;EElf%#caSaf#J&I3RA<{& z#rZBL`fX*u(aPD;?(t2z^%{SUfU`TU&>b7L0a;# zeh}ODv*qdjN?G@mPUV~Zy&KL%8E3aM)duVOKTwIyG2jba3g^X%@J>}FbE;Wggr|fB zAvx5iZuPBVj+gAGWn{XXP14|IfRFATEOp3EzrjG6sx(cS=&pQW1`}jwOHxc_`$*fY zq#TnMz{@u7Tjl;x@f!;ZiG_9o3Ut3P0QztTAzAw4qK{c!RT4Y4k2ky#5}*fC!TV0OMDU0Sf7!hTTaie(k=J z-RsIlE_-F!W~hOQL?n4SL?hAwi87-=jcpCfdo!aeL!gg#33tS= z%iW^lbxzehM$ueOL)A3*n?$drtaL0I(6^n!0gdFQ-czGn!T#Hol7stq+KE7Qbkz5; zhTtZlnBiP`%v#rPVSl0&XFHwtlBkl3dv3!iiNvZ?W4i8LgU8$|eX&czltkorhp%9A zm=(1twwMS`i5a4dNYdJi`Lvgs{FPanYx|JOIHwmTg*dSzg z@S#XXNe?GToe7d+F*EBqE zR9=@^UV?QOYot6T5=ij zG3prWQyvhGR)dID2jrj`v@ec{DzRRDtaF4&zP_BDX|yhx z?yw!E=4?r3MF;QO($Xz2z@r5_Sr@0|Sr=bzqCX3b$t!9BU5veJe(+pb<~aMdOfq|F z?c~2h9dJE`WH0Ms<8*sp+K)!7V-jHLfe!X&cn6IrXge(+mJYi$@^2xj z6n#XU_J1NcmGGYFo7|5~b6{GqB?WY&DP1B_W$Q;Q!#gGjLZZ1L zj3Kjn6={8wTX`_4YaQ2hT5)ksxEbOCxO@NsQ_uy@>dWPrYf zYyXdL)+iP3T?V@saF?M5Cr!^M*PUXQH|BV+~fl(H+4sinv7&zPjxj5v5_-il%+5BNH{}5PZiH1X`{RB@Npj2 zdeZfr9S0oAU{Ik0RGT9Y@sw)J#8f0b*$2iKB`k3GBA}Ke6poy%OQV^XR3wP;01m+* z>hW|JEuw`;)GBD4!hwv@jpG2jB~^~lvr1NmZ=@ntW+FT}04pGKGkr(95n z6}TFfp+t!~(-Zzi8|(?7LkCc<)ZPvz#2JL8=)=LGH&(=;N9WdZ7N>0}dHw!KkOC)XY^NZ1imt))Kv>8|7R#KF1JZE`{iE`f7`3$4z zj%$gi=H?ME(af={&ES7rTn8vlPVZ=)w+iz%XGgl!!A)4jZVq}Qh($#fi>;oX^t(0g z4=?X56GueboH;i>NuLX^qh8ja)KD9-5T&JCjIek@nPKhE)m0@$a9U9R`BGV%|AbLW z0rY6hcM7^1%GGxUfV|ExE`e=2iJq>Np*)?SB4q%ZfD%(6@3clcS^UYw8M(v5S>Cz@G2*nj~X=#Xs)uctfdOlg7oD__^ z-)o+_XER=*v&TVm_R`bTfDSaV?(}zr8mZM#&Y_JIOK){bSUUJ>3*3IIFa$SG961Kf!P+q^{JwX&!9=|Lfa`IJf)hd^3F zQI~Z!2V)d=G&|{@z1xdD%12H@J+@%Zm@AUSDGxf=N)i>+-X{W^Gr*pOf|_BOgcHv- z#98Sz9x`SXwSH;^hwzn}5PWPT!7>%5zR$;e9?_I6oK3w_fpw8|t<-`-b=lLyrYkSr zSX*36g3(h<(s4f6Ue4&3Ua@ac&2b5ICkW`R+BI7rJvAr$J})t9k$M-_!FiGvO^5kr z|Ji#sJbmwyzHdG8Q+0*JLG4^qDZ!#5Z3W#^#>ePy_AWk=>0dO=Zm2lVecEsRo#^T6 zZiyfUer!o_OxF~IrKOQoKVW4^dXL;Xi&+!>PvP9w+g(ciGBi4*b=gji)QZvS8TCsJ zr}OPvkNJy_q{r2q*x8Ce)R+dM2IT$R#Za^kmCZV(VQ*~++|!Uu2mzkP=SvA`WKJ-- zf{U~8>ScC&<0s?J2Qv?+dgo>@${_x##1Fv$C3rjrT1Y>lJ|MP)2>JLqxb(Ss$E>-g1W;x`AJM+!q>wvF zvGTz$B%KC|2jZirU`RmRF~kG64dcxWwZ8YP*g$oIrc4xQoTX%iV-##Fkiri!`wa<}C9VsSg~*#V z{&`Cg0^IWF#Ha*HY>zR|wN~mA0}U=}qybT5S-aokt>Pkl%R7heXhJnTw*AI~!-W3(miD#N;(Ijudo!J4 z5HX0f>pUz+?!t+O3c{a)R=!Bmk9QB z@<*Qz_VgA}SjYIRZ_POLd!`z~UxBxW9uz8q-X1nXdGU_g;>u8v?Fnt);4cVDZwRM8 zAPxNBEmxSTdCKbK&S-9ZF}-|=3(M_wx)2)z1Dzc|-r;nRY<8|L3r<@H3y0u)UXiLT z^&qk`T$H}+HYb>UXj`7{^}vM^?;WAPuZh>@3#ZSY9U1OO*{w786&DiwyI?G&hl`mG@|@0$;yHV3HW;dQ&;fK!^911hxLrdPyUuz4qxbN0qIX z$}8296G|R6u9m#yaGbZ|>5v>cYF@xWjCREiZA;}P8>x%RQWl)(v;&0sl-R*8bS

~d_cb|5qVY@XP5Ja2H_p_UCK&+ZA1Y{@YA&Y{CL=VG4gf}i@gH&tnK z$l9fP%}b+IjDw!K1+zF@e;r!rDgu?ZDYaJAXqHG04}^#DXYB878j;T_^q=Q)Sc!O{ zZ&7DQ75I=G6&3>~YMVM7i5Lq)wNCUNh{!HNCCrWGL`R*8OmzW60iuW*Ey($Wy4kJw zgvBbDRN=@PSGottQ4}BNIz^4)J^?UJFH`v}R+)>fFuD7=TC&l9=otflrUqZ!>lx|) zrDw3OG%qNJ!g@(JFN~@h{#pfi))>~C@2^A@(CjK5BLIunMNkl$gw!$Yz`6h(> zwdvySzEr*7x6A|nhB6rUz`QMhSd~1#bcngZ)W0-*Q(%?#$t}SfTyVesg>NLFQsM0O1=xub%iCTNz zE|U6$`f;l0JLT|^NftjrlT=osYiTMC5SxDTa$U72xRKpDRi#eGI&&OlYW7Lx;tsE9 z?PMW(WW!la@PHl&zssUZKb19RogN1WMp+z4q!U8-QC$?sdc%hoRjqSqUY(WTXZcxj zG0g01HJ_ixj;cxHWr~7`EBCF4Q`Bf^M&YsxqJ6nD z3t!^Ih3KQ<3iDP2YY!%{gJ69<_#SycCRk;&DG9iy1dO~g`?`rA$@;>_oMky@zRJ%# zc~et+ncuai zY*|Fo4>R%92(Qp|t&#_&q`;O9$pkYKK>#>xRPDVJ`f2R2+Iw)UnR)y~w^;^MykN~Y zgEPS%vl@@;_|sAfhCUF@cXaI;h21CxC`1h7;z03&(Sku{-aM`e{vQHHBANZ+EgH&K z&E4a^lN1)24YPH#JoKxayLolcu!0xD^a-{1dG=wDXCGD*a&r9JyTw2r1VS)lq)<<6 zHuW$M&@mNLybp{GzSv1(R8$p6$g*{% zI}UR1ZCZxAw$sog8E5ci@qwk{)Ngzuu&}vUWvV`@TO6tI^o*f*L8bzB;PrRi`aHh) zZ)oS;Rgvd)uh-4--QNrNx3}&tcNh15>CT(8yEsty3Wk7*u-g_?gq6IrPuh(LP5x;k^iYj(*VE_-j&S zA9t}MNtUwowcVAmx6vU31rE9Cxh&;BNp=c&l6@>C#$dd83Od7)s^D`_5nR_mT;<$b zYX$pZJq8WVHfr?*&!g(AFt;j}0(w~Pcs46-@o_ZJcbTu5QyLMkCaO+bNw*EA3}6QUV!CZY4lF|fDx zMHdbbA}Ct*a12A>KKY@5Y*xRPIN4>2n^R7duMr>;u z`Sd>}W7=W5=71LwFwnit4mpi$N|F`6HxGQlzDz!zqi?LWEtHo(S((zXY~ueJgINw{ zoPzsH`L!(Nud*;{2LXWtPMhfD zuxBFj`A-grsnRsuSos(T6GedLDExrKqDJwpP~0fF584*AVQ+JEWcAtmOnnT}Lv z@%$FGM@uKoLlY39NA)SG_|Ec@Kq{0dI%<>x!VM-d?7fJJ0IY@` zFRd`ZA|g_7@1J6u0{oWe-Hd$M&MA0&FPjI%!(_SaO2g%!D}hh@fDj>Eh3c7}2)4acK*7K1-O{K)Lm0S%rw3u*jFWGb1(X+1Wq2q0Pf^8lm1r#Pem#W59NF5tXl=+O_p zrl#!9b{G`TSYXv=pkEs&P20W0K#fD*y~9oou89151w$Rwrr?T@KSw_=`MjkwZ-U9Y zXU>`FA^xuPummd-G~NH)Lk~ID7=$4TH+YmTUDpYFLaLw7z(1!iZn0M}Pf3~-#2Pri zH=;^EKcnL_JmOC53t^5xBq+E)E5K!o0umLxQ79V=zwGUJwczMTP9#7_P_zGJM(ka_ zIkP~Fc%c(rb=Ol<7ak4`&NGRPHUeeifft;ADG==u)9WhXn}m=(u*FUZe(K;9>G^1Y z5ZmFhq9a>>k)_(6=o`w#^RJy`g!5fp9qg1i?`x%u34t>49~4k>$N7>&Mi}_^@kFvk zWq0W#%2lsjle1g;>>POQqNoUB$iul=Q6NoYqM~d)@{Ue1Arp%mx#tsmC5?^3i{N27 z&}UOQnxbQG9h!sa_H{jvhs|TXY zlZYpVeLD;gKx3?dT(q4Y%oK*(`RR#RnTPLDr#XotC4}#+CSO+gp8k*kKok6a13(i5 zl+n1F#6L2NfU<@%nNA^JS~vI9LuBk^X~2z)0p$xn5;U6CaU;PF-~R)I{kvlM>JbC7 zt7X)DI8y`mRVukv-D$Z=z-`j9%(vqC=>_0!<`Qt#YNNC8v!%sv3tw9 z0D)0pU?Hj;vyb^Ia_ZIAg0e!yLdhh6HCQLxvI6p@^_hT21{RL^jcsJ8*5GJBWlvX% z{i~_kqXrd&H#yq5@T|2*EP^9jGDdC$0nDy{zeiF4aq>|HpEQXMF6`~nEKtUV#1~i|mm) zq3$~9l{bu`v6c9Pjf}yd$GiZ^SY`X;BBwoj; zR+oNms{bVOCj#r)eIje^{0R*bZw;kwzuyB%Sr#q|&_R-@H(G?LCoL_728y2wJA0if zSlNyoZj}h;ubpQ{$I2S7XJWk90BFVr9L?x?9~hvFvZhEXy`QX7h8>Q{xfzW~0Xh@x zyn(ObDlX7aS&DVlXSxQ4qo~?NUOhQ^_^Pa{Q`}YOG7CT)f~DBA-|jd1;_9aO-%G+R z5Q(HuU_s%90%=Mz6ED?(`BBd`?49!Z*QsRMfY{*aclU{??_(pw2mr=Ks9(KXypg~V zh#%F_Frxx5W9e5Oqk9a%HFgwH$?icFMFu|zvzA(&##3F@%TM<88bWTT5p{^n-;R=F zeb zZ2j(Ox61(MKuFhw0UF(q@>Ff44-BbE1qRqNAjfWg(|AR5)VPW}>%6;aWN?P?j&M`8 z*}d@k0!KoX|KSBYT4)M}7mrcNG8%6UiCuq=oW#c<1}HA*7dc4Vu6-FCaG)UJpc3`u zYn{YbcabW=7s8h-wRNvthVOFr=A1rlhM!(D*{6!_4)GEkiAL}YDiVZPqd#5^TH9At z_$5VU>!Ek-j3KtFFYi_)6QJ4umZB+x zSF0o(X-f}#D}{&Ospzl7sO6ZrqB>as1UjED0N?5v`Us=*&C~+IVXmx-KXqD=SkOk7 za}EOR`OPEqstvJh_Uz~g3G9V@g_a0^{OD&ZjLr`&U3?Y1O`|0qE#w=aB=<6+rQ|JJ zmP;$numwPt`_-u#0$hf%$+hRyfD9sDbR_?U%REJBb4FRSKeC=@5V~SIm_yn?f$YL6 z8LEwjt&ORSFG@~`Cpwq%qn}=Fr5$2Pjry);xcPPTFdtWKE`Mrk??m8{kru8~h>Pvr zGpIJR>oNZFXiyNn^#DDxOPMEqRFvYY!LcLGojjg`9Fd44qchx?q=Q-TbvTzJ&d=83 zEQupXlG;8~k#WDKrM?#OwjlVuU-+vQxAd%A$VRDX(6eVJUO!dJ=1rB3d>{0Y`QYYL z`_H4;6K!rBC=40UQvVQ(KaFIbSGa7ki?1J9#wfiQlHJK)xn6R{OW_eaf4nc2&XH5a z0ZMg$uM+%xeGMc=f>~pQP)lWb_DWG~6a7+63K*H%t@&KX`A2KV)yD^7;6rHWu@cw^ z`OBbSH3*n~dn~#m7&Ew4O{#G%8!d`{INwh$ckll)%$QNOECD+{w&$(=Q8ySBdn=*0uB;KO0r zuVvpdYTuFe)UnT$!4EtI`qp@#&?zL%m;dn)vfIY|#JkjS3X@u*B+qdsBR2`1k7`X0 zqvqw#y6!&)7FhCh_^R0h;cF)28LQ%0&oc}xO)$0*ev$Qm-PFjtRi=)R9Bq(JNhkBh zzOQ4?ePWWE(TTJ7LeO<+aU{3z+&zT7mxE|T&G38jY8YM*ngmT$yt4+4hjLI>*=L|| zcmx%xd#;~O zY5M-n>1o>e$l;<*<-3Bx15G0S>6F26qfD`^vJ^Bv@sXCuhuc0hz~RUmGz)i_2=ER0 z1l$g?!ll6|QkO!a!V>AN$jsLCb8tS%o()8WM}1YE~T( z$oh5Quj%-S_R6R*w4@UL{*Isc`em$xaUEBOUbn4+cg0#xG&-cUoJ1x3sjG>cda5{A z8CaB!dMboR4R>wN8XNxX)Uw9p%cG#|9uMo**#!goTA(#q_ z#f%9-GcXUGrBeJi1@adjwMUIXTtppBea^Z!o{}{coIM5nsQ?3C$D0uOt&06Hb6)6o zcIeE5(+(!0X0QUQnkUxt>j}zBm0dYayBkjW0*;0|DaiK2;P*jRLsL8}qB*`UQm7T+ zORAbaDv*cF)DI8mONTFS4Lw&?7So7jCVD&rt%gh^eK~Az^du32=}{lXo|rxk-amfI z81aDn6_7YSKhW`=fMq+~G8}UHo%I_Z4AHA$=*m9QmB&U(?VcfdMLnn^7I^+vl^V4r z$tTYNjegwL$V}hGwMs4DT0orJyrh~MyCXt^fCDdhx$N|Ewd>OK=E+Cb$Qa3&Nl|Jg zS=TAseK$zI_Q`td`t?0dd0H&$P0%ts>B(9%>>RTVUBT1hmOpk{>IGS+#Wm)G;RC&VSCg8`#SW`^Bk`3BEFYuu{hp?6EmYmqfzk9aJ--G7QDhky& z-Yib*u`t2y+XJE(po)Gd%g2--@FfrONbK0>i@fdC^N-d;^vGYf6Krl4p5rsb)z9kp zWQRnk){13TY}&hzilLfQ=;)RQ#xi@{sm>Z|KR|azG;L|+YYO?aoM)wIheMj~L9(kG zd(EWVryFQc@)Com=F>^=tG?5ogAYq$nd8~e7>N-aZu9bL1HlKnN(vGL(J>beFIpZy zGrAJ>;ZegbJe*d)xlTIL5cDO^R*sEPr;zk7QwWlx&~uRSCn$)yP!jJ`4tl0vT27j7 z&F^2N-0SI(kIZFO5MubThWxiDK|oOoRZCRcEPISdi%DV_%V)->OJ3b`brFKdx0ijA zr^}PhH&NSmU%oJg)d}8W*03KCX@R2Pj~^`rKhCbi5A|SH4|CEIfBoD*Z2GxCgS!{n zg=LJEPf`T;8Sl5xN;+J&)43D=#Fi?tm0F<9!fRev4GA%elH>j<@9g^FOuoN1=$Wx2 z@Hcia2QSN94_cXV_r(Kub^{8Bo%gTi(u`hvoNq z49-QRS|Xu+hh-D!aXQ z?lPk{{E?>RW&C@6q^>kpQ5qiVR-oxQnm@M^!7b}M_o$M#sy>Hzw)D0G55_$Cn>?p; zyGZ%0?t7!WJ}9fVhRdQXWkjH?;)L`cN{^{7D84Y7_WTyFq)eWJxbso%jCmGfh8R6d z?s{s{$+T@dvsH9m-h?eFlz671i9L+s^#mAHt{)uB4PoevXQ8Kyb@|>hB-;7s$?}UP zKhE8)l795#PP8G?C(?aRLwWs#Wmx)(YFsyFpDRuc^|`l#yvqivz3X&(Oyrp@Nx^B1 z#@@9U4Y(C-rnQG9`g!RNNW_2IC_KPVj=E6t)2LirGP+endQZF@-*XTQW=ic}k@S{Z zwj^-Nl|V{yE0I+*EKj6pBeK}Y4R0?SxIc<(q$`!`g^0?zXX1+}P!b#%S z^kEjT!?|+ZmIS0&sqgseH#gs6>wkMNSGDr?3HliLys96z;ybpHNI4qQN9-F?{w?!$HPVvWkYOSah;& zUy2ON?(>|smf~b@-q8?k?72GzwK*+Ou38O*mnM$Z`5AQ&)nOh6&N_A#VqAchg7&V< zZ>AzoQcnF#j~>r4!pPpCtpsq5Th4Ik%8=x0MoeYwzN_3yxQW=Y80OG*OX5%NKa*(a z`5`(OL$p5}OT102pVwL=YDv@U?=U^#0CtrrzgI+8yN?^WW zpULJ={T5#-rHZ3#_wSuZ{cIJf^V!GRnARjhW_Eg`*g2U_VHV+KG6uGd$W@S7Ox*(C zv?JK`{QahD;hQe2(Vo_HRJ8u3?Dlo~Vm7g=p;_8vn3r?r2Y;&GtB522c1X#3#5r%y zuHMmy)|KwAjs;SC^n_5P=3=Av4VxkK4U2VKzSc$M5(>3^Jz?2_)Hn9->6Fu)JwL)d zFfE+0B=w{?!V9Jb5G-tWpOv)FOMC7gr#>xtUYGL4azwy4Wu5z6dcU{UR*~?kbt0BO zmAG0^QV(^}ZfO2yxcUpf-bY}`vdk?yf2 z!(8C%n=iL+Nsx%W;2gG$cgGn4zfnbrxVGLmz^XS6q1IRyb3XA)L{mQr@$G2JV6zO2 zCO^QY1cIS;@&O6|EK)}voym;JePiW`OqC4OtIF?mUZR-^W$>n>upCc6(|hKWr{465 zF9#NLj7WV}+B0S%+NKO5ZFVhxd}jY6JlUUP1fH&f^&=X=PzAHW&7;!B3`A??_qLn< z_*Eps`6$Uz&PuI82dKwJ7jJzF*9TArNpxOsIOAUq0QOj`NM;H0Nv1_dh}T)R;#WVEnO3Z~TdTW;T%;?(mR|27P{jLy3Xlg7#@eJX*O@>#hHQjA2^#%K5E}M#szq zib+!d>R!{0sd$&Et!=cDmi6LJ`<=Y=`iIP{nbW+l;0ow!horAZ_)J9Ft~vT}LR$4= zXK~a`tW88=Et0-TBtKGkNQ;X;dWynK#}wQI#9uccqL@?2OenC(H5epQf2OkvW$!&F zmMNE8SKwS*dwbUR&feXl<5JKr&8jr(-FwT<%cx6HK>#IIyUtXuJbB zk#sX0!PBv|P3FT?N@E*p^J61Aa`5`+SS7Q1dlK(;S9F7SIGURTo*Y){Ji0PIy*&X- z8K^?lTS?#{U}HN8Qu;dIi!q9*#a<@t<;ml`x8 zWaloxjlJoyh(l7g-5yfFR`l_&=H@7E^!b~)&(^!gcZR13+DdVHW$#d|TR9ydv*qQwibrTR(fYe1mXrvv9+4e?;4siceuXt6W@&yQkNecCBq0Zd(I|rP;d~cK1x3l?;#hT+Z85}e|(i%(u2kLj5DWQ z9I2-PB_+?+B1!<~7s(237N$)b1isBS8U8jbXy_f`FA{ms6T9YuFR+AA58wM@ywCq4 z?5~63?tTYgv_i20#a&t!cXw%FSsaRMao6HbDQ=4_#jQwjcXuuB?(V)6DD-}Ke&0KD z@60>%{!z*@Ip<_^lAI(bCt3UcP&EG;fs`GEls<&i;TFRI+_?3vk3rHIc)-uUx`HwA zf>nKMp3ar#gR5W8yx{*q@+$7YU$+k&6>Z_ytRQ_L)F3knG7#mdS>Jnbpnx5~K!>Y@nvqEPbSkMhBf@p=M?jV{~cOt+LVhC=47( z^t%Ygh$P!t)$jwPXSa1~pfSh|4~@0Oh=kPe`wBa-;Xr=y&!@~rnOh4Jmvcz|L-4j! z1z>}es0=4M2eCoB$T>*Xyfc_+ylOTWgjuyvhz&ZSxIz?U%-g;wLdenhKkyLtQpf*I zt){?F+`1R>8aY#BRW<7-7)uc84W_>%pXcuF*J;+MR1(`!Aev!vCjOek(y79pYLEv> zDnX!6FX!}8^|bf{0o9ATyg@5u8I<*8gh5CqXTDFA6!u{5SZBBt%m*U|oC$Q?l-e96 zw}DcP?JB=^uiRR__a%&jLd+FN$YQBr(m4Tmu~Z~v@53NK)5=(IRzPX&_QGFTY_K1J zppDYU5>@h5KJmD_tOM&U)LEKBD`}R8@cyAtX;xPs?U;{A?MN!by@LW+lj*bu9WJLUBzY#o1KjW4Jk)dga6WgqkfGgNhD$X{;G8Qy0xR_WUI96Qg%ivcDy?Rn0`z_g=P(b^~ z0*+v69JS4i8_H7LjJc~+usKg%=Fk$~t@xNt8L}P-VP_mZe48b_=+O?JKArPjvESXe znW~p>lFcaxPRvD1{a)_xJQ{%y4H_j=EN<_T_d4L<)MeF>nreJTXXcd<^CtvEr411n5!CS-tUG7CduI|bhVyE{6NdhP=;X|i-sn_YPM0o$kJ~nzrHXsCu|da zY(6@6kyv_*Kh27h2w4DZ;~K4qi4#HkX4SQ?4>U`?HP2pAygB!-`$uy(t{|9lntR`z z?$&sE$c3zZ71w)TD&Dds*nz4x8XAKmEfMAe}`eK>U>?&ro)kxe78eZ zk+0E?Va)4%#pZJ#;%3DJO|Ti;v&d&AnnPIBy?Anj2;O!wu4c^aJWPvoj1Egxuj~%H z?!R^msHimXzyuc*?3uP}i?F7edp(YF-BK9a_O}czx##ffOzz529q?punHQZc-5HZu zU#oT_mpIhp*0jAH)U)PDUCG8k;cqh0DrUZFKckT1r+b%2t}IFPPPS zPwtNZ2Cd6ts)M`%a|=-g{wkVg4(}CXQH6pvCkt}PSh%O|T8)-H(m%J>g$YZt|&i$f4Z_$7HU{L-tU z-UQlxpCLMRekz(yx?r8d4FrkjEv@^wU)EKay&$p09~o^qi%>?%48E$7owu|MeuD+q zQYOY@b?rFSizqyAtLKzlrFhU*A$Mx#xd%eM0qJmaT^xhA-w-Q;L>cY3R&Vim>R1i) zZ?yJlkoh%@Lw@2iWH`(}F72*oIvh5e*6`vLyUZ;XjQuBhnSkUm!wX;9WR1PxIpl25 z-ZSUvKj+D)HP6aT`{~i=^5>rDer()lcWlpA-&}ScdT%3dPm3e%X+~QgXV|;()QzZP z>~(I`zK;Iu17YTTZj-?ncTF9XZl2!;jKbg8cRBoBP1$DJsQ9zW&R8rMMrR~XSoK3Z zyul-qZgZEt{qj$=-}5gv^0+u&{VnQHqnvZ?sV-TnFe7DmLy6o_!PZd9Lzc6ANTp3H zRHDXUhnR2sTC>F#HO{zF$+T3Awo_BCn5hiKIF^A@LRpSe2^_mKr;-C47-0QHDFG)p3JoJLdc_Tf!bSHz56A@s=- zPbc4iE$3J4@2Hol!)n+P6MD%~rSY^M*MR&0u)(y%G+avP6$m z0-{}!`ItuJbQ)wUS@0V^p|wbOCZVcI8mCJ4{I17r{a0o`_9G9ld`Bpryu}yWrA!+z z@|aU9%hMe!vR=(*tv$l0tSJA~Rep(XC*`($-dKTId~`U`&YXAcs{E*_+Qp}SFx_6{ zc7FI2ip~9ZsaIq5zaGG+DzKl%ks*F??>PMUCr}aI>@8wvE{M!iLjOQkM|pEam!4&u4+_M<0e5bm>x<=#qFtIHM4wJm_E9X?iq?>bp z2h6dZM^b@5!)d^yRzU~fN^-=vC%v8vhXcuX~3u6biFnsf61W&PEw1KIAm>QY{NBVbT-aA7#{Hn z&i&J)X&XAa#LegCrc6DG-FjE(Az&sp{F-?;7uZj%2DY=%3MC1rXwP7*=V)H}P%TD_ zuw%8x*>AEPrjs*vFexHQW!YjVzYgKw4n7QQ$Qrp|Yde3Q#xtVO=3q9GA3Yd6bJd}ii_#dZUwzUjQu2YlkXQpCnK?c}eNI7+cBux{3~3M?TMe1LIFZf5)iJw}Sxl+w6ysoyI$Nqsk4GF>f?zP?kZ&rk;`Gl{OyC1l#+DjnjQbM>U9Rk@eG zHu^_=Oz<$<&(S6*$R%HTeh*2k+H(T2pC~ubM1o!E>*K(@!TD$?sSfMD#Qw1#ns5i~ z&Jv>%6-;2lflt|xxtF8-s7yiM`Iv61A;sEhNyO6O&$R{f^1 zek84T6FS(LabwCra>&#Za7F(dZ6pOmEv;M&mk)V)vz|qJzxfS}O?V!=dI(tRlxjWA zmb10)V;Z5q)E3@nTcc!(h|AfmUugHQID599_$;~d^zmVwnZ}Ct={!Jg0mLz5FzSzgrf z!hI~Ul1N0jpX9SdX#h0L%19@2PM~14ye&1sgB(%tMPHO%oc^nKP(47l3i4Vp{%@#R zYt*gxFPV|=R)yc{D#Nq$oe_W_@}b(b96Y@6q@>I;6;nRIQt*b9j96kUV@ydtg1ihx zwUAPIB%J*0P9{F(wHlXb)^-jTGXI_K&9GaE!qAXGS>1 zwXXbW72pYRTl=H_4ev}vpr^=SD_eM%%wq#`M1I@H#xx{ta#!?B;XZMgR`sukcWA>j;30)U7Zyl_-K>cqMK=s%<~6WX&IzM0Pvts?EJg z)F1RrGxFJ6F1JOrNggL+;F6TmW3#!UUBKX@=$6g@7Nz^~-=d%Wzx>lX?pRy`yX&5; z01i@Ew8tl5Q!88Jp3S9ejr+%dZTL_l*DKHB<8!Koket>#%^pF;mnU>&S6&?V09 z9V3Dic|-Rjy7Hr~$7A9m@Wx0n9}<1E9(|YmO{=z^5+&}lD<=qmm}PGb>t@QwXRFMa zN2=0UIO@IJgPZ$l!(Lyh&C9ST!`ne7Xs0S2eAUpTQ9aULfdaf4(i&-eQ!Vq zqS!Xv()sm@!=G20WRRpnF;?C&kmwm;Kw``Oec@~6rltx6!SJKQO8NDUBG}~u z>~b8ep2J|Z``zSQxVS=2B9W+`#} zJ+Y6+it*n2zQFP4a|kTtOjzu*2&wSZ1B;gJ%Ov7209T^-*9-wiE$PC}4<}MqO|qz8 z(8>@HPyR+IONbzCl)2Nvix$mzgNpB`O^J`+A6(2kLftr9~8huz_FzO&tZi%lkIwI8g zd79GbPXKiJ0PiyT*wH|!YUpLuzT@BD)}#|VKyNNxg%)o=f(esl-Etg|X-!z>iAmijItM=X8--*x9OD15 ztD*((#1*2e_20#NZ7mn*!@aH2!l>A`O!!CHB!`7Gy)uFf+%r1!UF`!EZPOeyDw^JY z;vW}M37DnR*{!j`lJ-yd!K{guRcS+yl%mlxfd9uiAh_A2D}QW>QS39zpfCVwp>77J zuAn54_7CPZ%vHk3N*|^CE8oS`Q+|P3%0)xMbxj9YJT=Xd-_O=tHPN+mAjwn25>zPK z$~guSfqlepAjDR`{w4}0sc-wPyTSLE`-N2{FRu(>7jLDk zq5(=kAV4{&k1+*fJ6ye&wV)5rt=qu*&nD0IwR@{)!dSz6W50^IeMPO))2i!Y@%AE} z-tP4&5RJS@Stbj>b7;v%|5Rq7*OEi5;mkgt(m+$!?_Rnkvb?}LPxC-@VE#a#?K4NI zsFO~z^K7AN%<=*FngjUCI0k2yTbMr&yyjj`p{Wl;=hQoX3$Mm-O&VEVvd0ct)q`h` z>1h(9k7g)-$CG|BGL&FeuBU2LpUS8ZaR~gVt>c!a&9D$=o!)Pe)K|S6O-F z-{t4RPG8BIH0){17QdgQKV~XqZUHHVKY$O zV+C)3&Xiwk^M`RXz2o}nN}Q2=U*hHyK1r|Qg}d^Tx_Af6AAmuHlu(QPUH&)aF-a$^ z)3CxK0{GTI9dRC`>L)sc9qoQjBu&Amrpy!5_fuAT$xF(Tqv;8dEWjo)&=SU)&;6|I zvqs(rfAvaHFSGLNp}tg~xea}E9W4U`^=UC+JJ2TbWbnhSB3sEKm*wNqzjC>`TK)Q~ z;9;pM2N-j)rnrW33^X&m22_%P<__*7N1$3~NfHQ`%*NC?I<zJU3ZB~(CqDJHm_l^l z5e=zVISeKDRM;gChA8+~GrAA*y(ZUfCzJ}>w_QdGtZWhhCY*Thp{NnLA0Y;JX#Y5H zV7@g&aKn>YD_*o~SXmg|I->Tl^6S}}TDFk0p9XX*aZvHANTx_+5GoKQXM{|Pe|Y%o zB8z;u;l5Hlb^B;dZtGYr*DVwo_jK`Zaz6xc2aFfrImoZm@nF1^#0U3ay@}PIhzA}1 zj4A!f z*iSqGQ+qqyP27l4vRsn_O6Mi^utvDTmat&U1=H-BaMuv5AnJ^GWE*AGv0!pNY;O%4 z&kg>oZeyz|2;@t!m%26pcV*$OHa3+fYj5?Y(OQaG5VnNzMqvNbj*=_?1KTP^cx*5$$$ug^`zmo6UWDQq;oY38z~*}43rwn3}9V{;u!rgQ)iHd zvvBs~jehUiiN1ug*_X<_-Rpzn6SEZSoI|at<}fhK?345ipw1aj5h=@l zwXpY|K2A4g|J{K9;zs5d)+=8M6L_ea(u=e^qu0DYFg70(%zRo~G6jq_Rp)TtzMC(mI22)3sewaYl2l&x_xO`m046sO z(FHP9D+W)%npmAMGO-G}5MV(~T*y3m=PEDm%`b~{BM~FpT@%{WCGw9`5aay(9%z>Z z-Xx-3ucaYy#W0{OK_%OUJebXLc~lrD5fpe5d;H}?r#)#)(pcEq7Tj1t=N#>fJ#E^x zks$iaE$)-RWtdl`9KN_Z^_hW083Kv_n031B_?$qthsJ1F<>Q*_Z7*Vw?B{{d7>9~h zE#!x;UO0_&9YM@l?`+v1J=q=Ue6ETz_e&- z4h)?5H*P`gr*965I9dF2fEv_ZjC#Gq>2^y{pC?W8A$-F@IGs+vo*0DUc zAk3l>$W$1C1j5_igpM0=gWp0J{=Q^=O)#!r4+_%m??`{p&}3f8ACM>h9Zt*rLv9i` z*^2VZY1;lJIaRio+b1wV@rN(x${XdI9H#mFPA5inlBcX!z1FNr@zvWjc&71j4=@wh zyt2H>P&$szY7*GSTEL>2-k96ut({B_D?wA@x`Rd=V`R)-RV|c7acr69gK2M^m<$aH z>kPPMnSWykT{f^jMy!5jE*Mx!k4-gOc(YYsZi8K{a!Yo}*Sm?6SBsu8qehuS+P#ow zb7vHV^~{*ErFWOIBVq=V)uQNJL#dT>jWzF2qXZrNA$-i2;ulc;JSPRXtkVLXntYMN z{-T7v?^)F}i7wqpx@iUGrRtUeIxDR+vmnljXYlVwO)9uRU4aah`MeX{S#X`MV}pHF z1vBy{f&GpV9Tm4uNwAHf%8#a$2gD~?1(x8yp6wO^j?E(p%@9%GhRtNk7f9~VVv#oa zHh5nk9GAkRE?#BM5v6UXFNO9mV*j>&Z^8F*>8g`vD1$$vVXFIey)~EWbN-QS0g!)$ z7mONgyZ9M+T-p9v6E#S#X4s%WjH9c!n4X|%#(H7>$?EZRVA9YT>Iq;to_7OaSRQRfF{VN=d`#fe*iJv4+Ssmw1N2*fzJ%8 z5nl_16@FRO*^o5U3#(}VZ{GPT*=$Qkb;YpJgYT)cDtcF8w%Uq8Rrl665D40yqA z7i5h?TR8PfpIt0JQNzHzj0Irn>{NVJ02G)V0A;C_Y;w~`Ld`O zMl~^VPp<^q&wKna=bfDjSIN@Ol|6|)T~Ykran2HD?-YXcZNehIsU{s;+CQ~cC7Y^K zeu=*P4uRJ;U#u26aS^oKoSyw_oYhILFt=@=WM(=;QP@cWd)x@NtCGF_bt&RD{{px< zqvWO9p-e2E0RDfiJ<+DQtzO=nr;@=x`>A+7&1Mk72@u3$$_yZgwqf22+eJB#y>~f0 zCJeI6F_9JvHt`l?Y0Hv3!hhS2r`)#NCgg!g#8ORaSIU5T1HD12tIFyf4)7UuhEm5y zzs#X{t_pogzqDJPc{2@DmM5hUh{~t(sA%F$0BMWBGQS1CiKVUz;uT5MNOP*`z7?_- zzLF3uf7e~7B!6QQ65f4%qA#y4Z-~8s%KgS>$_jutN>vAFV}3XsYncQ0MbTez-mL0H4Kb2Y9UWen-%s1er$_{y0g8>2JWHb^xF3 z=dA#I(qwdmJ1*Z$fA%-bZc!fCBfD97Jc8HoE>5JC+wNEO_RcCma#A8QeyM+zos6?W z@z0vn%M?ZDDLa5qoU84M8VD;0GWdsc_@Za+)}cnv3|Q4gS);{HEkIji$-cu4FktU9 z1Df@!Ib#YkX=)8X(pi<{a8 z24i*KkwB!gUMo-yb1r+g3RA& z`kS-8{BCu6qjLgHd*>tp<6|!cA?9<<*wy^9rbo z1=oMmKhwPnp!@oNbO-nnpgX{qajgYvOhqQ-n+rcPPmVMdZW?vyx$pjYRqrJ_oKO4=9{Rrx?UH}F z0_@RfCh!@c`+?aCKz9RHAia=;E6mB^1Y`9%kM^`J?U@%B9Hq69fBpY6OL#;U(M@CSn44Cno*THl(5r&W*6pqR)WS`W|dp+1)lV#6nepJ zH5Laz0%KO$sbSY0BSnBoj_cVg-4A1JY!in(+J$ zQ2EtXe*h_Swqgnn+$Ir@;Y+WVddld_Z%nOO9X#gqgm~@&;2c1$XyP28ioS84@&!bx zfi*;~S24(hw9%P6m#v7P8hxes=OMYPK_t`{;NkVWM?g3lx)fh7*JJ{;1U>__+%S7o z^h?fx?$y9 z9ElgBK*D(T*Ah1$s#bt6O$$|XVCD)f?<@Kzl+Mn>BUAiL#8t&0?pT&YQa?Lw?f)>E ze8#9!n8^p{p|B-H+!{?=%9l8PCPT3jPde#~A#6Sz)-fA5kN=@eZlfCn(6p?of5t{T51u$y*b+78^g5tFD(akI#u?vUZb?9M0g z-M@j^(*fdi$_p|AiKs!$Ytn~>>aI*%rxtAWpeu0Aa3WMDzW4Kc^)z3^?nCq0Cu-bgPo#pWV8 z&YFe6u0JX)F##JTU|S7rlz??Luu&@;$>MI;aE_VjqJt@mIv^UOTKyU{tyK-EylKm7 zK;?bTA5kyBS27<_2UOnOJ)R(q{-KNV*2C0(?SGqPZ7APjY&>}SrLCt&wl8_EWqDNh z@72ZL+LKV?+?2u9hO1tFYc?c^jnEPBn2GFC@KG_R2e@g7u?z!pS*a4h zF%7k0A2T{BPz9Bi%ITg2-^Z9*dktaMwXLN+`3??tv$v?@ndIc$SJ3#c0C|CKIz?gc zE1eLe)sZE)i6Y+@@_%R2v45{5-Pr{nKEU!&Q!XZtg$f+Tt%_5_5ICAc!euF?us^AY^2SI%;5vGOpR8se+td3Qz!ktO1MCHM92aFH)%Rr$b!jO&m7lvTJp3E=^p$6U^1CO6q zxQhcDs9<0eajG!`D(R6hlLb#uGWW+1bml@Cg)kc~5#W(@9FR~~a1VK$4e$>X-q}7i74?w}s0)8L^62~goep!YV z2;vDndGfVMDCq|&K<$92N*_q)eN(yF3Wi(M?M%ti-M=5{2N*jI4iJ6neI(2pR)|eU zl$&VK#_-zr@9eK0PE$dicL5o`57X3=FXr-F&4-@@#ixV-56af}U+L=J1TjzUZReZ||88JJk1?_=2$^l)c zlUrW?Mif>4;B;17?&Ri!t{Sl%p#tc{e=pe(w9MIRw%eh1HZw zHZvV*(<7im_zcGp?!va6k|;H>gvC&U!hfyPm-`FcL3ctt_)B=}@fXaQA`chk81w`g%xN+;!!NLIVs5C{3m;RWnJy{gN^EXg`$vA1)71gmx$HxJ7dz)RhO3#}9#&+Vr{hfpn-krEX^lxF*NATqo>n$Wr3xj{UzS-d*Vg zj3fu6_<4d+u#(&)3u=@JnQTs>PNRdUs8&1bOETaM^J?j1iTC9*;LEYT`QR!JG|-IhNt(@XvM~!;JTEM&GJWsgr$=m^4LdFwy(i6(y#?^qiGYQ_rdg^?O&&?GMdL zVXjD>u}`t>tjwKWVnuiJtt9vHu{o`=q|`pcCv5y(Ne$nP91#XbwnLXk7tp;g#rkiT ziQ|^$S(~80FLAB!T@^)&?iz&8SO-_665(uL9Dn>+R%#0Tz}}e561!4Asc6T7K>55( z4)*bAzvN*0MgCwrrmH>GXK9L|)2}{QeLcr!uih+-AcP-}5@DM1Lb`vE#9Q#vU%XHw zS#NX|{V=oKp6dq6TkKByt)%R!B6pq2j`wFIDg1AlL$*_K-+1^WN&LPWu1WIfmp@r4 zW6mONrK?an>vuU!lG47CO8CJ&2Wd+9cV8HZ1Rnb=lGX~q?K#}?c}^5DCKc9KdsjJF zZqz;&B5ps{c^T;2m85)&D?D*IW!&y|Ew*_X2kliSz4g#AQJGbp$Xd*+`^=kx5n%vz z&e*Vl@>{$?;C7<0PrlY`tOQ(yBU{1gm-{0!*Mg`c;V-*<<+&5r0@{5kpz}-z#=e{e zIe(*!IFG&4hh#}qlQxcztH=DcBPYk~k+Q$9Ay2q-5y7!al*uA&MpT{BTcQs3?P`8h3f;ydI^?`RSq2^gbaO)_r@y%QH5flaPPh)9A&fhEV}7A;nzE;)}$aZ>JxsGa>X zE$dw}&n$SdEV&vM%FuUpvob4eR<_H&-RUJPmo*Nx_*|b71Vlre6Rz3wyZ3=wIS`OQ zPNbPLL;-0$Ija2hnruXXtk)zDM37pryBJ}cvnL z)g6;Gg*Gy9@Pcc~?nq&6qGU?xqnUu?_b{unL9f(4h2_;-%lSG}uLT$0%_>mj5Ggf3 zS+6M}cDgG=yFon0I>$-fDc9_G;5An3RVOBcM|P!yZiwAo?p5;SsQ|O&F~z@|A<=(N zSFG(%?0>CdrvA2v+@1aVGxP6h?^g8jGCI@uX|DX+^~&`Y@4s}byKjtZy8<_{3ri{q z3f0(V_W1r&^%br$buwq(J7AI_XuaAh|Hw(_0Z>Sds*!u{rS+G5y9~F5DBFI%cV_fn zlvP>w;wBV6!v}PfTS-7Is4AOx4@h^n`>Ie=HOg<^bUyj)DJD}_On>(zxsJH%#}p@B zr&qC#W~Jn$yY;D1{+;o53v2Aa>#!=b%tzJm^}J+cw%=oI#T>nYQ+C5V_xJP zPh3I?=Vigea6=R;OM4Og-&^H07WO1aaR={(6ealy`+JUm#aNVgcXq4_AT{?VmJS%O zI5Gr4MpW_sZs(&}jQAT-HMgN}V4wbNWvh5e_V1A8JNT|~ z*72j2KfF$9AD$PkooyVzY&T4@_$_C_!!bO-nj;@BPB&DEl|E zDgbnFcExr@pHgR;{BZ~;4T2v{sqaX(wU+tskItFS>qo0k?T((X$DY?0 zAzaj75n^=wLq<%mJ{d9}oP+R9i9dPi0!QrO@oqcv$pL!DMDtZV{+(k)D`K-5`pnLkGP}^A6o0F#SSAdQR&=+4w4qCmrtS zRh9U|g!RB8z_bZIb&IH(Z{~AR9}7Uc0?_*5VNXVT`>b7z*Y!Q}`R&UYf2pbOWCgD4 zUuaUVk8gZQWvqAhB_v)@o9yS&FmwfaQR}0HJyEuZeUn{wz8^Xn)K`YJ=Zb%G@_XYa z9-^@(#9LMTVYrNxdWW?a{H@aInqUL(US~6JO5aZL2?qO1O?IF9n&}0pK+FC8(m+`- zTeIVjZPqHrMLom+Cp37GG;7-Ltwf#_SdZ*M&BR^Dzm;I^17!pH*k!Va$O<(Z6~$=$ zX%;!T^7*avzNDOR>UiP|4joR#hEDc~{s+k3S-G8`i`D&Tv&=U_65wlu%<4;`JY~an z&2eGv4BkJBeHkCQWx9D9gzt{%WxtV`Zj?`WoHcsuHXrnjH=bo<7=v16?vpwVJ%R6T zfEtDfVh{_!(mM#{Sk|Sf$VUipklT4V4|c}Uv4=Rl%fxk7Jtp&PUNj5 zCh36h8s!TT6l;$)vy^mcugssI(#)RaFm#eTe~8+ry^b?SPxrzbXXANQnj1|tydQxU z^@{nJ6dmFjhzJ^+j5!oMGZq@D1_%w2DAKNrwZ?r2F1btxt7AtM|L^%auau*?-)u~hjAkM3`X5bP)QaDSP zryT`Di&AFB;8*DFcS2MXAx*h_M}z`rlksAL6mjp?$W(+(O(n@Q?y;m8C-iTUTJN~^ zNUxOi-LrH)(HCM_Lk&v+)?KHY1!|_TaZqs)HYUKYP$FT8Znsh&fo78rk1D0v7{RY_@Y~Xk<$F~ zVW%%lIqAnfTW}99qyy|!^Ys1r?7`rO#s*Zl*5cii5k%F5{T7TbX_!C+8xl~x8rihuM@uIkCi_mboI<<- z>*c4e?r6@ z++Ah4(fp&DKo?26V?d|&r=zlbCACb1tFBm8W9MJcop5~kLYhtdrO@q;H0X&pMLSri zpX6??NA)d35g9eV0y{7yg=N4YKkqH60WM)_UAOby1D8X2uVI^tL~0`fepP&>m#xm>D90-Z0*3rxw#2P%DJjH zR9xhKcsPd4a|anF=1{TbR6JL!Q$Qhb52MyyoZ|d4I8^m`V2Wu&l%AP9=2>cZHd{&& z;-Hgg9NR4KgEl$Pn8&sU=n&f!!5>y{WAT7ZQ%Md!X5la!C){>mCl$Wqb8dI+9ht2AH|_~d#( zQZlg!>Ea4OiOZp~&Iueuv0QDG#_PS*4rid49dK)lc%Xq!+66X#{Z0DV&T9v_sK9N} zv=L!?yM|{M)hC7(==7zWZLYLaLk6I|)0I-T1E~ZXe}*6T_%oc)4^5ZARe#$?PL>tO z<;V!yr)L&uolLj6G-p`lEwm2nz*TG&9pXglIygco?Q@(557JsBngR;Lou$2syds># zmb#OltVU{bSbdet`HbZ} z-H0#Bl5x?lJBl9ugaLux;)>JZ|9@tG`Lee3sZomfTS^c0T z%8Gce>eNV|nco!JcI;z*w;G1@HWAYH2a|Ny~=}eT)R&7;FH0Ds?`H74ym}v zQN;;bdDxd)!400OT#uP$>1&*P|i`Lv}bkbbV(~hRY%@2m`3svsAaZBTi~nA2d6obVp5MgVEElYV7X@yNA>uizJeGba)ENjBE_xwUauQVB=E+dJekPU-Z zD@c7+j-O$UR!U)hR~K@Cr#*BXUOFfZaxV0@Vu5Va>@0?c0&bTnAr?@n6ebRf|EouG ztXF&0pV$A_6GT~seFUxG*7o3aD<mqDWI*!7k8$nf^cq$dV`(Xfc<= zo~ftoby>A7ZLY0sea*4=>1%T!;)8nbACHBBfZ4A;vCkUtMnXaAafj|~|cMV$v z#sidH8*+@PZ-Sg?NPImT#WrjK(y*5rS^~pN^kC5X7fMzXJNiN`P-RaSJs;AQd_bX*e466^A5=H?sMR{iCnn2E*ENPyMrH;h1$VIC15CUhW>ZDvXk znevKGAdrs1tN7gtgzk!0;Cy<5X$|5Alyd5Z6##2zB;_1eh}9T2Ed_`L4!|Cgyl?GP zS3L_m+nQCc12Z9csw%Ic)Rc#ykK}0ULSlr538x;6SqFE z*V-t=vxdFndmJ=}N|2srF)TeNT`u}Pze`fIO3~eol7Xt-x2#7?^O}wUQz7V%UHoA0`wKrA*Aj{7m|b#fwI3A(k@X6~bobQ8DWt5r}W+7Y1T@ zLOz&E{#zSdLuTxkyA#de=oY?|P>yV1SFx|^tX{3MfX{YJ7H1<8UFcl5oU`bdSn3_*oz!~-jT_9{m{NB9gALh6;6M5I} z-Q}f*gV1Ne+!Vh!XorQ99~R%Bj3ajZI@Q6rbeF_F)gUk-Fn%Du%#ZUvOf01e=v2P8XsxItKI7Fc?%&;;jl+eP74bud~ zI0#YohvtftpuEb04)|S0%fR_VCCi-99{_q20sNOb#!l^2h2qIN5Z!q;ADS_+Q&+qO-b0vZGDX^{$ zoUYlCgwI6+5R3mb@ET?0zGIG#dTyk106H9y#G6$hhgc|(&!@qQ$8{CRmmgBTFwl~y zgPfE7tgJ+MF4I>w1WiQ*03?k4qjSY6V#_*El>7hq3GU93oc@f~Bncd$r+|*H053vz zjY0DZM04AU;Xw#|{~NG0EE}~Jfn9TCE@Jj?HV}a@Yowo~t|h_!(-9|GAvY-nbX3^6 zV0SC~?xQK(#M&M~00{l5cYh2q_J`tP+4gAEU{q9=9ANR~Z&m(7{Yg2nkCxIsYhwKK zy_B(!&GJgfm=|aS2xmeKQ@YtZA>pAs93wADVt4o5t#~MhJ7>STatVl%vVWj^?mRhlPsCF`hm00G+n5KwqVVBh4WlMM3D z&Q}UNmubSoPNdW)8UaE`pzOF|rw-|D{zb(R=^p-h;`Ct$41*WwuFSElnF(toVG5J| zjvR8%d^Fos5@6coeZM#b$@xa$x4 zWYi{fjI#Pbx2>WI*K95^r|h2Huejf59kaJbU!D_YH9siHSC>P3_Kh?;O>U_Jn;*}^{fj--qe@;W$(GYjw=&kNP4>j(JJW-|mzMvTsUkpiEy+^D^(X3pODscvL*H=t+8wSS2_v2k#{68*>l5AYth6%?i0ESrH= z93gkJNJ>w+VY+(wh>PKz7}aCBSt|bDQgqWDP!k z84f|sjqMwBGaO9g>ex_VM0F(v7YPQUw-^&V(jUJxwA>t&)`5X5%v-95?PJ5`)Fx>^@EE;kr1px*}XuwVLZ)&wbc zH$#$rF3b3Z`iD{yR;xOOTCIbUKk8xeHb`D-yp}1+oE=0)(wku{JJyJwF|IlC0~dgG zBBY=APk5KT(~5eUQGw>{f5k$O^#o^88bMM4p7OJYBuZTeble-?PLU?wJi^~=mT-?O zH6B^FAW^2~IO;w~H=-u@8L~7QRKRG?@OYf>5h{pn5JG^4$9YC>F-eXexEg+%!AsWp z(Z7p7(UX^KVLq6Q7+5uTBjhH$r{lheG2!X<9|R1rg4hbd42!#=M~@u<^ZCeEGu%M~*SR3_{mA z(Spr({uIJ7xU+FdTwHd1&)hM218RETFN#Jp$$`FIpOb6u^Yj`k=Q8sQ}aINfp z*)vjaSNYW*g>vaRij9jMOMcGwdY=Zt=jqi|Du<}pO$r8bT!57uldoN;F@Og*kH1c% zT0}Q%dP|#0ZD(hlS8b>ZB*o456G;c<69W{P1t2(!TE(aj4wmUr8Ti+;o1Vyraxqc- zbXT3_OauNoE}G1aZ>`;IUuBHxaI{MSs$ocHz$hq7Q6Mb|VtOzE)CI5^WUTCliCC0s z@$kU1$>rjRsE6`CmiuFjfeL*yVlnDq*D4idHa_!sOiktOiaf8>M-8|M2@}WOnSr1% z8x#)8@L(PzO{}@#PO1C6IpB$HQKnTj*Lpx?2n2;@#+0Z8?OeS|FbEzN&6n|C5RH0q z9*Vc)Q8PA7+UYz-J6w6&tB4xk5DMmIdp!f$b{u0&j3X}`#9wNSAeuN`t7mhIF_@Rj zKa-NmG<EQvD!k_AaiN9YVjK2SX& zG{7_%mX2FW3Q^2#vVb^FcAZUrJ;8t-Bpz0VgUk#{%c9Ju{Rc?VNAEq9*LGs%*SU>f zEC?-0C3Uk|0*GH19u^abSSy@b%7VR|hS+<_=s1K4ib*$77sjG`QKo_7oA{fMeiAR| zGZe;zrc4J7#u2=dFMUrLG@iDPUTsGE_$Rv^gdAX_)S`P^7IqQ{=$hn`W7}{IHV9jX9($Xv`n-jzZkAq5Eznk zp)$fM)4f-~NorOj74nfE0KmzH|GSgCb*G{+o+xnOFbAizQ6vRcNyJzprB|lsT4rB! zq5i@ol5+kHXK!s$_?EC*f3eizr_ zn^5fV;UTUmot!%AWPmvXIOZ)4rGR6eD>OLAaO<5(()Gg&q|*aSf@$PLef<_=yX1zj zB!mVW?q?3sy6`O2N5FyO4HS>D`FQE)lW8xd*;}J+5nc3fbqV~DtEL-e7rUt}N&03F z5i&QDdEGm#1hdD(I)}LI5@ukXqgq0t4`tRZD25{=i(AI>}z;6hvIgZ=x4j1ZOz&+ySfwa$mbCscCghZn>49& zR0yi6eq@Ki$}R;3x)TO{`1OSghBeS=eSK+hB@@g&#KMyiM<1?5L|um`&Wz{CS;D8E zJ{oy|vRe0^crSdk*oWGee@2Aqv8{NO$j;>{Zfl{#bbVI-yt{evTkXhWDeLh9r3$62 z^qmF`hbuX{9~1mN2)zt1hy$PluS_?mF+W0%p z@`p9XCp*3;xHnjI8+!C|y*P zxa-TJ81wHO4#8Quki|}uBw;o*~_~= zm@Tk@0{23U$fM(fpAUu>?F?aWve<=FFMR3o*6_xnlo{~IMhSxsa%@o)Mhu|7@au;J z#kH9UaVpO3nH$bPjCxw|ln%}CQsq?#RXh%g%GcT&oIywo&7LtyV1XSUjYn?`0w%kR zW#vw85Oo8;Fw{x3hwQG(30*Xnrkh9CphFNi*Gou+0vM?)i5!15e+AsuqE78xJwB8 z*Hj|3HeyZ!V zZY%~n07x7|2g!U10tVVOq!@$&1%bC|xDnN(_7WmXgj#oXNPZ?M7TamlvVK2W;E{K_ z4_jQ=7I~RQ_zQ?fbWlGLLy_xbFvh0nCdbm!iJl2SxBdwZ3^h!pF5X{w;y5+I zQ_8d+>};X2)wowbAMCU35CT97>VC68q*S1En2GT}ZTykQnsY4hp>|xe=5O@kk0V{b z6eGbV%vqgF8}@VwK7Jk#$}x~ct}ZW6`Jp6PonIRGE_~D`zSPr_kt;3}vLuTildOcI^(6VB;S}K=28P+p`#nu;Ff5MnX^J5_Yyvyj zpUc~9O3K#4^(u|?@b*Rk+r89_V0k9|NFjy^Xc`R#E64l{=kKxGyg!9633?RLRBxJy zG}P)2zOLx%RdSsJLzQimfa@qHB@r6Tf_Z9)TlPi@@zMq3Hgc@F!K3C{<*YBLJ9{Cg z;)iwgEB}hd@l-{^vr)|MPf(aLdvMTSec&K@CXA89Pz`vvmb44{3_1bBZ6T!PX#n>t z=W|~GOKk;%sbz;L#L#sJ2|Y(Kw?F=Mn$F1prwMb^kWeb&iqU`Tusg4-@hqwzi2FF5M<9~w3h(akA1Om z%UIW6fp(oJ0+q-qhPl^T3g$bg*%)CpiG zH?K1>>WMyZTV)DWk|4~j6*?(Bjo{Ka0N%qFB_B%LMSqi zvUnxN!S~*7*hEU7)KDL&@Ll^~%;kfW@fTYgAje1rznp#0o{wf0Fd7gO5(Oc~%C3hE zM>IqO!@p>)%Q^F+;tbhEE(WY@OT}lMu*xT+Md$|yEMd{Edp zyObjv#a*yT09ZUY^KlZ~$v|oY5y8>O-F!(YjC@Ow zEhc!=a&$OZ#+{Lp6(L_>7}LQ{PW%^u(nzfEgP1x(*j^ATntE~xIOkDTBOn;K`11Jn zs8^L?Y}pvbY|zmYveV4|MYc?0Uh`1&j{zRPc#L1s+Ns4~LGM4a7S$g;d3Z8Xn8Tfj zsON$K)C|OLK$%HYilGFBHkwgp5ZTD{06B{`;EWVp!vFsjZ2rDNu=Rg(Kx~4cgjU@x ztT62K?WINONrg!XoPo6oFp}Ct9ZW&SVgeik-(5`NUW-r+jGaw_#pC>n#(I8i#h`rf z`{H9`!mpjM#V6C>LpIPBoDebS)GBH67YYOZo+a=Z)I?(gruwQZ3V5YBAouW}*e+!S z(J6)|^jhTtLld~tPwE`^y5^l#X;OqY<$(0vXyZOzo1|LY1;amBa~KM;7>3Rg4MRt@ zhM|l6r9_l2H~jf|ceA}t*K7lhF`LGbTL$9vLJa#aRQ~|mzOVmFykA#kCS1xfujePY znO-m`K7e-8*j1gs6W(;T@cu{!U@lTh5)Ni0yHa~D$ZW_W)0N8&SCKfY(|VA;;>5d& z1buy095w;biDqF{z#--m?7;n*1BJs`;agYD99#n7T-eeRw&$X6P z0bElp1(ntJ#clb;+~YCAaw>ppijzf;hoNhn^s1O#e#|$mm|T#3KGd3D@H=M>LP7m> zufjE(ATYjKk*NmaE|59o+Q38cd(Zm7tWFEY;;k$=mgflr?inaZ8Fu-rBPkPZMniKr z^0)TRIjT4IJl6H7y=h*PQW7Ok^@#SsEvnXl(l>8b^d->Fv7+k5nNo4G2*gYRd?48mfcSL%>@%iM=zJuwHr{#7i>Pxt7ogbtb>I>C?rf z-NlI?RwB)I9i?s;EG71e6X4*YW8peUN*%y0D>1BX2YLt%zLjwZxWL{EMf<(Yc#dO( zs^|b29+{!F*WC8muXc?*ne7kw>NFOTUIKa8Lb||}l)i9?Z28O0{tIci1IeH=GpWS% zz?lS%0zdQO;wr>s+EBax%QCI*usbIFbOY%j9|4B^c+YvPA=)j0IM*!iolJ1x1vWm! zP4xmh549#x5(BhLdx*8b)Z^0oO0a(*WWu9YUHCDi7Gs0RFdSGBvt-?E!4^!0L_9eB zP&ZXhoIbP~8siHsfHrycBSoW?jH-2k3hNykB)T*yWx&M zQ?OfS=Z{$p|BnJclgfgFYPs=~H^^V05*&I@;s@Hr&X@*W==Ch&bnQr{f^=N`9iuX{ z!co^L!h`W;Yl9&YdRfF%;SxVOi~43$$Xklqz-gk_&FVCJZ=a+Rgp6a* z$UtG?sF>6xCrmY4vT*s}cI4Wp5jy4+y1g+^6N#KopO>M%QJC+!tqKb)j7hcvHw|^S z@-uBC4;Y)YU*t5Sviktw<%~)kk3hfCy6ZiQO=B!KVbOVYl<#8&*y-@0LE!n2m+fI- zW2Pqb#lpN`-(u20x9id7Ys~Y+?2mR82N6RJ0t&}tmi6y$Gb85ksAUx7O2_hEzaqq^ zkDc?lv0W+5&{rfxCY#e=A>q|db+@bIj)y#Yk`R0GC!jgy<%5k{=T`c^q(XQ&a2VbS zi$uwG{M(jyFHw1xO?n=t+Eepy=+b%OOm-`yJfa@2mbw8?7@|L9y1~^eF@3;ublygN zn^WK&QAMOkXd8Z>p}3gwmwBdflrH)uf%VH51l#ht}ZbS z0{WZsvGqi7V&QAH`+Jm{kH<(m$Qu>W;-83nR8|80MD7wIP@ooCkTtRz`_m}TceheP zyT^Nblw+g?K0Z&D0i>j|G7i?w7yI+JevKaV$zSTCoi!e}%21!>d@6@~RA3S84;$C0 zA{@`;q#@6X!oogO^Tt)!q|WmyV&4U4Z$`)5D}?Taylx|x24)0-3A_ehmbm~q=(IF) z1qx#rv%Qr;HdOP@5xbU@WyA$Vvk4Wcm@gOGntAMA&21&^8^Y`{-%Onz_r@x+@!C0O z*z92OR}Y1h5ku*4d$(C%EVd&i(~D}^2V8FkTSyi2`nb6q>mwgK+-y196kOa0uaFcA zV0nf%_0zsYsB7|y9dU1nCmmRdfOLcAhH0G!XYm%+fW@ZvHmXdO+2!Wq!y5~xF_MzU zi}Wu2t#pZ|Z@bev-N(AD=>~~Gwz>$nqlq_NP)iGcVQJDN4`S-V^g zj3ocA?bo+JvP2MYkIVgS;jp|0#PwFdH3&@hm=Lg96s9A1V(9lP>IuLvX4oFr5>^={ z#PyM%Y$AbL!mkMu^qJ%QLh$C(n<>0s>D#Bi#pIgaDp(~;{GRK%9Os#=e!^ZYBy61= z6fLsN*g@DoLx$E4toMwMyVl4aPgKoha_wM=5B^6XOn5*Rv!WOmQ|bq;wMSUl0>_YV zJI|{Oa+F{qYJ5UCaXbu&gxM$LFb@D(JlslH58 z>{>)uQ20d2A#9o2QRsS1nX+_&pz)Z?vJ}*4ns9#RIp?R9f#JYU3ODJ;^}kQmLoUb0xRXjwa(v-6@v?P2>U=@ZIu5Er-qSWISC9Y82MvB=La?;tbF$fsL?Adm`V|Bv_26(=RCT{`~!ZRRQH3e;hF+4=US;{G?Af7C@>f$WugbVa3x2(DE z^2|3lA8p&d;(eBGtiudP(|}~=mePY`?}ql8rmsZTEWqz7V&z8{B#6GJWL$0sU zm_dcofVGDTl^ci6)US$-vcwz5&|VWM;y3$`jYp62W2wKpwrQZU@M?01q*tLo1=MBJ=gB+k)>aCESGQ&&T*53Ojx;RWsUH za;fvS1h? zjqQQiD(Ua7L=^0m7sdvT;5xXN+Z8vz>J$+En#Bt=0DF0X@a@$VGe)K}DQ&@aQd5Lo{7&ycV~Qp7g8dCf_iS(< zOr)CHI7fnCUdCm<&1BUDFM5x3*Y<|E+k_@*$;a56PkAPC$#eM5s`=n@zVFs*F3ZC@ zibD45xm}itaRLlLY6WEaQX;uLgXj~x!JGneeR5pZT-CtU2yET?4%dEx;Xd!>Y%Tj( z^reBedF`BBkWAd=uNb$ORW1hl?9|BBN```gN~L;ldngF_mms%H_^3DEFDeDFwtb)Y z_)w5%%#XOvy@HRvknnOxI>DPW}HCJki*0j}^M*!KxTnVi%X ze#qG0NlFx1o^xl%Goa0{OA+z>-T0>B(rKtx^|>w{vv0c5@d?ei{5}6=Btfi2m0w@$ zJ{!#hVBu)S99Tm%+*Lidf;}cL6f485)p-W)7w(j_$?YkFO5+d2 zTP6xpoaR0U3aXm=`L9#LGY!=!X`SbBuaH1H?O0Pfh|G1O#_#MX0+1FG-avG63EAh~ zcbh8$B80Y7z4Ek&^I8v87g z2-r2pd(?pE>`37A5llE-4zf@H#>(w!8!(SVi)l+6{j|ISV}5ikP3AdI+(ez_`T@?O z3s?FUD+jAi695bPH$MVL1{@B+Pn8$Exg80E;uQ*r>;M_OR&IKNP1McW=F^B{l=~|) zb}z?t9R)}Va8pQuQz>&!u)i;5*zy|9nFDgW?UL|Mp;d%-`3L?)H%I2l^AFZ30ZF}K z_)bf)jj#8ZC!HzjWbY!UpqPaqYU(O1%tAF&S6Qu@kha+w~E^!g?~3~QvMQ^qtPO2@LjeZ4W%ya$zf&#qa>X1k7j@ zm=!6PY}xj`$$n2%~fAAw>0`wL)Lt*jz6Q)jB% zisc&qXb7Jy0dRWzFvSNKEU$Hru{w+xV6WSE5XSEYjQ4ZgmruQqmIUP@-x2qL2Ub|s zP~5I$9i9a3j01Yj_f3zdUHMp}Qqetyt(_10{(IHL-(&wwX=gih@gz|z);0I9DgB!0 z?Mngn`0q{}kSoVKK7liLe*H0mk+*&iJHY7veb))O$=*FWT4w>;+>R7E<7W94Lj|*p zxjn*#_{%H-oL{uS^+;wqRhGo41%^0zmKLJJmgey2q5n;45I=r*=iI`Y37dBiFo%E@ z{hQQ1GFrxNv4hL#Xw-|v)QW4~g2%oFjOZb`{8jR*%&ZuwS~Nd7eRf9zpb!7we#D(L zzX4_XtdOItBgo;|?loYo8sS5r*qbBh-u!mI%^!N3* zy%4%ZXs9+hN9Jt!oE&yizUK`z0oN#l<`#K{lRhD*|wvC=rsHc+>LsGEz8E{(wjnBGP4SyKY%rA z3K)UqU_A1o1;fulI$Jf#kDBawv$1*GvMt%eQY4C`$|jY)pv9syeFA=9dH%IIHX53$ z4&WZM+-gW*A+0Mk=ci0erlGR&$Ha+dK4rqxw~D~sy}XehtDcFQ39h}a#>!7e!ed(h zmUjxU698wnU;;`C+Dx?Njy*qdF)inqje_(2_#Uv-u1_7k7N_lC+FMzzQhF=+TS`F( zE|fId?OVXEVs=7D<1D7IdWo8H=>BmPl^Iy6T%e8=keu0_$D@;!E7L1LwfwSjz^HWF zPaQT|(j?*`!r!+XOHzGt4%~^ERGFDEgUHgL|L4$19{(t#79OCsXJ2?AzBCZq%0nkxJ`?Zs}>*_Mg&8OHoC!n|JPK#8c-YZDDDrMHS|X{}8r#IEf?Q*lTd zN)P4!PFrjBU|8z4HME5Ok@IXaLOu7DP)}FLf4CHnM zR3l_fJer8yM##GMs)k!gfyNgj)L;sg(YGi&!dE8t8;d!P3+aNj&`jUtv43w2l$wbC zTWUfGKT^S)BmDt)uafrd6on;`es!8^MAu=6`S6ju`AKZ@T~!V4OPih<;`76$-M;Ng zfE7Z(+gv!2PTKqgn46>)sa#=Aphm@p2U)5G?FGI9rIjL4iVY*r^>zQ{Bd(U0>@;2f zb|oE_G({@5X$Do4LKsKMZJ3Kz3{bIz3(~_phdqhA-$0-2err2Ww?K+!BbtuRisi{S zRyP(ye7m?OXxm>(lhzzS?>FH-A9K6e@;O%?P^e@suj$E_Epj&KnOSvw!oF~*jn<&0 zcyiVQQOl%Ho**{;JGu)>G&1A)3dw-Vx32SmN(|TO7;MDXcb%L&$lwaBT4ATrG&W0G z2k(rQ!?Sck`MIc(A}cp5e*x?M&P|}wM1SKp>!hU$PQJvXrivO7%3gE>{XvoZq_4~E z@lB8#^G3vu8Z#v4us8SfKNCuAm5}}b)Hf1#1&VA~6@zXj$?-pLc+{)m{!eMqwAGN` zz;zm~w`<`em7;H66;~)=LzJmFrW#n%#(gY0sm-E0r?9BXN1iiZ!h6L`VTuLPi8~47 zkw4vQYxn~zH3zL0-tD~5K-^bBDT{ud+cw-$5&pUa+_O<5-%SibvOEQC9!_x5>&PGD zmaPz_JCLcgSc&Ax(h;CIySys!a~5?tIP$056;hZ|`5}y$w33mVvF}XgnydV>*5ELc zTO3?Gwz|sFj^u~QbJaK90~vZjAyuW46#uu-MHb}UCU$tP8i4}Yz}S5r_g?JvZ9xIxxxS(g-L-fd&ZE z0c9vO5xan@5?ZA5M>=h_RF-^EOp+(E90e(2r$TjcB<+7|R)ktg^BRXxMP(&48cSQnK@8faD+n6$?<#YVKVhBcAlQ1BE7Z zS=uZ>3CUOLhs3E|tVt%B)_9RBg)~*gk6?iAP?bac{0#`kl_C|F=?>E*egDI&$NA=C za$}+n;p0e@;*wk_Rb(ess&1VLt{%x_)vL5Z&F}9}s2uqs{l`F0IKXVbv1>$mRjE z!x*$d>OTX2>P4;?aYsU|%;gIJ0;)*Ost#($k7iTQ_(ngud}6#Nzs^2nlV5H!z>x_eklA*O~5-niW_-#t}Vo5XzMf3oXkifodg;ZnacD z21AKiJrNV%3$l43CSnVc)46^#2RdpRPPzto&d4hC{&h6-ucMNG9hG4H@T$0AR(n17 z+jY8f8bkV3;*@~K`0}Om^ZJUf{#u&{`dm|d4|T5=oES&{3%kp`5_6re$#4b_P*@MH z&oz0jyP$gsmK}%`lBk_I!+%asN(TFe8C_}LMfU5`0NYdwAx5YfF@|mVbLbg-KTz0w zoHJeG_O)r|{G7(@H_Ug^V$$3g)bJQv)be&C@pS6hq+3Uq1R{_YU-B3_cMq^9C%%)@ z7q6Vq^08wZ%LYoAKZmt@DOCnlogb|RtEXhhhU1rv7342pMTn?2FY_DkQ%MWTl}>Fe z+y06&dH|y0U1Bpb|3opUt55v%Tl5j|et2mv-@E&k+QbNHYn=yEl?}>}FoiIc`5|Z; zJwp{;8fGbE4_DjHCjVgkDA#S}oKmsL+?g9s11!OG`ocikL^>xxv23<|18Yjt2n!u5 z8K*e$8uc|$qqAt8!jDp?!H@F--Ex z+eS!X4ip}>!Fplfw}1aX{r4~?p{IjTd1K%~(+IDM=^P!ny7CmD!%V~$(cloNJ6qsf zZMz>b_4qj&#ijTT)_7Z5!c?dA{4jqu!ocqmVQ+iApa>H?4RE>oQy4wYNjm#DI&i{K z17ddBbY}SukGVE%MV>Cx`65+I{uDoH^_o9W>fZ=q+Em}GrEtVDe8JB=dWq<^-eWmh ziyI9?EI#M_i*w!N#UZtGEZ7nFEez9+qRH<4w3uO5!GuLP>)lkV#k{z>JvVK(EgLwt zMjH+CAAmOVh4~hawD9j0p<&7Js-9cTGW(?0-GfJU0_Z$nt4#whC~RfgMT&gC-S0OG z=KFeEFWbiTlf);2D;s4nPqMPtVZF)B*k{eKJCotz{6-gjL=V9NGW)}520=^L>A$%?t`6@XTK>wQtY$xQ1$)ZF%kf#%L~6elLK6IbR>Y2Rc-olKi= z3`K``Y^$xo=C<*FwH*D`VvBpmLJ&r>^88eh%2Gyf-c5C`;3m@57yGG>gVx?V$iLCI z2EXhqmD`9xx-l9QE=yt0W7K({mt|2CI2FlD6Xjn1asQ6mV^1TWl9D;d!|sY%bV@0)TIiY%}?IedHJOgR`SG~jcmx+kCwAQtk;it zV#P-f$B|r?vVnPvTrbTivBKaYL0#0Eftu=%tqkrB1sYcKnz~=tzw;i-=l)QD`vRhy z2@*Wd!)At+X0S{DWS9CWtRd_gl%+GK15sEa$NzBg2h+uoDVyx^bpH8iM1Gd5uw?Bq z&1PlPHcZPPhr;t9o?!u-=yLbr|_;_f#b3l@)|9?NAyizc{jB7V)yS z%8y6)@mipVIFTD)@2Z;YR0>nQAnE~7jkyMkhEOfVw3GyZ{Jq# zUc4He+~E%7_r3P)S~ZvOV?8t4$y*@tyV*zd-Z2xMt6-5ttyhY3wbZ16!3i)9lv4e` zvDJSeKt2GT-`8WJ+6WyEEo0LO#T-fbxnt-#r{8uXdbQh8W?g9_DdN6wmJa$^5r;x6 zIhsL>@`08qQBfOFp4ce8W#jRL3EE?Qd0}9|c|8P1-SypHJ}Kr|aAg(cS%P>K${w&s zQH^Q}2U73sIlg)9alBkL=DfCe$F7eF^O_j)I=rPVE2$Bys?G2OI}+*&<1{p!huhv4 z^WqomU`FU>q6wbYxel&}p8^580@OnS9e-7Rmo5Fe3`)8Zb>g8E6mmwr?Dc7m`xB;p zCfq@}t!btd=5iri2P{}!imf#{(m=$Pm{o?21ifak%6Lxwgg3f#;dgU= zHPh8Q2%R&dI8Uh+-0Bj-gvV86b6SQAa;xH`Fjoqv+hHEQI9dgb4_HhC)7_MhxfJFHiImT5J)R8z#()f*e;_-JOUhR4$K=~@nEpV_%TQKUy9 z4OTJ=$PFVI!u(p^1h23xI$}h_E9ChJ^XlQ2Gd!V@WbbEp(23)4uCs%aM`i9qm_SB3 zITcaeLwO&N^T55QmfozS3wY?)q13o*60Q;+WmM~1I0dIiVH-^_j1r46F9XihwXfu7 zq?l{+cLkpnS=a1~?9Gd977qxgrlLmH)J`QPa=g?NnVuI)41MqioTkuRx>7U?C0 zoUUWUy0;pdHF=#J>0EF9x*IOFS5=o33F2L9`H#YQxA>jCWwKkNP}-?7?9@o2_5MCr_QkBH)nCxmOTR-$gI@JtXmGRb)zjCR%_v= zn>)>i+$~&y&a1!@n1765ajfxF&1r?lMPeK};4Y8VFzMAW{&m71J9~BSiPHFa)$472 z|H=389u=3;oOi)`Z^}Qcxy4SGD3YX4a|SAIc&y8EV(9miujIDAYFi6ZUlKxx9Pjt; z{K;9uo)&M`z`V_{6KhuIDAp%Y1k+1{D_#ve^E6k(!v&e=&#e3!1I87I#B^MILGJJ~ z`e{VB8I5Ai*>>dzB_pa!!p5*a;}~mqK5v+2^>4FCo2TUqsz*L$HVB;aH`~+&v(_`N z%eHxXA-z%|^o`*aI@xkOvGO4#$B$>NFKGtKEjHY2B^Ev(JykXJp++$^FQfB&dT%D8 zuiVIrm>B%`W=r1!xX&KssG~|OT3@m+r9cEJHtO^ zHUWBDExmzhVT%=S{T=G?GPCiV(redDqcwy6?F-}b#+PW$2k_t-_3Cf(pSzzyp6zy% zny+OU{*-^F+Vh8`YPhuLke%bCYLxyQGrKLD@!XK}Xjix^WUHBsO}k~Wc+^PvrDOq^ z+7E@d%!MIulVm6iDkW=wj+x(LOugKYLrQ?vZh0{joj?A*zUa6pxIUrQd=jy>P}PzY zK}^`fEm|!cZ|}okBcO*12My5XzwSzIDxi8XtX1?`*{)nj1#!`$s@p{pSjDS_Q|qwD&yCu{$JQgly-PB}`ZE^u zlvEq|1U)y3+NSfL1}8;T!!6Mj;)IFGX-|@bE|!e@8nViitbviD7bvPKr71RG3i&oB ziwgHg2Gn|3g~T=@{;kezP57Z?qvyg?=mH+Rq$`@X&CcUhM4A3Nt$FPlSUg| z)H}9NX3?yB{-hTda&UOj**8ee2iOlqUqmH%y^5l2v330>^xj%i016lr8uBgRGiT2~ z<-gueL~>BJ38=f`{zG3a&@^DhrD;5G5<;cxUqKTlOJO*ca8b)^;~}nZryRMQ?i2;76yB0*#W2qlsbw}fR+mCHh`X|kYY};uGxT1 zGjqIQS#vj%sRiAsdH`DtOwu&~zz;1A%z>bX3S$Q*4pbEM&Wl9Rwk1)#Q8uC>gGviP zf__etr=2xj&j)cYAMCKt`PDxi+dp5$KR+z2Jpa1icv{VUKJIRLxQcjw68(A?(eijD z`ZPg8d+Lk&_0P)l!7l4FqW2SpHnYYCg>+{g4JNLz?$+`GZ3$LOr79Kl6>5m{4IakG zn^K2UC;M%DTHhmSlH9XLO$zzo353JnIxJtsQn(Ft%2)b#(!I{V|8e9r_O6Hw4_5kh zwf0eRCB3oLBbr?3EBz-i1-lL*=WB;PpX+}wb_|zlx7MCit5Zf*{=WRJhSA%2((y-_ z9Miy=plqCJzzq_A6Guzc@WT2PH|t6BLA>XDPFLE^&*sns0^ymckurI2mckI5Ip;9} z?6kMD89Tu2RxtOR*f>5Zd-|v7<*sOvR{NABSLJ~6TsNJ$CX@kVkdM<6SCL}=8KV4m z;46q)Cgk1}MoutZv6NQNu*ofXlT7<+PiLdYpYC8+jhV|^rc=XQB(jrw<9u++utfkh zBjYEw3c|$DA<(qYoXq8DX?y#r1(5(o~|gTvJxm%Ez9kgU0#_H%aDcLDq*>Ws2`*a zU0E}O2iobbB|3Lx@wPxjtYq#1Fd{(}%dk9xBB5RKrQD^G@2P9T)*oWCY2kpMJQ(gb zlUF57m zSCXRldu0%Dho`Z+R(qVo!>&?RQUs`S91j3!0d-Vm5)FPfV=TAi!Yrk&I7gTftf=C> zd)Zz!vc{rT@a(*AvMJL$5^-cSupFJF+e5?<9Wy=y)4n18t8?S!4!0KTRKw@}xZA0# zrY4iNv?{Uv6(W zWxKyf7X!%B6wucHHVc3yq*!Ep7E7Xw0p|$Fzn9@7vBVL}11kjL3i3*CJQYOA;y%^p z^SsI7XHF1@t(w6{(@8rhv61V%mlIJTW_d$H6ycEW^Z7Iqh1G3&A$%!fz$#NEX+lAo zD#U!6J_Oc@m5O;Tp1a98<(Z+S)LC&&PHq%t#oW7O<*@0a;ndZwmIo=^Mep+K2ep)WS z3I;j;v99AoMcAA;TzIvhdRo(=A5g>E_HY%zG;OCqdd_0W1^;>bqOfrO{KWRvgs%D4p-3bs?q8N!$rkIA6=`MyXhyW*zLUNj6X zUC;czSjaMxU-k9 z^)(K;GxrdA?aT}J`>O|7R74NfAoyxh)ChcbnraDPr z#?jLtGsja^rZo@0neh96eo9l4Kr)F4?_4@S)Tb_ zrCe&f9@q(SXeFzETkOUh26;B%qNaCCzHOz)?>;%;$qN=!C|PKrC_fpV?sbcE&$Z6v z5C9@2#)shzV!!8^CyMg^V4!hfxW!Ti$9dxZ0ZujsGb7Bw;^ zr%hQH!iX(PAzuv=$GV3A=PK72;hIO*tqq@-NZsP{_IlTF(J6WoWZS~j^V7~!C4YO8 z6c!-QBPotG6h*3>N>fis6v35#jO6c!dp`~yXkMxsBLSR_b-4wgZ$2OnF!2`W8zZ?T zpK{C)Z9faX*o$c8_b5Aga*sqO(IbQ(2fTl|w^aYhei!FcBKs#R_E$D9@`Ip98Qd@^ zsIvUiK52yXA5ph<+`gWo`(}*x%}+P8+S2U2is%)#(`|kj-RBSRG15Wr!rgPIe(u(= zvVm7tGg=t#F~t;4zBgAjQ*GH#PJ_O?Y!0|elLdTu6`24R8S^PJE8-p1JmoWI_g6$D z%qrTVoL{Ek#PWfG;Q&%k_a)n40tC`wx?g(Kg0|Fvr1A89M;dNr8)JLOg+OQ985OPsBzIh;ioroPX;} zCqOPRYj)Q#bU$R8xSku?xv*?>WSkKt+K!=F! zV`MMI6jodoZHF0Jyp{<}hob<3rU8I>4=<0x$RzPKp3?T8vq`p$fwnQ1lRqx}r*R@B zSDKJ>{_Sg?;T*IdiXwhWG-1*CQaE`0hLt;wT)PQ z_I%Pl#S@;`i@qH;voFx!|LZ?irLfz2`?u42Zi{c!hfMcyK2OgBJiq;Q57TB`$=kR4 zdrb>Jz_KH>>6FsP*@RvifSti&KEZZX`Uf_ya_geA)+)(L7O7tv4IQk!v{5rYrP6$$ zSnH>fs=iIxOTFUfK&EmQ31Xy>zUD8b>D$q{cxV>u)}czAZQ}H`t-x#u4#GzLJ4g4St%U zNDsHQhq(Nz48RveNU|yuxFe88ppGddL{KLJuSkzjY&4{^5I%A_OhB6G&uKsW=XdCc zIq_5GkyLG}dE-!9J?FN~APs%XH*c zYsOvF<)V5H{j|#-H^)60=Wf$EjISU-TwbG7C(6LN0=+HAEd3zZuI9swWbAis!+jZi z70o4e0~v-M%#X#HfkpZP_s{wCUS2hQnTjHaf{YR3^52HAk$I{&P~eg;$6Up^XBV$O zm9lF-)RPYvs$c8ULl73iuglRU=CwzPz6($&8pbPIAQUG<`0_ zN~k=;ez}fvuMWMi##~)?EWv-v6}K$T(s;AoEyANa&9q-v)>hvyQ>OnYf^BgpM^oD< zVHkLGw2RG>;}_5I`O+%_m0#gqN9CO}JDoL`Ek5)LBW)V>G6Nax8E zgf?z;GKEo=o}-tutS=3L@L2Guqn3urwpglEI+)#t%g7fPVLtSBkc6b{y=7l(&Y!i^ z(jD~{RAXM30XD^^CORpWBarO0>HSZdSpV$Q13zW#bXGyG%p&T6J$0_8vQX2t6uuoMO*jfre(Y}L$ady*50f!CQBB>^_Bc8(gvwq<{1=aINK;1 zDm9avoJ&tdi=-Q+6=uW;H8T{qU^ekWI^EEj^JtG5#mD-_BW~l0CiM%im#5C?%XGu_ zHlkBmuvUQ?#cT#lYx3c5+@YMJ*KZCgc{hG+ExGpYx%%9gZQSk0xgG@C9xSI8+3yY2 zgX{q;SN#x>Npk4ISw0-|X-V%0;C(&4JLCbbE1sASfBWj7AVY5k-FCVquBxIY_U3{I zC8xWj>r!V1GGB)}b|4!k!Q zG9b`G>zw5$9P19FJ!@7t^ng$t`%!KfA}mT8vy;N705eU8plBa#JKo2PR0n zR%us|+IlA^f2O<1Bm&*-e5LfMDh)Xd> zVG}N=X}Lggw*orMTs~A+I4fvaABvXT>z;NU=}oP7jvGN461>b(s+c)T-E>=Z0?yVC zOf3~O8ogW`Iq1^n`6M+gvzX?cXy-98xGZ&xe*K{l8ctg%TSy-d7a|_-56b@1z=SFv}@5aA*QC#feCT6%;%-*h4mV zQpseHwMqPcYK1wGLR#M*;onb0k62iZKLne-5Ge@4?MEaPsgm{NV-Ev&dU6>V+;l>< zO?~-E5jDsqfl$q!23sx$L_?VL6CeZA^DV3sNI zLZk?x5LDrfrbkLuxW_%lHQ_4mp~E?PFEqR&i1_YPefQ}T>FxL6#SrpbfBf897(>lz z;oH?iT9XT&8Dl-wVFC^5d)dOB;M=S9*+V)!O}3By&3t4U>F%E{2No8>;@x@GDaH|J>vyPHp6HgC zfdwk*Sc1wTwiHUpQ`$Y`9aiV1FR*VWaJt?v^ zBYlj2XaEu6U{M`n{cawL^!dimhl|6)ch2&99gnd%4k6+T zTODo6+m`nz-1UKHLxJi{UWlw54F%-szLZ7SA0-=TQ}BQ3zCq;+9->=THk`|?5~34a zQdS@T=%3P5dpb1pF`r>Yo`&UIcy@sMRxnPepKa7nLc$y8i@$W!zw|vkJV4+se8sXKDSZd>Ww)dvHm9lxJV3s*z+?{B(`$F{>v(lcY)7KZcBI&;zm+l<~&Q$(j`R z=+B?83(6h2BGI`okcfQFEZaV;gc~O5Wtt|A4}S#eBzE|tiVcFGjX;{C$<-=Rk$h8; zNS2Cc!&iF2C7O&$n)ESLTiZdP_4OX{4sh-+;kq2$o%XZRzjLt<#F3|~hnOUGuZq>y&-L%6s~%VfeCgY07gW_h=$l zq~3M|6nMAw|DOWymA2hREke-x7juMU1Mz1trj5T6|E763f317+crY#860PjJ#TJl?`yCp;% z${xN~Joc=9L;9{$4<$5ydqM>NL$C(ZN$*tu(yII)8H(Brd@=6nh4__PTfQHkP9|jeRe<*&?Iz=vzW9Ee_d;pb= zyNpVuZ<2=0LNL~@@nE&hj9dH;oo*8-`9Q8pFlPTTJO3ZEBY@fY zCuV^Y$?Cj}!^%zLfz{%?$v&1}8u~Q_^oy1)7LKQJ%q6~5Y7b2FvEEcC)fwFKmJelT6N1&jtH>mD9U4(y@c&uW=r6a70DWOy*V2I}Yn#oabNy|}I zzqR#X>q_TQKYq>8vPu}Z-`JP>I@zDoDME`>)i*w@l#g4th1^od73p~Fku#$J=hYi^ zqmgTlqRZ-miXnaHz_H9yOUu8aPdyJKK~>xAkRbN`NcSyXB|KymIconHtRmT8aGH-= z2VL_EBF>8-0sbW!f?Hd#=cl3nyrRfv4M;&|FO&+56B5_j-)J!x1RW8!u>5O@`9P5w z`Y{u3PLn^XDI<9@_sbr!SDP1N^=~V_?U@?s(BhFPOVdkH)WY!N@hAUkNQMLqUt0!- z$s&r$uab=$^PSAy^aX+ddkCNM+$VI~v&-%eRNaS$Ojph*6HP6Lscx74p;@!kQ80V_ zD2W%{2KcB-(2&_=A+s^b<=^EeyE170a@T*irH%Xg8?i=GFz;q~<{ie5RKB?_KQ>6{ zR=qHMg5Up|1P5#h;1eO+L?z?cCg~bKJwPo-gBMtm&D+WNSwZxL)P8Ozo(&fB#MV!pA zu>#skYQ{kRG~cP*t+al&32nkp3a+@bB{9P*DVHah6n^XDm*D3EP70+?hRj| zGf>R*mN#AAIOo!PCpE{s!-MlzGdU|4mpNls^t)Ol@qXPu4qiQt?1!XJpE?|Ymi+zC z1R;3?q~rQ8FUgChANo~R#f`rmxhg?gnQ?6`rf|<~a4FWGKeh%@g9>OYF+X*~vNPvc z^mxI5`p^U@Zo0r5%YV(Y!8R_cC?(DMs}{#4<*}yD{Y#zO^x*=aH*<~$@(f&jO%k65$%r5SC1}otYO0T!#iq%H_fWJ@{?G)0{;DQj3vChI9EO; zzE2sMURMA~he}A22g|s1M-anjt|Vqk9=|3fr1g1fYw#k*USJR$9lL4TMWFjv$AUdT zMOTegoWBd$ao6L;BDT-`YT<*Uu-p z^!AY>L?UFXU&^$FDspoaq$tAUsYIH@|3|M|x3MMQPQa-Raru~s=$McF4XV#+iSNNX zP2zIpH&lViy-^bjDaY?}=j$J2(iT!g;w#^NdWkzh3-qsu61O*+x}8#+isQ^dLT}ap zLj8%3D1kICMlrWmVMw{$W|2vJW{kCxbOAw8P+_zpvJNyJaP+$%&(@l4iI39Nu4(#> z{_JahrS<7N+X(l)93hBgSPH!|`4)WU8#AgY)OS>h1jtm1xE8c;L|^tq#UedV%hxkk z;8s`L%%jkedZLS~x*7K*LxPXje{%=EkMWA65VTyue{!+;J9O1(F!iF0y&(l0^N5by zXT4d2?e)>*jRb#G=5ZUjZu#OXP5b;q$s=-_P2nZpfVytIA_ZoG~qw#ZF>LTtyC~- zxDRXxl9AIJ8iqe5_;#8k`!WVn87BA$-*ZUIvH8() zWlHDempN`CTi37W#SS6(_gewQV~fE5SVC!GSw~qUVA=89bQZVr1^Yq!>3aPIZf7np zd(vCW6Cs%u`9=Ql>M#Ax#+i9@;~63l-C|wopCa5EX7r}scp-R#XS~&{jbAhKcSKI| z4gb_~Xce|h<24V#E?H?2CS$Z-(~+@XvVKHr4jZw{4Zx-}@VYz?Owlr1d2c#-z~C#5 z^8Me&2P3gW`n+I+@@cL&lO;Nv4cNXj4&eg#=VIv(gNGC8E3>_;dmWC3d$aRZq5Qj@ z%-dzb6gq<@IBEFh<&HGi3yLhJIJfq_BKNGP6K`vbI;CzV9tu?m)sqbqS2|KLwLkTN z=Bn5wL9??J&p0aRXZTJD#M6%ok#cFT9$4~@x=W=%V}WC z#Gtv*#^WCo$#KW;h@&oK1jrG8EHpQYmz+ql5pE8+2CfwPNOnL zc+#(sTmoCI)L0;jP8GKAZK{zk7$BP9bi$H5v%l0Rwa!CdI`;=}uAj)omLcYj^Y3NY zQjdCPQNWEtfYj!xmQITcJXIAqR>wk6&hWJ#t7Mv-3cx?ec zZ_yuV9ZP1fc;LvFFiL2I(1!J}HnGNEyKX~pT$ITHIA%`@L`n7^tW;JhljuT<5#^oeq*G)g&U z`V>o7Ge+ZJlA9ItjAJ(r+P&R+?p0MuDh_ci5t8Z&HQ$ZAl%!RIq!rqu0The{zzfet zHuKZhCmXr#jExry{%#Bp$(N*~e7d1`Q_!Ld+d`$HZ*9M&?{2+bow&aZwtL>~it$@< zKZ|RG$t~WG|9RQ|VLaAC29AEF++Kw=_oY=3l7NmB9z-shxk8?nc+iD#(?cI>!5z26 zvZm1;3a>B2)Z?Ze(QLYFs624Bm?(jF;L^9ZN`P&QfdroH5hV~QN)Q&*OT=*JNYF&s z#5|!_Q$a1%23{A)?hiSF$>h7wo2TpX0)G>k@H2Iq9&1(LG!0Oxjc8^v0c2HJ2YtJ# z)GZkcr>=o66ju)SM#?EHFYxo_6%He5Uc$OlNUZ)!D{SnNW1o+{)AJ=oEmyc_-XO=> z5G?{htfv@&na~FXk-sHN-~El|@TE_Q3!5j;nc&Yw!sVv%@l6@$>>TgG#Z*qP)zG?s;+oFSrWm8Qx(?xGY(Gcz)dSvTaxoK z^ic6|HRUYa?{c)arf~hgcNy^0jayHqYj7uoJNP=yi-T=5msiC65+VITD}t0d-rK09 zmf(2CSlh$W%FO2B6fd&gN`W6-o>_`r!R2`)#4lPCMHf1=E^5zP*pYi@npJPjE-;J? z|BUIfyRPX#M86v6`RpLVut}el?5#*8uw@7)nm=k_aLEh1MID?6KD%tXICtFs_HAHh zrdx+EHv_k#H)WY>9*4SsFome42bsJ6@O0=+(M^L*jnhl}OU!+jgX-B`{BH29WP|k< zz62&-4h%tMb8NDbS$g1?D5>tlQjEm)dQ?6wy(}dg6WmCQ-M@8RC{#IU;Fe8oJ~_C} zy<{%;$lT*T<1YF9_W4ZK9{7!hSB@E$WllNjqGQIl zmNicA3TO0&Ju>f}I+|Q{vaj+r>FBDU|Qj|o2Bkg8APRe2ij=l z*hE_evUiWxEno%Y9z+Sy<|fH-A*h&Gc1h5}muDcHt>^0t^ZKpZtlJ~a>|ZR)OiD9- zsJaY!u3k21p!G@Bzhw*=JlVQRFOdGPO5pa>8AG}`oovrw>NthJoRfuX)jQE^(Xm)J zh~%loZo9{4xmoV7xB3h0BTc{0H?9#u9mE~0(`B>9`s?}3ZdP)(6^I!9=+4K zF?e%#Rs8@pjN25B<)`$DsfU=X-eks1H-XK1Vs)QhfLJFIm<1KiZipn##o-fgVMZ|Mch)6RsoL& zk397oC)c8eO9*LAsZzzwdp9jUKQ@rU5`{{p16!xo(Sj-IKC`mn2A_6ITlDo0#~I1| zwz?~k?y$g=6>7*9gXoUQOZyGRVrYyhzyTBr|44e_vGp7jO@mEN&mDntOn;+Vrki>J zH$db9KmrCiiqpy{V>V-;u;dWqIe~kW=x)fcv-_#=axjT49R<|e(9mMvJdsLkKL)j1wZha-yam`kbnqJK# znu?jxc;icAvE62+avGZR?yExZrvvMv+*)ws!_{wLv|G_b{ z9=Nq-Xc3Ie3xe}pY(Ebd%lI|y2)>w9L6XZHIBN~rdw=J`eBukBJX$HaGvR;LGl=jt zr-6^eG@f2gKjuqljQ4!(l=^y9Ty2j=_?JL~I`*E^s)A78@5o3a?q5)B1Nk}Ti$E}D zvSk!t3?>=S;&=WEX_^O#|NV5L{4#D}mPqInD#IRwKvKm@t1ErY;n`6AVMVF?CQ5#f zNH)N*Sx-m+44cNUs(}D}CROd)m85%OwnaLOCCH)xfMqvqp88+FXJ$A29jZ6izPnfe$wJpszn zHyH*{maA{`Us+Gc4^ln8;$)}>1?q8nUoJv@<43HIGPGAE&Y21IGbe!Zuh~tb1u#7S zi5E2{xtp<%ddZGzztjvQ*KIy1Vwm3z+<*Hmd33gy9YKW851tM|Ehfa80o6zdW$wMg zyuQn@w*3SV9jFR!!Z*&qr?kuC9#Y!t8lGgC*^f7Y1fCh}^C?R-bt`lZbEIL!TTBfm zv7jn^0~^t;ZlZ$_^BERfV_>n25NWninV8$_mP1&Idim^AIb^dz=AkcvQ zgdXz6+{PEbR=>LcnV*0hmi064hXTG^ZDu*CgLJ8$9$lq%0N z;mh!BphL$40UIS+X9WE01HehGR~WO&+Cx!}1?jZgY!T^=L5xwXuhFx|*spf>zqrgQBReOrMPl;5D@)f2tq-RwkK3}3r?ssQ zyngm`jfwjhQN04f{SoDs{m~BVQ_{rGkFKN3_oDsNAYl?q`kWxiM;$%_)8lGUkf1mb zrrGH`cUQMu#4hMLpf0ueo>wHbN@Ju=^SSAqt*$hbP=)a$gF0jKKYZ|AZ%R~cT7T=i z%O7MYFj#g!msJ)W3)_ERNB5IX9RNh_>nV!M4F?Tly)wbK^6-QrgR&FzpHKAXLk>_3Y2uMb7pJ4z$KEbSFac{Lg2UB)GV@$G`yZ}gY4EuG>Pyq z>yGvmth}Yn<$&G8rv8bjE$4wLjc2UvMflIxU8-+pH%fv!STPb{Hr9sO{_N%9FSB1+ z(9NNa1OG6T}`gqRpv{VgrrMvKh=-cQ*=>ci*4M>;LRy6oNpVCd_ zT(-EWPf$+Ltd(4K+=ZAt(O0Vh^yS_tA$}QDdZG`$OOiy3)ryaF+FVt(&i&W^epn*h zy+-VY(A0tUJYRIn{>Z;lX69z7GiWztZ~X;(l~A}PSLjp7i>qdn+P$1N7%9lV-nf>v zqGr&F1^HgGSL+jV6rE~^7zF8c>OS0}asKh6a8>hEad^T|aC!wR5`=VFv%40iRNj9G zI^Ca60PlHcYQ%%Ch-Pavyrb&FZ?kt8=(s8Q zi;}H-NK4UI_Yl}HEP19=aTtdG!2LtZLuJd(s)>J6Kt`=Zak&8tvKl7Mj^?0K|E$`) z{(!mlqTIY*gFRBMT4Sl*`*r!yc7Vy-D~%HIZikI(4j2{=_(}S{_M)a@t)joRJRS=O zVXhzq2;qbX#@#Ahv{HGoX`7;;QP^ZdC-E8oD>(Ml;MmhK@(x+$8FqvHIa#pwbmX+a zk=vWQH#1JtR*wZS4`vqhyg+@K*KaKT+Y_(Hsfk%HJl#xQD=a^#T5L*Vh&(O|#3yV) z7-LPx&)KH)#8^uLQ5agj_bz>Ude5S)VPx-%Gq@^B|sypj|BWNr0$2r;i_ z>{~E^fuTP*0v0d*Us=!{j{^3i$%DZuW{f;ub?kj%VV20b=&aleQ&17rBB!(Z4X}(Hvnf-x z#qk8O7R1-S$GCNPG0g=o6e)1f==`ET7*U-D?SD}%MkjdXa1F%U2QLRims~*4%=cvL**OaMlo=U-%bdl^QYqt>#aM)Fo~skgb( z%R*R?U*w9bT@W-18lrRmPyNvx*{Vv*cqkz*WO zlmZ6tQ`P|kdsKtgT$BGY6dVP0j2)>btpC&YOrG0Zi{LZDb=aWWjfrToHw};B7n4F4 zV-zQ0;BF9U_{m$nX8jByQ&RM7<0O=t5w|AGFn}WVXa{2D6%zANe(9kLBomm&s}ob} z-xGyf%1!t}5(9#g*z(D6-qnh$d=q0e3DNrgxGP%%fXwpJ2jVFN;u*=LG0LM?6i8Gt z_dCs0iYyyGRxu-F!$rM2^ z2H%NO5{^nP7hpnuQB4&~XrPN{I6Tn=$UkTWadWIfd?aE39nn)e{}H-TuF=?vllG+9 zSd}x+eeDTTNFZI>V7GIOfpL(5pet3sXWl~FAKO!(+-csc(YH-8uG@WPk~1ISK1mk1 z27<+_8w*rBd+QqYziZtjng7NGtXt8=Z=5Lc=JU5%NcLGpPGyvi20xvCk}Edr+s)7^ z%N@7v5K`==F2AkQSd2C*9=X!75v9ENEji6Aht4BE#jAnN3;rrqyr$WEivP#Fh!_O& z+fQX8Oq}FpQay%>Kg-`EWDF(&1R-Wo8Oy*=ES8c|pu?B8>{!iF(QvQXj03uf7|=sY9x~Or>v-26|5k{ew6>q`$?RF z<~Fr3>sb78m$Ov}HkYD#&m6t{e*XE;3CQ0*%8v(*|~cl;Ysx)<#)-)5!%c9RSA9j*eg22*yyqVFQaw#l>cYoM#fn9;OOBI8KT_t{CawWy3M5fP!> zy>@5jfVSauaBVV~+TL6&%~NkD{x5 z>to$@JE}Miju}lTIDX1J5QbRU6w|_F!*>bhXq1mfjPq_r0QSB@3NO78B(UXsjm`m^7iL{FXS8LFienWY@T9Py32bH10BarF@X)jGC^ zSMzf0)=r-pj^-SJu5{B*1-H-EH#=yRy3>T9$NdBE{NvEY_z&atCNccj=BTpPq8>+)`%^FEL^d$9aNfq?unb z*cW?@hQ7UU-CmmY2da=UYx>)CwBS^D`(; zlo+sJ&}H-dper$qLppXxr7rx~KJ^O~%d=5%cc@fIZatAnDrz*Zcxo$+{nWN1=*oCu z^f!Lt>Hq;~yEwB!6?rdq*f4!E1D&CvX^d#9QVNaXx0D)JL-O@o@ae>7Nq8r_tr2c* z7h|m-BeT8q{4!FziS+2p^5G%7kR3S(#A7yk#(GcyM8#WP>fVnp(ni>5Z_)OIJ0jWW zquUhr4Bg9p9@ID{l7BMwN* zZM?hqdHF9D(oYN4EIIjDv?8S>ZO!?na|ccm>p_=4_f(iQxnG0)Vhja1NilMdg1$394u=6&s< zc>Z(O*t(pb=f^#sW?{t*$BO5cTRj7vcJ^>>?}uBKaR-T{O7c?8te3s7vlQ(DV#!T7 zjG$`FMjVGfz@V{842j9qRg|!sqMiYVn_L~wrNQ@2|D5g*YZy`$zQq;|JtVv7lM~XQqjk>z0uj;VMXKoM9~eUR5^0xvw;%j?pGCy*n@Ekj zzVn67`*iY}B)mJ$s-K5*QeoV6#p}h`J<|Du&oJ2J=IQ~nyYf(*5iK{UwMCEA`l^1* zUu$^KXO?9s9KasUMpv=*Et{`H4-0>M7(04RN`sYhIK@Pxcy#bS1OtRyLK>OLVxXvFoa!pT4Gick-5UD956t&l^V?H}d#Z@Swj>7c1Fv z)?0WCY#TwE-oIhCq5~O*1LLWkVUoKy&DwaJOVy`w1)j!j zGkUJwZuB(nP9+%E0wrKtIblS;q%|_Do9AqN*edSeM$gt!V9VL`(J3-s5_YW8fJ6!_ zio(oSrV3rO7QcF@$o#OZ5fJjbE$h6qw>)9nyiV_&U{t$6!#UKTI$*(rNZbJ!(oGc& zz(a>4Nv2gL9CRh&`o97EArAu&tSx-X`iUd8Qm2+By(OO??yMgF&9pvlJuKXp_dhlZ zK3ra{Jj^`a9}z#^-U&XaZYbYSR_v6n6Rd1>VG&^VnYyid;cbO5(fw|vUA?tV0; zd9p4y2)`DQtTTT|m0L%yH=K!nc}D zv6@Z5P_{UE+I@wt;dvn=fvOTyS%mfK$+KjTIEBk0YyBdx& zBJOk%wWJsa*RoR*#3U2pE~iDhqQ!aW?!tGPO>wGtWn7=XvTcM)0DG_P6??Qt+E_@9 z;6A2_rk(OX=>(cB=WotHq5|=?Ld#*>uYq@_4Ciwn?+tHK?3GdGz@q%egM8Tm#?h3> zpOPfEI!%keAcI2adTzdrcH=yJ%rLuM0)EOt%d%6wvxfsh5x?CX!qp}p7_3inW`%n0 zyqjX_UN7oet*oK3zL;M-!Je~~FYQ{SKg}xY;JQI$wiR|`UL58{?9L#|l=HVIdgj^S z-kZ_poi9d(duM|_`5<` zRvutCHoZK3g;cyppF-f0$@_WPxY9g>#VW-l$-8!^a&gf{D82f3Ktwu&7o|V2)}OuE zLwr{F8Iek~tzC?S2E^Xetve-^co@tg^8%t%7em}qIbLL~+xjKgq@ zJ~tIi+QtTscd~A?a~-W@O}Y-q(@Au^SBqCuL4W=Rzv2&in9Lw0-cv4vGSlkCjZ?CH zdXCpARcf+xro!USiqsewRnwx6ssbT&pY87UIfdQovRWBL3fZe`3XCIla`NR^gx#zw zRwh<$Px1EoTF%i4RzND(>95mja_G+r)j+tuj=dN>ZZm9Hp_chMi0m)hsRj%ArdDge zq0th1Omf_e&}A2o0OHp6Bg>3AfuapY;8-TvfV>6XklLl5{fKS8vaT=lW%$4+%p_h4 zPJUa(Oh*zt*KGV$dPeaEF32!I6zT2qi2WS98_jpyo&wGy4Oy@5r^F zx!UkV#HnJ2L^H#>uthAO+s1b<6$L;15xB7G@v&p0G9r`eh30g|hq=``s@A46G`(XI zPXK+pDh7d;!IdP_Q;-V6HG~n4pRf*zLyHFJm09fxVcd<*o-HYr1|{N}Fuc7?hu$>D2dWk$|cVqU&t<0dkVJu!?sSa#-)aQWCJ$haH=z;T<88%=T(OszuL-XCuhr|kA(pEZiF=L^*!^`XWU#`rHE^&yRW-Eu?y@p&PWas* zSCJbm-cV*Mo?+6zsyYK%QcdWU9nEKM8QnPLmrg+Bonk#U+u1it8%!<-neMgrm6oA| zT5>a4BmX&0jGltW1rST}lx&BvJ+LE1YXFZ7^>nQGz`idqT((|P?izmUEd8W@+vBEy zGvr563H-O8CASkL(ppRBb+XM386wT!Y^~bB+vPbP5zjli%K&bEue9@f2QTwdm-=Jn znVkSfX^AHS@!3z_6#8O#OOoPej1qLbS*z?*5Pl8CFZHXxO3H?|-TbUi8!0^|qi1vm z1b{-4q7P1(Yy%kq7A*_|*#hPwS7aLt+-%!Np( z&_l1WR+2z&04;rdXKG``DMsLyQ?KHk1=v&b92WH|Nj{<@)zUGW!f8j7G`%0@d*|B;O%xEKW-IQ?Nfo+lQHtlwe+7Fu)2R<>HeGnAP zR!=e3RV+4{&*5T7vX~qHeTONZ*)unPj{@f%lAobKal^16u{4*UWuyrLQWtCzOvION z9|D~7^%U*G&3@Ky{0eCUH9~l40h;5*3D$fyriBTAbkXQ8zq=tSx2lg*0lOjRAhwKh zd?N;m;ekF5O*aT+%K>6lSG*8s#HEEFY%;MdO|K>Y=l&AsvFZ=(?|)<5{r_XM`dN=L z&5?$$W@vYu&KAs^oGkZ*WUo>pO;FiJ#T6t9-z2u0~@pKGx-bgv5jY}v*nX_6osm#Fk`;& z2Uom@B*MuXwl<+095kN4W?}YVsf1`6!BSBz{-pQ`uyXvtjQz;{S8TryM31R$E+1Y` zZLXyiNypqtulB51iQCz4u*Xz9#c{JzBT)Eyh>yk@M;t_nP=LVi9o{JOX0*K5g$|y+ zcn^BFu)iXJ`g>eTuGWHO>Lh|MuNR`8L0rj`P5jV{(IR@-qskEbLp&~vp|G9!DyXOy z*?Wjv%#W;`Fo{bF25ybBx-9jxKh9ju9XqzJ-D6PT7%0?9f z;FI{r{*mhTy(!94Z2qGONi;NxMJvBdv`u!t#crK$nLyMu9c@s#Yl9tDf!2}K2NR?jQ5(k+As%zps zP^Y_UK>jG02Wt6YxXg`DH?qmlQ>uVtD*;VL%Y}LP;Z3JJoU0YQO6j*5%72XioY5kZ z0gp6D>tgr`YA%NgcHvwG+1hE_B_83GMRCxP;K*>LW=ZR<$ouA)0pPvxprZpp`Tun= z1RdW0*MSX~AkOHH_^Rbs7mg1IPWa6+)1WPzp&0-IP{N=|=HWqEqNzQGD9}kREUTPN1d$3kE&t4i!=CgL= znU44yuE2Eb^bW^Cge)hmeHld(8|kiK2pSb4MaLZ7PeE(~E~3U*O!Ua!BXcbIM~^{8 zskTHrv4wE9-y7I!y}mCWOaJ+QDf93K(eaDTHvFxKwj-ifv4k^S4}9uJVte?Vf^{Jd z+A;j5$lJ10f0_$RDp$6t#BP|6mhkc185{iTS*_A)iLa_;o6D9gxg-Dnu00Iq>%T#j zwHIoOwe5?=L_W(xg3b_+KH5D?ySOC&lb=W-sBOPsYY3Od?NYTQ_LoHVExK%#+<&c` z(9S3U&)RQcNGYVxtK5;Bf zueRqSX4cj%!iKN-_CHUAm!wy-HaxnoCdNV+!ugOcsa^$Bg%JM{=iU(agm;M{YIyK| znO42@{h_NYZ?4yLQCF0RE=I&O-o$UY$qrpS)t42Kn+F|2$05DqWQxO$^dK zUvX8ITWM7Z^z%au;N*k#0~~%1?|b46$xmyN+ynQ&l zkQ+mbVu*;!%^5}BpMv4>0@TD|EbL0kNd5rH_;iKs>8AhU%n%T=GU)yK zVZYKXeN~~Ws7C5*Jz{>fLA`Rhp8hv+PJ87g)YrR<)D5IXfkUH6Xdmo_IAn*5MvjK8 zY4wznDYROvUQi2gQr?fGvc0=Z-0>07*Z(5RS`cfhwEEUD4WWH!5 z-fO2!i1Ipr1lsF+k#^{MceTkR@4&~nGeg4GPFWZH^YaNLm^bW8huW5geh>c- zdmblwx>?_hiFTh!-vj#whKXb>f@KWwz1n3*;ZTNpYMzQLrc&r|_Ree9xseL;J30Y7 zC8Mj|2QChR{7exNF|4ryH*Wocr-G}bX(4-5-60_q|8I)9b4O~-_*Nes9}7H{#?W)w zp)mv?;@1wJoI1K!+a@-z{X+e3b9n|)oG}mYTUHUQ_89EW>;*lR-Rbxt48ze0-Z37e zKQpr1gVFL#O^WoUejZH}mcs9dP3Vx0voT&%zOB86xnOwwQ&@>!w7gn*RR4=UWg!ug zM9xHtEsTVnm6q)qbR9!>Bu;{A!(kWxBLHJdd9N(aiQRL#G$ zj<7mN99Xa@y5fYos^$V)=*r29&?c-uYZT&r4C{T)$#KNh(VPf#Ay50NnKJn?w%|Ln zSWrF*X$}FI2&a%{7+zn*f_5E(jfLa0^1YzNuvJg#!6vi>?HBnYliISA;%035)9}82 zDpevXC}^1jq+Q10=4ohaYH-i>6lv<;uTLo!$K_ZhEN6X9QpolDL?-bn-(-%)Au`;O z!{%_Ik;>a+lqtc6=}YEC=y#_H4XZ0e%G_8RvqWQYMJq_d1KiJACV1r_F@B7ut}uk%s5 z??0-byw8vz3#cRR+d9Pz(iLp#+ zs-))V1u62I0Okhfjs9OKn#>y0D&Ix}?Z$BlU4nlZhn11AWVw!95)0Q8skKMHu>Uj? z<@dFvLAuTj)OCKp!dTK79C>mCF@+hEJZeCy+$*BSVr1{94OMz?OD}Gr# zWIjMHnOp? zYLRt6naULeirEOF1o0-dW_J^4iq zgWkhqw`aS?R%p||tQs_#6%b(2QIx5pMLeYM(B;PvbomeD9o(W7iyGqsUXG6)ktusv zuNBjs4og}Dwxl}~iwoOt#GBE)eonLXQ$OLHff6RF}7pp({ccm?{&UVK4`BC{ivvGAgb~*dv)>`x&Fq0S2MXo{YfFq;4I
j}7?vD8AvY zDT-m>TFbtKN|EVgU1lRX^p0MNIQJ$J;`C(%I|tkotzf>(P@^x9>}c5+V`KxF!Lo%D zYChG1EWQw1&iCe&XiXBLCrp9xuiT+_iU3oaRvE}t0uCvkdCBMGI z#$crGzj1l1dE2g%{F}O^uZp7w$ir#NDRjodrr1aA6ld5!fZB{8?=EmyBLEO74~iAb z0Kt&Yp1)nHV4{&uGCm4xM2y`jQ+QsqF6BFwRRXAMJZRoc*Z>TOPsYJX5xg=)Izl?` z;w;7M{kV2`LELa!?HdxPZz7M?i?ddk{Iik6C7)%BStE(<@VtwYGQQWp!J_y;?N5HJ zJn`k$xDrPhN(~u+rQ@mz+h1_^U&*%CZ`OD8REP6K;pB;N(tTKkapBm~>++|WO%-Tz z*rqDsl%WWb0WGmyn$4PoRiEgaf_P>6p)N0vPa4+PhtXknLOlvhO(0BmR&lIK==D zTScE+q~B{$DLdZwby4jK)6tLhEb!F**v!f|b4ztkPwTCx%JkDo{me~O=*TP7@1?0R zGa%Xcwnt|11vx5RPebNu9?O6&GvT`@*{&&k&F?E`}YD_!0XL^ry z;KXSQ`o;4qM0N{9_4BzKKIME{R1{nBx|18(stEzYQQfUtZ>oK5P_Je^Q9kLefQhPF zyLrr+uULS@#xpHSaSwc$0SfmA4iUEkKeGfP+`kJ%@`d}UZTY2_s{JESKnywbIT#Y7 zjs&e0f{=L9Gtmot9M6K}QSZcJ@+dtF?LR9=A0NAGa?D)oJlxsC4@(@0qG}+ina>TriM-fj9Q(7QccOG3Bx|t|ERd{&u|whYsMj391`+c^ zsdV}bObTMGV-CC-P_qer)@Yv>n6wn#4ku#1PgGdWaN-WVVoZFXx>kQoY`EN-I3T%(1O_3 zHWj)aC`_Bl(hd9=4;=%4AMVk(Dx|-&Y{izHv8MjY$f4RTJ2M9+#2+S6@U555mDIN* zj{c6nO|(pB)TnF7J$EbXXK(D39k7EDM!ssEEUVnIlb}@ViVNm409`t{i6-n&YR;%N z{DiOXN}M)lw|+&_uh8We)(&}tJAqADJnyQvK-Saxx8 zP{9UOD;xbZU)Q!v*~H+c@3sJ9(X&lwr%3uT`4;w_POX`OCK+b-T^-<08@_`_EbC*o zG~9Bwtri}{Y{o{ZW}#y%XEzul301!i^Csm9X&H~XA#lhlqNbYPzuThCy@+s%8PRF+ zZLiUbm*PlO>{Ag+#0+3@55ADcj;59%F$q#@>C3emedS>#N|xUZfAsiM+^NkE+f$ir zipi`SUg%qa0mH8|ZZslrBShXyS_{hF1efsh<@?I*s&e4bVQQ5~RJwvSnRU|(eJ2pu zbUbE)5q~YY>8~bx`#SI^2)vP0ywHO5{W7EeMU^Wm7yay?^@kyYfQP}^$-?;0OSLO^ zgQS@~>x8|N%hwRkeXI4W!jB(0s`Qb8w6$q5YOHJ7Vua*(WXMu+Kc@V= zAty+FkE9?ZV)=^XhTJf#=OfUF_M<#ve@ld`E zagxZr2ThF|vuso~m()wcp?s9?fTPJBIF|L~np?W5`j1;W9tygRB)xbHM8q1|SOF)* z*s*41^28j_E)^&zU6vXd^e%-(2#=_VT4~aV1IvkZmDJ6U+RzCJ5(r^FGblz{^^15^ zyd0+TnT=u)Y-`z8+7-Db5F2?i0Z)kKjtref$vAbYdKjNO{G-Rm%}X-Md%6K}r>;xx zM8+=<6;juvB@~M6^b~AQ{r8M1Kg~B1# zx-iP@noNtP0!vWH6s(w0De95JX90Kl06#g20GuIqHOhN?TD%8kKaFRTtCh5#q@p$?GHm&@RJb7t&R;gVleT=wc_hIV?$q8IVN=yt;_g~Zr{ z0i}`y%~nDXyr<{Skj+H8(#!jd>`BFVBLC@@3tXOd*D()jL`Er+IC z)Ufk{+FRFfFJz4HLvRN_W>jj%Y!a_4& zQE`CQG(O{#|CFIbCylk3YX#;gC?JrGn^aRrb~wA{G$&nU zht)RgNS?ZKU(@$FTA$g2VF5iX2u}NHyCJ^|nz@)D0ClWCOj|!Iq~W5Y`5Ht0e7%6$CjOy>E0_FFh<)qP4e++Z8w#tp zeGU1#f9nr@{HdPVUWDhPuAdJ;ugnzYO>`?502iNN$udIxI!Z;7xM|o=7;6;FT89dY zSNZC{85v!1Qk}|4i?sB$+uAX5zj&}jdBj|8QOEatYsJmD;^=6SA<~tFv96rSzDBiZ>H={2ea{!F zr%oykum1ioGXHr+VZ1QsdCl|Fp@W$C;;`f#1Tqj<;J9l-f9_bWM>g&5EE!KTZeJ0Q zxc6qB3aA6&MUJul9kzp`=|6s6b7O}A4BZDuu!>x*#3P7w?T9C7_4Bg(Ec0^40Ri!UVdP;hPx)1;f64-yPWw z{C!nVoFb>rN-MVOyJTm|JJ(95m$+=Im=sm{Y{UvfraRw0I3W$sb>%82^|<#u=AiGp zd%NAKOJ?XRfWD26l}YhV#hnZH9vWYT)xa^m>2@B&_7~>G>ZYif5@ywn^_BI>J|n_O z-|dyIxrOTcC0C5EUR4}OzDb$U;{1L!Q_M5#IP;b8%;A3+>U2ZwYe13`P<*ZUS zTIA!Z`oip#i|j~^rE_HDu5$L4-A#&FLUhzhNla#ssX3hL?fQ5x{`TYDSi^Z6rc)i2 ztmRxpn(_dsc9 z&m0}CpYx6}666|D$}az=3}jrPP#YKt>Jzp(8lm;WR2H2blB>+&?@}g(Q;9t#_D!2( zW+DS4L`Vu9Nd>Ms$`oO!yT5z>=X|I*_?XvGH5_l+ls8i|^|5)FO`E8qHdH8xyrRsf zeYP8MS%;bHx?R8B8FT60_@^Amk?Ezdoks*THS_iOUofN@kebH{$o|&Xy~@n2KYzE- z=9TDbF2+COt>Fd0ya)j1rOi;ir<_iR&@bq_QS+^>(&$Z-A)mH++^Ir?I`TV&+>(xU z9~P}M_^|7B+mDBU==AVMy*ZZAp#{9i)>JvNAgSBuiXiHfn1S}Y-TtF(qpkzLbCD$u z=mg?UIK>p2YYBNkEUhO?;fGvvo~6Pn(@47z9lBZ zEuitHU?{(=7k|@BCVpa0fSG?%Fh6)1BsX6V`|g~MISyaFKJIP_!dqV8b#L%@A0pGO z7C&gqn`hK$X%NHUQe40j+1^GTDtS_JBq5$B%F6#x zm`8rORa)fV$pbE`$hLy0KbYq>NU|A@Fkye)Va0Gw#%JcF6F;Z_Z(AsV+zNro&!w|AI7X0rX5~ zUytDm+KRq^Arsg`^N|Ukrti}1s%~m{`%QIT(M)IpO9vwShyE-6-~HuU{)~rm>w;W=^gPQB@U^~A#z4hUB(%S>3`qtQ}S&i6#3+{u|YePxeJ5Av8%zWiM{Tmx+B^$k~xkDy*`!C8i50FEAu-ZmUo#g zKk2^Edueq{IrbSMv-*+YrGxqhhwd^apUbSGKiRpZ71#nsixJ zIoDofE`aykR|Y!N1y_#~t!QhDCBH4ad_1PSFH7JMrepWQUQ?*Rrh*bDGzkq{V>O%Q zxsz;t(?Hv-~9r7CSC?x5et zb+*|zC$Ijzw@lR*6XUn1gvK_L;{lnP{cq01HD8>!|Dti`u#8G2V8je*pij7Dm)IXz zpUts+yzHtpcYmg7Oj?qCN3D;0UJN(h{(3bb^~BflCB~X%Yo?AIdEMqx{BB0U(R*e~ zI*23Qs>YIUpXlWAQQGW0ML;^49MPe)BWjJwza5E{hOO}qRq?fb{=+Ose$agDYVQ1@ z_x|&}m=R3FTmhq%`kMe{W0H^MFCvxNKOYQ+E4azcL)!yom%`f}SWukhFVCH%~^*Z@|3xNzv^Uu9?QCwXgC>roh47|F>yZqFzrUr>x?9LBPmHGYg zI@R^df^9}b6_=rTZRAt@4{~d3u)EFE4@WHiJeEQ@rc)HoyvcIBcf0{3EVt#OoNKb} zj5GSiSZ8u7fEodHzH=ro3lgof^flD%O#>lv{pWP9F(-0I1NQOZ-MC&GL#+e+R;8lj zm$fuFq0Bm2=lpj<&3@U$A4ontPG@k5rlaeDlw9C-%cy_vZgnYfxB9i>Iv6GO^6h}1 zp0EWxn%E5T9Ht$sF#gV)iM0S57jph#1^4UENsBVI8TuKL^q4~KwOCtD9MfwDLh#Zr z#;^c1|LghTR2iAMqe2T^furH0l%O~<>dWcb5E+VnWxk-oX z-f&@qgZv!DR;kjoS|b!vzg^5ZUoPjfgau0%}PX)BIekw886sp#9ap3#lrb`dCH1EDYEWYK`!5ROaH zK8C;eki*3t$9K_%&z>HGez=w`!AZmP9EE14qtWO>cPRU5K=_t4%xq)32_3SY+s2Y> zX{ce+b2t4&6(2%R0?0|&%EZ1N{rEKZ(kviWVzAcrr?2=k&c`r40rHis8{TMNC>`r( z^bNo){bWawX(x40vhas#UY*~c!^#GU58fAG-A{P?bJtRV%8Cwee&}l{5*)PrIZ__r}ww$5??YKhLoV zs$?#(t@1#>4eKbrQ>*nJx}N&|An(<;Z^-F^-R_O|(3cP$+wdb{>o8}d#x9wJ0y?aG zs;mi{#sxdKPRDXgxB=k;)gyxdmyNV=qJGw1o$m32fsUJX>~5gNstq-4ArIxMkUEMP z;rfWWYp-6Il*@INIS=Tw)sw5;q82&9vSV;YIPM-f_v;|(u>$BM>yOYmL6Sa$F`5wAGt7RGz}vq&qad4jj>)xsQLNBGIaPVQ_%UrY{RzMRieGSrnD zkEzlc5bhp5>eM$O1aw)xw?AzXiROJaTx`qBij;nRKA2GjV7xkWAsK7oXW7En??Skb znJ0|buYNo$9FM?)4+I=Z7(8*5bSl#47%R@)7PkHh+B`_-&`Qmy%4_)IPva?aM(LQ6 zu*&QmsUw7Bq`qgCfUbWG^R%;exjMBdhGz4Fd*~|noltJv{nDF8A1Uhb*t0@&q+i)D*bF^uG1rL2ndTAr`IQnptwGh8TY@?DGq(I0ROlGcE--aem778&qS)E9PP7<;TH=y@}CVa zq`_c!r{@TbdCH+Otv*vy1QlyI8Eg1<`VAH|UDNmpT{fZYIsR6}izVKV6Cu1Ro}!1# z)o@ALB9gx36?I8kj*EeuGnQ)}u_9GfF5V-}Jkq|lI{b|W#o%0H*>5M*IBl2v<|59S z+7&8JRh}Y7Wo=X(ZUaFSAy%1a@GO`v`>{8KU_z`|Hkl>T7woo)o<3S!FLmc_^wb(0 z|GNI`j|gWlNcqBOXCT=Laj?9Fd>9_q7om|=%6GreqK>Vfo}dJq{B>F|h> zKIL1FLwWweh~W3SnlGEwN3_swKZWzbf5BE;Xm*)Tl=i@6q%N6U3-nMLz?9J1NNE1y z`}1KR#(AWnVneKR3v~VY_ZW#MtP9*@CrUfl(bvj@Nk!VkRp`lf0HS|CzFC-Y?9^PT z^YgM1+1+|@M01c*v_QnP9Wx3>$qUg(jmQ@A`EBtRlR=UN5pWmFt=n(`+=JNU zuNdAiiB!jKv&0zNKU#9Yg9viH6)j%%c9MH7*x!JfC$K$Xxy6+J^D@AVAfCa9_sUPx?`cdO|Ut3D2rWf|oPa4S7_IsnQ6U_&`C7sM_N}OZ z$6_dE0Sh;*dwTRYWwjOD7cZaQGznS6C1MXMc!G%U&?_Knrdr5)G6{VH2GAdRv+#`@ zi3|k@;1lLP@Me*uBhCPmjyk0NB#Q|kvtPMFfM7-oB9It+VAfd4e%Z!+QJVMM?-@+q z$#||kU}K7xkILaWkC1*|9f$qPJ{4jp?e%at1#8Ib09-S?GcU#9+bx&#<_wGD#eBdv zs@XJgAZb+!<>zdK_=W}~3gW7TT;m~F<3ekxC^b>^3xa3cMAA$d?#v-IB~}ow9R4hSTAyw0{qcl@xLIjgj-Xt=>Mpu9Ulj+l1c_s1qd!o9wa=zNRX3`#z%@Pe>1Q40jtmt%0sJ%On+K95fq$Q+5)xb zbY^L%O`0Txz$>Ow=+2h03uTJex*9J9d&K7T5dmezL~&)07zueHGR4*RaMp(QoZddt z7Y2N-Q_Re2_y7mL6L|!QE^DE-qcLXAnHxJ8?z3?a96@Bf*V}D$MTPC3H>$ae^HE2Y z&82I4y?S!WUX9uJH;`v${tu0e8<}z`4wpa9GrdAhRTJydwj!;i(-To4g{QWn*{8#zGvtvJJB5&75@#e^Vt)1t1r z6Gjo*V1wx-61p+vPIffc$lt0~tl_feo_t>|9k{8HsevwxrVJMM-CRLuf;hrEcRQUhK@{(4GR$5A*WR?b9t4P5^*yM21t zn3}4r<~{es&uU^t?^l?5VE1mpdPrdSAFcB7#Ww9VO&C%EQvbc8>lv{U*;b<;rl2@qCBD_ZDD9F3XLdMQ$r-Dmh{p~T^z)_{;JAI8tk zAHhr-)kUR}0l#Qg<~$_eC|Kx8-qeFiPIQd4j{9!5+=qvY;kr=tmE3|1i#x- zUZyJuG1$U#Z)%f#Q#9}-v)pn}98?U(&@I5Z;wEo7^2)_cA-Aq6HdRcXwB1%Lx}_@V|Qu6wlB&jA<)tGfh>`G_y3#sR4)!dc^C@hME=~2CJdGe1B8$g2YpOC<*<^6t8Q|fsG+c~!-6ltus#9PuF*sQneV9LtBzO}RW3*oA{op@U7!cALz$dxpJ4V+M_khCZ zHp@pfDgy#6Lra})J54;wCovT3ADx5QGi^ZK@b7o!CDv$}WdY@v1t`BBF0RX!*bCp< zFmIJ6TRLCNI;hI*dVoY9T&qK+svk_&nP+|#X9PrQ@Y9L+GX|VA)consj54V7{Of|z zd6IQ;>$lEEdZo_9d?nY6SQX-G1uhCYYDP*|*e}O32U;ATr2w&pP3MJM9fAQIU$(OL z005o0=>w`k%emVy=$tu=Ze6?Yrmy-_12J6K##Jws+R+xnJW^&}S!_|?8Ki1Kj+A?LA+h3o!siL|j)60+Fzi_F21S4)TN?n6K1!tj(S+w^vemV! zVKSj^3UpcICF>t60qz|9f|eeCR9!pC!#bOTi*H@GW!eJEL~Oh!hiS*;SKw=<=}Fe{ z4OqcKcxtIqo(=G-HGw3zVB_&jvEB$10b&JVC-gK#iB8;M1s zz+Swba%OBXwN19=lfRiVz2H}kZ-Qd>x6i)cJC5n^Kwahhx)iVmi72sz4(oci0w-?J zcXW+(lktdbZSEAuZe-v|C(ciUKbqcyS-JB1{Y#1+|B|8}kD`T!WaHqBpLs@2rd-v)|D%-kIu zv~G&-n$l7~IU6(S2?s|KfU(PG^_|SmrAt7ZDbMMEKh0f|Z@n`^3o+(3FS`F4$EBFh zz3L@}fz@&vL(DGcS~hha<~oZGNRj9|DBda@kFr?PQk7fe!f@~?!VQkF@;LI`oPFDk zAN#%N0y(_{{TnO;;7#NxEc*#9&iOJASD%A@hn|MCsSJz~Y=g{gPY!YGagP#Q)j<-3 zC_!}12Ba1`Xq{H-*yfSGDk6PR+?ZS=E;E_MN%X&aFJzv69#1X7na+TIy9g`*R_;^C zedkGk&(p<0`$~~w<$e@2IT;j8L2F#cGFwJ;a}JgqD?_)*iFwnsPp?1N7a$pSbKD5~ zef`0Lc(Bj>3U%U6e_gNDoh$rVJyPiu^b^Zq_MYIoNkN;ouHW+;uOaS>F?r_OjFI~w z^`;T|lP||y*rp1Jyp7m)(Ue}PxfK`S$k_(=tkYW)7k9d>8VB6lvFSl(u6^<};PWiu zjo{o|F;7t*gdrcCOK&yn&q`ds@xUR9i}ad7rK5U*Ri>4%9dka6Vqb){ zIT`ylHHVt##hO@Klu6Sq#kb__DfDZ|RmqYGD3Wo4S1{SYVuKF*)lPeCc8+53k{!s> zAmL&c(n_X9=oYxBU?i8wcU=aVS881KpavkF`vb)^QiB9s3%s*#E(6xe{NrH8c&K>F zvpD$pg-MxOl!NJT{;TwuK_IXYj(!Xbq^}j+pfnR5M{ngQ<#b18#ptP=Tw%+VCY8J; zJ;6&9b+@@K2q z_iOHCI3OuYAfE%RCwVBYUMmfYH$&6-dDeA${-Lq|RA)Qj*TqV9dcV?D4DhXy(~x6= zTm`V?x(Dw1P*5Buf4msAI~WwApgigiRX4L1QLwXDa_=RfF*ud$x$`T*TvlGK)RQk+aIu_fep1^yX6M`Qo)-aNATyf1{ix#A-KI47=$7e{w7f z56m_3;w)r@%RCDc!#p%_bk%T|@z7{%)=em*+a_mRy;0EpA(^Usm~!RiVeLPWGS3ks z)_g@z6w@M`jGWMzd?AJUuGU=G@SKYnuIGpjE0}1ShOOGc^y*b-lrGYz_8Swn z8B12kxKJxreRjzdo!SBm1VO|ITBo+J{c+d6uyqnZ2@}xPO-Mt@{MnAZzwd>*pn$3|&XUmQzjAJ!R%lj)=hC%k`=VIo7tWR%0v|2G>pcy*fwP+Av zMSlhwD!bOaq&4k5$W&I@4~I$GilD2g1btu%VOL^HWOd&oRw`9=SC;(*stctuj}Gjm z871C`>3n;>!l^8QF0T))I15&xGOW~W=gHY@3f;PtuHCwlDRtF%f;m1(iuWi{-iw!t zqwejr*Cbp4)=06kuxKT-^npQX8>Km)k|fzrzBn)SkLMQ@Nohm&9bxqtcqK^*P^A2> zngsTP&oTrvI78V(MvFw8RZ~P=1^)O)H5exjXFO)Q&Vtrp;r1r85V&W+4&#_@7 zBvl-i#uZe&rTCcFF~0Oiet5z8;dzC^!v5{7aoJ_(U*R=25ftFcmpZ+y<TQ5eNjfl=KO4}e5 zEP?(oD@A9`J-gTTuhr1rINZNmg?~yoIzf*<5*WoS8)eK^H-Y<1m+H=hm@6@p{S@Q( zO6!6U$6D>q=$*pC&(jRO27e<7aPi_w8|;(PhBArcm)Y7&7{A)sPQ6S_3K7LsHGAvV z%lMbEX(Ib%+@OGHV=TViXe#R_pl&N=(JU-q(>U0IdlmkAzjkQ z0Td41(s(!s97>Ru5T!$;q+7bX1nwMv|M%YeuI19TT*ExW%rkrD*`K}l*TF-|qqC;9 ze2&C1NAFW{U9XrqroJoDJqK}_3)7~Zqxtw~YxT*~ZO=;|q&X7L9QUh+5lH>{kk^bT zu6M|Had;VHbSJI$N~Vo2BPRR_PDK4=_RFCC;~WE-{0l|HtAR0$!G7HKx#16>7)m5t*6gl zDi1{FYRb+!^~*9#@q+_IX?d32k~u z;cE3e`+;L$Szp*i^-k^Oh0%b#Z=*_(#zsx1{x5eDwkJ5GQfzh!#x7O5?yW9G@7nJK zkZiF(!NCi7?T{+6}(_q6IE0G%g!ge?)Jsc#tqT9r_x|sdO?}Idsy{=g=zfbz+9@&? z1TZviECJhCkT7-oTjK7dGltnOSFgb97ACCn4Y3lX`Kd2?oaS%hd1a=quEm{B%7YVp zG$!jnLVd9a5x1asjVnfW6*Y|NWoFhKNh25N%3%r!o-tJQomc%`HJQ)S_dPu%*ftFu zYHu3l6CxVArLptuM}pXrve(12dr|zyYl~~z14BfV-fN2&rkPhwsX+xa=3nbp2M#7@ zcb6+NZ%H?IYH-!pPF8h5Zt-(J;fa_x>~76B({vNraOo&kA>v*Vz;<@ zZNjiS6)34Gb4|t7aEe6q`m7t3bBUL9jrr<%xRlz+x2ZA9i=>H7=Gc}wiWxBog zJLjsofTqQC^I}ilXjj=96z}oz@Dp0KwtjE5lxbrPe#qJ;kEpx2hX`=p)(OLkflTwD z2eGT^55Dl9dJNv2bZtu&?YRMgX)ejKGpE_+Of!PuRu5O(w`^fH-5Yjn{+BY@^XYWOU4KDCCOHS3&|G5E$(T`9}FZh zWt_j*TjYxOsYq3FmM970r!jo!x!66H}kUeR&I&7>k%fSO&4n z?K!P3)!lE3cAYoG``3XUaLk3>u z?CnB62a(>VI?~ua>}qkxE~eSvne0;q7qXs;>T~Nb8Jwk~e*C}>2Xpe}O8$J4oT+{5 z9SFjqzzp{nIsP(`VD1KiMR=24^vJd2g$-Rc!9?|!yR{WI@avm!j%Ab{XwV)vUO&0& z3>XzpZ5%vAU5VIKO8eL~BMz9#Y%49A(bS9MSsCkEeP!IOGJvqs>$q;JD(biZ3OM?d z{ilq5x10wxFCGP1gd^_$gJc5#HFy5k+*`WJ<-T7Lak-UQmcl2fLg0I1T zj$&`yLCO)MX*lP5i*DS9P`)oltGO=`0T}?9C-gNrd0d#1J)wSW74F({?C_c>IN%pP1xb zvI9LX_{VF(UQpBflKGnf%t>TYEV&6tku2DWEG~R@bgkEXY_MYAiZ@o4)-~jPhB&NEKe|i||HLhN#S%{>#{&heO;#qaKf7$PedZfOAz~&{HrhTIHMQcRf zBu)Uq2lLB=mOQHDyA{>sC=Rs7iB##RqO!}AEZIBfi|y7QZA{-~U(N3>>;cY&L{j{F z@=3CCq|0$x1AFO{41t<$gAtZ^?}+tF#={qpca47S{W8&olIXF(4dOWdLs(n>@5nEI z5W~g9wRl?3(tWKJ$U*cC0?t4*1T@!V3(zHm>J-c`=2FoZYe-n{7?dG?#ZDnthB^fw&=RbGVsZI0i1wWlDi;S_ z5d9!7TRfbW(V0a|FBoE;JR^y}IdBNkZKECFNe;J@n06Z|1 zg!h6e+DT%f0L*F)t%i?=jR#yD%MauPH4KCeV`G*~+W%1?sufP5Db3tLM=`K|MsaQ?75xbdLoj`5D@+)0^w=({xMjXL%oQ+ zsLvaG7>>F?7Y)b1C#NfeMLHUrH85{E$>9IAtpX1*?^7~fFA)8}t}HQ~eKnbu33tIB z4!B(X5x44$6*+#4P%M5!MELu}l?96yyEeKKC~z;V8LWf|SH0OpS46@qMps07kq-<1 z$F^8~rVHj+iE%Nx0b$~;-}_h){lt5%UY#pDGxakHj^@%l(7P@4& ztGughB-3n#x7mxra%^P={w`dk!Bi+0R8q3Nzo?@`rW^kBf)#(X;7_X5Wj=Q&xr1aWw!Ca zj+ofdH4y2<)YVwx5tL_5cMJcmJQ3$iK{Ez8kR?W^am&}snrQKW0<~x;m+V$W=VVIO zKgR9uMrdBP_aRB`Uk0wpdvJ6;QZ(TeOHkumdr9^ndv*e9zB`=fKy)(pq7PFaP}cI4 zC#h-+o@bBjGSK}`vi;XT)G;yIq%>o?;CgE9TXIM6IUL(gY74d?-6^;lN+>EGt2_t% zfd-?Z|2h9lHZstzSbG)#yPVyAB;9C}IB-%sd6bOfi8$Qye|{JE>b{}A17Dp1SGWaq z;U)8!g_anp0m1iV>H%CY@g4s~K&&$#Ecg{YNbKQ68v!@84l? z+SqPmorxq(hEpCtHG9~QEQJak61$uu=`(N&g(ZMf0inqhHSPighp*rO3Vf-kQS7}4 zTS7kdExZ*G(xyeOWI*x+bqgek)2+KSqAbVaxi7M;iX)$L8n1*U|2@Ped$mXDs?)x!u?BT^W2pI&Gev z4js9?FCykY)Gi4x@wp48oLL^>f-iFXG0BuC>^9@p0gXHUaPGVGi>UM*f1GW9c7S!K z-WJ;jI{ewVzbSo8`0^W6NX8(pu4WPU_fx&iKlkA|tH?7@jull52iV=Dei&#=EuzCN z+zLotDB5FbS2ibqFE5@?dfaaZnfe1{o<#lnqaZ?Kv8Pnw8`M!4%?CWrRK{KqeE0m| zwrAU(rS9+7WS^xv^SSf-2`3D=Wy(=^fK)Xg51s}T5HuW=Cvl}Pj-D2nI~CxgmNu&B z^La?*r=6W>k3MeJ;%paKP!H*7T2c00T)!>q$L{d8QHSCcpWLrM#A7Hmc;)>*%R^pc zl)^Rc8@voSx(r4sfOC+ifhir(lh5GVHcWaHpLK{Qvb7SR-UAe|UX@Hb{^tqKIbC58 z3<#ULOKG;wTeoNDn|90J*TGT~zg`13RTqM9Skb%NF50X7=t#F6C|ho5$ur44VHv^C z2+_P*hZNobNsFG&0C7eZ4hC)!mZS6}P>{IqAhUl&-2ZnJeZBwT9|RMp^V;L1(rBOTo3?@{zFNsory&}` zPUgA?keR&DV>wa@H-OBJsrd`X~Dv zeM~;VYw8d1@z{{}I#YT0?}pk1R~;W!AxNUcD{dLH1teUu%Q_-;A>J|+52Cd6Yv!igAUga=6UL*fbXHQSu%Bf~h-VnBX0SI*$qU_;kL|AJ)DUV1Oi2?az5%s2d%+EqZ!TEH-j?09S;x&m9 ztqR6Hj@mPS(8X!qQiQndw$Z%+o4dIoHv?R(n*2gTn#MZlN*ql2rgIEdjL6!_fFzGJ zP@a$%m3t|_9Ky_On80@w8Kqa@Yq=nObzR8_ zO$ILGSD;cy8AtH^GY1e4VR-A9%JR+G*cgpPjGj6Opt0g{hY_|o*Q=qcLw!S8f^aSa zr^WSDbs&DisqiTD{ZhVx!{WkWuwoQw?ZESR2-H^Q2JtyODy$9nBFpY5cF;tYg}(wj zgVv_XW0BD$V&DHxNp7seuZQExK~*0qVJAF9_Y6=8RcL*I1nXV&!B@fPYW;EKrUw;mGG}SXfvJD@ zo_-JM*l&SWvrhGM53(2Rts+Gqz~qzUMIz3*xY!<~)m2*FDl7cpkhu`{q2pm$QeMCM zX694%@$M{>CDwhU$E5B$`tVj^=TkE2zCSpyZq)AE3=lcJSxOr)A@|1g#0Nq62SeGu z-&HNTNWzdmG>c3RxhX)&Qnr@4b`AdtFprqI9o-^)RTjTMPrOzCYHLe@YB2x}>jAbA zc=70tMLpwNu&xV#U``7lfI<&91S4et_Zu+UqZNH?DvfCH4rY7^eL(UkS!jv3MgbPb zU2%Ez)#E#3Fgj3?mD-4%*5i)XkoY!7qJ?rFB)vj6{u{#6-qX*w3|yxk*Z6Q-ZS;CT zWUL0oTZ^q-=ziUN2w|=04KoJeNOjFS73{O@)jB^_b@WC-C7Lb}+f+Fni}g}VV&Ys^ z)R2kW9w4@ts!iSo{iFOF?7sf$%TZU^<-p4VdpLbuVezG9jXVgPvBzI0)w) zZ?LhOsO8u38j{#Xy;)>5jY8KzA>}>g#WdP7u5^88tEGAT3|u}ZwfVCvtKT%tEj^Lo z%=Usx0%NKzpZ*1u(BR3&aF~N9`C4qXy|)K-nV0{b*Erl-SKaPX_a^FAPVKaL^fZfZB-H^&I(BCB|36Q=SQ2K-vP{4&Q zr4&Hycp)u<3g>d0>;$(AB^j8w$JsCS>#}c!HhAZZfY$LKC|eI%{D{I|>T+(m0`^0S zc!T{PT7#rF3;lpFa@R=K`|jV}KzYJU&B4D?oS^Onq!;p`iW;lx19KH6-A7M|sNKHH zv)36r! zo2~_90~5u+BTncCCX{aiZJAjF%;XvLpn zJ}|nPRe}>}FN7~L_M2$Q0lD;II7hKTqI?UmL!`^^XyP2z$hYiE$B+L=O0D&!l=)(}h}-i$H|?-EOo-Bb{piOQbn&oLN+s z0J0FaA8a4yqd*}N+ag8;>v4#!mOOZ|6XJitx$fc*mFWp+>1~FboKtKgBYpEMnW|8c z03)W{1+yy?PHCEyH9*1}eOu%3GoxeRq&kPKX_ZlGq{1D5F7U6;Ru``Sf2{=Rat7_+rc zW{$d58Rci%D0~zUAHLIcci=tM-qm@M|F8>0A1e&4RjoK4Yq#WZR+p99i!rZm4PCOG zJi!LAXM8pEv7plTs6Tq_7|O7s%uAA&AcE(fr}k+&UQVRV%hJT`{isZL<=u?61Q=s5 z5-!OMhSa9c)S#H4&b2CyMpSRx2JPC1C-a(5Ka)!oylhlU(^1^bD2#zI#v|d+0jE-~ z6tA0n=%@QLK&evZFJnX=S+^eLv4*uu1!=dnHu-X+Tk0RixHiUws01lx)tKL!krQg z1Rw31J=m}L6ZcX}B%1{&yMqD7wKXFHaTnbdh}s16=)2tR+`URYn0>+@%u@a3p3>ce zB!UEtd)4^UY}*4xH3=ZEV9tl<=KeD9r$+z(5SjKF4{C3LF<5RP1Weg2r5)J~sxq$> zVWlnETkII`85q}H#)HAP5VPv=V0;8sSub+>AAfTL04$2&57FB{@0c+RVb?>b9(svW zUxlHC|8YG9V=xOle;Tp0lYv+Z1jh~cDax%Ar`(36hHx-yYv$J@X7J6jT{R>3`F4fn zkI|pV8AHv@V+P60h4~Gq|le{4iT3(^$(&8U&dj+;SGyN!6q zEbkdkSZiYf=ali*179oochOg}SQ&H#KOT5)(S5E^4Y#oRyvq)9fWAt7y-qgF|BZJ! zHQaxRWCbu?1b5+nG$b^-o6y48MeK`df+!iDh@LT~2ri~bj`{A|dz(|6H(m_mo3+wm zmq;aWHxjwe4&#kvp`(3~*Zr}#F8Qw;&6~8{R5VkQlzD6Fwm>+ABlUtI8h_CGuQVt4 z2#1yS02uc;LxstqO6ty6mZdbcQI}U%aTa;_A-suKQzkdO-&4AQuE6P-d(hvK-jn8Q zDn!nR&Ksx(NMEThDfrBSxVg#9nuK4DBfZ@l&P?Pg4E};04!w;*L zEA>~RA@OP4TrHn5h;gF%nJ1dA=U+f|DJ~w$&BbE0Zl^nL@{@*Vm;Uzt`i^43)SaJ- zAg6-oFznj5DLMAcr=<2W@KH;hbDhK7%VVR&XT>Y|W%^;1dVk6a62c!u-$U$X-TSE6 zBtPbUV)6Dt0Ig?JZsXSOX;`4)Zfxx4c7xhi>7s9XLdJ~hVoIj`1EMdw6$j=!-TY*U zHYSLxl5K>jq6SXaew5A7nffUFFclS_i#*gA&YRl(GkIRn+v(ZlICe19l(qNcFhD!4 z6eYOC7*8xWE`|tajhE!)XOW>*p4?p+%pvumbo_NFCLrAWcFilsc{9c+hd1b4?8f10 zU8-nA4_f3Jr_`&0W^&qq$-Oc1@KS71KpM7T+TH!WNpo_k5KHA3TifC2BP(7st>=k^ zhsYT{DEgkDl>RC`?x@dhTS~26gee*#o}m+`bgGDZuOnth^?T^*4iKuIcj7fZRPW?T9y40~Vi1eJdXx84W z9=gitA%+t#$yW4(cP*zlyb=H1>1%_iE_V`fx)8ZQF-hw7FH!O4PMeNRe9PRPr#BA< zQ%PECkm1EXcuic3|9EJ4wj32=SB=V~WBY7!^>AM=D8F>}FB!gp1K)GE zE0&-j$?s(v_Vt90w3)k4luR`!Xrx}(FBDIi)x4QHUS;?gc=pUk#l5v|bE1cE?q%QC zA)WgV9yHboN;SCQ+N70t9>!jsH%exk%d|gtcvXW;D)uQ_9h@cgHtboLjpcsJE^*R` z;oaIjQRX;s+k3Pd_>ATl=%;@fmX^~t#CA3SzIL2)nVNR}KD}S^ z2Lmi67C-e9iDpjk(XJQrb&23Z^}{d0ocUdbFc45)yR6!kr4cpr<06IJO_<-aQ9SV- z1&w5KTa3*^T>3fUFi@r-jLt(6XPqndnUjBY|FvM}4{=X_?mtcpy-kI6%MD4Xp{F;C zul2u|MG6eq#&|B!>ZQOKA!8PaD5#KfY=? z^dGPF9~y8(<$zZ&^@=V#&ucApVBlO?-%<^W9jjn-lqR$xyQ5qVo-w3^jA|DMym7GZ8@KO!j#l* z_gQ)~P0!YWOHuK(TG)-!bG=}z#jr8CDor#8**<)^y0Db@H6_n z!B~eaXogx#OB_+eNSh}5maeeIq0B(}072?-T8SYQbx8JgPYBCZ7-Q$Mgwkksy~UYt zfpzoK?Ap};MKtwv?1FX5E)G2JQWyB*hOTV?@3(kBmb|4AvtdK zb!4$d?>|IIJmN%_t)<;z!smRe1c50%2~}#wmDnfn4X>hOjEQ^`j(F`>f0i)b@M)R( zZ`sc=VY^g&Gw~e6J47VYB&%4CHW6pSG6Zh(O9#39)YYU>r>$w7(sR$q1=OqU#5>ka zyDC*1A~zi**W$MXT!`})JV_S*(jjh<=7`+xi6$M@F1f2SVqBHc+p@~i9j?6TF2DIN zY;N!Z1ML&3My`znE2)z zsD8jhLq@Tgor$P{n2Bd8|% z=a6FM_^%eW+PsfLK8%QnLZ@8f#6hf}+$;@ag18S!+v7Ef_!J%Xm|~#l)n7z5U}39O zI!<7zJ++l1A{w|sH$CYR#|WQf8>eAJ)I1C?bacouWJlDtj*dsb>MATBhbud}>r@ls z;vothKhG1+lD=w9d+G_9i?B7D-2FApA5rM&;_TwgM`ccG?C9=u*cPPfn~|Q%2S?R{ zDr?gDFeR;Hks9|yPVt?Bo!fsD;cJfG`)9v-Q}LUktv}%$r;LaQ^Fws2fyQsRF3CgG zWQUj2!y&i23W(#9N<$FlQf_K*d+E4QMt;;~=xM?KMzbEuWlzf!P7ZanqA*6U5TeGF zbxvoilu(k>sPsoj=iUE0K1QG%|EF_{s;S8O|C$DIq~Uk;dpo#hYVm)RZDMUw>sO_Q zI)_l;F;mDzp=v?fs46-EM6D|;JGGzlZK6?l|D)N&#ZM~~QFNj1T>mRgZX;U6x8|hn zdLB+nnOYz}OPft;D&TKa74`N}k<$*3rb1*7qc-K+{Q(RcG|wV@QfJuOI^-}{pQif+n|n;J=5nv)xmbF-sN0bV&F zXghEtzT5wq|1+`2Ia4D z$9MGLk`NN&-6_~*zz5aMsso>PG+F#s>zYnP<*%^Xuf1GTkkjR@dz{Sx9krw|w$GED zDEesVDwCy2hGSVW?yBV{%Uh(kWBYvG8e~Zdqm-K7*@yY6LAkxcd8-H0wnly->vGf! z@oo#~JY4Kg`IpaYzmw{vz89UP>x;mDr!U^???%A7!d#?g4>Ho! z8^KI;eaB%uXj5gk>={qkp03KiEc&X76)v_9D_-~X0<}2Jcpm#?UBxG{fwx)i>$5Bl zl|&1hx8btvBM}^G4h(Z$BN0m*O=Pa_8*PuN#h-JZ9Dmn5nw(|k)IvW(g}g*5tLuvh zMm)P&E}83MdyEYZY4zQ*4s~)i@EZ_V4xuDRBB;>Xtz`TLd$YrQ7elbe0qd~qbS3Rq znag4Ae$0z?ePY}TZu=A!Io^1nU@Hr+YQJh$p%EqM8u(!m_J$6tC+SMPm`wIm`UjTzF2fp_V2L*3+AnSZk zhkRfgEjHp)%0+E7MnWAL2Ct4BIKG9?;!q6_BS6{9fBS8;pDdc7&>5tFXw6u(7GJh4 zTznK>4jzP+%F)Zz^kWBzCiojR)DDwJ+$}!!(j5gGl}fSq`QNF>MNZ%p%13Pghdd{s zoWM2%n;cEAk>`W~l#)%N`^SrEsj;ikrqlCKca#vfh)muy1o-2L+9WX-#r|kFFSebe zLE1=ZOrl8!miNOdl0_HTbEOkEKCR@dgCEcXqPsw|dXx}Cx7|w=pEA4-l$*;G!oT-L zQDk^pYR^axcKs68f{Gf%Ga?$+TNs>L*iaiC*jK_@I-;MwTUdrHsqcE$pTWn8f3?NZ z{BIQN9$Y9|9&h$=R6_-P`>N=Z)4x-nOb#+*P+BAx0CafzRSR@Rr!C|+$ zcGh|fdVH@Gx!^u#!nf0=H_gM~%Ffo*uX7Bv0@TTyfTFazZc{YW;i3I34&^S1-6IJ3 zC&!ZCCWz*Q$xkcEdjE2UtC&{85!g199oRGSq^Yq3m!Io2|1?3S>MX`1Q=X_7zCKH< zEJxN9`QYV=|GzdE*z1f}z*H7ETI|PY1!N@PzgrSPo672b)lu+tC-Q1Su*SCP^E0pX zD%zELKhh425B5kXj84{BoR!$pU|MNUH+mmf`wugM;1(#-2}x%u=PFCBH9a1D=`Lsi z4$sJSyFqN(2zzwfnMPgDACT`H=viv<7!E_f48yOP!IBbD4^GcpdjEE*KO5rEm}yKv zuM~G4$_ah6sLzndd2WDHOQUFVgpg-eqi8LlV~{g7(s;j6IKaZ6brj4i3DgrDElkC< zYjV(;@t?eMYBS#!>6uU&`&O^Oyvq4(tR(A-qD@DqY=Mr}%=}Mpap>s3Y283itJVw# zdYyO|f*-9rnH9eLhWJMZ?d82hf5A~-D`Xuw?RP*!aG~+FkPLCO zvsW0A4ArUK+%E)E3965?EUTdg0w<~dW z0ZTh9swPmU>Iv3BWiDwby*UCFsx>6K@bjvA5Ie((PTI5v@4|`Y_LpPxu*l*!G3hOK zu-5iL>t-`HBC~Oh)}*HM9@SM{$1S!(rB&S%g{SeIP8S-RUJ|waO1%+GYZ;$bzDA6& zQFrO4rfEO#&d@eU6xE9J)k*-5cpAUz^p>fMwl>z;8gb`@%|J?}j*Z&<{@419Ix3x$ zPYyBKue>M2VRG?Y+WZHgIj-|tCW6_z+c{dHtr-@=+L=VNb(X_s&(}e>8I2L>hWF%u zi(dI@&ivf=thihWn-hivnaW)btNpsd)ZZPGw>$dO-JUA%dh|(G^*p1z(Zh7)ubO5& zhj!~FHV2}`=T`gUHO@u1T(PoQPL(gBYJAPgQub=P_C+ZNqUIpsPQ;H)mj%8B#vx9Q z@WzpnHz6YL9F>qalIn95s;{Fm4k9C(OS0z-I809Eu)hG4LSDpp!o>A|HMY9|gJ|*| zN$(z6wN~E9NY@tt*=PT+fi(q+sxSVa?W?K4f&HE+@I2>PH#<42M~wJ?GM*4dzg37r z!a09>h4B1ez)8^&gpPHvUYc$vv0O7-CJy)%01vx$bne? zXhyzFxD(YBevPGGq*vjy^+v{%c<1TpbttkOvniB)WgfMssm7nG`Pz zpWEbGvwH_x$cD^a`AL83COaa*W*&H+Xugs5>`3EClyo_|_qqlT>;`|fN$VPu z#ZkRqwZCW*2(ai*tYAP#SAc1Onh@y@uGFQIp@!`;`Nb|7E`MP#tgaGzFj=T=WTxwj zxsf!Gg?s~n3q@7)&#~%qzv>z^&6$#Zb>c zsE{J1xRs1iE2kp4cq5${;@84xTLqQ4OLdi{IoJIDCx%278+o1E`l_HlzFYea@u}=N zyJG9+Z>dkIt4jDajF-eMjR+`%+^qnS~KM#3N!B-u(? z1w8LUD_I;OKd(d)&umOTFXo$OX|VnFugvW~;YPTr!*p-)-@!)(bz+oDzo3lXgEG`6 zq+;46Pb$YSW7a&kx(euAxo}gNJKcT!!yNj5W`NAPENE8G0;B66__ugiSA0K_i`*A0 zMd{^md(cj?b=#oAPKIstC+g?2OPrXS{Cqf(ZEzaVl%H>~T>VlC!&uXmeK^k{fw4L!P1*L4k?|Rf>cQqM(ML-fZ|rUDr#09|e0AKniB>h7A}1oh zzaHuXujgx28XngzVN_RBhZ9cW0y3IjYwESFrHR+GQqf08f5wP@w>8zUN^D9AbKgKtsk?B8Tktc9@*k7s zQln)8#+q8Tlk3*WHnJDnM z#73d~c@G}<#uU#0X@(u^xIN)G-gR$aL`uZ7bD4x5L*;t@cz-xZiyD~FCCs2nj=l0# zdwhHOT612-p_-_tc8r$|s6S`e2Z$+M6$7vz{?auUr@W)d`{S?>RJM{Mc&jjj-OQW7 zvvu#$h@kmnBZk;jN6*#u?amvbx#(urCe40TsS={USQH=M7cnKU@wZ7$7t=7Qjm8Pt zGhH5kLS9n7}sCCKbT8 zv?&Oc9V*P*+7)1(VZb;2U`$^Pyh>C3Gl5O4SwgxQ_Jv|fNT_TW1w-wQVO^t;e{ z;3Q|RQAUXPQ0mvv%da)Yq7|kDdio__JGnv#y$uAqpFE(Dl&RHGOeMZLf5KTS;-NP( ziJHF4_3X8dJeIl>e(>q{h_c_h1i`iK7-CSSc^J+Y8KVp3i}WK);qvJmR}yi_La|$& zjF`3aB|l6BB$KTk-I}GK4Yp$SHeU1AwR&&NcKJL&?QUgys&_Grr|?drVO+G0N3qy4 z@7W`sca2k)-)Ng=&OElg2v&o6^CV5p-*6_LVSP?drOrD-WOvNtQ|plUrH7JdwQZ+9 z`Bc2XvLm>vO43y~YW(d3QKT7?ffzsig2U_SZ1$$Ge`Pb$dx7pupiGdHo@ z=AkttW@6!d_?EU)B&M}E4|1A;QqpSb1%1*OlWgx)SM1F*J1;erFX^do^YHU(^zvz( zq8-)J@q_Vy_IYL9a*o7w5$D0;>(iWgLI15ck}h_SqU5#qhtWnkLyA`rdE3{NuYUbT z*2PuM_ipWdN}95Knnr}rdHNnZcEZa5ceyvKM)wSm(e z#8s8^M={TTy(;@a+XBl;DX^WUj=#I4ueY^Xv@vCVb$ICdjn|TB3Bx3M;IzK0J5hhs$dgB^-QXyxW{9?qlIEUC&1+SX&PtP$tGBWE?{0Ucq#avmo0vjffhtiK#X@EG z;@zJJR9&T&|7o8)<)O{set{qHP{()(EThtr3|5PbK>6h3KDmPx0%wL0%=*32H~E4+ zwP|rvU8g1>q*eBTc`eXLe^MS5*!(6qq7x&#g5SgShex#@OeXCh3~CJW>_5>Vw$;dsF%2_0P{c1(>Eu&zB_i%)@6roYJb~`JAl>2CZdAnwk%$ z4v5u-)##Q8Cdw9nBveU9MX?nZ7WQYPim)0;YrK%5)Eh^~|Cj;kdBp zeuOyX;|3K^hLP?K#XloLMhZ+wKWLL&l4p?}uhSeow|gS!*iI&puhLbOYQAT7`!eKb z8XI(&p7352gL~WuH+c&c$V)gX;zKrMASs1;SdR=-2Nn7pd*Nl!FVLxD!(rUu+4CO| z%N~kgPHcuN86biJj6W%EpLNtXqVkl;tV&1 zn?=NBLt?>ThV=L_wV`|y44d@BdE@NEot>jWFQ1(gor&&tG_hZ4_p3%1U*zX9X?}t$ z(Olirk`Boh*H3Ao6S0dKy`}v%AH*$A4hW zsnFv;DY!{R_q2Cr$f9tjoNh3e6^9f?8{Ilq7?0dEU6E0(ot}SBnDBq@WSjod>R9&Z z@M_I+I~^z$vns)QGhq5KNh>97R!Sy85VgXJL`8w+)lSiRORo5Fp2@*jw7>>jWD0Dk z2;vqcN6tQdEhAwDpCh~349Zl{!+YAg&qwk>>_%yYDwN8a!WfB)bnCqh{@&nv1SYA~ z!>&1Y>0a~YM!c?$F#kh^CAn~@FtB5mP&LDL$_mt{=>rV#cZ167^TKZ@?X!YN`!u0N zWRY*-CwNGxfiTp7lyu32JnO@t?u7KUcJ$cfZ{5~vJ^C0o<9D|yQ)!Br0SI84{1a1Ujb0Y(U4fY>BeF|S`;sILRy!-DYs<#P!Yx+n_Qkl992-VZ zV{D3#uMLecwSViqC9h7V*L1gJLzdQTZ0r(4JQ(LQO!@rrS_Ka!R*-qVg)#6DFgE zG)J0R%A_OeEYX@!R_mY;QQrwc_rd{WFvE+JQ|Y$^I!JZm4NvzOM#umcJz!|u0i%<``4W9>bi z|5?i&dap-tSYpm*NPM)>;{aL;&VmbaT*MvDo(Iq1x3#>UmL^~zzXWrD_pF(ZYWCdd zmGA21b0c8T;}DVvJ}57lQ?x1E?R^}=x-#IClFgx}0iH&aBdgOe^I^BpwOg9a5Z7p9 zsBYGKaGyy<;j97s5E!;{e zlzjE0Lk{QAge1A%Gh~wj;_Ix}gAKJ*Hr^qfY9%@rqzP#QIqyAB&YyIo+8~$vj}Ed_ z{{H)%&-a+N{mBDJ!YDGl?1q@6pg<}O$S|;!oPj)g0m{tTeT4k?<>l9OlLbkOzNP}+ zBCL^eZyK+1$r_=ZA{lf0Z1h7q^sj-o?lSyW{#x7}P898iwg-5CW9qG;G}-Se9-UJf z!lXmYkDHbPSP8ZJxoZ{au#k{;Qcj#ARbH`8V1@_s>oOZguhbREZOOYXC4g;iGA2!={jfW%`<;AbgO0!A(x`P}!d`wC+?{fc{1M zP`)6fpQG=- z+z^;D)&i<+9O_sCsJBu@s_0zQgY%(~)Nf4niiRbqXKjf;ZBh|Kpl; zU83gxdTrwX^D#|(&iTU8<<`#Mpvx#&*2Gl~W1YuonhaL`L21@@@|Gf%13`N+E$NLZ znWVG-!0prC_fuvJ5|lTO#{C+{j*IhX^B%j8FC6MSN)5Yp`+OQ`#3Gd%CS%l&W7H;k zm_5`XMRiYZ==rL%Sg;u1?8Bj1ELZ75kKgICeQC&L*z9}p_z;YE7*@R79nvd8h-64J zncWkQ#X7W0w^NZkCsJa+&{Go8mi571z8AZn2=a&VDUuO_q6A5 zZqD3+Mh`-?{qW~QMRXCGmqr`0FsJjm{ zTNbdE>d-z;9Z|1@JLS=(llA_M>m8YshI|~BcbI{=FvxS{&RvKU8<0Jsdoa+tb(Y(r z#`>s=(3v@ZR6@~+koa1f+MF)dGH07QK=r__yC@U<3M%rlvie|5a(dDj@z05#u_U@* zzq_8pfY9mhlDN9tcg)U4Wgqj11lO?uw=XwI$ozN&HCDLEp767(`4TeIU!F{SxZ$50 zp8n~_1So<^p|_8bZM6Tp!mA@^2ni#6;~hFNOw>iZ8Xj0<;VR>~#Jsdlu7~a$#?eK~ zEfP|98QgMxq*}je64=ClG3Iu)zG{ARJ}2{cc~|CUIW@@tRIMHncz9KNy!kLthbRH7 z2WPB}@eU}B<;k?X(<|WY_rP*E!sWHq`|)RTmqQv;AiY}7lXV~nbAHZ*uaU`Ur4ACE zbCHVtTI93tk7}STQ6it1!H^$CyRGF%_?hKBM9cp8!C_x3jC3L!(7)#Y=iPo=h@zdU z4+~!sWd^@R88Sr7-(`By&6T@m<<# z0B(E#+2kU7`jv*%SfQ%+^hl$e76srO9F=vLa8%v@A-Hv*ZHx*ZAGPRGMZ2p)Q)Y|9 z>BeFLIq;yr&}|1OIf};#Bah1ofGjjn;&1{$sl#mg+ZO}{nE+dRKLVb?ct^AdQP&Fd zPK57-I%(Un*i;1kmEyAiQ31sFQMInEXLc3GBB`;WGaqzC@o8ziE&h=iCnVsw+juYJ zJgqt(w}!9aP$dSsx7uF&SM)W~jv*V1e3p^-u{xdF7%keSn{t@>-9;%gr34#t6Giui zWrXBs$e5h4|3`5j2R$=Mto*dXYP*pM#%wETGt9Y7pDu2*1bZ+k_VkPFkBa-#@LarC z9rkJrcgFq^TpCq6TcN@J`JdyqEcy>znycXbGx&c!Y`iFsqu)KS@xOL2UQ&>-r`I6b zKb%X~eFTt#4wOI-sbEEMJNgrf8mx|pcnbafbgI+g+E_n8lZSX72TdC%ZU8!Ki}D4z ziP59@PjyBkx2K=cX7vyeszqL|Uv}Q2iZU)`NN`PW_G>Wy59OllL4mVqD88l+6g1YR zrSDNE?1x{jho%dVS+&PRPSV;dS68AQKZ1~y*)KjPplmBnN9mPVsyceGNeByZ?i7&O zuO948^uzH+64yNX^29E&|zoaom}tyQYaZP_eX?%k_?QPuE)Y?jUp;n@mOlhPA4Ez6W0 zwGW4^)koP3;*Db2&E7eS8I)KYHmZ?mWz4(5!e>K8*~7oLMN(um{%mH=SN{KPT@vv@ z*yC`%HF46^+j0h`;_;%m;lS;T%X@f?v?v$w63sN$MvOFKX(e+29%l)Gb&>Het&ey) z@xegEgO8(R*7ps1g!uj@IyY(aH(E0P!Duz8Kvy{rRb0kLIS+v z8w%NPf}M0%O}9w?@6e1dxq1$>(PPMl|Ms5ZKZ^0Sq5Nst?jpy)eM*N>wbNv7dBBYQ zet!e62Wfg$gXE)wm0TwifkrW-SBrCH{{`7VXa1KsRZRO<>}S>AW{ccqEK+t$7h%Gj z`gwLa0CoF7;Zp#px2LCb8gjC0KP+8w^8C9B zXlaV-z2?#?|7UdN&_)*qj4tCpqx;Z)(LbNf_HF+Tp&i6V^$Z1|6kVyG8f;2Pn0ebIfi3eQ!iNXiNM7r* zov!);XGNPy4kHl)y*TYHI=4t26i9@nREEE~U0AySfC_yg{8!`|U#z|?qXrlvVPX$o6CEN}kjk_qOHu zn&sF*+x=;ItROmchkc;ILrQ%O zXz=(KxwXRQ{W~kb>2CmC*!mJFn(!sk$`|-In?DlaGZ3YIIcpI(-yo#etvIAK<@W6N z#PNjGmHqCT@am8w{Z#FsxcI~Ymc4z7=SHG=U*7U;N>?t8$#Vd!_A;1$V;;S-h~QR_ zjkK+1B+*D^by?jVurmTl_g?rgs_0Kjzp#mI`+Q$D5 z7tTMA_uZ2q=Bfzm#=j{MNTCpnZrz`SID!5!~!$z#EVZ)`pBgP%jtQ5)y_j}Nei zIm=LQ4yYD$jwP$_Ti@+04@j)<7^vv6e0njI&vRAK3E-gCk{bXA%}Ji~NMPTO;?idW z8=a=W_B&koxKWR-HtPbkWLha^C*A$;`SX36zZ;UgP>lEglvIe*=v@vT?(dkt$>8Y) zuKNk-$I2_S1Kv26@D|5Y{($u_yl?nd9^iEG4P`49)f0&KlTTG&1Ky?#y$NQ^6QhhY zn|Rx|?dPD|@mB3V3ib2K{0+$!5ki)12i?)r1I(;Hfi{OfR+I=uwS_|(arLQV{Yhau;vrr`_81^CR! z2h-QK6Oj|z>`E21=Cn4!!UDf*PNzpX{%kqQ0JO`AC-I14c_=6HyvFjxK0;kydEK83 zfa`F2JKfQyoMZrXvJUm~#5_T=Qi4B7WUbXMBK0RiRu-5&;Bu8ap5Z;`Q8VeU*o6PE zr?QSGBRN7hP&)$rsS%)M>?44-eK;f1Wjp??u$C#)+1UYE%s`Y)`+3v{_{mZ=0Gk5j zaaqSx4+cO8hhBc3$y5?d3BioiI4mboyjpvrrV#~*a!ZDurbTNN3ZS{4ur$EiE3X1P zZTRl#FMps1$Z9zP;(n$iZ5Kdsp2zDE2>38J zO?ob3{5RNaC4`d>C-rjaCeKDis9O4kz>C_b7`ZvH+?rd*)9lsZTE&qvM`-9i$Fb?~^@V+O?l?>yY8spo1oZ>Au4F=1A58jJt{0v7qnapBFhd-pSZN_1YmM^pQ zDWtJg`4j!&^^upT9xZvBLFbUE*M{vD9xRE}IHw0$Kx`DY$02CwzFF z-by=X>$+LeTP!QCtwppNcpV8erpmVoB}4;`&$29k9l)uK>|BkUBIst;hoRa)7b3u+ z9s$?=u1$AVG#9V1Q_7!4fn)~$2%c72HK?jdg0{@pTo{ktRJ_s`N8I$`|1c{+_^Uvb ziTkLbAke)GgBA&f3lOIN)f{ctQeAOxQZaEPp`6C-GFTNMFYRguRxs^|jyYr5)92d? zBw9NWdM;y@^00-m{ciO8Cn46QgS!*Kl82wd3>MjC1;_z@L`*oQC{(6XFCtrbXqXI& zEJKMZqVCDkeVzQYV!1Vj^|hCWz%jS1Ub~}A77oA*362Qe*c^z^90?6o?ueQ<=;MCYV@q-@Nc@r_SP(W}P907u~a%AqD#Nm$K?rIuu>fEt)w_v6ZGnR+WuX}FR&ILnf^1f^L=5X1? z@!3`Py)$%|WWubbHtVro#6>ysBUP)Opi#cVhQ=>$~Qw^Dypvf7E6-RK&*xC`Ma@ zv=4<*WjK$RIsjBxZL({6DA=A%VZoN;Ex@o57`G_Q!4bf>-JmbAjSv3;v4#q}fZ~!u zixD)BDHDa+w|g>)Q-I8zlZBP3Xr9$?3g?7j)lr>JTwsC+7m(Mx5e`;zer?w8=GMzu zv8|cS3cATrKpNwk(Xy6eqbr<^pfAj$z``rU)AZ79^A)^xi7lM|q1P--_^KVcG5-J)oW>$>pak|?})O`!Kz2Spbo94Ec$a6oPv)xk;PQvGI9%|!NHMJfAn&+H}?#U$+V(UA! ze4&TC+Y{gM`R6%lAKm72Ancg*T&&&dlDL|nX2CeF?9_@4yyH?Iqvp-b8S?D%rMybg z^$oT8-0%>w6bGz>5&E)sknjS4mM^0UW5Q7?3ta(7*;aKdi0ix2mic>5s50&RPg5p$ z9^*6YITAVKS0-&OrI~wyh_f^du|RJ~ISQx}?CkyvWibgJX96ECo=ji1Nr$ho{5Ln- zJ>3el-AX{1N$Nz!PLe2wjyf>4=FkjperwbW4fG~}t5Kts<(K41CFlWanLsJMm| z7F_E_EWV~ht988J6E%Bf{@s;Hy44vC>?W+^@~{I44%e3?Ga$j}HOj37u3~QQz%ze! z`6ZXiF~1DHXe#M+!oOcyb-#8!SiP)YlW(Xjxy=keO+A3I{pjt5wU3gdY4&+QcbF7Y zZ1<=0z8l06C_%F{ZtP7D;lJ@qWE4hXu%r{?XDnPJz!H1`57u#q13SD%v5oaal?2B` zb_n7w+|hjhV5u)Q)PvHRD1=8*NI@luDG8PysHZO6o-Z`B@8pG1DGQ?8XvArJ?2sjf-(P(AEUMUa{LT2bOR z{m21bz){tz8uFWD@isyx{FVid$Nk%1>bcb4<`~f!FAA_?DQH-aaav?(B!j!u8sv53 zQfqDYACeO1Tt03jelHF3$^kazE2{ViQ>12*Nq2=v+Oc^uB6s33_nW4jE@z~z1cS9+ zLIcF2Jzqmb1|ku_i(2#QE9kNDUQGG>ot>bplf^#~yH-<705_BfkC*Abz!c>MZobHW z90~7`on*qE;@E3TOn#fv=!o2^mLz)|y2&jR?#=G)rF<beq|&R<=|^Isx+E#6=~H zNo8}R07qG>QzCJ|J^%hjW;o8VJlL<6F>N{d14ZK#{rWvkV}=8WOC~cMhLVRSnWj`j zn{rbMY01>vX=Xh#?+9q*c(iIBgB(?aD)#$SvEYUTf5MqrYbe@dYs@5&z4d(hOXs<6 z&>uAI3RBZDgWG3?#gZf%+-0G1?r^3lq70kqA4etS>Y1xT`B6RF^TQS5`xpfPM=Rkr z9uQfpeb%;H5UH(Bgb(+@L7fO-=QKsihUm-ZxmlQ{3o6853e>`mvposm$L6D5Jg(Yl z^wdU~uGB^CC5A-zRM2o#P{#m5X=R0jg|2|5IVVE8;C0wozaEVjRqaT(GvAtJ)1&YD z5@%yUdYL4#qKRF7sfgDWUKNoiE|KR_62;0jlH|Xx^$$p3jiMB~J(%|ql7!v%**^|P zwxo-eDsiTmFYO2jz)Y|1#o_1rp36NW3NPwc#!vq-6ez)>@Z%%qS?7HJ4zzhutGQ4N z*$}NElK1Z@RY6eI&xXDOZd{2EDJ#4?pr`FCa6 zX@Z z8b?U?nJs`g=uZqMT|yd^z>0ue25*Ki2)`1D#!`Gxih6pHhzTbw*;*ciioXwKtChVI;vvtaXId*s{jeG>U)`Pr>0T~1 zkF!Out38$Pl`K}Fd40|OUI|UgwE0wTa>Q$VF}W%B_it4i!G4KXw9o)2?;tiqmJ~bd znUJgaUBX~H!!)tH;0v1Or(H-y{Wf#K$Bb`N2il-a;g86df?a74PXnI z(R1a)EQ{+7*$a5eT}TWdUvg{mg>2uLd?77CP_jO!U4C7D65rXfo#H zx2>kt`X5MGsMA_VV~$|F_3rYN0`d=Jn#P~i3_D%CNlJFS`E;GSPL|nj0c@elF-TVQ z8Il(a$)yE)f=@Z+(4&;^l4jh5`@i%n`FrfXyZkq z5`?(aYl@!@8den=drSo77tVb%|3JG_w)Xk1bZAgNLOW&`=y~!bq)tf=wCutZSzC6lM@%0z97I~C(R4tsH&ybB^$TvVgJnYmX=w$MDNiLli3rQJP zhAKazNCc~;O~2Sob?bgfW#du6;gN&kQO0gw=O%9N{16=0S-Uf9rfFMg4iW88aK|HY z%$R;b;7B$SmC%Qt&=vI_&47B`vE$*v_Ug^48?tqF?mCW=0p>Qt! zbF!H4l+}7!ayN+)N2(I>dxrA41Gn$|p4*K>dzhzgRS$W1#JT zR5{jkgoAN}zLp#GpC)i$^xC^)lXlLnG&GRP^*nL%f@&1jM3y;To>0wWdIG>HVd zyiBHIgSLM@6IVUANX4pBpdEJJZ0ceGq-Bv-5>z@Tmk@v-M?8d{H`^9>npFQ%Q661L zW@yL6@ah@mwsRGifS$hVuhE2Vm#KVf_o_MTm>#YVb0t(N;titH6M22t)4*rJp_ApU zxwogMaj@rDWx_L)Vb5vnh#oF~Vs!~idhSqS{zTrKbl@|Q?4!)(`l*FrxDZQRh<6Nl z$tL01wxteUT!B@Ag>p5OBXHSe`zDzYRVVR?_*z)oTYK-gW#*xDzIMTN?(d3~jjymF z8>Tn7A48WXa0T<1qTfS?Fq)5gw{hR$aopHUW$M~EQN{O-a?-uVZuu}qVQa2n zl$}nJo{&gpZ^cv4B@jT*z2lnUOslin+8GA2-!%61?Im@H__o)=4FA=Mgp^rv#lBt; z`iI&#ITa-qS*o}88TB+gOUa=i2M(LC5~NqjM1yF@^N-CoLngKz1X?X0n7h-=PsC7$ zTp-4bI#f;VYqWZU$yXi2z@`({$tJ*IDok zLM}mL#iqcg3F0A|H%>nwhOzzGG-!SSOpRV_EAc(vQds>fLvfqKT3xMaH0$vI zj%@;h>9FU~U}bP~I)c=QysjQRE{#Z7nOY+>Hm-mebw zXQI1pD=tCOrRHn(EHdzz9$4?fmr7})Q^c5}h2QS=HGV#|)BMVYhn40yVG6i9z19hq zjOrrr)HKHq(6Yod<k8*fyacZH zqh+ZFxEjrDkO}7YSkps_iqZah8RC0P47(BF9jiE_>(lVcQr}s*{EMjCg;)8XioXe4 z_y7~~t!5N+4lcCWGnk^a&CF=0mCS-yr00h3GG3q8ux~rlanBCS!e2qq>$f{*jSVH#U4D(Gkn&{Z$5c)s~`orqdrk!nG>OZKAG_~f0Cv_F4*;K zrV8M68P~5tfb>Fx7P56uzYDP=CQ;3EAbjClsw351%8!SesuL>PD7~Kfv6j-vW}}F) zlL1=H-Yj*Ox{I;Q)5HC7em@qF`L$_qpheKPM;F7Xa+mpp*>!nTD3A7qYv0auC`ixt z;_$imek;x790hpsXF|EKDm-6t#?+b6u;JKM`?gSQ|Iz_#}z7Bq* z_)Nvho5ODQU1w=-Pj6klYSJChgw87Uf$ak}m;VdR0;>uO|I1RVTF$#rV+h=K+4$gb zzDvYI0+l)6NLX%DyYwu+XdZ3scDTeWr|9i8m)0_7kTC>dyDX4K*(%V(rkcR>MOfwS zaE1oS$aT(kmqziLWodjp=#(3}G#u_Lo`~llF|93(Sn8Ia;|%o37&O<~>O+pn%*B^T z!{>Bl6Uj~dsvu}uy4x{4d}vdUG!8xd*PCY{n_L8+Q;HR`pJ(%{D(we;A!MTynwY#4 zp@OiWDUbN^eGiCkM8$ywShP|o#~HM; z)62}VS@62i-sGxXT$^yiZ#&YnBaA@Eo$I}0!8meX5yQgo-3XZDMp70|;ftGYtP~!U z(o0hKAN9#rEY5MD5vshy+Cp0Arupc|wen^Iw;l*MBXTwiFc(i(@8d_Y{W-m3Q!_+r zCn#g@5wh_?QHZhiw;_mu=rRd=$scVd)+GZo&qbx(PR6N#g|Kv+&xiwl#t#?o`gq8( z9gPrc9=L&7#fo_3_Iw)xOcOWQXLr&O_=V2u0eA_~LH>0&3i&iB;zLyUrmPjK^K3MT z5{_aLA#Bhyc9TrxHmv=2fsTUiVtjH1wmuZ(QqY75RxgM)_7x{vxXt+eIP|{uY#jq~ z-B-znuFnq5aO~vIfdl-mNEcfCsIVYn-)-)+0M|3v6RdREV=4*Rgr-@1P8vxsu=Eu* zfZjAWvtCGg=`s}bfzu|Y1Wd0rhc%=>_mSR0FjrzOFc911z~kB8(Co#siRLGT)@)|G z6$VKhCCA!M)$njX_V``_6B*itz)jCYwr0VgZw6v%0V)_0rprlH2}NdrLtRmHXV%44 za+DNlFy*(bnD99hrrZfBzK6N3;K%XN{^)@&2T(GKf7aOuK^Ytt=ym+V0cj$&I zKFMFcv-!L?gtha!GSwe%L>`iDW}%;vd=Jm&AsH5rd}oC+WTI$1)ERSrhDLWWBRhOh zZ~(wnyIOpz+@b?)CtRiFJ8==^i$00#HCX8Wl~=sPtaZ2c*XBh1*0~8|yECh>pm?}x zXW=|5=zbv)IJ_i9IZl}HF+^$V3GZevah!hQTn|dl?>_oASJY2}ubu=u0Ku8xg2#Ud z>LVSU7PoE+cSwY9V?>z@w*bb z^Avo?A`2K)DlShDgr9Ow*vRZM%Y}Umx9^+FhqA7TQg4BB`u4U1r@yg(*#&Xx9YvTeZ4zmH!MbVQJPG6)u2YUNjrqi(zG>ZF{u_`LN!Oqw z^5bO5Whx(=e+!jCK>P~(21SMjH|?tFVVB^#q)BclmHFg@v5h!^rt0U=76K6l?hPoJ z`j;=iLeUHn0)~Q4gxkNGL!C@VPscUV!w9E;8v**zmp+jsb_gXi#kO66mn(sZyDKab zMvQ<+EhFChJ5u{;SwmCD2TkFzl^NBcHxQ3;UJB)~uKmREE+?k!1 zFOM@*4$rf*>-nYc`cdFUL88`S2QL)_G}^&iMiqEH*lOiN{Wl!c1lv#@82=e*pI zs0q>Y3~-#9e$iNp4H2_QCsxN+0`^+=!@1h%lY>p9x3g!<>3M@J)x1W z%J|TQ^ATU&Or}3(Gkl%AufbBv+v)BObtGruQpDp>QV7pZVD^xRS4z*5RuklU1Wq1Q z1Z7lOXQM?t2M;bMZCO4u2rCLPJ9$-{;CPxPWxT2>v~d7R`C72EaJo7(Gb;!{&`N;Q zMj3@Ab-+}}RDN(1A)P$?X8tQxVd#6Z*9hANZ>hV&`P}Re=UGnJk^h>eLpT2EXd?OgiNN;b4$2qJBt7rNmn>1cgwgF2?rnA1QY@Q$h2&3 z2SLHYu01M$d(IDXqSvW7f84wA_r1$nmNRzGPlg|*@dUeNN03YtHRt^@1JaC7T!)6S zzf>;UV`5tm$cVO(gV^nsr#d>^c^tFPg@EuR!Yv*Y6(1TE5E|u$ZglWoUTeLNTP7GqsaxlL6R7lqD563Ke%PUnshXLZ(L)`i%S#Ms>q6!YqTbH6S*VxsamNv`~p) zMa9h+HveUYf?JKtL5zzVkAp#=%QQ8Op1Y6R!f3293BjDzQCnFsqDL4XEzWvOJcZ}0KrtRpoOUfeRN#BWQw-zlWkO8_al)Lc3m z9m^W=^R$p7{x30abb)j)`RZmI*arjmHbxc)TuZdQg5`JUER`>(8QYbcaO<+TA4bMes_BE*$6;Y1X4HpBgm%z#`et-iLqBMd|1XQ(e4 z0reS#v$9qvS{kwDZ>A=p!M&dVkGNIf+cN(ED6Qb&jl`hSqqusU^)rEcvvXCIH`?xR zM_V2r`qh}dBU8tV)^rzhWIMB{*fASVNmf}BqJhk8n0#px*w|c|1!CSmODM8birYNz z$R!r>obI7(pPV??W*ok;PO{?VA|%GCMkpGrGS~WCIuTTFRF0NwbAh7g(?a|~at?P_ z?~Qot34tPC$GrE*kB1-EwU3a|;nm^az+nym4)v7>*a^7WH7*DfjVQqrPqz@JAM*@q z6e8GPlr{~$Z25%pw@$q=A9qq#=(uSANjBs{dzwgXueVNp6Xq zsH1z6M_uKwjdKtSpjOxTF(tHuDXMR)Ps8g|ncY&!^-Y%P@Jy&pCqwbC5YB-!Nk?Dy zdof0KJL@-Zww`Ss6i6?gKG#{IHk3cqS&zHna!e$>s#uSc;4+G^MILy&)<_3SqMkp$ znf~I9u|D0*RPxn)ZBX7Pmzns~%o~jonmrwH=Kl7JPCTQCR^$QdrAuQ2X)vB=^$Nk# z5tsWEx1P-sD86sDK|T*ugWrfePu$3`LslmV`+hUd#*@7|Io#-NV*<>+B`SR!sIk%y zhi3e~sac}7g_Z|1ahpb7X8)G?;GCa)8ijYAWpkBN*HmAAxf;OqZSXy3DAQ3;&DkGCvP>C;t zGC?fExI>mNN%MXa8+iEo*s`o?y*IJIBP2=Ux>QsYRMWaLr-17JydrY+WL|vF&(K+W z6=mz`h9(G2!*+#d1z2p(D1IV5es?EW?UO7hew4k;9f@VQBr$QAUioO*Yfw&0s?bvz*&!h%-(Bs~H#g}dCr|Kj_n(!rpG%A=^ zyRqe)Zv8w&^qQF?&fT~0W-H|7aY7{kujdIQf&I=#Zl+Qn5@UPD_8B4>+VGAzfp*=3pcX|L0PI$%93F|j#?@pH>w)5nX9Hu90qD2` zEQ**=8<@>;`5^H!aJj&xWoZ_O6}!3zR5B{#aW0~c^m;~l>7+6#iDa=H1+sV?U*s*5 z+bXmq;=i<{OD2LG3$$WMwUbjzXhV`|fU_3ShH?7Q924}nZ9VbhK#rA~*fe3J?)ab( zZ5rCL!4Ddc1!z9;a)}zsmeV@jHSb?H!vi^;4?As}RWaKRKgkEa4v_oY?>^o>e4Qf~ zzSq6@0Y?@Gno31^v7tE5Mj`NfKpF!dW+d0yz$54_t6qtd@UJ$HcE%u$Akf zSZ{{r42U_~ONPs+%%xFDCV`yA3ZVFL7;fdbfKR^L^MJHKnSw(i*p*B$ADM1k9xw%X z3}v7XxK!{Hao`2BvdK8`-~x1O4R|4fXm3Yi==-;DJm4}#U}YNQEMTjZXo(?V)u?C* znK6usD9IsxxxCw%xg25do6GwFJ96J!)=saxpI?2w?@l-0_&(gM`@Xt2(Me0(jbZh@ z|5-fX`*?Ys;?hy;gRs~6%J=s2+Aikt;%jk?@5A}F4fEMLYtAcQ&$}4M;m4V^SH9Od zHrZ>RC}%uP(3 zomk&Enpiur{{Hfk<(-W+%hUId@!bl&Y-qtJ;CAt(+jv)spov;NC<{auw&xVGE8N-# zYOaJ!OK%xz_c-f^Z5>`bJ{+#q^;cTeF=K^TirjoQE!n;bc5<9+ zijPXCFVxnDCvQg$Y1{%E&CW%u;|mH(Jx)Rw;WEoXj#X)KA<|r+@_OOBpXuHiPJ5QRf3<^yu8!=9j{u zzjT>)@HFxBpau-x&`KesTX%K`_jmTGka{l;p6>;lWK0T;KB@OVwTs*L0=EbFA2C3~ z|D$%f{-NEVm~P8nHY|yg_jiHwo*;n`rEr=zGL&<)_fV4hOL>C zSK0J@wFoXE-oK?nt*{lLe9tM7{=zFuxUnktwII3=BWW~u1_ODdH`2jipZ>fO$ zKULuWTLpCQRRXqk#VF>u@1fN7hpC=aP zR;m8s({`vYQp3Byl8D4C7`r}g!*j%>pkNs`kgBDQTJv5RL>^`MYUA*AairQ{?9gGs zXB;`#hhvy@@vnjzr%TW)J*AZ$?;Ve>a&2RDQy$%l4MU%g5BiRQPX~Uhz+F7fBer}o z$q!Hgm(DKTJvOr3Tzdc6G2&mTKs*^c|8J>)=f71!;{S0K;03oS_5y|=4j2OHe{wVI z9RI3=@E$fi$*Z0_@pre7MXgZqS6kz*qZ0C1$eSgDTb$F?(1#AKGNih8(&LupqBfSg zR)Za^L9q%ZC9v?NzZ7cm=G86&UPS)tXxu~(I#KK8+nKv>hXsl6P{Pz}uyj%-re+B* zaap2WRDC&>Ss68`B9 zMl^I3m)P)pa_S$IwhiqXNn{LH=#eDSZlJ^_gfyeQ<4O1D2PDf|Ag&{~wSR&{hrik~Skqh_#4q8S>`=pN`QDp|-%A)KPel0qu|Iu{}`YR!onRMaiD2`DMc(e0|18*+VPtWu!b|GB;w@p1p;qUu9|VJlg4 zFPR^zL`$P@xOVtw`|Ywut`MWTuDrKefl?esj&M7U&twgzq?0L?$zTXINGzzuhm%WW zBIB8RT)|hab5iIZ0#YI3hmrcOel=8D@DAQS-DB;lCYzLOHz>Cohse~U!R@oxuFZ?V zk5K8M8lVa zKchj*Xyb*OP79h= z^wtb{EHce*WdI7jvUSEhsfn2dsWY|l2d1B)Y9G-U=uE!=r=TtI&^@RF=*#LQ+tZU-ASfYmP=8MP#uAr^+ zt+V1y9X9r<4@yR49%}u;4l18t`{GlT;4l(3mv>Jo9DC7F%X?E=mOiV6s+l_>M|$*( z+S-yFT~&+0eKq6!Xs!2k^aMCvGa7{@(~`0JXB3kJB&l7rEjMq904ryhB}F#+`NzXg zf7n3SlMN_Tj`wMazA|ODP5*}t@c+9F3|ZX#7-S4+ngVUu1O={8!X>ubV~TCpRt9!y zn>Dyy<>sX-uoP+ZT6U@HXGu+O_D&LL&8+Re5r_0T3)qJUKoNvG+C1Vl;6<$usoPj# z^qcxi4%8wg zQO61eg8SxKiop?iFW8_6_Kdb1+`}6h;$SP!WDq1|Sh) z$Awh-Q-yFX;S^aeRzK4I$|gjoYHGGc!w~ADv-+Ipp`HqIXV_|kI;N-2F;|E>G7R_S zStUZ+r-cHcaqSOj2b)1oKP^u#1cj(LFBM(6m!mN9&?34+-9YPO6064Hqz1hSz;Ww1 zru=+w`+TdvMQ~+I5^)pOSiMFN@9M6zKtiv#(sW!IGWp^Ns(SE~qvvzOR}%>{TI$=O z7m(e|C80#s3zIG|G6C~3$cBs~NDJpARG65vRq`F#rK#Kss9->EdemS)nx2;23$WXv zVH1$Vo;~wu%k8;)JIj5eSi+BW{~y)A z_}0T8@s=i)arXX)#ncqL(AvuN}b+X#{DNOs%(mF^FiN#r)YBR>qZ*1zg!6h>Q1+RPYLY*x)N-Ap0cE*Ux-#G^Zw$cWxOpEph{*hzXNNW2xA*}0=0+d z0Qj zhJ=z+O)n3nGszB8V^O}p&CW_pMNG(i)dD@*S|%+2$xY%{6`pn3(GV6jurp{|7WIHs&7j8_muD# z06E|hYt<)yv7h3PmB3Gq^>vPW{!>u3F|xrABjvbHkasRIRDEHRY)xT6iw19Zp-%|qTf4>qW%m2Tx1V`Bae~vMSc1N5Vm`_=P>A3rS;s3l6h)%!R{XHf8GfN1H z8GR}m1f9J91QZQuiv6*|O`eJdcY=OYRW{0=H1!#=?cUCEViW`GZ$BCCU$QIiN2ZB` zP*L^##ZGHbIbZW0K7N|beNF0O8~(d!z@0;W@r;hHum-@*(wrIE@1gl84#HoV1M7>kFP{K!0s3d*#Msf$&BE5~zlu_S ze*IU!C~67&5>4{z{c5-Q8>^xSrJ;AV4F1-#j!=eHf<HzjKFGCke}EMkZ-?dVha+$LW14RS~mK?5LhaHPf}I z?IZosbsMZ+JTjF*lLW5F>3>UmE1CV%h0yi24~Kz|L0LYBQnW3cOY5%fLrzvQ&Fcs7 zC63l2ISN`$n?P*%uBnJshKaa`pE)%>ssBjGg0?@#!yz z|7zGJ{%@H82k*c7fj`3H9{_3J@BcbBAgolv{d-FIx3bZ{V}n4TWFlc-K89#K^+!Y~ z-dj^l&i_Zrgte~K5Ga}SX#Wn2uu;!Gjo*%=(?65$$e{l49+BPoXrPR5<9{oeyjcz{ zsw`toc>G;55x1ixzu_u5qfXj>{2dYW&gcG7GQs_KY*2ZjNWo_FHoLOvuM4PbhzhcQ zPYM4_7yki}p2Fg4feU3I=aCd#6UPm7+Ia(dBP-HG9&Dtb)#E7(~H0-XZR0* zq&qe+iuhkj5CD|mG2`{`N?85Ry3w1JP*WXsfrK2giBG&UrA@Jl-st;Y{{To>_co&O zul|S#1plH0vlDlngOjJaQM;}k`CkGguH%_;R#+$~4YdEQZuHNU(5KlQy~K^xfw=dI zur&d%qj8R;kAzb`V+)JZoZHM06m9Iv5KmLukX3b}(R1)Oe~9s7-=PwV1J5MUKS2-c~|Tz`L1~H zt}UTBp_6>6p~Ch@gH`Zz8;=d7nqqLbxu>EirE}_-A@$0&J+HkDF88gM)oQc;^w^5D zhcx`$2eQd*&8WJR#Fulmc+O@D=m-^T?BVOL39y(sZgNDKW--h+Qef8vBwzcyqD6Zq zN12VlTxBXEpDW~$x}e;PB`hA(;OatA`!-Kk<=IDU#Bn6sA!M?4hg>Qe4gH8ykGo3Y zPuCaf7a0)@#T!Yk)Y`}D0_Z--2;&9$BqvjFje1z#17O|=353IOU zJJi|%j*7sg_4tlrlz8TI2droXitRj`D)oRK;L-S3^!; zK7`547+-8OgJYv61LJOi-cr63uNC(7cUPgt9OfBirmK@ZK(`MkIp1>ce zr^TnDnv=zhLoz?T_vtKc6g0djj`{*I%(}PX^P!`$>V9yZkChF76NreIr1%)OKAG@E zX?y$BW7NY2ZHDE5-J6@e+BG+a&Q(2mc&2f=(ur!MUhbo>%vVt+VuE(mX>E%iO$z4h z2%LiAAPep4sNli;9Mbt0!P0y}{OnqeT0>F4GNk3YN+BQLL8Pij#;iCYuXeOFI8=V@ z9dD~lyNqs|I?LnQdY$32GdGc7Z>zT~sC><<^sdvcJM^a2)p@8&E5eXCX7TDv{IYYm ztLg^7yOGghH+LF5w`hvV^!%Qr`JUjf&`0ZryYxK}nX~|G@;_Ir{~3Qq)b*@@LajIX z;VU@tOH*&&up?_1u_1PPYP8wN+G47uxyEN&r=Y^h$NNeS6y`)5cVy4F3wP(S_5EL# z_w!|gu&?Q&#$Xg)vq9^ns_gTlemZ*f-h$0Re@}%zpAr?pzT4yCa&$&hsb`aN?#q}w zmSo!t^Y)Wf)%|b;?e);_BAYTM)=YvJHu3_>q!Q?yMlXsk`J}2n{P|iK>bh1F>kMki z`P;8g=8MXVp~>YPtVM4%D|6AQv}i7%Mc-F+KL)#eY2iGTh~?;UCsrLWd!ZoyIU$y& z&LmZkY#|M2!J1s?HM5$?n_?l`PPn5_CxcG=k&>L_PCajh`Q31??IQDKiH@of{OHqk z3=tg#aVpGNI?kR+$dY{If=?_S%pBW+kh1O_H>OHiulXfl2;>a9S@SHCFlWIEMSb4R zBCL)gjQPnCr6L@aT)|>T&0C46fU)%{#NhZmy!X&c?urCiHn-ydq4VA-e)HZ(c=f zFX)7fMsKl}h6VC;BXw2t! zJLsDK4`JUJomsSH8{4*Bv2EM7%?c|{D&`kfY}>YN+fKz!UheH4eS5sV@Abbk#=+QU zpLG`IoO>^h^d-0~Ceh0a-X9)W@H5iI4SG}cgt1Q-%(w$!>H$s|$Ez47ZZ036n~NN* zah6K94Y8oYwN6=V)Gx8ZqN|3m|8Ujf)|lFo3-B_#LRE(0#;M1cB=0ftdfk0^vgenXhVMEuj}G=-G5TG?cK0?d6R~t?UI_mA9q#C0{1a zFB>AGD--ES=V!R1RV=!kB4~!d+@RCBI=z^*E%l(}L^+$>Mz0qudH9)MD z+k+{k3f*S9p#ES@>Zh-Tg_8q99@f=o!tL&^O)LF1dvp~mdQSa^(FS5Ym=jytjgPsL z1 za|V6#XUgTvhy#74$a5-r>3UGaBP$RlQxx~#->r1m+aY1f^&}7zK7ItR?H-g*pk5Bp z3L_zvFk{gUhxH@-o8~Ci<@HdvPn<{e-q&I6|KzPQ97|tF6BzFDcsOYN{I=u&iC9d# z#2}=6Te$?x|KcQB{srI-sMp%BGa_xm-V?&fT?#5Cnyk|AnOfnRLMb+!(kd>58_UMi zNUbV$cTuiVoso#;iv5ukUbu<5-u%_kA=#tk_#!4g<}MH#y_vP;01BHeNq zl!JVEsfYfoSE8B2VO!S^d=m8Yz-I9kT%5@lbCI}#km?~XB;;+S$?&g?nO;9AeP#h2 z<}dnyA}N5Ns^}$K5jgsh@nV82B1>VYIhnA0x&m7In_@w zfWa`)s*pguf=L*->%W_WdgmC${3;4!k?<5bhkHO50+5_&u0VuKI9axyQe!-Vkq}|0 zH@Ul!@Za^4wjvT)n=~eUlznDQAQs*;Sf)uN+Tck*zVj41+{a^sxG%ZSJ=$_O?7TwrBNRwlM zZ_Z-M_X6uc{HZS*BFLfcF+!BPND_KG`a7yLA)byc^|KDg_U_h}O;cQ4OSt?Hu*LN= zl|rFt{_HGC_X~H;N4)Nk!n1j^O93UB!Zc?XY=3*ISR4EqfzV>?uke15%x(5q4^?m8 z&8e1)loQc!(5@#@?)5)_m57p^QLSys8qspXOqx-m*|w*#1a%j0p^tV)ubcPw7w~^) z*siKqmeAjZP54db|9_)D%fG7c0W~>?HNk(nZ^2}*4MbeVLKx8kc;wIqHIZLpk$mj9 zk238xc(>;~6jqCprOIAJp_@r&m+77?*OOV9+g6L~0f=*HQUK+w`yRBW#G)*+?G%?= z{%@jImO7D*QR)#1aCf@SVX-Y39+uK4-ZmqGhDtF?A^sFlt7t12DOd>_ zb0k`e&Q=q3m+>ON1UN;V*viWw^Hnl_Kio1pNU60`8wKHC&6_pcV$O{_N+LNtolw2R<~87}fq*8By)*LP$S8r;R4K#OAZ2rRYKyfS#<)Uldr z5cF(ZOm-y9j0M&6SJ8x*ab@YeT6+m2TIv2RDd9i#q`V5c`J9A(v3i~R-kYOCJ#&|B zr=>muLeS2RP<(Ww4CTE&>Z@gl&Og#4N8wY%x_`OwUd-gkptJM0U9cpF65(=uuhm>E ziS3&SjwzTohibuOTh4F8BvnVOcI9o?xmp|>6Cx&fX70gCKgco-6StvaY&VCIpL z3D44zaeNbntj1G?e_Odl<@pE$eVfwB|CUIy{0r6XP+Pa&U_|m^xF^IAA*36XuhWt4 z2)GCFg!)b4!(PT(mzYFOI@*5TeZA7ksxc7;fhn~FySev=2VAmkhCPDu@wQ1q?-81UE{IS=m_CH^DFmQ{*!2FyhF{9-REvQY4`f2B&_r^ zKv03F^n|>mT44N@*CY20h|L6S{t1$ybAaK=CpH7W*&)DS5{TbeN7A8)fC`IRv$lYP z%)dW0v4WG>R&2%D6YJKQ;$Y@@Mx4Z3#wfB=Egd7B(>PXe;IA9f372!cc>;gZ1x>&n zz4$ewN5{FNYlNrvk3K4K%aHKGAfK^xCMKux&M_UyG#&?+#h^)W&2$GLTqEKmAzQO07ksSC4AY9udhha!9w zHhN1+j<65*sID3|-O(K^8~9bnqZ#T>KUP^?^LY_*a46qW`*Lycr-SsaMrEoQIlST! z?UfQOu}CvUdkkLjd~W@;zy7T=I@d07T=_0VLcY)b|DDmlAn^fJrSDP%$@jYy!Q#7^ z1YE4i*DXRPlIg8-51nL95@*^~HkpzY%0He{7SmPCFx}R`1qA<`bAQ_ODIQc; zL~j3<8VrKlfC4TPyAX2>aqnYm=m&UXNRwy~N>6ffQM6)}fl8 zssR_L6?>jZw`Ao_8jHo54?p7`tPx$c1-a5K!ZjyYDvmMh6B%x4`z@B6#Ua$wJ0;3< zNiSSqPq9yfe(Q6=)M=zeBv;mk=p9qH7$VC2?=;V+X^OcUCEOrWrQcP zo>8?0&j(Y2zX{QuFr$iGD0=5bcy%|G~64pA~S378a4f+`w$QFsk2)-T<+;Ea)E zW@5SfietZQmME$qq4Achg-Qr9O%uRZuy3{eMP{@T-vkH$EidQ%c=Om|+YY*RR*v0& zA?I2si>H9!{KCw(WVJZ<89L=LHY8;dxtbkh#^5`B$nbA{3nc5W+Rks^Qux2-U;p9> z29mcO<{6QOx8t7)%OrWTE(^M6+n~WDf29V`cvRuN0lZumH-sH>yPHCC6`6>3JrnWTyf9}qNF2~6BvUtSjn zF&mg?3tE`u@ZvEsHC8DKkLZq->>Mdc@8G%XRQWGV^NdP7Nf*_ZMqr7}dEYNc+r9T( zepYH|wJbG!UUuaseO;_;Bq=@jmb-=0ch-Py#}yk!uLD%Dtz`u^-1LTNC!5rn58Y*( zHjFS|cJZlBso+}fhR9nepX>zVpywb0;55M%APj`;e5mOXhw}RsuV0=D?K_I7`1#4; zQc5+rv*juXELbvuUi-Zm@X` zi9c-ldqfGv003#^2-X5<*S936Auhx(hs3@n!7GM=x;c za)lu^#5JTbgy5N3r;9pv@dCW+1Js_lwk;qO&o*+UXZ|z*AB%)G#v>Sqt_@7Ggov74 zlP>_z_A;(>p5*S65M!}Q{~{AIr&P95kd5$=thYpQ5;h^%N%t_LjUF(j-P-K2fHV3k zLTdKKj6D|Hiv0B3|KegCGG-<=7LCRiFDi~ooDDjMQkR_$jPO(7r}-)_Ys#WI5j+@5 z*m??zX@fvpobB>zj($)c=BFzzAm>L-&~obVrznO!iThMa$1yo;htlWg7pVI!DgQ;I z2)R(q?jz5q9Bg2iA6k@WC1N`{qkMn7FgizK`^fD;gun@%({|YU?edK9ad5T(%k*2{+ zwQU7cUmy2(e_cMflJS_h(m>oVh%5}Uj(9D0cTx+kbKW8K}##s5PPiJDv_!HWlT%0H-VN{=3KU-Rg- zJ<&sE2TtZ2x!<3&3iWQ4{9^1U9DZ(UdyDg2YsqKALL=F5$P!4F0com_CB`) zzt=$n@NT-hzZQsuBW9nUw~vSh*Xy$>-EJ86r;`k!v{YJE zU+GY>nZm0mwMys~PSHcoixe@K=zhdgC^1L{w0STM49P1?Rave*DC@CzDbgI8Zal0- zTZ8V8IMX)nfvykRMX&OQuo_o=gap_CFIg>Pw79?nA5afVfC@vhr_UuM{y9?q3?I}K z0~&TWfjZ1_C;}n?5e&H7S>;gR@YLyDh+;a0KgUqJh!|iZYB%yxSFihkLXh5_b!X^|l%oYDrgPDD~n=p#47D zU$4jm1~Q#yG~*p^0$~p8Ev{9myGosRxJ&y))#Pm{*GkeX0K%=OyT1A)acodDN>Ie) z^Abiki80%7O%?41^jpEAj)=RT$a0tus0%IO!V9@F;}f=>1PI-by;*q{4j;pEl30DU z5}a~2A!Cpg4D{3DyAyhCaumH8;~55*stk564V8FX{CR&QF)8w5;);bKWQz-6r0i zy58%VAv!XrJE{qq?l+IuqwP#Ni$>nx*bJ};fnK2R7GpDWKZX%yhSaHLI%o5r$GCKm+PjBR?6c-DoQj)OwJ7WloJox56u{)|#++>mq=N1I z3s+XrJupR(!zfMuSVrG-&Wbcwr2P`re1Q+bP^*}8(Ocx$F-JDz`lSauMGa_BmZ%4=z;?$#d>_m(5R0-A;;x?Gm zC=6B@#l*3v!^rOgRcyzG>+R-F5keiVVE8(`zCt*kL`d;_41iYqUl}t@> z80HYkp*x&;_)cs2dyUFIVtf-fJ@^zcR7=d zVBIPJ;*(b{K1r}O*?p@Iz@`UpVakYfteJH)P;!;g!9~Zyj@vfXz9nLP zRqsHS&kGiv`bbQ#1+|)q5)1Xksz3DN@pHKsUpSx_5yeU>wF?)$!VB7RteI#GllxHA z2=KDr2wve6TUE|+PN1OlT?EaRz^UiPH}uxdT*n9xw~n z(1VUUSvM8*y~~hndMH_6d6l_?&@(z-c?0=e&`Ed>OPI#D2OGNhnu>Mc*c7r&7DpJw zzc~HbAY{*}#=#U$V2yNZj3hmJG_~0x)Ft{ACGZZJrQpFK$9XTexVtEGVpar4n^9An z6b;u1@}0`VQSl~PS=bD-`V6R@A$I3p*R4@f6OX4kr{BXw^jle`ATEyG80sdmW1U zhcP+-;vQ^p=3b4=zTjMs-26`1M|5ShYmWF(Dj4uo(uO}+*jBDfH$6|%UV`OcIpOHD zeyvoAykD$eUq7xesJ5OBb-(X$gzwLZJFWMso4ocWlS0>wZHQDKak>(@IB!$29s?Gz z%?e^-{*ZYE64tI{Atvc^9mM>KF!}QUyFZlmLT;+IgaHSO7akF?3r@3yN;Ru-LZ-@xG7hq<`A1gaxjtJ;^qs( zA44Fh(O->RUHx^mwMK&7cV575bf>_P z4T{{OxF>-=ZKo7UVrYI{EIV=HxeKZ)M5+o&wz9vDU&NC4g}zSR3ygFgK+GAl`lyT7 zS_3uAF|GbA)GP|_wC06FP~I{KS4APjk>4BZGMsLi09EkaY@tfx0R z4{U01tA6wpK-93YJiCU$5zmMCh4}A4LMrROt<2v5;T7(GrJw(8-Q2%c%q9NWbV=t# z>e+TU`h;9WTuvFlaBvwyQAJs;~l_S61c2# z(}?_evr88<0y|EIIeOSb5CaiR-Ua1R*M|50X6MU|i}YunEGJ%a<3q(OUevmb^dUXt7HDsCNizboGf+JUvdTUxk znqe`_D2nBry$S7yT2Hnu#EdbEcb{UDH5Q2RHoRk;#^*4nVlY5Wl+3&LqAmnU_Bbt2 zjS@d=2IkhiYI25Y`ykdoyfGb&X2cJc(Ws)@yjsr-E2)7whNyrIY*Ej^8p4EeBLB-! zPY(>QqMw==8n-OT(sk_)j(HHGimBD@&xJBjB=O-+83TK zf;cBtWNK^|2^zot3SFe&yBplzZ7~jPwGmM{Ua7BM6t_k_%orqXK{{18`Ya;BfeoG~ zXS!U`qpcS^RhBP$bvBkkrOU(0BaYvW%Fj#B@Ak2Cp5Sy} zaz0&GL(WB5={gw%?hsCGrp(zccxHm{(Gz02RE@)zg7Uy=E%i(-qd6W@u1O4TX;iTr zvl;q&rh7?(Eq$EKg;?*8FJM(lvCbEnv59fB!i@0P%TTLdNUAA}QVbeXBkeW%J$Ik_ zXH#TsZqmfCtTc-tpy$@P+nLIh&J^5u1|`3dRAKplG*T>vNx!rU!@O%suQst*Tl*P= zdHy&7$y}8?D z$Pt|fBdU(u!#s`pI!MLGo0DWLqqcfTzYj?Kyetw3v_EP;O#FUGgySS-VSGF zGp{$(e$5pLZj@yDq#PO|xyjJ+n4@OcR?JuN4-4w|7KE^24vU4AQ(H@@by6DGgL1g2 z;AM)DAnr5~GW>zDeZ+t6I56UHF*4$cWx;T>%?1X726G03c+eem|JomO?D)~kV;bD|_U|2pQ4!MV$qGC<6tY1U8dWFiM~m&^!qH_c5nTTEsh4Cc zv2DJU*!^}MDZY+95Liit<(PN(`t2A_=K?ZTBYTK#^pZx=2Ny)M>88eq*TLku zW=^suO+QOv#SEj9%U(bLyM^7GStduu_y^H4s8bOa3`V_3ZnXdNm~28+Hd(jFzK~3j zi3mKZ?UWouqBM>m;CXA-c#r@EnFK3UJcpog#Ue>?rDI)8q|3Y|GZeXdm)L$Kd;n@8 zAHBUCXNID=#sS^VV+78^{3FEa#b47Meu4K2G|q&cdykDm;YAfa!=%!7ouvWg9oUz?v` za=0o#GXMv^=Pkl?$$GjkR9u_1J-*4~Lb=?-c#qYj?5}un`ox%F&@xmGOI?pyH3lEb zFGMZ&b zM{*FPwiWSEL9KFyqQ+jhC{FKwKqnycG z)Z7W+^r;359}HqzD#W)NzEF@;|Hkm>_3Pb*7)T!B#EZU2-%>S20_Uy%Q(EQ$lnYE} zX!d?}pT}F;{`xI``=2ax(4&Q>ECvt|g313g&i)hLtkAP_*yjZN1Lg@OB80?}AbY_1 zX~ATtlWgbd*s|LBb|If(Zvx;vZfUo8T)q~$5i^ait;p1YV?R}{)g(Lr?X9WI|9%;J zTwH$LzQ6wY_x2`D4sc$+IsUP0^mTi<{~++G|D~&M(3#o9fVf`VKYq3Uklo&V-o5#8 z?C1UL#QFL8=-SMqC)78-K73wXJb!*UIl2C^ym|L%=j^fBxih-I``p2|n?20H;ZQxi z`Iu{S|NgT-fvnqe>&l=iDR_OKoEafD_U&!+!tv|U^T}CRIHtY$68g2+Hv30iN7tjp?W6aR!Fa{l`1hp$|xz<|lEtr&z)FyU$M# z4<6nu3MBV@H27iNO;wJ#pHI2zpKOH)#A5z@}U-$K=Xh^xGJ-q;^cUW z{NIMYJYq0E$Rfv|JAUyj{^FXdm+tN6_Ixf)8lw>YE6T`S2McbDz#Z^x1@_AFGZzmc zT}g#LT4M6WKs9<*ZGgc~j;lVo!eC;Lp%Rn@_J`j$Xg=(#hui)W!f4AH;wBP9ORkP~ zk|*}rovd#qX+SrzQ*n73uXN5O3D@k?KUzo(2blH>~b4PscXCTqJPqTwch--AoX?%-K@Nn#1v29O&z-W-K{=L zE(CPdnE-GW*8n9YC#fA$peCsuTEI?b$2$jKv@*pqF`s^H*}^hU{pav!8!9P{_>qbe z`iFO#c}Kcm*5BX>(;mTOOL=Utctw?vL`GUF5pk?EV*F$gxbj^3B@wtvBmd5)kd)Vi z#&Bln@qP zO;>E4cX3%-)uj1TOFr>VCbA*TbR&I<+Wx)Am6?D_eH<&Il&hq6Z~+AwoyZ&wS*3`w zjpWpUCz->o;Zll1mZ^Gzh4M9}*dBUcenLaSM)qu}kxaX8qHGw2%pQE>41q!Kf#i)uj+Ubv4O zd^)p)zMOLms!3lRvxSv%+=hV5YHdN>QsszZd+T!5U2OIG{?)EF{?75>rLglwyU5dp za_K|6auQj~(NjC|Vp~kSCJh&8Y?U=>Fl#3T1p)1UzIC}|7xe7r9>v(gu`ffNRPfne z1JR#wYHF0~je%?@YpIZOP~$dU9$2Y=Gt~=($n4)!&DR5#GM!~gQC}<>KnjRsW3$b~ zCeeHhxb+VFyFN*8$MLj2$zZ4Pc6lbVPWSE>DYMSz!*i}hY=sV3A}(bk9C;I=nLOFPmLo07~+T`PJ$fZ6$hY6h-BJ0Dz|IPFK_>2ky-6lTt8QHI60 z;X%MIK1FZGn+5dqhrebrxw5F18p%mlj7$%iJ9mv#Qhgw%lyW%hczFdB8Eqa4Ouds~ z0<+vKz05ohS8G>^AHdFHI`sc2IVO0xDUkRGP#ng()(9~ms=03hiHe-Ga7%4m-$ zxkwIQRS>eu8Xt3NR5&U>@gp-PB7$iLOmW^K?eJ!Kb@>84OsOmrOid?!B*k28r0Oh_ zv4A~8Xx(v0h)m~;_XHZL!bN4qpIk)Re4!`0R+lYc`w7BmTtPbMr6Y3yyiRq{yhWEV z@rz-wR_)_3@1Be?u&u0b>4xNzCSsWSG;y11o?c}FG;fO`NNy+9oG6lvRpm*&e#N_C zPo#uVl6iY{Iw?z?8hrgDEz_kKZ|oQ)rX@p;qLn5%CC2Paz2l zg)(9#7CuQFKj(4x36@mwWjT}`er{v( zQ4a|JWIy-;+fo>x6JoQ@KuZFVNJP4P0Qme*>$JH-HKNEQ6dzuJuNM9<52sHj6T)^G z!-Y$$a;R-?VH>t+jVlx?PtaOj;j$D$MKquv*Zi-8j5Q3s*FoPpvp^Q0=X+V^0j3ma z5q)#lT_AAafGDpx6Q+?_PCN|m@ELXFweP3UO-^>G`O8{21v~(r3-uTV{@k@{rf>gf3&Kq|AgtTZq!W=DQ*wfY>SX>cm zJ4XjDBK1Cps%&I+@1*a|YYi1ctkf8mlV?g3|A@3drA_amfwL|tAn{SopV{)x@!|XH z&Gff}cpB6&yor)?+&bsOE62ws``1nAl6uFkh1}r3c*N`xwm+xz^`lyWdKYd_+aV3R@KS*U9SuRC^HZ;B52}H-fZc~4l#>sn z6h+Pgf$G4D#+V^i3U;6){7~c(QP@s_;5mnVgaJTSU_4b-@5r=)5FV{Sm?3zFx8OL! zJl#U5k3i~)%XvtprsO^Lfw^EJ;!yM+Ri;CQUPCvwO!)nIiMS3NvXIS?;yoNB5@Gsj)1>e(8hwwd!LZYli)%Y+Uq^d zf_2)slMt|QfZw5{@M)T05@%aMxsYV3Sl|HKY%K!afE^I-QkaeNpiKE8T3de^nvL~Q zDX@W98lX1vnZqQU6-kO)Hhj^F3ffsjd$iHVE(9+@I3sFXATfj*lbz9p0ZYUl>wq_s ziUaHv_W{vDiaC*R59LE_S*;!|%UvT*ODN0|Ho;8uKxi4sAhi{dm_3MImjeW7O3Z=k zB_l*ey$$i*-?1=`ywg%aOYB%ROp%G;>_@#OLF^a-!yb49CTI?`-axfH9fiTrIikRK zda59p!mOqfR08@rePZfc;LMs)L@G>_?_%6SdqTP>P}opL87C?#zUvTbTCJK1Tj0hMSd5+STXdI%e7`lYK~XaZ3X>s(ytEi;&5KBhX~18(^v+$Y$n z0N8P+`f;jWgYb;3l_Rch$nbl;U}kJ$CHgZAL)Q@wXgOX8*;VwPTFH^FtH(^M@ya?TD<#YYQ*6 zp=O@H5DBx92}UsUSS&o1^e*axKO-KWrE_KFnmE5QqdxwSXO3{w0KxAfX&OQ|5)+6k ziCjPVd1cfnjUEX_a>zR|B|(aDpiWq|J_bkdh(KS@gA$l{=GUslh`;%OY8u7cxL$Un zv6CnqEkr-JnGY}?J}7#c1zRGhIgK9eAKM(v+TPWx5K*>hFk_@tC512I7^2M0^y&mK zg{5SYiJZhn>6524lNGw{!$VSvV&8p4_sV-FqMVBYHr|Ze0}^{`3Z<;1%Yz7NJQaZE zjl&%UV(9o9S=NC22%45kOi?`aV2%EWri;59;=!7PsJISiz`5#>=b<&Sa!YYy?+!p? zin38#gIjhOfb*GhvbdCDA{?#6&AJS7t5S=pfsNHM7INYFDsqAPd|*-$=5n$^42d8M>rmp zM*5{Nt@27B6$R^1)w!RXZ+$EZcDKOlS4(qdrn0V@l$S4?khKQEbrgj6Ks0O|m(PTk zC2$(>>(i8?|DiZ;$=cI&@dV#I>ik0uSIv}?getEHoL<}p-d3m4c9HDnb67ErU_fPl zb5QPR|5xcShgOusTq;Et-N}t-li|?Cny{ozBQHY}4f`}N4W!R~eF@|RF->;m5-PHx z!hGQGVsz+ag+X=oT;?{QgAlR^otm9Cb9R6qKcJgnv>R)5oAceL;;OfiUp=(JwZN|2 zYD>Dj2s9KHQMDh&eLGu36ZrT zPGez}@{gyK7~1U;-mpl(y8O-`G_bUnz(5B0otMkJ{oZj+^ey=}cb>HF?RamQ{BpZz zUycI%k1rB2cuC)_>U6$W_#jwUD?B|f9oF;Zl)_4qe`XyGpE69i*+-Drh|aiB%-O*Z znToDviJ98k21|UAGe^kU__=f>4HUvU|CQ=3Why_6E=JMuwie}Y@m{ywU=-0-*XnT8 z0lywF{`q6e2G4;qWf7`+iepa`c=wb0>|rMccL}Cpdk9*_B~r*q;yj40(rA2Rni#tv zKmUdB8?AT|@%*vqs+pyqMuD96$zqIV?I5S3z@V~(K5Mg3%DPxguD~FdaBL#M;H+vT zr(#HKUdF*cnO&`9QKFii%iGBseImxtAUEIfv=yCO%60#Mq4V3l+7IR>W!ga9)y5lO|x0|7cUXRqc6aX4$0= z)?zEC!p1@4^}=ev&^FH59xLm5b#p)0u<>DyeN|$aF=JcHhMQpSDRsSrkHV4E^?>jmJMC{z6$^3vW@D*6baM%OxWck)B3f8Dy?{{Tnm4i z_-lUc3hU%zO2sDkk*(^+WlL%F$mMGHx#ppktN-Y{h!$miX zzvUTB%%P9=W@fdZSc9_LZ+@77ZjWTj{<)B=aRvPP6n|phnh-uXh_HH<3{STwvce>gVr6qvBS`e^xVbmK z%!nrZMJ{K5*ee5(ra!Y8x_p_kY5wcI&d;;mt1p{2j_@t?iEwcn^u%|VkmaPLW^OtZ zwd=s)^8wwD+c?z0e_R03@xg;LV?tmiJn?P)>i+WK%=N8}=d7HW?rw?EerN z{@+Y5%RjZ(6}mbud)z3#+hre!XoznZ`#f&!re|Q@z&t9&j~AD8hrkInpsC=@e=-cZ z>2v^v$qX%z6I`gw27cC~o60iQ&;s5so-47w2gl=8oKr&~MX?euPI|U(!^^ABgno$E z9XBV=lQHSG26%U?&n(?h-MpVK3W$V*FK>r*)77LijvW(24$J4KzRax^+qWWavk@x3 zV53c(gmpjO@7}pvGp0P7sA2IRQB{^VM~T<*hm%6y?&!E9F5Q}^Fb7{h;s~pg04`nA zRWqOC>sLRG))3Bh7Vzuto}T76+c+}>2b(v2-9KoPVkANzK5id0GwL0Fd0b_OWLEyU zx+RQw?YH-#ryqPQ3uu#CRDAgJ5iS5M7mHYk@5>k4v+}Zh0p$8FK4F!%Kf2#<4jC)q z&CGqgzWR*0|G8Qlo`SP(6%l*Vv0l(_f=~rS`KgZ7YrvkUTd1E~9}xxyPE3Af-1x?1-=lZ}j)4<4~$ zw0ZUIlbhl3Yt638p}w}*GmD3_mVQ^-(~d63VU4rsWB4gPvec8GmnXg{Yj~+(B8`A z$<^3x4)I4@CH;BaI|*ksY{RvixA9{5+qdIv8}Y?gwh3|%y_Cxq>milx6xIvTFuAH$ z)X(oCI48nm@Z%3?CN?)5g7uMyv8J-*{-DONBo(EOcu9akZiD(7!$()24NUf zko^98m|@TY1n|d3w?V41TngyJ?Qxstz) z(Y4EFq<^EJORGT{U)|1Xs6Juhzk5rE_8& zOCtP^&x6BF4K=KE@ma6z7C=`Ew!f_hr6>`HS7OH1nX&UoFRBXX)r;@&T2Tbz4_0<% zky(t?k?f@__=}gucPXzMXAQ_1gYhL%6 zsMt8th8{ba(;NJ?2rZ$Ng+%HLYl$99Y?326i@4$QX_RdKSZ66(Zs5_ z=nm)51I)3TDBrL1&5~uCS!F^yLx+7y4g)40SyA0Ax>yPY@I?{L+IFpD%=*(pK16}} zh2@$Xriz9Wx3>69g+-oD=Hu?IB!2|1@X3NcAtueQ349~uN2!t{&R;uWj9YRWLNq8* z?il14Fep@#B}DOo12A=}aY=z>FaY&1Bz$neh?ts!mQCGY+VpbagOii7eG`2r%kOXk zntwA-is*G<6w7-SKYU;6UDx)01NB3x)kj7P!9*~*+G~uG?{Hq49s#Idgz4yylO*i< zE4czroJree61mPJ`EOH;y($H%jdb?g$Gljid*nWT;RT7X)&9mdG-TE6M=Qx!)`CQ$ zVK&xQei!8w1E;K9mm~{S9xKhG8+5qeWZipmCmDbi16S61+E*wcLgEWjQJ>&cKD?(N z`jbR~xx0(9*&ziABGS+RgIV)bm9`FUs%oKIORC$YI8K$^6}Dnpr!wVS!QaB@5vo+? z(LkX!S53A(>hPL#{)K3$M|8;X{rIZ}TfDOg?|AHn;G?_pwFY8){UDG>;A$JvP_Ix% zgv4j00~fo`%m|YNGNOz`gY+N0Rv>D`I1=G`N)l0t%m-HRh-hh~CCoaL=RSbyZ)D%P zoc4D&4B#UQBlWHhBNf3XmL4SWuLOECav(qae>^awN1aCc*(ACG3Vv6CqQ_YFQ8KVh z@p~?2F4dE(Pa^z+oH5B>!a^Ou!|fZrJMIe(PfkST4Sq_4YDFZpWzLnT;4IH^TdFIN z4xA>9Nvl#7#+@K8ELg}BhhiIBZ(=3lP_J4JmQYC8b~vWaJ1;<5-gKNKLS)X>sNlFt z?`vzn`5!A|H7IL^!xW;SSkNWUD9Z9v`3T7?I5lgaVkK8kXrqV!!GpgAS6e4RXd5(Y z<~+j~Zft4daj>&<2bW$5r2Z}1UN0J8{3K)r3?LhHt0v;w$nkWOA6M$9QGwbnN(uF* zf?v^Mzep6%oNGy5qWD($(EL!!O%%=>U1x?J%2^N|6+g8amq30iHD8p-_5L-Tz?4W1 zHvgX=OFg#`rc#yapEumBbP+shxXhS$nU3fF5jOU7P2%hwn-znvfF(vgeV(V@S|H7< zda2@L+hOSBAtAFF7ikcr-Z^yy%3t?h4d=zB0oTQyt7-!0NE#F1oGtxpH{F2uJZ@i~ z17oc3U)YB~?l@S^;KB48rbl_i{jacR$=m@%A@!l83~dJD9v)ZX2<34Q3S?0lXHMKo zXb&+}yM)xm-~Lci2pz^BS-(PNgN*JSvG{PrWB-J&@WUQLw-1)vJI&F_muiOLlaRdm zC|Uzwb?mmr2-j`joKln5ih<$DdgN{2=p`E68)EU{iN}V_nwaOYcdNj%M`~;qCfGYk z59V#3`o!O==loPLR}>#mWg$TW9K&@C86B=>yO%C?U(-;k6{5 zJkzi#mQct_746n}iqN6tkrY9IXPhqFTVhLCDF#Pir8&GJt$J(Z4rPoL!E=_+;}iGf zQX7TC^kkg9s<2{LhFHtl&!#B@Rx}2{WHyz#bm63H;$ZD9tz?O7*JW?G9x{^hW#C)j zEmNz`9f$V@nfLmWSES&2XyDLzJ9nZQkcK0TFXY4uDwJ+A zC;&4ZZ*S;m3K!AL%;}h-RCKky83v}!mar9))i#HDrZ;UdQ#q(?rHa9-usN`(IYTty zjhE$t_RCw%P{Z>SDiyPuE6lSa&XB3C^UhGqwlWke6UfT6?uX9R@7HstP-u=}syzH%`+o|wY{Qd4GfBoW5kgzKHU+?1Mhzefyj zqxcsTaAgPrw3^6@MA$176ZwdK$+g4Z3t3PGtM9h0;rf>2)2TtXEabSq(b)u87L(Y@ z69cG^q59d2_&*SWmur3sk;55qz{OTeq^UD1L#wzL>Dgl2GUe$=;}iSfGy#?jjWgC_ z>^LfP4&YE$re9>UkMJvH-`!Db5{&~d#YDRp1*l?0 zt_JeKxqlyE!({u{IX?hXl8wkhUXi!`{6BQPb9iOnvMwBSY}>Z&q+{E*ZFOwh9jjy8 zwrx9EG5gE@?Q`~b?|shsbFR5+jAxEfqvout_pMrrF{5qz#pUYiZPo6w7L)oApasMp zyS$j)eE1@)(z}3*=afFIvQ;7)er}aonw2`S5N5R+(p7cT1FNc18CPBxg&sWP4Fp zAys@JjkZKmL!~Kq~q;XBkw#^)8b-Dk&UXik0dcw3gwW^@0tOis==aot`#Kd7AL|hpZ zFXz}$uT57c(De%Ofldg?Qwm?0SpdFv*w97cm45-@vb`XxoY6&yCY{ z^ra(5u^Z(W));{$ALm5r+B6h57A)FcY!I}vQf*WSMh@S!x_d1UwBk~1bO>|{^G_<% zOaLth;IgOeIi)|non-vFz2wp^a9m;y79i=CMi|?=Q}4_Xqy*D!Y~(WuMW6mS(*o|{ zB1q-gWj6xsd?f4D~pSk!Fo~ZW=deaUqG)i~$Et!I0vxNWM!cCJ!#SNtMT?TSK#CcA{U*t(@$YvkP zOFB$3l~4zE4L<=lFrL)%j*QHB9O$3Z zE*;*iwM??s9zSxEW=j{L3KLhL^z6R-C3OU0;9fPT+a}4wznZ1>U9iTg1KxhG#9is4 z#>b^mc64$wgv!=oY_djIvr6f}VviaO zRjxRj5K z?)8;mn{+r20ylD*-_@lf_q=7-yiOiwx-2O_hD4h6;G?0pJ9BT%!IP78#BJ}g>VBnX zKg&n!KH`?Y_vI56`@Q8=iI(kNJftJi`G?t;X&9LP&09Ili*6cQ1=qE_e?54%s^$lv zRD5=>+|y=sEIV8^wr2F=&OBdz5oSIY&KcCpc>ang`ma_^Tc+C4<0-7rfmiU~xAI&E zmW(i5;PC>pcwc1O;IH>+J@0^jx;@`X+x_;xN{o|v=}NI(h}-Sd9_cU!Sq2yQOehK4 zQJe4uOxkop+&luA`n~3s2&4zDWg-bl*UPI-3RjVRc*v8F;h*|9gzj$qJ??7Q$-kh# z(f+_2**od}aI>pQngZDRXB55r-z=wHiFhw!#ej=gv$||het5qjk$0?Ig~U`E#}xY; zNSMvMKc29TsqIQ&nva-~XcT*&!hhN0xzQ5#Axz}G&cqeaXrEGd_%QEiTnee#uaWU3 zAJj>yh9GySfCxyFO}8394#VSI$8cvWK|H9OpSptw`Pmzw;O!(`?%%8`uf#%?sD2sT zCS5pheGzixbC%#d#z_0#-pgaGX6QDm13@2Wo*w{ z5Ta++lPuy=Gq_Pj{cbT5z!JD4U9}&K)HzjRzyu12;MCPijnkh#6Nhmk(V*j@(=2Ja zt`h1PGE0TSj_N&ez8YT)+L3Q$D#^3D2`9Y`7=l!%2ybYvX3kn5$b>@C_4kvS?ag$ zPjX=$#5Wtm%Kat=9P4~Cu58j*4Dx2?CR-d(NHG$lDV&{v^>p;9n$-(4bJ4BH$ zze7Q@TDu5iDl}C#`_sZq-m%7j_aGAk8|gqef` z??@$>@&DAd;KU`s9OUcfA|kI?P1H+HXA|0{Q@EFkV-N;yCLMvUZ>Jp@QzMwPfrSZq zf`mzwA)mtLGvzTj|H}oWCu%M|ViH4N1Y^Iz0H3SDzwC8!Heq3Ql!L0PazMLGl^tg8 zOAT=bH?HR@!|<+ObrN%O)=%BwOXLP6CV&q&SD^O*C+cJQ*SiD&x{|litX{In5A0!vT5;5$^gTb2!%WC&N*v6Xylm^UGDy*_6>q z@Rn8W^xGGzI4^hAis8oQXs5QW&$4B8VleO6a;Q2j6G}Bw!c3@123VMVNJto&g{Nmb zaw28@YSb~18 zpb#Af)7XuSFbs*cpmgJ2B3(`Wra$(XyE-JTLzMW#Nt#NX9)|sbEkCB}c}%qeV7`4Qf0;O;CeHFR*Bg=`PL!_-l-VJ1-1g^6L?xO@Q zumnzcd)G=K{|-8kyv!sJITh(lcn;B7*jB-iBZ&8HEMPz5T^E)*Is`WqyHhWnN3A8n}94V6c~ zGqpJ6<1*h#+N=Xf8+~kk&FjcsAi|c=Cxy~7BSvcy-hc!{IKMVU4znBVTQR5xk-HCN zXhrNn9%xVegIstNDm`(`&QuICm5KJYyoNFwn>w0H9~zc^#?57fow7tLs|&|ee>dFoObDZ0$#h(kn2Na6l8^9oRFmoS zWdcv-D=`nLLDGF*VsfsT8Vrb^G62KTJi*Oyqpte?V{E;mKBIgdmx;i8>K0yW4}DV^ zKhOfj*I6^0`anYRHfVn4lpxpsEcEJvyx^6nF0VR$2Ke(KB7cxRRcxE;K4Lg@m@P+j z$J||NxSPu8v1%)os|L0u{=v~d1t+ZAjV>vGcIb-b2|f|;9YO?HK)isMt68>XZ5wzL ztHvbLUUX?+Zir*Pe$RONWsMjbkG681Nc2mT+NH-rKY@$68pG51kY5*P8AjL#)K7KQ zM-kQooq>Nu=Tyt&v$ZT_4f~KorJ^d`3fr}&OYE6Ajq5vkiK;x-ntjk97qci}M}w1;+QZdl0Y`MkbJUKXbCx4cL-w5`_HPyuFU{18@Yhsowkd2w(lG2^nAP0mNPziBvx#?{C* z#)8~5U zS($mZS=MY~Z6zHpiK7RJa1^Z6Ot)2qt6(*R|5RXqwGtKN>E?T-dti8gz1{+WYEVgp@~!UUZYhv;yu^=bTK5<#rd-? zIbz~YB12<{Sau`box;q>hks7pLeBA?)=-Ju4LilwsoBdQf9J=3qZKU5VDOB2DfZ-o zK{xn!o%ir`3uid?6@vuuC{KdGDYn&yW6y7`wYe92#CY;WYJVdVJBIjVp9#JnzZ!1^ ztxSB0lSvQtsUh02A4R|hh#X1-E3C_ByZm$FwtFyviupB=UL#W8CDL7($sq&_17i!R zP6@?8f1yir#ra#wbMT6Vnwz|ci5Zv#kH+h$^S2#xqeZdW8gCb#a?1vUX{)>Bs5~U- zQlNS4CM&(~Cl`7;LNlFnztwRA#*IL2XwTlA#X?INzrWsmQiO()%3$k{4uh>lL4*~e zevrc@NQz9xXlauoYP9Q8Kc`|suUyE*s<<8wQOe?W_ZJl3Kt&><_|JFWb4E-DAhUy0`6-CnC=1dU^p8*X@!+SIR z&}p;;F9ah%n7Y*GuZ8MG1la$)YZd9+>i-N$RIB{gSk;S*-mQ{DgT7-kzKRVsdr zS(mCjGI_}=KRVW)llY^=cHc7#ZKoLfcCA)oyg%;$*28tGJ7tp%5c|iH$P!O8vL>a| z79&SrVw7(NM%3N4Y(xZ-OQcEhF>H{T=7B);&d`VJRrbGMWKydi8MLGOBwZx1K&=qGwQ zUvMqPTUD;^by_az_!Xp$)wwslTanWYn3#9`&ILsm;7 z=QR&nw5ZPMcxhQ^<}lh_K2g~ZUaKY6ht`UX>xQqLA5$!l(x_+s$)*{D2DlthytCQ= zgsYfR=|9;AEJS9UAD1qXQnyH{Jfz^MPfC?wB_y4Z7#>qy_oMV!pG8`NkL=u>D)YWy zdpjyBY)8}Qqw9(U6!S)<>%l(lKO^(CwSFd(+)AOl52-kL6SSfwzqcmlZh>2hc))L- zOZY-^Xh_zv5porLgHgvON&2tRnaUoN1z;tJ%T{8*tQ6fN&RmjU6>2)tj{vRGGNoBE z_g-73mNNB{|GLqpQ-dQdS|BSWv#7httEuDRE-_v6ikG5kozh)5L8K{^SUBXHfpURg z?P&Z}aT=%JoL73-xr685OP2WYT+oLioqY1X^_K6OTh&K*q3gEJAW-Seo8;^iTrF__ z&J#B_GqFVj3g{5MnV;GsYO_fjaq(~QlzwujY5jSB%@?3O@FeM$Ms~YnnzebgmXj9U zrRV3i_L6M)%k-7eKw_SexmAeGvqKtQlRx|r?|Rs04KKAuayeu}ndPOS^}O-@hluu# zpN>|K?k@YZacbXHE^(o=mVM)vNaDfPfI=A>KR-Wrm`Q`wl^kFhjBHD^KEtO;KX>}f z>fKFF&#SAlok-egYuBX0`?H}z&iz%l_EK&(m+kaxd+oFPQ)ghn$A4bfYp)rcm!%U&evtL@NDC`P8X*>1z{P70Gg|Y z6>7zcUT4w1UAusDC=JE*&69G>s|NIXTFm5@Zu|c@+L@0#+-xtZ62;nnEkdT4hw8Vl zyFgSbodm*QV7lgl!^Kup4x zJhvPI+^lj^8EySHK7rHP0^#QG;SWCYeWhm7?w#C`WR!g_V)O++UIhMU9EALSHR?1x z5KxoY{~l)fry%CP!Yq}X|HeVk_dt;JVk%K&aM!i1#y2QCo0&gfB^xIV;%s;XWXl|{ z*uw^iEERFV-K;OfchMjtwIW1n!Z8MDl?J|p7_ zI^>#?+W`5R)H8b}lWu;mpFQJbaoNhvX%4$@oOj5An@ivqAaEO_-s;LrbXKGqOFU@) z^>k7bCaq`9a}`>~W82X3JTXPjrz<$Lu;)R^FI~JaX6fGH$5p!abO!nPm87wuTh;OL z9cAIZtY?+agMnL|stB#{bu+()W!>_p8rfU10SU_S*~tAJd*i|h=gZykw_ZT-xlEQ^ z6X3(~DP>1+Qv8jA7$JHc%>aLUC-s*V2)wL~Lpb>%11$DIBP+k-zF`cA!QO=|SpqH= z^OjoR(6Z<%{W+V6n}mngJ%;Z0A(J|WblQUj!}#GpvA*}bAs`dfY(0E|;a{_{pEexI zf0cA{^6W*pAy&TOMQPSNYfnSv8o3Rq;@Hk zjoPv2bd%WKf5SJ}K{kd{)v-++7vo$Q(Pn~%gg$=_c+g8dzmipI!cQ@7Zk7*&Ni zk$oTdpAdmH+Irb{h@cLdPihtxJUxzilGHL;JFni0k?PfsI=1)>nKhj)j9>1^K<$@h zin0Bv$Ah|r-D$lr!k8@SbHb)D0BGz)0$$ZY+RH;kw(7rWxn&Z@t0&sJ*{yxv9BDRU$g z_*R5+iM2tc3tJcv8vj95WB^HJLaNRRe16p)6LkD#_AA%oS8h6-fJRpaGK}W~K?m1- zGEgbk2Uh9f_#B{J79*>hIAUSIB_Tge1}P7p2G#@fmI={-aIhB}6bJSvW;jjnA)GfV zkmcqnHC?q}PIp40VR^v}mcB)NrROg0H7-rj`iO#kTmP>xU;so(IxxAv;`HD$2<7fg89q#7yl|~B`Niq`cZXsserBY=z zi4v(WMy=^+;8}`e+8fT3y%Lit-+?rvT_NgMMODN8@TkL4P1F&2ONrNa4#lGhF_T*D z6-u>PNnjTsu#=KagdT?9DqycBqCwGW3XIc$-JuSu|C5i=q!|?xA_j|~`RQN?LOA8E z@f?PLK{hdK*BaP_-C9({ccKzzNeUVAiVo5gv3ICSx1)8faOpbOQl;9+@ExdufmkhUZ*}RkFOC9fDUmbF*v;t zH{S}h)v7H6i^3v@Ee@AJ$=OYBcNSN!p94}0DC*QH)V)niF;2o;9t_DI7n&KiBHbDA z!C~uFhqSQ9ru@-~y{Ky*2T@@VGn5%&wdz6>?u9lOO;ineisW^eTrF;<;v;`AHQKfm zZ{xI>Y&tc6;Ts=-S*aJgGI8sTCB#5t0vn{#Aqg3sa3J!-wQBpJJlsolFxoJ3F3?CX zwbh}bXbCM%VxYHAnoqXS@SRzrnIZP*JaDtS-AKRWgnHm&Y44diP)}?W6Yr@CTMK3V zl7=Oj3OS!!tJyhv&Q>42&wV3pxMbi;TeKcA81NFQ5^tfmFw}t}W`wUj=B!4&UYx6g zF0P(4|63WGecmj`1P^t28m3tQD!SI`|QxIIyFf^E|csPm(GZ zd-XWz64|2$*p=z$Kk3{I72Ii8m}bkq0(4rlbk55aC8*t`5!jAQ8A`O#0lW6`CwS2h z&dN9d7$weBMHz%%#!XIf(Dl3_iJcj*x`qf&3R=0sB%$Nxg$j`G1#vg%Z-xOe8Fw}S z1KO^mIMPsJ0_P+@)YlQWrg-- ziq42jzh-Ma=o5vMHVcOzs3-m%x6`Ve75i7*4vQ3iyJ zR}-4~F!c(H`P$^ii#E6??i9w3%l2l#cOsd`H<~g!&c`I|R#onb&^7i~{XmC<3vsc3 zg`U1hc;^HB7RO)is!S@U>_11hZy!=@;jG?R?%YB`S~DrEClX6}LwsI_O_U84p%5z| zFC6Zr`cRGA{Ey^kyBY2BmD^oOhsz>e>_s!wa76_TUWd&e#RymtSrbMH*3=jT2HFd! zM;PcS!cabUSmQm7*z0!Z8}OTj5sW(pBxw?KOk}{;$JgkHp5mip%yV%k`FuRR@)>eE+(VV zide~sbT_xUD zu_LQfMfT(<<9Obrle@{yU(p!2u$cN&%)-D+`0(WWY2qIM<#Umw!Sa zjtj4H&r}S;#b9tC;W8${TL_XL^MU|4t8{d+$K4_jM;M+H5u-??%M!uo9a!l9=fD-v z)f{<@FKh&%jFI8cIiKIbZwzwbtHt)bX%qHW#O*#JeeesruHX^mOqZ-_oaOHeT2 zo9?Ta<-`d2=V(U)uBwCF`2vI&T`>TNvK1nF9KzE*ZXeJ{x1O@ayz3)BTRTJJm>7lC z(ep!`_@Wr8HBD=aVs6{Rga9ACHQwh=k2rX;9C$_=VmW|1?SgD>0hKQHrne}MGIUV4 z&d_VYUgj2B6f0J(0^GJ#V9~(4rr=JN)_}YUHnXtb(0}==^d%o>oB;?adf-+Ah9I_mM$>NfwT}( z-w5_@3C3=T(I}lPsqk5zls8l{613sy9lR|EC2Sg4UyLeySf#+r;ed->;>wePuTWfpQyO0Ic(okt$9FOw zI9f$FCSpnRsYyO{@OkF@Pr7a2zl;TW9;Nf}r3~w_%vh~z(M|FiES01G6Y^9VNMNA0GyCRUaWj?&%wUBw$Z=0#xN&6X% zrQEd)zXT@AXjAf5;3nnekT<4`5O{{mtr$0XfX7NMK@kj%F2&rzszsUart9dUP>=l| zR}G@cl{g1jf6!-oncCWEVn?wLu%wuCscmxuIMqAb*@jt?O>}g#%n7H_dLW*`V4uCo zuvABwJQ?qt)pem1d?$RR>eB!q0l3v{9;NzM3oE~ItLRxY`c1))o}U{+{r(<3-Y1%j z47|d1U!U}-gW;c&WNhI-xi8psK_D~=9Ht#SHM9p1g-KI9o#l5L2I`UiM)7_kxH^l^ z-R=1aS|c=|?gbP;KN4x>LE2_@%aUm2l_Q!+W`4S4?pZzn(M7$lGn+-R%`k#W-|%aK zc+^L1ly)@n@Z5#L1FFOTfQvEp=> zC(v9$J&XrQCakMbtZR}vz4<&w8u!=B*Cb3!JzO(~o?o7>zfK#5(L}-=C=A*$9;j13 z-@TtObkISR->C|NRD1bI#x!{d%&(lCnHDfyV(I;S5W4w4G=!Dy=FP2E&AAn8Fr)P% z9Aw;&s;J!;9$QkL?ek?7JOJsaHH%V<#4LAfT{ilOBeqXYoF_@f03E$ep(_2Yhwqvz zoCaR`E1t6xY`OCw^hafXy+SSwkzZ)lR(2gd{q`n5|Nf6;02I~iUr66h z@PWkt?ganSlJbv^rt<+O{6Ay>`kuH#Z8i18??zSwsmx7H-<5MW6p__86qnuHYEV|{CvOlapm;-;^OSQ-L*7w{rHjc><05@8p+@%gSJ@#4}hCUy^~-&v|Odw$gD(GQMS z_FdI8_&90#9MP2IxvoZX-^}gy`Fycl!4(i3Joz;Af9(sIHXqq4eZ25?Uiahgb^dz| zzLAqS^_Orz?tQDAi-REzEW85=w0I_alazz->?`$R&%P9kvg6CuJDA_k_}nG!KI?ts zgpU`$VeC?+XLHKmQGibrp5#{T@A}Hl%+^AgK<4qwhMjkrzbQKKtn05B%{%7>A4BAonLlLVRS1uAe~H? zBX`D4e+#-1+g zARxdR;t`Te|Io-ZRKB%1u0F5IU-^S5$H~t}Qin{Q zQEte}ff_5WbR7_&7Ou}#&Y zaU=+fpzXJAQZ_yo|GOox!l9W1_KAzuANj!a>4QLC14_iiAcOqXkFMpj6<@u!oqG zjJ3nP;GksS)WDch%s|qTHdzi$iI^`Fb_qmF4G?OhBa*z`Zk#ZSKDGaZF! zH7$h3&2*HA8-bJ>e9-uoeTe0jY!b3`71F8xS<$8^?4A*Hlmw+Kf$TY24n@9P^WDhb z=~4+E`AE~=z(4JdkGLk2&0uUsGQtR13XB0zON+Wlq+}9e@!5o6Ld!qa5Q|79$Ph_P zuzsP{8|3up=|-=qr3uo8#W{>7Rw372h`t9e5whVGnFTHS#A{JfZ=CvexTD(&?s_*g z$(C;O&v)Zm>O-}kU0E#L7IAvyF5^{eMEZ5Ta<EHV2D48%#(#YA2&%s5`1S< zXFp>B06Uc{YWxfeAa>iX(V=h!-|Z?l=W&tt^E8KM!|MKH2)35uhn-?C21uVqR?)@4V~*DF-TbEQ85F~T zqoph7k5NI65|5m2Q8d02x6E|t*ehe3#h8_Jcgbw1Fj)vSREF1$^b3)S+#HYWYa7rX z_xj+~at`_~1V!aFp=Xsb@bXu}CX4c_@ka&J#(bTBB&gNLxOvd)h$o9sb8=w!m6G#* z3x3Wzof#zu|Dmgy&O=j|YGZ~zLZzl`{Ld`o%AU-M+eMe@Xt%c&l!PpDKbe$H3a!$@ z(YUoZ^D!8bI9+f@o*h~BWsT*LI$FZ{I7i`pIepwV4I-rPvG$%(%&~-%-MSE^C@pTe z44(@~<%l_ggY;JJ(=6zyS$o#kM{a)y)OApJo0O|+ng>iGhZ@bCO{wIQS(RXlVonvAh4yl8o*i_Z*o5W9PuC#%2=Xx!=}BnU z%c~&DvxKa;B&rr$*VnruRw1&I#(&@+G*A3Mu7?Xj;37?8P7Zs9AbD^J&W)M9NAe;% z;|s+uvI8$aB5YDRu!1usZq6r9A>q}EjgLpmOYDMjQv$=fk@ z{?X6;l*5)nHZB+p{9Odo{_P@eh!e3S{lkrB`8~c0D~z!YIES&J`_$?AFn=Ks9H2() zoY6dDKMXtlHivg=2a?-Fpz6|90L%EztAQAYQxIc7hkm#KK~mhYLjKDm_4b)Wy#;B; zFy7el&BHYEBQJSl;s;4AsWo*_ENgku{#;^Y@Z}TZj_}w$j6VWy*M56n$FWghHvJ`IAyYOS$w>z z@Y#P3xDp9UUD~!J8LHnIN{FN)X>Dg#cF33;HD26p-GWs#5uWkrFeZR0w7_&WgD->~ zm6}RLaI9z&?IF@o0-~gOvyhRyp1VNv`<0t`J zKo1}8)Q{;OdFUMliGmxJinyam%wXwYH!5|((MeamA9veKKc3hABe z5z(9!a=d~D;==*%I6H8xh;)=5{%t7C|LV&4uJv$~rw+C$_7*i2{WAGmk<-a1SpOHv zi(7a`?DQ3~E8eA0uJu0$h^6UfJ(Q#Tp}#Ewa5fdwOM%tp8xm;tFz}%AND~vbVNUYk z6RaoEUhKm}3c9XPohY0VEOS%|gV`E+E>B(RV5j|xT+h+ZDXo6BPP-LBGFqx5;BbHm ze>P@oq}kHeEEMV08^8vzOqI+0k&ECCoW}Gq^5w}Y{f`Qkg-1N+TMq`*U`0byhJmSk z7pY*iED6vC|G=xPoXO|n0H7u8Z*&K8uvO%+^Eo4oM)NsfYK;0otn8PtOGtvcui^|% znBG!`a)@;kc#kWO)^j(733Hr2BWn^Wzj9R6$3asfK{z!?C5m?*Mqc_UH-nTx zLI}&6lEPrEhWJ*2Vjw`T3%uz=k#C9=vESx44w(#<5Od(+4=Tud^3hO2G9l^+!8IYv z_p!js6>D-d%-t%AFZK}QZt6KTf19zSL`RQ{XabF1KD3+&3s@&STT9N=i*C9@c_}_F zj$rmmfsEMtB%7_BdN|Cd1KIJ0Uj5Sps!6ZTGTElfFLK+ZwIdq0FJr#k{>iW1*5Bee zNp7Xz-37HisV1*$WQQ)(yvS`wLE7Y*-xt!i^y5B3d}Ia&*naNxwHSHO6sgCoeLi*0 zpvzDnIooaK=@8R$z$NB_ZW}1|9&G**@MG9!pDmI=auJ1Yp-}meBn);k%&oXL&=_Ei z8ha_8fl3X6h8{gz#8fG8pex(aBUwj$8jgnD@P3gcon$0Bi$ud}_PoN8HmSkH9l|Xv zI*UfV`P&>i#H+xsLY&31*mg}WZ zE09%3E}w)2c^MF=b1_9xV>frs@Q9m+aCs5jiv^m$i4$1-ocAfd z!b2gKvW5FBEOECPSa+srsh?j@S0m!S+?P8&y`^doHx+$8ZWeAI7d-Cwk2RGK0=JTB zpRWhCpTPP-zv5myC+K&nDDJ2* zzj%DcLJJv9`8hCNtfJm7;P}Z^2C{mlLH7Hl7jza0Xi*mODBA!2&n>;xarmGS5rKdZ z|BFIthhOR4_~6)QW%Q_^d_oUbY0)6yfKjj51tOo>W2PI@MmAz6C! z_VCBV{J_>3l=7)9s=#Ul>xG4GSYY$-tGvDd;Np3oO?CoFf)m62V5Pp(hbh|VIWsrWC{ur) zML`d6K}EH9@@RmXW}SIynZGbsYt|6rC{=%-F8SirB`Wp>NW7YN?e^v=K1qaXD;X&Y ze!{3(D@L4`>(Cy|Nxb;3S89@$M^CuV#bb6vfyRxW?B6WOBpM6x%zT#5zI zV?gGqg5r(1n8Cn20>lEyJs=kN?x;(A-u#2*XDk1p-so0*6p)+{7#hW`<&+L*a*KSX%9LDE|@{$GkI7FY(ZG*Im@?4!kdWmI%O(M z@+@~#6kqByMv2qCqeKtMFNncOj}D*HYuI|W=Ym;~4b2ULUach(z8+?OkzFb|>K9Hm zld1IDbO7Qn`evAypFYybY}3hn(aH4D$q<MzBHg!F^zVU_yRpQG3xrk-&|> zS5*h_$pq(cG(|?070ew-CmGep`sRM-A8QYZp!>R17(!};AsfU1BY^V%Lo;7BFo^mW zM;(-uO!8L&X*#LBIF2XDr2AynE?VI(1iHy2dZFNq#6M zV}QimlI^`aMzl5?6}9P)~iEJ^!14@9O>8ATt^p( z^us{#phdrdC`OF7*tNEx=xpB*ZPJ-EB-H?qmaVo$A}YAU4_qY@0X-xq^6Re#Dr~$9 z{Pxnhxy5~JSPODkR&Z2Zk-4U2-~db+i4IDC59wJ7Mr=yP;}2bu5~DM0<{-B((z#%| zX~Ly_i5-Ma9aG1NP@lGku*N3*(HpqKX9xfU=&MM6soV2jjZ@aUZ@RjG1A697#B4!vuPi``8A%sIn#BXb6|FPlalU7JTx~%>* zi3)uVgF8L4qA%$9*do0(y}?~8_uGup$-7OoXy;y48EWfXy~u!%rMBpHD(uV5x^s~g zhQN?VT0?>n)T9cnu%DY;yDJ6BS!pO=M6_E){%Yn{FA`x2JJf8aBQS)Ql2EW~oHWex z(0rVRy=nGrGb^sL{=kYOH!f>d?+fzohFEyYxX2zyC@B0YE^bxNmV() zMLq;Fg_)#89R`*Fgvx&;{upXg*bv=&)t*u{72ztfseNz>oIbix_$`tTZ|h=FDUtv` zgqxVMlB&)KL55Dr0lnd6Wf*{xgHW*9Z-`L8E7@f_eSrc=S^bCYE5n$+%2ZV_iqwZ@ z=1AmiB7396xQb9;`l}FYQygH(#@a9%0JY+DygWXJ^T*CcWTG%TUGnBGPP)HzE+lm9pxq&YUDa+QH^b-kU2QN zK#H3P*QBvW#$mp%t1E|bAEGS2za+Ku1W&&g(X5)HQQd~z=WUr;trk&(QFobfv0AI! z@F#>N>l<=g1qr=hqDHFH!JPFp@WkKn7SR>}BxY-jbX>9=CB!Rg&ud6Uj$HW@9DqFgjgWi)Gp8I5-v^PUg%t4Nfd zylGfz-;ar;WCV}k@JBPoG z13JFQ1>g4A{B#w%u+oasdf3*BiRugZ<9sM_t$SZaEZ4ZqHF5M+6k&1=Twwg83KDng;hm8xJTK_e%4bKLZ*DSa}T9bP!b zkuT;C7<;T*ufS~ z0x-9m3_~klRFO0piJ8xG$2c9ly{yM%6PAPIljKk;UkoUJ+I}7?C(X+Tls_&vbZg!G ze&`-B2m79@{ILmF&Iue$a9s95>L6$RRtRapG7?iMR|bub(u5O^sIcE8Cw;zMsLEbp z)B#&qEaY1v_@}wTcE|C@@6HZy8fkrJI8~U*5?sH0(bKQ{g z^*>4eQa8s=MW<8 zX`L~!E0@I$xADyy*T@HXICs!6+G$JPue$_n(?jHjBU5EF*x75X zC!Xy0GNOX=65?$6d_0Jq1u>l`Jwnn6K*F9{YQ`Z2a?{`CioeXKNl*XZ!?Ffrya_d z9^!jYWYLBvN-d8?Gq9$Oy0scDLk6d$7(Ia9`aW-zMHwnH4CznkdE*^Q7Yk)j=uNfe zI&xUMewEX#?Sgb+|8;!>fa?OaO)my}52d=$R7QXus2cT^$rggs&jxH{?iMgQp{!7G zk^1-2sV_Ram-g>hb9?&b@eVv1?L>|3K@WHdjOmkWYRbI4WG25Jrhh)AUQrA-#N~;q z$r$|V$1{py2U%Dt#PTValbGx%&qxm&cv*8s2#aNabvEl+P#d7C1BHl7 zWy;c_AF&ys=Vt+2Lb{5$P_wlD{{QGY$LPqqc55f;pko^yt7BW0j%_;~+w9o3t&VNm zHafQLyq|j-{Mb+xH0od)~!UWK}k9cmV#z3ZBMa(^teyC zL9=^?>Q>oaYr!-Lj~8tX(Yxt{eJhANp>BKq1SZ}7FWz+OG!s?nK#b5S_kUspCQdq6 zE6cwaVV5heQ?~yNDj2~bzF*tGsYQoJQj2t!p8DmUi5-e|rg1f{1moC#;q6772HY1M zlQHj9uBcPW2rN|qOw8};Wo>Hi`a;y37IEO&+h8(cMBDoh`fK0wz4y&ySK!?KUS)ah zEgv_=;hXo(cY2C0uh+}Zmlt)d&9Nq)stbYMmiFv+<%Rt*Po0ZDH;O8gVUpgEqmp*K z#^`VDos(l@tWyv5Kvi}VTwi*2ZJ%2&sb|X{;(S*(&a)e*npckf!!YQUgQ0T2mt>n@ zNp(r?b8BRm(aOtj$;Xu(+5-Kz+pZmq5SyH zOL;UprPv|qbzvt~4~HLkq+YKQ=U4CUP=k}7!!kL$vIa79>Epn#m2Ww2{S+=sZ~NXi zZO{8NbzgmxUWSN1X$lY9ZYrK4Ducb;IS#jAYCalZcH(KS!lp()siA-za;7KQ!$7?S4u(#GAp_nfY+q{x^3s{ z$<}AvobR2At-?e6$GcG}jkvPaVr!dU zQM9fR&kc!qjmE_S--0>qieYP7^9NT05w8dIlve3F37KIW-()M+`SEG_Xs1^PMz#x5 zYPaP+8HwHGo6w19Yb6AV`V>lLOa7(MFA^bd3WXfJJ5)-Y-mTZ`3CFIS;VUnsPW^@fv#z z!jeewl%5m@l>kPoP2oi&DOj$(P*|1r1ldR%?BzEL;U+j`J)a}Cyx@=vLid0py1b!? z&O6ul>W>K!uka%^Zzcg*?2VxAIY)WXh8{!QXj)ga=w7**LHGdAo%*J}i}zf;n(B!e zx)dLHT;e@%13(wDlZLA)2oFP%@va#{_qX3liqh2XUa*R`u!^p*ijJ^~FF?aWFKJ9@4*Nbj+*@Rz6TcK2X9o4#2Alm53n|W^$C9zi0R)!5~}(EgSVlMy_xDz&@{20!2x?gfzBtXp`$f ziTcrKaj0q-tiF?D8!U9)iBM1pov^bSBf*7`MQBF#1qBq$${-&MdhNls7}@T<;5hF5 zu~1@V8&dKRo$!7vEOx_EASK|(?Muix~qPF4nj+PRfJJ7NaKPG zzymqcQoi2IdZ^1&$JqBcSwWIGKq-`BQ!Pk@rw-yrol&a@L9 z$c%=;XdcWXu!ZK}UX7CL-Gvb( zz&Q5!#Xaa<$w>F#b^xoq!V(F1E2m1~U7a16ZAf)MMnM)BN`IGf)ml`i#b zMiPZVPviw{R;rV6?iF@}R#UW;3K?4<$=rJq0JS5hcfJ^NBKvT|xPm;~$Le2jZA4Yt zwXE#XqLr)NDW9E5LRY{_DtZb8A9;3Q3N|8AofC4mP-BbE(b^|8N9 zn@@_$ISR^+2E02DU>qyuf{F3NoJ{ipn)niql>0H3?UlT3tmacPEek6#0DIF13=To9 zA*YHBKm&QmIaCcDG4lBCkphKL_%VxSi z5GN3DE@tVl!BwM4rY-0VXw|%HS8%_MJ)+>16-_eK(DYhN)L>JC0x^tnBS#uN%PPMp zK~%srHGP#9fsy9yYR_VVf8n2~a-YgN`&jUL5TbD#79j7r($gEZ|(U0J6)Q?xti zAWr*(x^oCbLmn{}H_>0Rb5yK#uOVW8 z){)`Uo%9z&96#QcuBii`jf?0z<1d=Ma7>PiUfV(*MEeCubOw{6!`+2B=kobIjNeoy z3KU-T>#k^0UfO0#LV;PI!jfXVxjVGBLV?MrVkLJ9{yOIW*6>Ce7fF!L(tUi>`(8nI zhJEdh01L=B2*gRmn7Vip1dOnR2+vx%bm4l^!L-uc%bk7%@n9i*AP-pl7kkg-CIDs; z#6{-CIH}`>WNLTBew!%p$e#WgCHgv+P9$5|vgN*3$p{XB+eQMg^dqsu8TeQIS81L3 zR%XC(PIKi|op1s#iY9)$HnOQwsiOjw25x#jL|f*P~&qn^OS!pKEo1 zZ~=%~$hZ>h#c&Fk@(5_YC3+B<49y4+}ZM$r{=|Bom1A*;W3~GEue=mLkBTKe<0W3imoyDgS1`#i8ov$@*NQay8K;k z`ok7=egw>Mz5x`}rX!zAOJrPFirX!{BZMmRIyn!u$j7B=f6qGca~@Fyzweb~<2f*q zW~8AS{P%7jQ)|li-qU8?8uWHc9YwYJx4x7z<*7(6;C%O}B5zCZCT+WH8d4AG80(XGb=nHsJ zTHS6wrpdg0l6@cA@1tEwEqhB5d);8(O!+a6(a8JjCL=N3A(x!V5;Bne!Ivkk$UD}m zLFLcL(I;+CYPmCY!&2UK<%CijC5>hMSm}G+$lotqL2b;`F>=@e0?FsRiKn*uOD5!iu^6V|%l}Et@6TyXA{2x;I^ptb{|*%@=;Xu`6S;yxLTKJV z53R*10#|AQjjZJJr!@-ca+C--cnmB6W_rO%*wsafFn8QFrHNL6(5L}-4lq;5ZY}?_ zKt|7A$#>0`Yd$iRT1Qd|IR&M^;FTjmA0Zi=RnwnnQ~u|A>qCj33DCzExou=WL09+q zT!d`Bhf zV#~yTCcnd~XIoI`UJH@&e5Vc_92;USR<$;s8W3fjC~G>?!aJn@_G~9n**^OH0Zvsj z^Krjj848>`_lp7bqTOWF>jvCMwpYTd<%7ms%4PV}ZO!n5!rBc`xHV+#iV)>G5A+)KTBdp2&Pde%D6PsS;oM+!cI1ODiJPa7F&|3|&*hq2tzWnL@hoDa)WebO7~4Y_Ex zjkdF!s-0bl7y6cpb2!Y>iK=P4$>$5NQTOpXFgOrt7tR(7>z6k>jyR9&B6=j=hqFOW z*UrU03z$BF%#aoBCTFy{Q zHw{o&_WScS%QNJEWZ8a|`+p`Tq#HY7A}1zzV^(hoMc<6r-NbbqM6cZ6+tOV|J;MfQ zx{kp`=`VH89F{iAp#`lu$oIfo-B+#AoO~l4AhjlVd-w$VUx`MY zkHktOkZ44z{@+A{<6okoX#*r0-nx39{`y;IePA_CT}Iqq(=|>tg&EjqoZKdlW?Rb= zJ63BqYBGmL-tTDial?6Z9PW}+2a zwX9|9d@K6A)%3)aqF8WpShYgf|LvOMjj?cdSoQf~qsuos_IOf3S&2GrTS`y_^xS{; z=BsM78L(5F7OSO&>3^k zY1hIW*ajJ>INrN7c6)Pb<3#IZD(K%5q>ssu(U0S2j(83rDnofUWIE??KPxI}VVVD|4O+V>Gm-%`ik!}8U z+D8B%_>T3RzccM3`594x@sNipO4KV1O@pDkfhSifM1q!cq$odI1>>)OAJ9abx?Ul- z0mhg*p=>%He4?i_GPWm{l*9#LZ8a$Xt}&owc6k;-+DJ;|M$_;{fvBOwSnrfRcAd#6 z5IJs5jDV!Ye-ApYO)QJaZR;9nvad>V!wNLnUkTwcu}>cdi45ifn(Vi7IQPZ6qlttu zSrQ7w%XqBWbnz$A*gHAZ!;f{z;;Q4$8C|EI5nYqDI zwFaVX3Q1TK6=tA?Y5Qb3FANBFc6AEMI{Rm3qP5A0hy_SRD&cO$ z5>0=JY-&NUzlYcjpb_GRtUa+;!xJ|^OpYR}i5>_gMX2W3M?}+bd|>!#8e1K=Z;DkR zDq&KK_ai++ywEiKFfvVOQGKT#aV&R@J2GZp#xP{wjKF-u&(5{D1@xj`-;Oj?ADRxT zOARF*GOG?%-P*mxbM)KqrZpqZi^ka5RGOiU!2*S*+ymYPv~?>ZeisJ;VxyKd9APX= z3cdX;9>!al-xUh zcFoDS%$tbt*N8fAM>8b6?&YGgcSlt0a$+i>{GB+=Mq!CG?E1RY?>!cU$WEzQtr;@| z^62iS1M`ArnY#9Ps2ICV9tg%`m3>4bE?0wkJ>u(by{TthLAV>a-F5SH$Y#kQ4U(j* zWV5RV9i0JR^Cww~80M5x96I-8L2rubWU>L*4FfOuVd)8|gZL5$-)HCmtWi|soWB?Zoa|okB);1LZUUEc zu}Hbm!q{PTDpUVRF~{7t--M`{-;hXqmygJ@Jeye+d$aEZwXZ}Pc?aVjQ;oa925*Fz zg!k_mXXD1w^iF)2hzlIBo)_3jL-{cZK~G6XtxTzqtM*SSg=wLX1^Os3dM~CL7z*H) zC~yM_w0JbeCKQ}L^OA-fd8IUlV^Uy-$W@g z8UKr@tp21XrBz!3bO${$xXqKJyN38Jj{-!sa6%vLY6ZQy%F!HIBfG;stK(8w%#xEw ztXNl)T9;U!E~!=6-8lo2z9&jm#hqp)*p_Bs4(+D^cm@}ypO>Xs<2PxuoScI;m@=DLg{e#juy6^ zia#{B-0kXrPantGgjb82;&*Jx71IaBxf(W^Yg*S9ciIU5q>O9fLpaE>LH}7JxwOVv z_v5brYZZgEdq(cHA6mI-~7 zlQgYehMsEX$M;ktC!?q{q`=ytqy@axt(X)kg@3|PB$OzXa}!}IlqnT+GXQzl%Ze^f zWhzXe8UDhl90;KwFci)+r=zV}Sk>_{%zbdubB>YIaBxE|a$4%Z`tJ`mG|4*l@U=?Q z5%~P^g;E6;3nPQ&7T;7sZ#g#*k60e&$$ASS>HJCONF&K=TlHPq_aG$5%6-Qj{o9HF z#CR%h>(hQ=lPZGem zH-1imkpzGowG?vyqZNXPzMI(-TH9$YT+Ed zm=WLqgqL%`%Zf+FXJPDcl*~=ZSC`pvCOzt2|7W(&8^MGjkn0LP9DUUpsrjjTskSos zbpR{dOJ2AZzv(!d^`0W_t$us+j89@Rf6Oake56|OX9;$uOsd0d_3K@sEKS87v@yw} z{2WDAmDD8wI*x2<6+iL6s`5C;k(E*#QKC-JY_f3Yq=Qc=NR<8AefOcouh#4_NI7JsYMD9O(}glKd=^(yS@ZvW_!k#F-K!uz-~Am3$7 zx!geBQUzD9UOT%5z?Ub-Fw~;Wh6h>pG8mfeY&b^ea}%Fx7Wxr`_ug}u7}PoW7!tj> zmu5(!f(EXuIj}K`E1L16q%G1d3rGLixH<4rsadxnH_uO`R!&k0N(KJ>;cR5WQ*Ysd zh(Nv75{>4-!5He>F;dHD+*!Pkw$N<*E?0yx&Plr3afuaCk@%Toi3Yjw7JRsE<)j^@ zxtQ64(OzON^&QUh%Ln{|Rf9Khvlc7YC7q#z%=9u4Qa=pAF<$B<>8;vq01$d{F@q}5+f|A0HIDb ztRct*F~SK}1!lp`7fSjJ@Ty?(11w+t?j-UK-XwrZWVNtr!|yx~%D;5V|Aq@!w0WRu zwXDVBO|w+ou;KW0>hil22lW(oH6l?fbMepUwg~V1zrv_Rbt_al%0NsSMt@+o|1DK zm}bz>7B$L&nLl|6DwQ#^pF*GPJa2<(?c1LrM%TEX)X1 zR+^Ob28LV7n3P{qVyiAS95KN2AT6_ooi(-^+PM{C(y7?e?{T*r$7DpBO~0VM^J?{q z1er>HzU-ghYH1<7&bc%r*F2}9yOJ92*>?rQ64007W9c_lO$JX;wDs2dX>y07D!p-f z(Eb`Pdv7Q?IFxKj?>a-gB8f2kW&L!Ext7T<()E5^1^)Ejbadh34q@u{ak{(j;NZ9R zoqh_aK(c#0w|#Hy8lP;#oE0miWhhB&^a)I8Jlon>YD~d@m`a}5cX;^VWMB{ED|Jws2cjRknK>S(V9R%SJV= zVSgTh8P6_{sXsj|eOlvQchKNb`>f&2`n1sX;>H_|Hh8>RSuw&&k&Y+&D3zvrybDsa zcPYeny@g@>sbdS}+{*09-JXxROcmsFy<{55QBjDl)4w@$&$1{Hq?C^ib{(TK#@gZb ztP$&>v`sFaUzch`$O_XFO&Ykx1=OLOHFr&hZM=FaYK_9*DRT1L(5YVielFxlPX2yh z{MqD()A{AmPxmrMV|S8aoKKf1zw|fmn}}OVbaeEJ3`3{B+U?fq&oF9N-tSSEYbz}&%2E5CC5m-TXq3qrE2aXQ*U z{=UpIG>9_(WYuQf`j2z?$`0BsJ~~6l$yvKJtCgS&-b>J(4IVMkkomZ|=l|Rt6V-X6+?=g%{Q{kQqkp5Ky!86qzTQ=MSdg*5 zbO)ATsFM*7(}_`ad!tb>;)}tReQ;o~Jvk-roXPEklovs!&i| z;P;Shv(ivrnEBWg!c8#{{dnq_on1w^L&j~q0MsS7a9>`sS0%TL>Bvl9>IP+=S*+ZJ z6Mtl!hqsSMFTnLrr~?-Gst(FH#a>^pm^% zaQ94k`?=2FMnE*J@Hspit?=Zj+PVKtKNf%IEY6RrJ4D$#a?bERAxlPXJ!Abn_3+T< zbuZyVh6XIB287LEAerY=kklHXfHXu}_BiY4md;m~Uy*!w#IYOoLp=RU_9bAB>^zkn z9)*7?61L<%H$M0-r9Hc}`0b8=CD+{}#g%!=AvvfC{CCFF=Cf$R&ng>qv$b(G@m~V> z{a}y5Q%)KeJ$KWKsp1;dQ?hdSZ|&SB{eeC9BlIt?{>sKM%83gUHAVU~6fUoiwWCw* zypWg!0Y052NKX@iYGtW4YU%|o?4#8uK}f81Nz2SbHQK8t^23rEDuN=dyvvmN$2gv* zq^phk^jhY4xi(E<<=p1=yiQ!)?q%IYOIO>Qa~5rj`4(Aq*?|g|8L61zw;a0;0@*K^Kvf0_P?hn7h(@p9{Pt$fp?knD z4pe2tUIXu+!16M7`x4D1G0_6(8V|IR0A8{42W4_OLbvgsqWB zM0wmH1dOeRH$Z;DPI5<^XZYNP>^^=3DO|b;uu_Mb(&ka=BfC<86%|_K>G!1^u?*2nfIg8Wn5T=UE;cbdH!(moF$6X-{KzmP zO9Q!go*VG@{N>@FvGJc4j#CuLJ(ND4I7xx&cCQH3pBSd;trh5OyoM+neHugnemg;F zTP?%xApsv>Bw+Uj8`iRcUa)TpsLEWm324ln2nON~919jMG_#blQ3fk2JPd0zyeujn zb}xnqsYWH^mf?RA265pm8LRsQ#z6$d!3e3K4~Ewgg;RdVnM3d}fzwQzPSnJf@iS(j zhfhy}nK|)FJ&@g?1Rn|zd!*n=7^(U1uJ}Ki8qXdZG6F2ZBc()lO}Q1^DdyyxL$Q@% znp}5E)Q5#6GamF2x;D%M)EjXCMrCgHKJErQ>*kU?R#m|xox*Ga*R^*7Md@K1My=-t zZP$GFtI|b=ZIKCoMjS2KMH0_~)(={K_BfNQy`}?D^pnmP343jsuWb#b^qSpcD$)Pr zp%;o~luxJ$u|g#_jzq)(?X!2lkiS_;*Gp3tPE?y-6_d_PaB)yQc_S8M`ne_TPtaC1 zL~v9S?0$xyO+|{Qq=fN#JE2L z02AZ-yf!dr@-ssmOKT{$9v^mox?U03LeWbsEnJ|C!vmO+Cs?cOlWAKKRscmrb!*=C z1UF$?ElguVbQtNt`zVRfOCZ7955bB06Ns^Mq-GX5x*Rzg!WqnhND}R7?Rq5>NXo)0 z5)g;uRsdElKlAYr%Df=rWKzjn=VDElH~S5c&K{*aG~+EIws7C%R_z+hPh6i@D8$9Oj6`j>#Y zNc1Qtn4xLJ?^z0uNp_BIVdFFVREA6jf1>ndkH<7(hq`eXe@tk~gK`wruR(s?RZaf6 z5*4Z|oZH4_XLxRJ<>E@!j`Pz@>D5fh3;Mk|=v4MzP@Br*8=|WwG24- zs(s*o%M}t#jH1a1s>zHXpLJDc|$(48jQR&oaxoQJtET0%W)NgsoisT(!^wrX7 znLq;s@mIz-mi+CWaB0Qw@uDrpB(`Gfg3BBp&;6;*#MkEfF(-%${(|NlVv!o=hT#7- z3Oc@LK!yfz9gZTYMvGbsQq*O1z~dj@LoXzCKCErwI##9Q?ye4!%`U3NWJuT zj-k|5%={8LGo!aD_~Q5$fqAQjV+&cS1`q>0h=(YIx`ANmFn{@4B#f1^X|WJvu<(A( z;9snf6`XMo5N85njT0_cGu32Gw>QQ_6Sc-eTFga*7OhnYHQh1@jE7z=&Lp$$9>qDK zFTJWy8~gVAt5Ho?Nf>x>+Ii!OIT+PiV>fs#Bf-?!`W}rISO@mTYC$G>Ny5^;KSB3t zFr%u?e;`t^mH03+uP>lH@2aStTwwfWG>OAdFX5lU=h1oH(uwlYI3{!dgE8?$gHJT^ zgdsC?Yi~Om`!cJL>gXzyAAAv=fGBdb{grp;?xJwxXG|-8!3E@RyN${RxWtg*pxM!j z7?LK}>9Q64wcZhJol3TZ-&kSAXwA6{8{eqDMNE$zySp3IihB1Sdj%O3w*6k~scjQ9 z*J_evP|~#z%!pm&fGH;jf(Wg;_ zX0Aiu6y{LmH2~_ULmzWJ@AT+Vin&NI;HJKcM)A~&Fa1H)_NiZ!lYu$Di-51Vy0UD$ zECAX0SIUN3&Tk$p=CjVzoV$?$X07B zhp^rlgY+VZ@C-vVg2;38gf!7tfhL|rGhklO=#t-ag<4`E)EWf|zH(5=CGXbpmb z!j^o=Rp{2F)gEF|t*oi$c?wnh0xZoyp98pl5bD_M;P01g*IFtb97-6?b7)u&A3XsA zP_nv0AUX{5%bjx8dtx-3EEz~!`%iKzH=zG>>8^o}w~~_QDpzL04B(+aF`yQb-*4Tk z;&+rCdID={t>og8Q&IQkSIQY;yuZFZhg6h?eVNOmr1&LFy&|wj4(0xji}~Q}Xc_QB zF3oiy*mjQ2gIe)a+nF7t#Bx@HTKod2-?V;Hklckoz5D=sC(iYbEuosl{c-J^Ttiuk zm)j$+B&#>B$jUU@-lzRjUrokG;*(M&I32=LhU^19?}~ z$T!oQ;IudSzRgp933n4C3>7Bc7WK+13bxMj+jPCaPw zuo5;-Yv(OJXK^Hh;?liXqi_*2N<9RR^e}MZk&A-0WD>ga=eA7LjUsevLt!|ScR1~+ z3-4(c$&BvJ>=cWok@NoL9i9--XrxLpVuEZiwaPJ>z|i3v8sZzxD~%E8blX0UE7)r? zm-ep8)MYXOdn*lG&vcus?GVp%#AtX(W}#dA`g3Y4y&n^mY^LYdR^EI9=77jhtE($T zCY{4b0Wgh9s5l;bREU+7gFX;wt3B4_$v1OCn%_ZXeIuI0^A+=+60CTvFTqHV(qd2 z(k}+%Z*YY!lzy01_>VOrzJ!8P6js?_Y5sUM7HXNrU+lnbh{vcFsj`GzRsu2$-qOl; zPV^`fA^8`6kQINYS?RUb0>Ti%zpn|4nZfTnc#cB0e-^Zgj*g=R#~(*wF^Qy4X3}S<*0y&u+e4ELrl^fkl%VU_N4NVQW|- zFjOO|yYZ4`pDE0vT=>2}J*AKhj9F%n>)dAF?s~XW9~QsYWTb~aGs#vi*&`$;%FvJ0 zOUM+z8ER;i9ryZZX=7DZ#W_QwMIZsGGSPvnHu0Cf!=Ze*1H5Rdj3U39Ptfi#a^eNYHo?;`!?P3F;T^=fqQ8f)oxvJ(83x{^^Z9mtj^2|x2dW-u4P2~ zk+VW#m&Hz9Sxzl~NezR^?aj^4mm!uH9yHGNiZt!5oeeX!f@9;>NrmPxrB8FvdT>D{WcWC++4RiwT30)nXt!nacXtgQQa&|ENGiMm^U1h3sO?O{z z_VDjoiJFCTXZGWVEBh33w|U@&x^ZKCk}}50g5tt9)L_vkY^H;7?#-n9hfDRupIy4) zXC7`9oymibePk^xwo93 z5Z)dPMM1Z5Jq^SCq+5zZ?6@=2N`BY;GsB$lmVOQ`aud9r6X@{?Z5cjqrSt&^}0bzvbnYI@UY2M0FLNBfr8a zl+H`W%HpOc0zGhNpwS;Mw=|KMgAQx+39qjK@idV;>$N@nWdA-#o!axYdRq-$OG!|6 zfzrMZYYx+>asa{_@G%T?5V1FgW*s0Ck0SC)BsuxK-@VW`&JN+!Q80Ihsa0hwhPYSO z;#hQe<_N~0(ivy!NL4(te}nLizj%*|b}xZ9_-W<0VugVg@uNTl92Q2}Q^ODs9hq|C z+2(NJA`6|$@go@CmH#^5duGGyD{g(VtC%hxA*zT46kcriHj$9(p3p_#tH(8k7AHKx zyMm7#R_PE)^VUAgWt8IBvw=9t;iJvAP4s5=O)ataQ_BAQf;*0IWe4xR$H^dK{KTcj z=P!r_;m@bj4ZNT6u;(Nt5pcA5+E-7`e_F_^jvW-*eF>5(V z%U|^-xBGq1Jhid0U2}zTA*B166Kt2AF=u?}xeY%JU7H$`B$BT8 z({6RP=aj6nJb_K|;&_J4&2Hm5`cU%Pu}znV2t%gQ;aT(8!#-nIruV_ZU2xT}_pxM2 zH}^7~+czFi_@NW$7k9p{&GEy92UdQgg>uiSXhJtS+2Av{Us*Z_3$IjD&h^v!{7uqx z+23k+IE-hT+wO1O=Ro1$F|H3|L* z4k*^pPi89}JK8V*;c3SkQ+%io_WsmwSy4GE`ek~8IPjpPvVZILk1oeOyU&dSN?NyT z+V1I@#kXhj*C>MA5WNwHmC0XSj;g?8h%|Ze+q3gazSHdyZHQ0Oi%G05_3@+ly@t+? zVvS_DAp+3(GHdLS)?j6X_WKjn4e+Fjjv;~OW+<({DcvNX1JukBN1v?&CuTy^5Gjr#-78^WM4qoQSE#az-Qz(Wa-p|Y$ zrlFvuU0=VKt9yyMD4!RNyE{7owzIzD;(-DxVhkb?I zDvY*6nxQh-O2>a}Nl@_Jr*j*C?g5kwxuOtheIQHua0mqv_NU{R{^G+;if%NS(?b4K z9Hbi4Jw_nH3``G=p`xDzBUXya%|iB2BP66Qu{B-V4Wx^y{sats3iKa6tiO?22IhEx0V8O|BxFA#9Lm0Srh2)3Vd&R z_eH$0dnoUCK!*}j9sVKcREX79Yl{9N6Vesl3?yv#5%h%%yJ%nZ|441Fe1Jk5Hemmd zz_<4jNj?c5ChNUtfR3-bAqi2R!jA)>I44KWLDk`8YZ&Rl@<-l2FQf`q2m_KKVNdrL z$VFh^5}~mVix^4{97=iY5+VxGoFK{<+aaJ!39tDdFzGU~-GEVZOOjbH={(8y#;}qd z5PIS;U`hs$N`F*nGSZ)l=^_hYGdLm^V(EI?N=Wq}3`R&b_G}E3ABy`mah@WLSqfTy zFUqeDd1!T3YJgIH9#XAQ259~wskstn^U;V}!>1|dw)p7nuhOq1QDCE`XXDRoFwexPnFgwarY z(3cv#$U^txdxFCwyCi3ows)Fk_D4P%-u`2|M=4BxJn(W?ztG@jeaO$K7V8PWICOAQ zX*N&=s>iW)*3O$2FL_kcM7o4eI zMILetDz5YV?GGMtCjpcwwG?NU%fZzi6#h_Ux0rLBYLx>iYB2m1;mQ@LH;?X(Js`-W zG+K5Ebi3{WDPQq(+W$857|n(c3{v-aT8>eJ<- zLd#J`H<6r$gPI~FO!Fjrrw!c1?&>=@$l!VGTweAPXvn?lM=hwPl%)0}Owsq9X5EYs zI;y$c5%v(M0w-9TIln?YMPhXKy=dk`^ie+0GKrK1JYkeT57z&uGYtftQj{?;Nsu$%R?o4VK>RKz&*^8IxU#4}IC*H6Ua+Iy=$Q7~|jcQxpiA}TTVojB7C037?; zLiN^#5(erOutQY4+CV^U_%qO5Y`=gA6P4;~($BhebyJOxUSHM~$1AhwL{r#Dy8cF? z`e6~0XFL9H&+ZC!RnAlyHrTErSeiYM=vX%^3Aa#M5;Dh*E%PM_2%Lh!H!gSz`51q? z?Pp^o?+cApBBL4;WU5#$63O#awP7QMFRGPjSG}rEXDfDq|LDGfSu!EX$=SEWkDAjv z*;|p`9-Ggk46@7L|8qHel;Xty5v$ir$Dr9y;nC2hkQ}}qLpDLZABR)UIRL{b!uY;W zhyP)jOX_@m%~}~RDrn-DL;;_gNZI=N;&tQe zOY&9$&`TQc@F$WatReZT1um5@TQF*Z%mNmWh;WGe0RaK1O5f+DlUg{yhiYekq+_zCK{am%yz5Sp?=-5PLs<3Wf9{*zqzR%z(5W`O6SJ)*7Z9Y|b z2@;fwDn%Tfqf{N!o%w)4hl(FtDb7b%zs$Mg(scQqxAJvDX6$K9<%WLBiH>5wLkFoS zsQT$EeS~>u`DFm6bOjZ@cJLnV2W0>_WAY9$-3R0qq1=YM3wOQkh~0~5TqZzMembB0 zXR&*S)lqW@bLHFfBvhpN0N$a$$lx#t_T>dXTwf=6+s)HQy$*yPrCR!7SpJjJlVBJJ zZ6wUg%};Fth#JZlHAA3ks{=8y<1`xvC#LFkHUVw7YxL9G4k&`9S|_v=2MK|^-ailf z?@}vZwj>sjT*jNP!Jdz`7x~O8BS&7kTz25hXZn#4c|bjeUJ~WU{G)w6Cch+=_$h6w zPH4>04@5?x&3P;LhYeX;--c1O0866)PosbW=8-efjO3uH15)CQJr?{z-l-U;VYguA z@GS?&R9{zpz+nnw_I60Y4+p78>L6K%J#so4PcWZ48kFM#S&geyx6s8}65ac75^X}aF}lcNv?wU=U@$ex*PJyF}0!i#v4}`zc<)7cf7ijW(L)K74%%v)-#{S21l89z|EbP0RBuXK4y(u4D zkyYNl`21lxr-X=dUF9E7_Q{&yb=(TJXtCrJ!W0r|gw@ZF5}AJ%hvI}cIF>{e1e{z{XDrv_Pu z$|$U{SOV7Jf^P?LkzkfI*K?xL3!|K)8r%odMi!)9Xg4fNe=GsDwsgz3ZQHi3UAC=Vwq3Q$wr$(CZQEwod%DlLA8z*_$Q%)4Wn{z? zYtG4k2FuH!hweC$t+m~0C=@99@6s(O+2&z-P*M$*nHNV za^ejB+qN5jQqMpV=Wr2650<^jEU7PLeSxBmgZWU!ou>xQ%&==~jkvOWKsv$XbZaIq@!NS zKfqiTsm<8EqH;Exgib4(2DbZ(9olpapPj7DCtk^RX7n3tY#BGZQi&y%;}z~2mw7h~ zl_x;o9y`1<^lu9-B{2tDKJU$6V(l-m9L%we%W!d>)wso$T323C6*_l7=tl|zymdQ! z*<=j4770Ju@@vokqVQ+;p3BB(Y1)~mYufI<|CaMbG$`_652Df?I*=bcIl5A{tertt z$6DfgB3)m&^m~0f4rhxzX;Qn@6eq#(J%(;&sbm@iy|GF?oEXCUrrm1pj))(ed^){n zern>CSN|mg?5c+REbaM9=Kt|d?t9X4D()rdU|#TFQDPa_Zz1XHP=%ddG!@$4`tTOB zW}o0YX1H9+G#X~(?ngB+k1#f~q(L~GDM31hOT94B<1_Iz)LX7~5%x!3sscR0x;)is zg@9RL00ve{yNw=FpB%l&n9bFLw#owCU}pr&%&%%8m2u#5x*>JCPtd#(s>a~X9{Xp4 zfAfJvCrCVf;SYM!efI8BvX__}Qh=5H8>7&!-)@GJV9LOMT4bQff2c0Rw}xeJ z?)m-r$kG5LA$-mlv?D2SyQg~ZULGDZa{HUFQ)4kJ>^2x~Eg)(AU z9~wD6>a1I+a`{dF&aG`Arik%aau1{C9Nwe5ht`HeSIl6x>osHIj^-P?g8tOyr1wMq ze}@rYTmS%U;{5+)Qli`dzuK0>%gBb&>zi4+&TQ*)4szzf>7#L+ z{3nod!g5V%V$@~okdRQ%*HWi_DIRO>h5yH8RlYmrWTKjjPo`?kkc%>A=Rqo!PoEjvR?)*ylN@uS6sl(j@t@dGjlxYfyE;q9ys4F*}eKHJ+{9@f}AZ=l_iUR zyXQLBbCN8<@$H%6YpC7xuQyq#^p~gFcdJAWdCJSVxW{%ET89zjFOvAyRSA{fnCkva z!qkT^)&UrgdTuN4W&*8H69b_=>fWs1%dp;^d2!IV_WyQ;KTY{rYHFBKc?iZ)b8rCe|HZ-OPddGc=gdRM+X-7)zOrkKGhJ~a5n6f8DS zUK#4?3H`$#DG>j0N7z>L>tw2&3>=s4d;*wKTZO@N>MvwIu3 zwDAlwNILmTDOSk@q6>#Pr$>2a*_^o%S$WCFuJ=R+XQh=FTSu5d4WUR-Bq(DQ^+o+z zK^>q_aO~4Vx+H!ng>?Ik8fiK_W2qkcF6_Q{F5bOq3u8hh3$9W76i1+l6iAP8-j^|3OLU z2jbr>jH*okZB>z!1kiAhi;+}x9&CZj=7$bsxUDkZTkZ*;Rxi>@W`^$UZOF1mtlP2t zl!4$@pY$4O5x(V1`63(tlVrQmH`%~r4Pg~s&Wrr0#g{kE?G->Z>y^W zN6GFTP^1SoA|$5joiAAEZks@AGbXuwFn%yCu{W!XS=N_VC zB}7){TQp9KrL@9(v89QRElLgpdlfA(UKCPOT zM4T5XJ$W>KAp1Y?;#8qrIL$l==aj3~89dolAJkB(HUZJuCrXO0wh#?h0B-DoxKW}~ z-LS3utxp9oat6K~KTL~Ng5ZfHQGiXojI6{HXs$0qF$RG~;)ja=v30G40l%zPp!@H> zK35Umu-4zWELm_nGyzP58J}CHILsgJaYttHqV+{$00G&#uUsG)AUH1 zafbeK5X7x%!!|x6M-_8xq_hK7@ht4zVb$^Z%R0?uyf4w3#39uGkPtZCZGY6TvB-<6 z&PZ0OJEexP<3I9UtxhYggAU#UHO3OBZJkSfAvuMR$SUQu4JrWtIWc{UHkRMp7av;1$`y%UXe-*|-nhr!}yQLW;ksCNzBbn!zhp=qY z^P57Vk8n+(2M;+!(N9uB2D&8^dsYm?R}rP-vg=Awd1RJO3$J*&x)Xq{yOPjz|q|FLJc0C5hCFhpD|LM0j|h3^0Xtz)!r`Fr^|2& zjWd=@3PY$?HvGD;I8z|AQW>okV``o(*L4+7lxox>QCWt*B1c=_26j<^3?|b zy^UZ0%MRCTmzX!q-3Gu&I<9?U0T-(GY=e`1B`%xkYITW9WbsC6ky7u>+aIKno7$Io zl(F7iV(4OuTrvG?i-t~-obMl1dW@B%T=!H6B~;#an$jY1&YTjjoF}>5s-je5ZTzcM z{%eV5mT%TF8H{^_Rx?%P*w89aXH6G}HW%Oq@}R=py>q1sv%askj8Rrz#ZC z`y+vCq>gSDoPqC%t#ItW!P4^Wi%^SM)%cco9g-!ZuEwV+x25C#SAbE17$I~tSP1ui4b z!^UFT5ILG8Q#wZ5J1d>}WR4ON|9fq~6dEsU1lDrZ|F1HRNtReQkGw0Df$dtyNfsKp)S7pQCJ4a#BtG#wDI`$iNSaSqkRb+3sA!sNyDkH)5N zVFH>i4f->sngv4WCr=sv7(GIP|^e>r5aVmf(wQt{Y-+xWV8i=;mzfv-cB=f(IBG5wTV_7~u z;e~w2Vb);$Z5_-LurxDw=!884`={ita|Cs;XY}z=^zqU3@vNe@A+r6a5E)%u_qw>C zOi?98Ax0d&+yzWLtQjKG*%k^Z%Jr$Vb=o;OrI>gUEuOcN6-PpR%`S;_{FpizQYL`MC7x&>1C+D$lC$> z>42@Cruk4po^uW+TI7Obb=dT;;eQ4eV(2-y4Wa4$-|Ni!3A5g>HSn_$T?0=aagKFY zRZi>)JSP#*Tl?{K`~O!@biT%!ycECSqY3VaOZoI%4@CkuMez+Z6u)!tz3b5EDx$;^ z&l%12mIe-eDSg5aiA?7!1rJ8)0^9l9>6W8-amCQan?*6*NHU{`KkqqOXlT*&A6G1= zo3T>*lHol=V+m>zpX=gww`qeby2JpTfrB?Yo;YX4#Cp*zxAfJ z)*7XAE5^2NY*(Ev#R}i4;)C!CjE=xH5YvrrMjP$+h*Y{F{v~Twd>Q<+v`x0t3M2M& zv7AUs1<{toeKnPs2;$p_xObj{)S{vF>fhz>kkb6y0pXj-U)cRysYmP(h@Smzczeg7 z4`?g*Gl@*vtw<7A^@R58?)&RNIs2vKK+SDN{6PaHRqlDI*=GTIa8EDi;HUpX#3g0H z=K(OLV}Kgw8GmKVCEmL;yJBIaZQWPfr4n?cWv#F~oH?Z_hfQxhW$JC>+AZyJg5CVk z5Nw(2p(TDXr)H^4%%GQFP0h_e?DYm$*XU2bVQs4a&96VC$|o>m{MnbXZci3j3GCz1 z!nLa#BxF#;d1s(nn*N3S(woQjWwpZ2*7cKthi=z>o%we8!>jNARfj1y7t()+HQMy9C};j5Z*IfjX>vAwx$H*DAX!`;h9*hN)a#*L^jjo? zD0jgl8!M5gE$jF_9-e)-=%qaD@=7&uv{i==n=|2vtQa{&)X-n-^?Y0SYQceP;OWZm zakhzF?3pFP`g*>8>|FE5Kbk#biM|1lXg56Fvd-AK9{hFj`bTHLCS^N^DwUn^h;)2w z_RchIYk`s-A(is5nkjR9AdR6Hs@<=%E-H5aiGyEYTu|{L`@Vnw&IG zH$t~hXYl@T^?a48ZA-9E$v5(5M(D)RigVMMVig}EZ-((gZ-j*>y*7j&@ha^llR)D> zElyxN$z2}p&Z_%QaDKo$FVwdXSi$9yw^IO{Kb33h%>L8fH^RVek}QzLLl@qc{TgmL z9u=kOJE|Z?=G8m4iws{5D<|L;%l}t{;Y&JpG{VRuzLN$xt-lVLJ83R2d7l7zD;EW! zl<(+de2yJ-d%(LcVwU@30L1%YH^=qq^Fn^J(rWp$*Ztjf8L5MTJ?s>bJ<#IVEjj%Y zE&q1m(TYQx@(^67JsD!Mhd&mIJw#u_d9g97F8L#{AhYLMGGmj7+c!VE5;uloFEc%h z^U2>jIBC?UuvfEx0&X{sl0JSfZ^|>E4g)^YLL*PNiVrOMmyis~KZjya^Iz21xZ&0n z#efjztP5 z?AwVSv)SQBoTp9A{u>GvCwzm$T{xp__+TyD0Uobb`Ggq2Af#DM7ibNArfc<|)Es~K z0_@*!E4aWvl##H9nNk5h3TlZt^*5P%_|oTd8cS@N_+%0~#xRKuCpFD6FWG|b&{E4- zqoI6XF4!8?L3vb#P(JvX>hM1T3~)%SzyNC6Kypb<+svjSCQNr;6laSnnEc830aK4W z8MxF6p_k(zOJC{nsc;&5@o`!u+k|^cN>_=usKky=FV2zgxo2M4x9r3}Z{5W_yGLju z7wf_$^>A>qI2HR6V8LnmGT0C^2vPSdudfe`dw(m&rkNE0b690YJXdu|9uZV1SCGbuqj)=4EE zIU5~GQUEx&PB@4k1hkrLs!GqWB?srRNmS*ft+5GdM`;d_5D%0O6>B#g$Cf^*|1IYjLu^={Ruy!CGNcYGAgB&-gQ{0U&=Uj_ z0r3tGE2LNF?6`=GgZ55pcRLI_{b@Log5$@Y)(E$1G>FG+tCFzZE0G?MqtclV7Nuf6 zZQmUoa%`{M%~ho-?dF#eGhWymI~pD(3F1YqB>>SQC)@?0#90UyElL%`wIE68uix1! zjH1a%B#xIvC#kgN5I35S7<}X+Huy`Pgaw9KLyJxy*1@4vXF+F@;`motZ(W(ru9gxt zcUAd6j~Xi;q=%zAlFq2#6ga6J9<7(9E`)PpZkOG*kB1zYbMUbHPcL>e6erbTd2ET0 zC+fWl#qMk)Tpu`MoGI`nYP(f*oXON*k#yJxPDuOAf;3pvaPc(IEckQ>tv}c1<2pE+ ztfUf&&xa0yA$?uN-SQU;44C!-9E78MhYCy)4SEm7Yx-^R)5v-H6VD4Lad7)+#nsc2z^GyvunepK6$SoF(R#p7|3 z$R?n!aoR+vE(>q5?B)9nm4u5{)>RC#AY0@1%^_<4Is%IE|7N3Wkbf0`OJoW3l=K3; zRUtzpK=ZIai+UNCOkLl_<;ao_9Q;+`K$SfwbW4t>odU%&y%s_4M6-fq<gr8(=r`mZEy}=Iq z7$Ra`S?aFlYz;ZKaT;0WzH_tUSRf&6Ni1i5RFMTlj`bKjdYWxi<(Oep<(cvGsu20> zr{)w|LfS2F>am9LTf!VrHyy;iMfV!*(w`i0)yOqvbHB&Y3Xh;}zWT`|N@api-aX-% zb?jSDHiX1w5NOY> z4YTNVWm~IpT-mnBquo7|s5@oz8li3|Pza5r(!j7$vC||7rbQV9p?Q`ZrIA$vY3`}E zPo*&yje6uk2IATOQ@u1PQ3@upQXQ8n$u&ZNLivc}GH@Mi1m1(!N!^rm!=q=|K@yck zketS6QGP5@O$%@4b=r`9v3P3lb5}l2CHPyYAz_fBvbm(F`eo+ujo$xzAjK%aSBaJU zq3MHS8sxJkHRnmJ0smnB)j%ND^m(u(r2+_w8Q=nKjA1SbAJCZIO7 z%~t-Cl)ug@U8^b`2W7Lm!Ct6P2uRL4#fB(43!l)s4Z%7tF`nA?8HKfd<==_^v82b4 z$7o&JimE|Y7E5YcfCrv|MTQX8aF(ph)>Sa#6ZY8e$E^AvV3T&eK!ZUw-9$tq5qx8D z;x4`@roD-Jp2sPKh~+x^TJ@IyzlBO6FA!ub;>;P1^{%oNfu47{!$!lQ1{h77nHC3c zerIWf8xVPVyZ;F8?c2Df0i>gOEFg0=+b{g(Py@K(t*HdEh#zoUk zt$h#SznbAeZLu!3*bU?qwbHfsvm{Yc6E{{eHnkIsqvJtVsC4T7;${u)@oDj*fHZ0^!)90jxurW~^N1hgQsfMXn!}dPnr1!uWRi@*_LjOf|-q9TLo7#xPZP`by9CD)I1px1Vg_k zL1un(N!@Qi!HBUh#3Q?wKH8wZ&#<2WaC(H{c$N?|=G8B)_+txgZn?Gc*tY%I`MX&6?iP+`z%a_>Yr=g{_(6e{N4My|wI!)ta|G z{XRqg!DTiwQlZ_Tu-alKiZm@&Z6GdP-(i3$l0+IejZ(>}C|W)x{My(7Lf)eg0D|>N z`T+>WmI&hA8~-5x#Cz?mchDItZY7RPW1P6rv8m83SFblcYwo-+oA}-xeZ0wRwHX|O zen*-mDZQmRd>Js@e~v|(+1W-{ZJAL;;QAg;0_}L;UH1LU_HO&B`B_3&M4|p%j?v}G z7``){X)f4X%;Hw0RBz?$#suHn48Jqus4EaX8u?vH-yseKFOo7LgBZ}i!<|LW~~_n&_E zk0fv@=xQqP8t*dSgSmTjiyDQ!*);nYSL##WlJDA6cIPuSXLB^1+)MDi{I)owJ+8(_ z&z|jh=K%LcAD6Q!>0Y4toDJ`+I|<>o+y#wokl<7AicI0QypHZX z!nrX%4nkHFO+{|8Upv2{Zh8t_8o!~o!D*qU#m0~5dBdG4{jQ$>)+u`akODqIovAy* z`9wZBg|_*76Ul%<8){oh2A55eF6?Ljb1cZl-z(>A=K3|xq{7|7og}r_Efq{zx$L6c z)aA2Z@dR8G8Pn=>==9aQ_U>PRtD;`8qui~-f0bc*r%>fqs==|irFbD_@E|ocsETWl zMsZ5I^wj3Jn1>t^OYt;6v{Ube%96ze<5hsTR8e$OZrL^;Fs!v8px1`X?gGZFrsKiv zyva$=V_R}7*UlXr&b_*3e`_z^wXPVSQBG@z;A57@;5miufXv-cSUmXh;M z;^I4s3somzl>5nKG84y0I@pB$bMC7U1AyM>V)$aOvv;sFueQ+K{;>Th_C!~o<={9? ziG<4dQIi%|xr!cT&bvIk;25ME9ynZaX1_@|9UllPhd@ru`-zkH(^2RxLh*n5r;cf0mKZZL_#?o*UIs4OzWZ<0*oOVChhhiz zoQ0eTJ^Qnm!-B5|u0NDYMk`Ar_Eaq2f!VtRoktx^>}^L6xJipgJIK5#2moK85P({S+?|Egj^}tjO9^DRkW?)TDuX3+a>g05Ju!#&fCnM|6oTRr>zlB@ zR#<9e7id-&@xOS%bV4-N!fw81-;X>@rJV^}+&B0}y^!6|s1Ku{zI1g~Nd!5cbJeAT zDk{IONlRcXqu{$04qdRcx+>ET1EzNxiw5^$#53HQ>VD=9Z%@){pA{Cu&5r~LL~M3I z0m}mn+^V-CkEmS@n`w``Sxh6WP-!14PwXJM@J8M7G2n<`Qp^JM+ZT#mXO%n^SAtjT zf|oD&!^**H_wF4KY{neG|$7<8tnXN{HSFq zS$m}+SFZmd5T@7N2c18EBnU_qufr6-&f$Dr4dc#qln5?=~m+MwKC zCCt8*c9sL6^BDe(>NO<_N>fm1p*exBR<~?Vq04RgQBV>&M$CQt`tlxo$dB{8lRN~J z06tqMcDTsy#To7?=i1n2}y!r*kcRy%lW zt?Bc`o2G>|wift!Xu!}?2SC=ER#9MdK>!o7KuXXO3|YQ$#%jD|>+AV+`MmvzMC)^I z^%KOrj45a^kZo}hyLo?}!4l?Q5tnR-akRaXB)}>6J-*PE{U;s7_1XTC1}*N2Rt#9Z z%yoAB+2ZAN5x?!ms%X#c+vM_}ZsU4B6#AMtI6k#jx4+nPSTHuL6dfYyN{m#27BRpv z{MUDaSw|COC>gxBM1}jR57!ZB)rTxI`R5kgPUCl5``>&m6|0oRU{Cz1&D4mKo!cAY zl^pK9Dy|Tw{tH=h+F|(Hu2ECU)S;pyeRV7@F&=klHk^?K+Yu@7I*u?EE3Gw*WlDgk z38Rx~VA2wUe|4v(q!N=Z6KzSnb9;-yu$^>Qr9BU~doi!}`?~|wUT)A!O$F0;XTxdz z6109=0KYcVz+?#Iy9Y--!08}ZtBT^U7v`KH(9GC(Kwk76q|V3xbXdJGfW*_?iTC~U zUAzJEMvHuN{b-3iPRDU$2>F4S>X%|r<)=QtI3S9JVZ;iryHc}%{e}@YiL?{Yv4uPZ zc03$Uy-`Hm2&E zHcFRWm1LQrcodnE9LkicS*~13H_asEn?x{l0`jR>06rFzkm}pW zI}_a97$oqnp==5Rk1Tke03I`A^{*Sd5evG>arm{NOcDyrXTy%f z={T1IYau|~RvvMqwTZblk_Gprc&A$n9dg^q%HseLPc^aQ=q(e9G%aBv0beZ zW>QNr$F)gMqi;)7v8qdFI-8zq=I4g}{xr`Cy%I{j8x85 zt1Y7mkS)^fEJROaEcc053QM1xh@s9j+|}};T+sv_YTlx)i&~AEt604r*q5tpp=zl` z9EoF^JX8|xkMu>@3I>}eLZUVjWN#36|JBjW3nKvEYhs^wGva^c&m1%ugjl$tU84W< z@}Td|tq0Po>J94wTFZc)dC9P<_jAcQjx@Ck|DG>J2P&ClrzN!g!BjS1*CAI8!=)^{Idl2`(&)hK}Lb* z=8625_p;NMChNz#?njdxKQpTxA!V@CJN-6&`#k3M!1>@qQfV^ho2UY#=n_9PTUD8J z(?;zOd;))g%KFnh&pqr9Qs3vWzqV^f$!^YH+Y{4*IngM%ZBCo8@O8fTOGO@_11>PS zwzy_MooI$>OIboeclO|jY5n27(;0$SMpnGS5m_3WcYck7S!g-85CYUu3BgrrJJ}x6 zFd};)D1j0H8}S0^ytj@>uk#c4N&y&A`Mu?4MEPqFf(e*@6N2n=C#}o1@a^m=hoPEw zcJ0ersZ;==qCW&)_Mdp>asJF8t1RqYUAc!8OVRMvXrJI|7`5FPP#22H)?%>$a*#RV z?1JXwJ{{$UjfYC%zE{y%_Nna9ir4GtXfNXh_Fw?GnF8tKjBS`*@K z)PADF6A?9};I#av;*`3z`LgOwHc{r#hk8~M;S&ZI@<8FZ8VcBPgTK3~P?XJYCiVPB zC!9N{XN*Gwj?Sff`=fsWY2UBoqKiwR(0>6rIWxH;NxNvg_#k%0cbV@-01Y9DX<|Zy zwg#D|O8?Sv{*7d!3ARV~p>gzpaeT<-61GDrJ0agXm_CsRX$^|ue&IU>K=z4_L<}yg zk<26d4D@48%s7YbN;IU}Gh4aVk<7x=vnbEWj=-luv=J1^Pwb6GlZc2s@*>#7dm8uO zgT=2jaz(fgoMXfmfekWWfFo0skyfHlX-TTbk=!=Q1jM2}Dd=xP#ClaQ-_5iiIT_fh~n+QvFl2R(9x> zuvdQt@!-mD+O#+F{zVD#Gh%XIn74XiH>3(t$fP2BS@oBlgXXyzEPxr}$K>SKCE~77 zzcw9Faup-MZ*pdUMTs(59vFsjxz_+hs>qi0(b=d%k&@LKbzBt*5O7N}f6D8}vy(}5 zhQ=JwVAopKk?>i-c`iS+>vCnHg+<2hs?((ikv$pE4@e8L@|bv8Wwk~Pzc@mXbU7!R}gk?7~F|sYmh=JoH&ita4OcSxj5T<;%*nJdg zb^^Z8a6@)LB{*~77`HIDmy2qxD$eOyAPruSyMyM+t$R0p&Z;e`Et{na;F2QFSQ|-% zTj=04$Ut-d(l?}LaqbvXToQO=o~;r0FEV%U&&Ii)cCMS9myVkff^kItok2_-V8^nG zP=;9)qDPFl^LHk&Z|iFO2WdINDGOwGfa%Iu@Tk%iuCZGSsy#1GK;SSvG6O&6Sdm0b zj;oeQ^a3hOPX;%MzRZ6~#>z}4G^xaFq{?l^R28D{t&>1gn7rBr+$SxhsPKYI40hOX zApM#N0y-eB)dII%`8t`~sE8ul!o%fIauPNA2goxmPr#3e7Fk?-qePD2dn<{i9?jZs zZf1lcBYfQ9O>@IXyzbp{>pE%L*PC)11W zp`Yx?6@tSM*I^6h&IoIQst})k1Sa;e`6Ci)EE*n%bPI(!2H|HmVIyr5B*zt!xZ~Y~ z&h;GHRqOZ$LMOH?S2Itq%P8T#@GrOd*}Hg$UKfG0*s|AYUZws^ZPaC-qkvs50!0jM zU^&!RY<^(*-?34*)54d)^K8cft=t$f0=o zi^@|KY5&?X^;FmtKg!8Go*%IQy2^JDUIXgdZ2ys%O zZNAw1iSD)&lBJfXjNwjFfKutNRc4An<5)RFYgA*9;>nfEMHTs(_G?8qKbc^HJwJ|C zHT4f)IoPxnklc2^U1r`Eq`PfeVtJAUTjgvUQQj<4Nl>GsTlWhM<-K#$BVi~5PiLIj z9^n>+@`Ih)JUj-7Ygr^RG~qlN5|r{C$0g&Fvk|0zVT@BsO5Z2})WTug3bg96h5Etq zKrn<*$kKJqkCer)ICDK`n;g!%Bq63Tq5^9c0R}OU`pLpPcL{Ts0PvA`hh@lYj2tZG=EqcF zh?G_uKn#t?xbR~e=$}nFV#g`l}SZguenYsA1j(r++a8fu_Gq$WNvtJ!SMU z1WFUsRw%*+Y_Tr<(@rCyrmMf>PW60fFub<{6>PCpEd^h_<_?-)kHw|&c7O>b$`kP? z9lG0eGlz|n*oBiumb5o{!;?l`4ru_?y!3RP#UFKkAK(LRiqTq6gm8q|=oB#lL`%9e zWz(0FOw**7erHjTNxQ>yT8D|0jn~NHo*~KJRFHPcV{0!AFLRcy9s_)$l9LLYM_<`u zmYe`w<1YFqJ)k-aoB%R{oqRWh2&9tDc1hzP;izwU3o4yLK2{e{R%VQq#G4y!J3*kt`^Q zmrw%F)#2R9LDvGKqXp1z-a+{b(SW7^2kk zIZ{w=0wh5tje4ZY!?AId0La*0u~Ty2EwkM|@nBtdbogj;m@m^*#R*-|6yvNP5EQEt zz>8n>V9YId`W?!lWHm)_xRvSTB5O_+oHmWzI~lljkB}76aw|}fcs(Xs`>`8$Dd=O` zOirRd;6LfH)ZsfC8H13-O4ms|CUG*s>nhU3GyW7xPm!`?|F%d1FBp;PJc{kprbtjY zC@4kc*0I#WOgVOdyMr@_r15Oa6)V+_Z;3*ba8j;6wk^#zr&J@^cmzvi6LkK5X%rtYrbhB+K>cTe?%D(;U$0xf zAwdD6p(-MRsuT{FTcG?tFM7+n2!=_L{icbpTm9xt*y7B({o0Hvi+83jRqsx2UX7hX z+2l8{7w{&jqEDG<$Z)BJ6P6%VKFdk!hSEal!&Hmx)@}@*m>Rh^;uE05Qow}A@&Igb zS!(vfOvb;h^P2HdQO6Hrb{;kGbX4L?=duT9`p*a^j|}Mg9FOyI-yvplff3yxu?ukH zn(EkLosvi*W}_01ak@JOP=0LZlTZ(=tDoP#M<$$ghZ;j;R4h1T2N}xJtCm@o77df) z+(SprS(|7`C1S~Kv}B57HhHJuEufXuEhd~}HX8nRqGL8T>5JM_J1)8afOiGVVD22T z=ZObt%;Ck``+poAl9bD}foleIJl-b(*h`ob(5j=RZt;De8$*U*z7wf}r<(LcmCFwy z8#s1Hv%r~b2bBn~P#MHSl$VgzcbL(`?anX#HK2TNGj|Oj;}%ghqfUE(5^??szzGHk z-%5?v7?3`MBLg&eN|>h3^D2#uCgzKYLB<5enxF#;C}aV2_UAt?Vk&TPf;PF>_Jn~-f$G$evr6UaLdft!oM)L+O6Kxths>HXZjy71wMQXS@gol}_Eilu z9M#K6*N>}IXaeR~OVwj_s1~hR`%doQfUw9|}L<;_OhNt}1tJaWV&OP|&Xz!eFB}52h@l!h~aJsnRbDX5tXAur2t=y3R1LTwJepUt!^bWR0rf(BM=kP|dW9ulJdYk&L z;de=EW~zgWN0gTj!>rS+a98)SAc1MtMC<=;67SYpqOcra zX!4BbH5jSEHW1m92`Vv8d1%iysSbaFSrNKz(8}XbnIHl-MRXC1s46R~qILdueZpO? z3p`)8QqH-O+-xVhUyizgd(i37#wJF(y5Q*Nxm|_4odEp~)e!UqEj#tbHP|Uv%r*C9 zg;(hFMjVh&u>I{9b0Scey1u>GC;178RC7nm0%@TrH(D1NLUbtS%mR90N;_?_FTMYo z@ie~g%fh=rx_$Y+_xZ{c7g)P!_2&o z(CM1XLx`}LeIlLg9fH6oV&}}!TUnE&#s1`588dHkDOuI+_DQoO57ZqHEISW9Ktfgl zz!_*6g|D zQzz$!-5ftByck6KnM6&qs1n^sRGeJRfUXR}uv7&c>x$*!>EowERUT>(3m(PZ0-fBu zdObE!hc1gOh>$CT1Vn@$+uPGvUoW%#7hr@t=j&e2PI(HsIvM|`-tw77*K24G!ESD} z$NGUtb3}Vve}6hqZ%o`0-hg6J{pr`OuYHi7m5rd3W|;ppZYm9V#e7#fQ5$4ZyFFDO zIv#UKm0rOzCYK-31>{DUX}rFZOd^u+pM@7ZqT-~hyf1}%fn_Jls^*R6-%c(ZOkc#Q zrE)DRRR>}#D`1VEQ!RhBG!Y*hx1q{{ECR8FK}x5O_zbJZ-0?QfwjHm<(7m0}f$O2aasoUk$9w z?XV|1`a#et>4GHYDexSlkPDo(ZvYJ;Gwjf1DsC)$vreJ^!InpMVo^9Wav#dZ-WTyu@7!XSu9#|2Y;Pqe zWr1&eC@50CzsISYptw=qu&I5+vQc>qAH5w$z^oe9F!~D%%wr7~6inWSs0L1AEu~fJ z!xBwcXAGUT1%q?%YJVOT5g8U+-p5A2HhbecY2qG^^6{fSM%cfsQ>(a9ReDEKmGy?f zIwa{e##p2h4>&!+_k1IR!M~x(9w9>ksQCMI--cpLsn@ZJzL1>1&6+m1X;*UViU>sY zW(_;l;-N|QO@ll(@|&bC*tsaLW}11k8sWo0d&_{2FUT623;cYb+KK=qW4so&*4C=y z&TDc5$HCso)G(-qpoT_0p@|g* z6&PJXYB{%O&?+$J{`iz?EMA2yM*B_4wxuN9`Hz_?7g4PvM~8UB(WbaZMedUWXq&+4 zVSH3zfD;<|BmTv8^E?(9A|i`#0E-{i{%4*LgD0^-`>b||;@-vIImU2{ms>x_9SJ=# z51Ly&aro{5F*1u~Y-}DV27w>}U?6Y9co2y`$wj06u_C*sr24nfvxf8|ZKs}9g(;aN z9?)}#@h3|{tIrH=2jB>cLL~7P9=VKr3p1MuQ;(v)x>i6onk zrz*I*vN?G^(7jM!s1rkv)}SInQ*d052L;5l2?wBc#rqGX!}SzLKL~(i*K3>0VeI$3 z%15&|%Lfb(uz1ChJ@}s~wK*FG!9B|Hsa4rWT!wG>pP=3o64kKa9e=HYlE?52Y|xf@ z&@nzZQ~fjh61}Vge8hWRnX%X5YjMt*7)hD2fW=5>;SSsgG7`nqzAloJ0NBMQ*12?~ z%D`B@c1!LV!P}FQ+eUEYMtH(0zUPm2O- zMlNiJYpCsm_(Cmqm~zuJSnJ*O_V-8dzJ&7N^P2a6<04sHz+Lm)9`S;p8O2`@_&+K*G`|g`8H=~F@fJbu8m<#0daC3=u(*!W149}P#zWL{bx%cgSz2N zfxXfW)pB3q-P>gt{anL|hNEWVl6@Lg%4!LXfYUw>J0j*nI}&H2@= zm`(VvXf(=hfSP&aHfPNVfYGSy{VR1+>y8&Rj<;Y-KN?xc~0hI?}x?kGGahby2FQ^CWISwPr>_+Ye$5W)vwd)EG@ zuQF~SBpq3?_?h`v^|lqoS+z@$>C7;cKh;|u=y^+s^vsC|>Uvk|*)o``-{9jv>JdXq zylZv34lflyx0ztQ^A4bZId_?pO(JqbiUOaG zH^6M{T~_rW#+KCj2Vy#)+R$goSAm2+UIIX_OX%artSIh}L1p;0o{2?;w(B9kbk0f; z^y|e_RB80?Id0X_L`$F5;8u7zYb9CA-YhgqD?XKU%3h&k-^l5Qe8O!FY4t98|Gxl4 zK)b&w9!s~0m-qDfoMFk)y`V*K?by~|*yA7$&@{k7r@o}bn8jBo=UjRA@$A73`*K75 zIAGw|qLS!$FP;$C$Wf^$XwM2BK>aZw{gtHtkaCn)yz=cSQz#gwFgZ4oiS#M}*fukC zBMK{-l_Ph!npH}ZHT{76NL(h#q-Sq8B!jqLE?zXNt%6Ds=c`!I_vsw!UhKMTFK#3! zNuPo!p{rY?Txy~<`SYV&v`lWb)cNOy&Pa^2uMSl6mm=&w+m_7B1ruKhnaZfx8+e1)0dU!5>3%?j3`v;ilR*{2;O}b|0(}T1Hk@nF z0quXxDq6`q*LyrjHo5T`e*DM(x|g$+!;qUZu;M_9Su|cUeq&m`C%cTKoetS5x6=At zwe}Rk6^}%5&~OQ@;%e=-ZWV_XVb-?Y&T{tRZ&a@E^iUjd%TTIOjSkOsTtD*Aj2gr> z8n!4@_Hgc2b3+Zn9qIEJTN&ujhGB(gQnklsfV4KIAm(V*hDN?%12WJk>sM87)>vL9BR~_ zo;6KNgG7`hBy9d2K>nZ5bBX-(p5OOg*#TL4&cz0^QY>JIT59h%Zq zh>3An))Fq5;FpqJxy`UdsC3j2s~ecYM17I+3P$UiXl&$6XFJFx0Re!0Y*1{))IuaR zGYJCnlI{{vtF)~e^HfiJ2N$Z1y43P6b^|C^+u*q#^XCq5o`nWf%!}cv7Cbuqr)`07 z+CC8*IV@-^toutQc`X1=Ny}%*R-xmhEW(vp5sj9t$dzwUp~06uH7ux;XOR9JN!BNxFc}P0(vU2*8yIUv}St+ z{tEqhbi$9ko?=VbtRpMsEysvHJ_7{d+8KcYI^k|cJRo*@BV$R$)L73pUBgz?kP6WtyYm;0dI6q z_T|WmfC?MT?4Mp7b^ox=Xo0;dG%9;@cqtFu@v&tOHo$`tdg~8G0NVRm=E6+Ib#3X=SM%1&06NQ&*247DCOLn6^m>mFja? z4~~Ql#8`AMZQ4%30ii>TVoa{5+^zR)dkpW{>tjkeM|Ku&3`y#8G0 z>jy5@4}8)rtn9mrehc(Fb^ZeP(UP3NL;|P~1I~RGhTfptCCdnj{jz%_xJKFFRc{}& zesif+IlQc{*dPAZ*eezqaBmjGHsr-)i_Z5*3&k!WlAy?KWQ#jeaz7MG=;LqvksWG9 z3^u?KE|aa^Yqwy*Uv2<1nMKOFg5zG#-}1rJH=?(VHMR{jDtD?y>;Uth?lsGWWx%Z2 z{u6Hm>4-^#7Xf_9qDr?J#vszHg?q#Hz&)pHe8px3K8$l+Z(S=R!?ve}mc4TOL~c|0tIZzin;PH=d z%*4tzyO~zYGcfu+Y}jvA&>60vOWqJI%RjlkC2ohD)32E$x$#`tbI%zCdLvHU-kd5i zITcmp={{(To3Cy=tG8W-sNAyf48M{NNxF$3bzZ%^B8petb8(McQgNI_jgVyTX0*h< z>>jeGv__WL?GLS5bx}5xgl}@eFSFY-t}#Qs0!kcIvXKu9-qSS6Irg10m-)zBI!Q3n zB@)Y%y_#ify7d+O%A6_i7}9^wo%}`!Kv1I@c*-48`HsagqVixyI=7bP;|f#`b=Uj{ zo<;FO%GP3rOz5P$6caqTdt88=N0Ce}Cx`?0VNSw&8YHDalh@7Nd3qK`LiiV3Q74+r z+{}i3X>+hYziV@ZWRPG%dCEbwMD%sdOwy|)lN0v6N%ob42f8+R4h5&XB0o3#->wY( zIog57vU@Vsvve=vgTiJr;=`?kE>H&zou5oGi+J=t;DrY~%fDn<_#*BFODLxy&A{v; zo^Cdr?($o>@}2J3TiLSRnojPgu7A%Q4j0Lcn%#op zEDTdm&OST_mSSKQi7VR;)JT5XWz7JJ%I={yfLpykp{TGpQX5J0`F-Fw5drP8B4wZ} zQjniQ(qQ}uY0$2uvaVAm-3jAq>rdFOD&q4*V->!xDY6f_=5mkZ%(m;fhOHQz%x4+QZM7^kPaAwf*}H;)#>75==G+wvsrzdMV~YLNWLOctmPKD!=t%HB6v) zgKaE0BEZN4&cd!j(wIS8CxRSfptKs-6}s5FUM3vkmRP3@Cc<9=o4(NwvTZNe#Pumm zoP>|^N52L~L2mG8b`}yWuCM(s7LV)4m#FEl8!iOI1c_BkOejc=bj4yhM>`cnr$KbT*n{N@^qJCTXZZ_JUg-iZETj zec7WWl2!`FixsDte0Kl?3a^5D7K%x_;vA2 zGGl|}ExET1-cH`#%T-Hb=XY!``#@fRSB0#R`^y>1Ws@Y}PUL%<7y=tj zn!Cad9;WPV?H2V9HryHqH9IdQcas{qggwl$eTCJM`Fg2m^v}}c`xoN(naAYn{FL_x z@BXLwf3lK)F(2?Ur!{^9qWfP&-u@TyeqwVoa8Dd-9Ba++|7~oqG4Ba~31pry3Q6=S z?IkXi5JGNX?_=!0;ewRTdMOmGIHLO-uy@|7XfpQyuRSsR4Xws+_5_x$@ZK(yx@0z* zb%ro!>+TbFY(OLD&(;sa*;=o`*}o`t3Ip`8TMWCd#gm z?2@SjI|hK$Pv#D$jMS&lTk8|L|FTag3R3hfX%rz0E$d5Akp##EIvA}-g#N)K%Vc1S zS{+8pm1|_cCqeOeD_UWO}R}OhtaMRQfKEkSLATaRuzWL^6giOvH!r7d*7bVAB9;yP(F2 zZ}mn$h-FZ;o*UkpKg!tb&jB(6I#aq3)@MJf zI~*jC-AWXLGbKvpOoN(J1ErFbsqUf^gJzA_Q z$0r>a_LCbPfYVFxY-2Am;31HBy8*QRf?7={dMZDq)A&zx~rIS={_D4BU9eum~b#wA4a%ZV=Fw1 z^0=Mn^=-zA=nV&Dm+jV+S9i|^bMdk#cU)?Od>*5zH8_X@YF2&D;fZGUy1+1hjfSE< zv_iZSTh6*12k*$R3l{A%tQt^I*syF`RuYnn-Awrbd?^SK$l4ljYj>~C%y}Y3KO%Q{swZ>0i z6ZBinjp5hwL!VnY*~TG~%j0P9P9abF$YG0~BsW;FrNhPhEsnL~4EdsMs74;Xt=fnB zWyR-K!;uPyElGQu>u83`8ShDUeI?xI%>NY{`H@~z9170^4N~1TwmVY-KT6f2Iw~{7 zj%L$R(c?#Ri@U2#lbWTt}c$K9&yrblfsf%+u);yA>q1YdqLg0CyiZuu` z>A)Avi>7;qBZ4K^LO~f$(J7tPV_^IiFActAT2wX<1ykS@Y@->Rn1&1GG~xLvL$ouw zkS#*)k!AvP(et;YjWd_9H?Ap}+)NeyX1K7U&QErzO4}c37%Yb#fDusEM4%Fsk1;2i z42OVTE42$q5}S<-FI_MA)6Nv6sTCOT^@^}A3?~aDEaIjv-Dm~??r=nJ@VJ>aSScCQ zhPKwy^mG_f3xHvf!a(52dXS;*rKprzEYvN2m=qB2D#(#px=LJ$+DZh^uOw+QR>0dUXIIob3DMq~HdKn%0PuXoABk6Tl)g}=c+@xUBL=fC#q5s zaY8~s&Qs_K46W@FDXdHtWaThjw7tKr1p6GvqV1h~L8>SJ05O{9V@$!1O0okYx zZO^g?ml_NW#TyFU#NlqD^Y*YF!pf0(o33nt3DL1>$mxi(3|kUQOlkkPp^o7cDT+X7 zGBwY=?hzD+w4F4_;In{X?AV|RY$%8x=~tuUJf~c;;BMN^fR3%A zySiKv+_4F7CSj}k8uHbkr{&g+65@l@FFoez^gvm}F0Co7n>4*yVK;w^w(JV4FK(Ok zWx*mf!5t!JCF!kK1PQL`N%3=O7_(sUX_2RLI0q?WA$vF)+lV?6ML)coW zt6Jf)2Bjo!DkF<>G_Pe%h}MP#uNBm+KyRnBmt*SkEXr|<7E_Y4)F^BfPRg`qTe`Xc za~lkom2VT2Ld#v3i)XGO4$E4EfC4xyB!}C<(Hakam!Z=o9BbDh428*qrl-I|gQ8?e z`t|zs@*b-?svs(gh(C==4TiQZ&KHIlJk|p!-yyo~jDEgoHXe7zKTkTRaDR}_=^QDy zL>e&L9j_u9;O1|k_b0uVzt?wem#~Q+#JF(c4+gL}9M}XUI|1fI>VAy6 z=i{Ft+8INmb}>Hf`e>O$)sx|-&L+cm29kbFR{BEU5R@M4BI`I%83@*f@l8n(li=!% z$F_o|2Mkm%x`81*UJgZMXw+$|+Z&vBt74nFMe&H8(gc$p#)5|H(p&76kcqcQ-N6)T zsd}X3a%Vtc=axA_-RTOonX)fJIBKfNDf<8v@PH%n;7dywG@;EoBuM7Hjr>eGZPGC# zbh5x!@eVe|1a3DNvo;%Br35Q{Eq_^ybc2Ec(+gF_GDJ{QvF55SuEdn! zNTK3a(@u)wuXVAI(o=?blyP95Pn2?T@MXzmB~wnUxbcd%l;@ZWRl3?ZEM0|zXYCj&Ajd1RfL^&?zQ4 zmx}{c`B{vM?MMzGSMl=B9>wiqT*O1+RW2kOR>9LN-6iG^plNnyV32Y$p(opu$3*Ya z@B&U!m_GPspV@uPKlkvIfy?G!kKzB3x?tQIrl1Z-76Elf)(+e=P|rPC+wZeVWW1a8 zn=`U+peEt8-u~e$i-x3d8_#P~o}ipehw>(wfrKrdYWJZE3_VB_=J3GCi4hV8QPn!8 z8{}aObZdL_%PMb-=e@{9?1!$|7HBi)WAK)YOpa#TlkpVd30%%7;Hqk(U98~@uQeV_ zX?w3dhGt$a^Nkn)G=#c>eW(?YyH~?1Ej>I6Sq#84js@@qGH zS}PmE9?ahKSG?Ei!{+*y|B?L?zED=7@EQe6k(PLkVlkR)6_VWZrS?kJem-2nK}+Uc zGuh$Cy!~1*@w9j<+lzDZOWZw?yl3flQ?ADRllkU$hgjOmN6i+jW;;gcEfK!Xj}~k* zEbxQdKNO#GV@%!h-5pQ0Yqo!6sX2b(6z)Vznv@_7mhRN+v_c$6kPS@fICd|%oPkxzscTTBIMA&CMjwznYvcpA1#hM-{`v`{NHk?28% zyF*MaTyx091KO?NqTh>JnayvlQ< z_;!fGoIXe5&0GR99man<<=d_NdU>jZ~Lc~G&jOz^W|g^Ep&*4*NVlZFGDt!9xab7q!AIGjA`5)XVv zK{8Cs;xYCudKAlZV{MBeaRe8tE}xDp>(-74s<47jNPLGE7eDB_4=n{v2!{PJ4ZmXC z)Jh6hr!yt7?-Vmxm_lP5*!^AhN~Lkyg)s8(CqAoUA5IUa#B+mb6$6(j@IXV2fr{AS zgb`h1{@Wd5oa92Xr^&|ulh@Ur+yL~HqS&qwTh)abkMTcL{DjUl`n zA|=9eMP*Gd)aD6SNI`n12*2nWo272PrO<@Rxr`=)2fMv$ydV{ZEl1cQS5|`pBtQ>< zThf6?Pb@q3hcY?Ym5uzmn*{npt#eoD;oHtyRgk-#;Iu1x1}m z@lDEN`as3*JMWUcwUT3W_V|3$Fv!~#hGNzbd~>jy_2IkryY8vk-nOtS6Qr7@fhI4~s0GP7} z637QQ0ARssQ9(8%9gZHWm#J@>{Xpeb!nal=r$^lmq9HjN=6#7?76p0@egRcj)p4J9 z)o0E^vD9vEl2)-*PDg+w>`@c_kYGiNVhk!b>?{w@E-CtC1%_`>6>k@Oc*8s8qyC(OHNPoPszI%(7-QKG5d%fubkWQXUad zKl{CSJZ(g=Uc!hrN~D_R!^0mCedcNO-_NlrR2tjZ=^HxYfX@-ls`=4xXbMHXyO}d0 zE$fTp(~30&j^He?!`L@A%0-^w#U<4GdzeTW#P;x=6<$iXAo^qb64HIE9b#f3uO!@#mlEclM$a|2Bt`c zFg7ENLxiAoe@?4wn3EDTIx z*kuf`%u#Drt?KEzO6E9&Q~@#Mm$~4q2bmIVo}MA@AVJ%ML1*|BbE9Xx7XJ7coXzfM zR8y^}Txk~zP@^_&>5j=j2=p5v7f4m2q{GMp39azZJ>Q8KEI1@{z0IMdsvLR-Pl|w@ zJca?6z&lfF-MJRv<)~>?FVZlVl@{xOJ2gwj&6zV*%W6TNLzTh&cD=C5P*9^hD?l2o z=J9(2{oNqu|5fZ`N)%vDPu>WWS$@>hG9V9ozy{Z?L>dtkd1*_=?Bz~4lwSq+qji%7 z+|BwSkPMV3$G(+9ivrAp60*wrL4@ZBztYT)Y5zyS7AW=)RU(v*ds&C0*%OAN2)h?gHeRqa+af&OXwYS3^L`;wCg0R}^*?$Ep^*V%(xcEf7LtvjONV5$oqAA+w{7m$Zp}aaF>0^5sV z@)5c4Fj+0PB~NCJV$!Jc+{0-1%-Jq~-ZM)}Aqx$8 zI);>?)C(t;#Nb;CXZEMrfXj6=@5II5=rKaqlOkj^P~5u)Do>9h`85-H&1*KbvGeMq z3=`#gDidJf@V=msWLucs2?pO_H~7La-s?8ugX`FY3rv{@So4nH2&WGbmf)(Cw^;t( z8-7FE>#3TG=2fl~An%e?Zgo~&b&D!$&I(i(O$HIOPZqEqj{f`){{>G?NAPk^dvqmZ zu{Q7vICRsUnrGsltz9DzuUW1IN`Vkk@-9o9c^XwNLB>(}a*GrY(WQ<2=o-5qZP4Qb zv5HA%gsK}+b3b*uUDH6NR1cZL{`2sbRrPsgE!heZ5V*V1pVwWT7_0!tdX)ZH-0 zO8|-kHH;=KVMo zI-1J+3vCYUOtaej?0VaLr8+YusqvYbRf{MzDj|}C#xYU5fCbnK(t5mLOa6B!xnZ9> zCB!DzrpkpmA%gm-!>SRUTPq5#S=T3y7yZlzT@5r-Zi+^4M9vv4O+PmZA~Lb=lR_fD zg7Bm;P8Ai2oxj7A!o(E};L1Y-VHzlgF=wZoU8?+2<+%%F_C^Zto7=;!V zRq)Tm>Xl{h$aHN@hmhwWa;emEYM;;vw}>KCR@(HtuAr9D{;M&LuEmzf+-fh*CrZJe z(z}GaiJY_-s+(Y%SlwJ)v!;Hp5Pfk>Ox}pgvTWlXwbdOdw9M=a#pM(_^Xa^Q|B-J3 zx#6XJS~@@s`?1yryJkaR z7NUqyd>RPIBg0GT)3uuf)0GngiVdC|f)bJ8PC_FZV7Y*-(N3y_Vwyyp1jAHPIdVWi?hp z&bp!hZyBiv>@2@K2O0#m1@OaMZs%c#BmjcQFO^`rz22a9_NR2g*T($br;O^Sj&ns! zPXIlnUHJ%=TZNwJcSgp%T2U3)fG8QNM5jq#@B?#nr?e-ZKA5K9JF3`)5Z~I61{z3t zKaXMo<#@2BJ*qv}t~u;bQBt`i;Qs%MI~%a-D%GS*3-X!`B{p!ehOr|`X6-eUuzV5g zQXj6_cG~}S0b=SF%9MZFxXlMqfB(XK#s$||jjnOcp0j-coe6u!^CVKki8D)B(1}u? z41$U)*D5WGJ27^}!&krMpfY%xXpgkjuA`AD~)1)b4zn6t+9; zk^hsUUc+4zp{9X6HP5Fy5$kD=oFXek5G!_*am%=8dT$P*uICN_%*U96QCfzw7>*t1 zY-ET!Oz^*D}nIUtqkS)%YPsB#mW_nIY%atUxA+A_%f-R z-fKQytsY=Vg4T-lSf^Qbr0t04C#xN86c}O?HFzQGR9MN+~_aVjI+|c>5x={07=RzF-=Gt6kVm^M45p? zPVtgR9A=cSnF}b{UCBrxYU5kijTy;uo{$_y+Y}17q)JxbDlY^o{>b;Hq}=f( zVc5P6}fTP6o+mWd}&5u>hV`-;VLDG$^KIn@nn2(xrnHVs5A?F=d_Q zqn6GwBqZh~z$4OU$i2DHlVYwUeo%KE5_~6+3&IAt!JrLI`DY?+BPF@1GUOKEK~ia~rP;#O{L&tvjPBdhc*%X#aO;7h@#ai@p5N~(hh;QC!GX(j!};(;;f z>71xUj;1bi9YA?q`;Q`@H&i7cwv{3ubJhJ8Xy?U(7HhN_HOXb$3)Pu+?VR7NBQcp2 zTJE_;yeQ&29l3lCoeT8{T!i`krk(%{CtXPNeM)4UhFlxW=93}?LI}mHW(G!CJG3)6 zhv6pPHKAn_6J6vQitdlP)?YU^IHH=ThkGj7U~25=I`^&}AK)5Q&=|Go!ugG#=q9k+ zkOWv8OT3lwZa`EDH=DR9V3r*A*lLHPArSlLe11Y{6aA*YUtuyerY`O%tEky)+=GwU zE_-8PL3j(Sc+i7^)<8S*ZG3koQaFT8)+j}nXD9gWuIvAnPw=aWVlEO2W-$AmufN#1 zLRR6%CRX%=b8)$oM*sT7!+U`!gYghc*LnYws#NnMpdTS@=-xWauG!(kDMd>s?`LzC zmf|xO!aswwTVO`#M0Y9wYgFdzFQ&3=KY2Q8=0K~3MJD_2?|pm^k+IkiUHt{Kl6B{e zPW8PHs4S+ML|J|&A7%^IC6lwa)*Cki?euK?(R+-$D*wvH3;DEO{tLHjpAyixT2*{W z|E;OTRdT4Or4m10gUML0S;SBuN?|rQYGf~IcVW;PNg*~QuE-6nWKbloHLgf?(%2$H zFe)W&4uxctID9PXR8Lv^$!O3+^@|TV<28%ao9>;nq^($3wW_vNAW=a731q3_f}z4O zB{rO>$Jm<#h}!A4hmbjORh!zQfyg0Pjx}dbbu&N7=!a>|`5-EFsU>C!FSZ91b?jQ!_~(zDb^SAw+49tGRmXpYZ%`iQzG06)=pV z0=Fs|@SKuo{1d2dtofx|_nT)Yly45W_=Rp!-jnFMmb&RaOs-4b@*qdavrPNu4?d#8 z^Rt#8d)YI7Z)qsM?;IyDs5O?G1L*4)nFJ>xAunb5Tl0go{M|VwzAL;N>}5!E^XXZz zw~u<4EzxRqlCXjnyl>W)$fl)wN-LZCSi7S%jn&PwYiI7H`OA)sxGO9;?pkcaR}bU3 zbaP4&Fn7I_?_FxSm2Y2ay;ZcF#LA_X+LUx#aG9BC6Xo_YGUwULN6WSBek`UMnciyp zWpqttO5fF#qGM)iCZ|A%*c%_Zu|5q4MA&gnAP09Zo^g4O z)K|mfPOppC5-PafuyJ>I+5DG(gyHR>xH$*yVe)3w`El6zJ>QO~;np-2_aV1X4GwnS zC!mM89{rum|K%T{N&LC-Y0b^cmyKhl8QM`RY&cY|CJm(Xs>=n;qZaDC!uD2@$DUW?^bti-P&B+-o3@2 z$=;OX@Q&4)8Q)o3ySTVml`pn+f@fv0iYH-BrFF(@k)zMv>YuXKH-<+IihO3RZ>aSR zD_Pg*nNrXYrhQx(@fx!yTMAN>{&G1nGM%bcl0JWHS;d^GWub;>kYbW)WdX|7Q1Es(aQNQ-D|nybyaUKt)%d%<;3~xNv8?p@KT4XS< zDcaO+2Ipw0DAay1w%l*WZe$hxkc69xW><|Uo^?xn{Ra`lL0GsCd{Mt=xXFy!;ypp+ zE~z`E#U_S$+?G?j(pz;FE_JKLm%<$j=|it0Cqj;Q`o@6@GA8(*eu$-hycS(nTHa#@ zrFBv&vv)%U-}I!DWgk`PG0qOJAM%D%al+>MfM(uZH{COD%4&;LP4|MgR!#TJTl3SM z9?~=K*gJtH7;QFI?tXQvwZu0SK?ov!(coU%*Fdl#?4>}W2RN><1Ai( zi6T?J+Ya^^!&W~M-YnpyEjjQS}--adYD^>jkrBIz*C)7|maQ zxpyeUwA99-Br+9-Eo!y+tzpYWw$joIYxJG!otGx(7mobk-@l5sP5=H5ZBgwWv+|9M3cdq{O_|3DWM53R^bH#Syu$+Ir^`tkyALRk=1s!2=fot!Y zC#Pp@sQAV_Qfl7z^4HZF12eW3Hn#j&)oNC@2ztTAW4Nt(jS0(i;c#K@;`*Alj>0qMhSGuHC-X;*vwY-KMtuYTRl@cz}s4QI%MH!ttUyJ~!4-_%U> zq`s*IH7ECuQnzLTyK&Ze_+*LOaCJT2Tr&@!Wf?7gLTGU)7sotZ^{=kl#5(sDxV6q3 zCC}Ufw?_lm3YvNNZ^0L*3*hj)cM9s(JzBgHZ-+21^Zm!o!|||p4&}gAZqD6vb~)+| zdzWK!q7=@X>$jf1HQcFao_yc?6&~-I2J-s`U9TK-E!l)~BfugO_e#s>XQgQHT-7Mf zt3{XFUCN}Ze){syDNNT@A4iFD%~itVa#Q#*8VC1D^I~C_;f!`I_n;WOnHu-XM@+BJ z3=rVw(d-3U>Q@xB$-=;b{IXii{}=VX<(fv7^@KX}zcIgj5zYP$#p!E*W2qJ!)|!lZ z#qa*_e}3Rp9*-%)P6B{xvETSIE&fOh_75Ek+w_KE#p5o`l zwM132R_78@rQ#0*a$1VtjXFogui*PCJ+c+qBCV8zGF&Hh7aPCcepzS1)P%3oLa&NFVyvQEh;#b?}mQGxrLWeI`t zD|OC?v$8S%Q>eV2TY<;Yj7uHztBYU5AD~RL;@6Hes2FKZ_|lW@+@Jo|kfnxi4@32F z>bcCs5PJrlw=2(^Fv()(xh%ki1=PLf=ny#6-CmO-?;(Y7;hWt(+FAO($KB%-L8Z?_ zo_u)kLKsClIW*GTBjXvP?MtRmSYr3pZq9hWmrJ)yW9Rh)Tzlk4inPjG=jaRa(Paq@ z0rQo?v`Thn4nY_$u7>oHmMG4LQIcU4=Rf@ZYT}CIA*U!e!p=r*pHOjvVnkNDa6%<- zBLwm?S;FbTN;iN^j%>w4XadC)ptpLVYmrnm#wuq18WGzfv(n0MiR9T#VgQ6cc3QC* zwCE{v_eL_}@F*j;NO>-)?RDM~GZ9F?jn%EKM6Qyx=NE9z0|4CK{4!5=`0obJb{N@^ zBUv$MdUT5f)14LHI%7yz zj)aIavb@c8>}qxHHL0=P@k#P%c(*Ho@RBZdk`0VtP7JB{HiThd$Q5-jE7EqCX9p%uAiMTO&2E}CIQgUv8%Iclz!b@rxjC_6P2c9p=bVl5d!mjl%#g^*OkDu|HCjz>*a-c}yFYN)~9 zbRuew^g_kwLzkyIlhIm}G~BwZ=CqFd-;q)zo58!;3o|%#o+s8S1awb3jIj8JJ4VL{ zeA2iOo6Z`OHM6ur?oD?nt7s7DUiv`x;IA2;_u3-+WE#6P7RpZXHyZ(D->6CLeWI+9 zw(BIyltnTmDK#=Dm!%iq&tCk3+3`|98EIxla3o+@=O^(+gJZi?g?1`)vpCzF10tZz z-amp}m1_pfw3?kVl8U3X`2G(zy^9o4E@%tY@6OG%a-4HZ>l_-*(WHq`gI%|C2Gf~M ziUupv&`+@^Qh4}O(ygeZZh^2F2ti+ zZWu3~>aVpD;oo6l*a9v!@^Nn2FI=lWYsGo^%Cq`I!|Z&-#*+l%J|nc;ysbseE_(q>nBKt7~dk4y(job^!gg6uQp3 znv=ik>PM-TT-)9JXO@Wj3&yJi#=A#CFJ0HS759Z zRr_gsi}c~y<*BInSZlV{CahC(Dy!&KPW=8~S!uhvQ}UD5o2y)|S1tlqxkl$zX3M++ zY!lTh zW|YFIP^L_dzDIqU?2&mV-TM}e$(}mpyIZP~OZJRUV@AAZHIJH&bJY?Xl^do)?Jgd< z4_1=}u5#Tx2NcLf&e9lw)k=#rr1_%CSxK?nwH_R7tEj4bw)@0>(#H}IgW_~B>9o9kQrVWAz|C$Xw-uk|}1YI$&9xbwIe!N0zs2 ztXl%RA`})2_A&zho_MWdg(0XgRo=l%#kD(7%(i2Jxcnezvjaa#|ExE>Bt&497Z@-F zhjP)17y-zt&*As#fPbUBQnR1c&WNq57{F*6%7OOlBD6^Ej72zS1-ci~3zuE*I^6ur zS%+28`>J9uR-fhl3aI2H_no9FWr7WAM9srme zW1&7thx197{f;#KO2RR#ij5w>vuy&x_@W8j2}LmVvQ(1pgP^@&_{4tq$k4Ha|rElKqEr&PeoPXAGgvbU_b}MzDYfA*--7(__T+JQN=vtqsXcuwma{@4V)>8xe`O(9@>Z0I0(~bVBSm54amO*7hyO8W`sE~?*Vai1|`&# z8QQB1e#tP<`SFQrHgg8)1!7GfpL9CBR%}fCCJ2Cr*oSOH82W5DP)#`>K%-d?qFul7 zBAqD_wNf#5pSF05bo){FVBrRnr-c`CcI6JBJI z{Re~2==d_(1M(BL4=n~;q(ui(=^2VtCwVobsqN-TZ)GKUI~=x|hIaB&ZmsbN>q!dL z#_me;5+KJo+1j|>*xClaRI!2%a-|f1e{#N({5`c2?{?em%TPj*rOW$Y^X&u3&4v?J z^L;+NZk_bIZ9eQ-(Zp@Ufhm6t->lsh1KSMAJ4fIQRKv#At^jS(J~sr>1ZgA1bWO62|{`RoDIvgFZLFd1*zHxKy$JHkKlqO`A5v>}(jcf(N z?v3^}3av=?27{r1Cu7xAOm@~+Z-NDMol}tLz}mIPwr$(CZQHi(*<;(r9^1BU+qUQ5 z=Tx1$@4rZ;l2moQov!ZAo9^|jHpky5mh}!-YR@0lhE>1SBX?>>ODxJazToL@R3Qt0 zj*c@N_pD&CkW^koeU%5^pevl_PuJGh8q7#c3~^rRE6hEYBQl_4zp`;f;Vk=Vt z0_74wXnTwIH9^N1{N;y{PR`5Q4{6T^Av7A#j3mx>O#dC6@`3px{U6T<=3_C=kZTN& z70wHs9&E+Xr~UFxK)^8vvRVK4Q$%jdxZo?#OF!qiKbf!<8LE{!*jSw;*hkZ~z|IgRzM)g{atJv6^o!E^pu`3(dyp7_haS0&x zst&$xd=^FQp-wecPtNfgygex_O2G&$lwsa-i4rytE379HzZw0;anUSxV>l_Su?xfd zwStuIkNjU{iE~Ek0piye1_B3@9MElR?ifvKX8K#h$O-{nqkfao^F5p-#hJ`Jv?WA?4{nAEz-u5 zC`K?36i#p)hjBrtyX9)#V;!TO;2qnzv6{v`n_R&M-3tbw1}^jrWW60%aMM@7 zadLslJ`gwpf-qL+NflGzc0bIFor6=*|Ja+i);m6$HKWiId%?4@`Oihk9Pk15OmU)e z3!L98a=&kLZc(Ekv%g%AL+~_Yx`#91)j_$G2BF*8*rzf$f^V)H_F-#qRl_}av8;S= zUNt+(`H*V~|y; zg5ly_9l`U{h=3}bEZ-{KSL zy?8$Qg+&jwl5X*QF(H{O3X&&(6K#!?+`aCsxULTf`7G|i$gYqPVh zuDY8#l-`KqTJkpRRI!;cwBkwXn`D(PpL7JX723LtTXG=$U>Y|JPM{y4S3*gATdajx zVeI1CvC5ngTfR*28MIcYsO;ccK~O9?tWKK_T6Skf$Sc2Fyu*IqXlUn>wrKqxB$*Rr5YgbmEY$&FgQaoE*+xnW@R_Mp9(N{%+1r_dpTM@{2Md}@Df3S)t zb%>V&OaN})yX*eE@%rcMcqX`{?NLSilt#pE^9q9$2A@5WZV%?}&7%8D_X9m~sK4Ci z;U};x7@vNo?xfs4hbMH|jLYu@GZ_mU5sf?%#_d{w2(k7t*zYEoMqmJ7^bxdc3o(;- zYb=bwn9Y;|Dxr(hqhStC8aS+JUr4r4H2@nshh1m42C%i-v$MH7f#2X%AH{${vvbRt zF}r~cLa%`;3_X7{Psw0+>-Dbl!Ihlc=E;-EY6_Qvi6xz@B3I|Hmzm1f^S{HA(qpK- zW{vXREaP#Jg@0R(n|DW9N0l8~bxC1~k^q@3lqnk8bDSE3%adUj%ztIdG)x!J6n}J%Y4H$7q2y zM;EJ7#zE^$VOV{^p2aTYlgx!h(%IIq(+rvDLt&gC04yu1J+xH;;E;c?PDVgB;+2GVWuQ+Z zdX1iZz_H1#!A{>u+^{#c9tXtC@Xx^L6uc22OHgq+L5%N?j}a^ydBJ|t*iN<;|KqnL zeoiGZdOo#@+ns>4oxgR- z4zEc!6Rc)-t4YL3e-C9*V~3o-d|Fmm(~M6c$h}zX^i^I(&tkqgVdia8buALTu}g`K zhUxp?-x1l>4A1MohgX~ zjl5Y|nMfTwT$PI}OMyZjph%0$>SlZG!px2Ff9FS-yZSPiK?2PjAoiSqqwENTAyMU5 z6G}*qKPx*@QsQv*3x)WpeXy#4(UA=WJNHwk(R^K{-q5AyyuhO#2!OkXOVJ=eUCh0s zD!9TRgzr$Op@{Zub8K$N%%Tc9WOaae*H~J%daEjpa>2;v<+R|xSTY2kj>7pu_<5pD zVFP%k-J~Ur;QCo-P1=?L68<%1HDT1qk&SM{Tq#f|*<05Xc_<@Hu5^t1mFs%x2Vvx+TXq+LrH{2Pr1bloHGd?)jQ znC^sPNmPxLXnD}=T?~DzO;hymc{+?7;=5=0}#R)-8rcYHciNG0< z0=qmI`pA7b*s-V>7W6iO>YcKI8W!H1gDK`+Gzsu{mnlW*T)tRXQ0x!c;&0K%EuosM z6juo4NWY`2Aq4~b1{QS72TE~>2hr@UY&YhsOF&6^Zu}pW(V`Xb-0TC4gExii$)y;( zc;v=`Fk&HorbI0{w!Sth$UwpWGlLa~xO`st&cMa~Ms0NieCB4TDFFQMv z;Qp-&r|b$EeK~BOA+c+{?u2hR`!ySB%ryO(-K$r5gxC%&2RI>8AmobJ(LuHeX&zhc zxI+Ww-c}e<^bm@?`98k4a?z<}0m|(ctTKoLmRF2(Bmn3N&EDPw&f%uHnTHQEH9my$ z0M#^feY6{k=e?JBlh)x`Zlv!A{b%6>_;|yJn?l4vo-vcJUA!O1{!QCuQ>-x$^;PQKOR2KQdK znf&f-FF5;TUfaa-jwuVlH8eEv_}RNonM`~6F-+>aG&A;ff3EUXK`P-E#S-!Yq=fy#PnLmf1;8BW1`4??sqif@=vGXD|(VsHBFQ% z#)h^!(2tieg(SaPxnLT}oJ{xV3(c&)P49Wv7pQ?EjgH4d;-dWXf_RWp$Ib{wLa&&q zsXp~qtpmMJ;QOF_fXHm;%XQfL@j1cH=um*rKuTU?cOy*OOZj6rYg>a$!sPPuI6(Vr!&5!!uGHzeh_w0ioex?h{#vU!fg^t{6?zloZRdR`CNuT(P#==`C`pO<@(TO6Y9 zVcxwv*UyFMquO}|9_isBjkrm%kI2|G&5#V6%A#P%0DF?ZmY0N*fFbDoj%eyZDKvB7 z2NxKyg{^=4xyJg)xh~)x1B+eO>tsw)E+sng`CC%yY;Hn3EvYx)wJ)@sh>?Bga@4G- zrN{vRt_Ov7!Uop;myRq%*mvAr`VqGFq}FWKR)pj6c>j!qKlbgAbP|&aQgZtC^X2Z> zs{d5{5o8gA_J&bY2Jc*+pUG$nHTbYPboLaBfEb{BhBDxlRw-u-H*pa2-T({L^-fGe0S?!iMDae_l7F;bBKX~;=l|(cBQXOO zxt=T~0^R$^<}2sO7R$JCz>T*SgDOop$IF`z_pjX>xiPWUAnzMc8unbM9Ta8?*&c z*Xi0s*ewptS-ON9<>(F=AD_26XRy$j1HE<%Itbk6x}~5%ugCB4Y>WvT*l_D% z*Umn!&qlz{Roi#o<0`|i*g65edOD|jD{DEqhT-AI9#SoY*dx)CeJXvaJMyj9^Iay7 zD}B`kQ}3bdn>jX@rxJ#!O8&4T>?%KX?-_U^LtR!`r>&>R?hiv-b@@k@b-NBQToIKT z3Wg_cmQkawOnHH#56M0C~ECOgs(ClPe$z0&EWPbUC2GJqRaZ z4TO-S>Bobr?4xL@MLR8`o?AkY0OvW+GVin(u)6a8EFpYGzHdYJ5tvwO`;C zsl!s)Ae$G94VT|U;8(PNQfY((R(L)5{Pg>|X@EqDY|Npr+F3YMBM|vsNOrJys)VZ=b!9|sOq%YsyZeZ|GK5HpzPOUb+OXQ zdO$}soLXff?RBzGB+mZ9!6_TX_Y?ZjigK7xTu4mmSIR&f$<`M?kFv!-u53^t)daUP zYEKLDaW0ER@2yjTHzq2`1*r>u;3Lu=rcvRRTXpm!Og@*ckt8KrG#5M=yUOy{3nc&c zNweK&6pex5fpNwJ+|S}yf$yxMHOQYG8D+V>2dR=y>zSxDRSpqDxp#5!a+P`q9hK*CiiY;B$OEuZ&_ue zj$S+}oV5zM-h>Hdi%McO;uw-PoG8B_V*vrR_%!j7UQZ@+$TcdqlC;hWn|93L{n4JX z9zW#!y$?~H@c%)K#>{HaHgPxVMpNqHm9Sm}(iKCgQt8JRb@ucUPFMSUm|SPlB(=wx zKvugtkX@diR>7VA<6#}NUrHL}0y3zx)|LR&hKbT=Z(jot8()MlmW|&I>IqYmd;{Ew zU)4idyKy~jE4VsF=H680G0nK6*XpdhAF1aa3ze3lnJglOw=4!rD}c6-WW}R(KXd-x z(g4ElFAk%heA4TgenkNAZv&NU3b&Tu)y_*u`Q5o|bA2^a3uQ)nak~m%BeOmGT zYEcR|KW^Hs!qx=LiRW@Y{Q)9lf94@q+ssFeiY>@p_xL2Z+|#I2r^Gl^g_>+_oSx=G zXRdtsH2t=o0x!1B=k3tqrF&cZCkwKbq*0IGihr|8?_Ses_cyy`-XH9=_L#QUc9UWn zydbxit3}a|{om1KQ}kuEDfVvJqWF`yA=a)kmQSiLn_dN2aX zrBF{+%&ScIY|$DoW(Ys54&VMtP*nV;cAtU_l@CUjXKT`|wqX}`yfZC*J5R$ z_bzZUy)>D|f){BKi?eeSf#6U#X%CAkoDJ(NZ))>sR21f|m(S;`$Bf3C0e)20*4X;y z`h0aKyVInLKi}1xM0>ChoKwWoV|#CrT9f8ggP6i`W~k=x)||2R&}A*V$lZfM@)tQ% zgD9TKw}~%B)w>yOek!WOt~%<8xOTRJ+w)kXGm@D5_U)`+3!LuUeRpFrd{mE{2D!Tx z4JkxbvNw)o)%uUr|l zNthak7@-Wq1~d)Q?z}OSyett$?h8!m*~7^Nxb{mP51Zq|L+8Em>8P!V6|yWXwb7&9 zo+A_cavJk-(T#K`Dr7q@jkYuserx|m*K+QP%?z|!-BU)8sb!(HW`{b4{QcuRibs2{ zlkuXCl{oe!#E6|w1{~*~kGB@(CyhiEM`_DvBqYV;^LhxIGWH zrk4cm$bfujTiZrcpf}7Ft7%Q^4r7Y+-u_Gzn2dr#QW!Bvq3x|t>&HY6eNlll{f#`3A%r?t9~1BTDGbp|1v)X!tYQDBC04v0B$u~Wo`Vg+0+ zleQd(N?0PgNm}$-A@kY=wv-iYvTn0GGt_gJoD$?~2h~E}FDt93IH?6Mwy?Hx?4RmA zm~p+xFSTDCzzJ>RvFc>SGh3Yxv|TAeGzYBxgSK*Jiv<9*qJ6{U z55R9}{@-y{gx9@vW_Roz>5vCQY%!!bsI75<iWX&qO(!UbSv|(`q-vRv$!jRY9e;^)$y|o7b58igD(&@@t(#Ve@!qva=qtlIKhwW&-&q zXR6XKDo{)bE|Y^U3424P8Ymbk-jvNQPJh)nMj->o|9nMP2)+4AT*Rd0+l~k)-$w-I zmg$r17)4Ox;K9zwfk1`jZO^Oly2u0cErx9fPxmpeu?k{ z%_5oeN9eMkw@(sE{AX|?R1 zL4%>^s|L+5HRjJ`T+!?((O^kpe3LSfafA&B%kx7r^pp*XwRtVGDl{71mcOth1*zSO zn=9c_1Bys9=~!UdEs+W~g(U|jlYc?Sl9Q@Z#5N`Em;1bE!^-P&qfA38B1%%oU!&I% zx#Zen+YcAX^q<4I$a@Xk>lV9@+jwY&JBXf%{|u331$6Nc-G|0}rSyMn!I+OKNR2GT z;Aj7{x)U?@-7an>Aap^s_+k%7fc`iw_<1KuA|B(|`>6WKSmd_^I>C5+jnnVa`J~Pr zT=j*sf?Lx&mI_I?Dg!}w(s>4$K=~#AKGt`VmGx|+9MDC)QPxw=R#F=D7<1i8IX?U9>+nDLBRt3l!h<2LB-hS@C?rWCOUJvnMmhw;5wt_NO0-4Z{C2JrZvp*fnv(eNa z1-|(5_xfQluU&li+_>%LUqf4&6ZNu2nhyUW1cw>eGV|OTlKNA~G!zOyhMzT4P1Ab; z&!3egm-R`eoyj&ij%v>j7*jtrWfB!`2&mbAF-P=uGpE!=Ds(+Eevd94%;dbBW1k}l ziIE7aQ`$-R4iQWkk^l9a#(jl28Z44{1ak=$)(dFHQ&ParONe#}0|RDD4pZhkrl-N_ zNx=g0-q}P7qayVZk2+C>Ue?WvX(6zUKpYk4iP(+y`7;b3KIpnU~4& z_zxj|VPak-j1oUMETiWw1FrD1bj7nLM++Q~EnSMuf;n#Gh;CB`4Jf4OBH(-H9^2bT=4^^z(SJ;@yxMr!r#z!k#eE0YPD6}^q*Kn*&f|7aQhC!iib*Co7 zjIuO^{gb%#Y$Ugcv43EJ?g#6^*?XY{%hOmtx&K*zc zfn1Z{*0@)|zN%)5BVVc9X#qu~rY*PlU|WYv?jOaQdtzzP63*r|b5SSFc4CtbM}YL^-G(_?y~n zUpB%{CM93@+VgD%-Q~#MwUw>@#y$xfq-!Btdpb<(UO+{t{9IoT*eU!jK<3CtPcSmK zzsdU9n54oqV}v=7amLCCi>0@JNEZO(=7^@w&eUGF51xJ40!%q(W*nfK0?+@-qmkj- zpY_Nobt`(=nOPY+t#H;gZf9I*zK`o)6AFJO0b)|8mclYmiFhM$N`P5gWWB*X-`Tr*|< zi*F@5G`!{h2j`|@rm8eQ0Z+)NI0vY{<>M76j!Y>+$mKNZPv>QsbPKWuXnDo>xk0+n z0Epo#MqOa67dKiS7s=Dq(iRFvmUQP5adUYqUjVifYrvU;C#Oy&=#`Ncg;z}~XxIoO z2yVF5^Yw=dq@-i&ZGTdsrs*T38G6&QbILU@cbNh*?*?OMz`^5jzf?65n}i3Bn=DBz!+& zaa{yvD=VWIqNb?x;LqqnVHrV?P6*Hp(mtiP*8t}xQel%OLAw;LH5+4AI(PFd?5$cY z(jr^UshDy^)_Ok~=TUQb@(-7NM$}gpbFIoN>>0u6(>?+mo?1#--<(?+{?ZvMsh3MK zUB{hP*i={?R3r@(ruTjsq?TAwaV+SvszF-Oqf(jNkrZQ!5KVa3lDf#>)J zJSB4teM-r!!1JX8mQc&;iFC>PfA|jtT-t%FspIoDd4WTLR;?7YD!~^;0GH=^t+Q1* zt103cXswD_?Y@?HdqEpTuq@QRz}c2)vbV=63#2H>rLhpY(me>U=9nhe{uMA*5Yv;P z1Ra4ZM2Z|RL96V37HYpF#awW9m$}6j;D*&3K-9kYkI)2I6m(Og7XXMUuy?W=eFeM? z2X(W{@BteW2PV-rRW;^`SeV3~YFNy75LO3JGehyJ;6&-V)q*Xj%ZCQmT?s#X&gp74 z`*NHm3T>M5iB?t_$*C(_BYS>aB}I3K1sZj}mEAXu80zFdraoD4&FJ-i1q^Kl#bc|pu z8%zWT(rm6jj%}XtzC_mIUF85vDh};X=TK4FN{m|0+;~{IU7wxnoW(c&%mdtixFU;Q zZpp1exTYUJw6@vUvo_8J0!yw!oh(O)WS%^^Kq3DR;3<>^(;wew~4G<=*@s?aKk9RrBT2E~S6U_OVmmeGB}EuNRKc8Q0w zX=VB;xnDTtTA#eCjjVaAXzvVVT%*FzE0V(ok}sGQr(JhNnZbK36CtUyqW#!aSzq$Z zfW=&|Z~?Ka!l5B$RysGhid?xw^#oc>;h~gkzq29kbZyly!kKXDUuq6+L1`}(rTIW^ z1A5bgQ_Nx~_6vi{e7|E1J(l^*Od+wjMtRe)JD}mW<_+OMBDXMU}H#EQAWTg6!LHjMDyS}WBt+!ArwOcM(eaUFx zUgt$$Uhu<=_G3!L<`6c#0#s@*Z^Qu2EkC=oc6K+w6l221fQ8_k4&vv6Fz3ZNcN7LxclTmKF2CzJS;}jqWES)59nbkAaSOnRAH-G>!!qN zKTG`63^4h=1+o8Zz!oHjVC15sG=TFs{e>^@N}Ry1JnzqNjioodFB=FD2LJuY<{cPn ztZRSo5%7n{1~RzF!!+{Sc8q%dJBh#pCM}h-rkwAT)xO@th2)V7$W}i;aoOl9<(6wTcvU>VNo;ZlC+jXZqE{NRuxsN9UeB{y}T8V~C5L zA}qMF@;=)bQ})UV~OdxV>8|$2lq2f?;IWT`Lo~EWc#aygnRi$S?w_Rq z;MnYiRk=#u1q8J*sJO#M7Tm-+s?#4Cp;nN(P~wna?_UPpo(?N#XH~fI(xZt2S_B%+ z13scR`DG}jQ%#56P_Fo- ze~QX_ac+{rC_VDmvN`)|k&6!PlfP!R#$(&HdHvUArB1Xx@gpT`Ut(JTB|qDOJ=k7n z^}QLzYDZkNuq4@wu$*|TseQIclOQQw2$P*mNK7*{_+(cYQxmRLEIZA<4qbsSClF(= z_r!)%OL#@;EyUSVf!5G~_qACvkpGG8P$3F1;?a!em6S$lb3^l+iX`Bm6-fy3Y8={P zBc&TRgl%(xa#Ls5WChLl?9;)q?wZ zi{l_;4+4qeq1y0=?qFj}!+`BB>z|g%*t?AvI_(7Z55nDQuWt%ihL*rtQt}x4gG+ zxnQ(i230BRZFd}XIdnU@>0e)Wxc>zK008*?1qM)%1_nU^00V&dcTEU@h)s>I3kLvz zD+>UC`R|U04ZXX)leM#jsi})I{eMp^%yb^MHdQ*>&IfHse*CJZ{KX#lLA3%@<12p* zu&-=#GBd6`&BBuufF0o&TECyE$2(jrV;rtC!XzKgm0L^fnu}AfE_eNITF`edzYQ0= zwqb(yEgTektFy|cHz%j}?wwx@nc6sT)a~UfZ6DQkVf>cE`t4hPe^#I4%zmHmv{px< z$@Z@um_2y$c5CVA;V)OcTDf4dUO!?|c-TL;FUEehdUf!2UY{={RW@wt2j?lexBkt- z!D<7`KRB4vkB?@$yX=?togde0Q0uFk%L%-{`>v0E3JY$R&O_H~pS8O?{8d@o+{pK) zjoUc>kOjd}+aFf<4=Y#d`v2VE`GY;0)f$HJW8b#Ty6xenA05YrbX(vrT0FftyG;`9 zYDM|K%>DbhI)99tjk);lZ=whKkFTE>|FFhw9vSKL|Emyu4c=k^dbpOq-331QTua#Oqllp%jf{20$o1``ow@V5#R z7v7PyFNYcS&Q%gTs&t^un`GcUgXF=IIKqvoF4FzwMZqrph%_Z;bV%;@!W!)16H0iRyj z#LLNBo%*A#=4=Mc`*@OyX)TI~^x$(Z#UQF3?9>Vl_kyWVCv++ui+v$!bSm9)rvh*Q z-3Gdq?xLDUx zHY4Ryx%7yQg2B)&7&01y3ql4tVUx>L6tZg{G8@{JaB5d^`xN^Rz_o_|2%K&)_^%k>Q6pMFEtpw=%wXCPXI%3* z9yu{IYeKa2=uQ&C1wQ3xnyB`3B$-ExFpa-k70gE}1Zl5Lui|b@Mog zvCAaDBGfF?d>C-CYCO6NgYj0gc$ci3Iq`jLWef(gb11}`2E0-R&Onn8G~{(c#((`f zKm%zZt4Qjkj9vl&5O5H?*`9ckLW0US^GC3DK4z-5oDhRv1^&+xa!fc3M`lDs=BSYg z*Vdv%=!h~8OuK6=vk=L^vo#S((G@QG6Dgc9>p1vzbr5D73F=4#Q$W-tVdx&`rXCC= zLfpvut-<<7+P^I#tNh3<-Q4t7n@+%ivXC{z3^)T( zL0bM-!>OGBAP78)P40gfIwWpSy$F2f%>vWxJ=0o~&kMK~mEc_{*6mHr^Ch7uEXyrl-(d1VjGG##}MFbIR z&f32Ye?}GKWsq5XsKx`0X#}P7!3TpbQP0TSatCh7L~@Ce$q!nxh7cQGWEuucY~Tn; z(PTH5sq`#oc#kv6cwUpyKQfS#2#EgID(R%r^O9G=hWnHhO~`P5+6a)~gn+Q?90TV4 ziJ+wf5%r-g-B@?Y=D81B%6bU1P5-Mb%+SOP3SjSCabxaJEV&YhP!KY;V}o3S!RR20 zAP}Vu!t^seIzY()5TdqD|Rpk7)O6o~_Z%9U|NX0xSA2)qR1QBH<>=q!b)3!AS8AcFrJ%`Zp~h{xIHpmd=0jXF2l5WVc>2e$Uk$|}tbJ&nyZEAHTdlw|* zs^U`dJfWQBJr1Q)*VJawK@abn2`%WPjZph@lQ$-y-m==v1jB7yQ64(r8d&$`2 z6@uXssC|->C{`x{!v&CE{5Kf50i^R|!W+L?jiqZCJ=Y{^W_tGK7LeZRm&~bh<&3vu z1m%pg$j00yo;6Dujb%7QuGdMJTe%9FJJruBMNa<HTeZfU(+FG8I!(;B3&?7glgsXZPFlJEhADX{Vl_V!o0w1MuW8p4camJ^sZ_PWqYd(!zGRWim!_+*DfEV1P!}U#!x<6RZ`HSmq4PHFl3iE5YSVf(f{xIo|Nn$Y9ybJxnIDy`#@S| z2t7v77x$h943cJcLoxo|fnad5jX1l0mOw*15zjR!ddU)|rG_}Oz82(3K^z2~Fn}LO zWfgI1E$V`I=`V-Tdnv+R#bvnZRirk&tB3_6kd7;EL1?d~O>B~H3o%jDf1lDs;A(2< z=lEe}LeK~WRMrsJk?bK{Hg#|d+KC=+!d;O`#OW#B59pnP=$?Ru!S=ur5&?7LqI&zD zO(n&Sjmj-~v4m)NKmf}9%5wqXb1!l0=MWT)GSx?_Tz6Lz6Gj8d%{nRnF_3E8l7GJ6 z{2czg=-%<)_!{m38n#)#V!zT>I#4!b4}LZC->PL3FTJ&TbYWhj&)pzj!e{IJ#{R!@ z(jrM~nkhs8fPdCB|KFUH>AyK?wzl)8lvBX2a>{StfpP1 z3F(+o1`=u_AK#9CUalZK!}cOsz_eou?R!=(*xa`BCFb5?p1(hDv|pv%>G%D$-IZ+V zq2lw4htEc@Z#(wyb?trFv4=~~)lRNk*rB#7`;TJIsDIDzssG2@x5tN<-`|Q!2$rs# z+Y$P-$G%5*uk9T2(bo%Dsoc1-)osup?++*Ee_3-Ux$gP1!=ZfHW7g{SkFAb% z8}IYHqmSPXzgpJeVe9I}wGuU_YS=dD&F@!(KR>o@ZJh5?_l=x>Z@0e(Pft&9^W6yhD}LU~oyP=uk@B+-`%jd6XU=@AJ3KHy>9o zPA_@cw{p9GWgqI^(Byr0RWAMIg+sta)cx7*=;3AA=yt(}swYT3J1FDv@a*WJdI_Vq z604xCYdKyDuQ>PHy|(J*8@xYU!d>r&+urMDFPO3`Kl?Q7dT&-%RP*aTVP3`QcI%+2 zFVENO&-sHByPjO?!z}J0M{P*1q8X_S?FT>uD)crRK8eIF>AIjd0yos=??X#t}l~AAshUcNN8i; zma2THfkZWe9~%^@^s@^1c8nT0|8M%Ic7f2_yZBZfcuZ+5{j%2uz^A{~oV5^|pJ2+) zY*0%XCNFaT1-f$b-=Vx5m;VU8xxFuK%ro;%2H5hcmejz0*=DTGusM$G zRG?s*r-rn&@59wFV_pY|nw&u8i$8_Q0>X+ZGQyfuzAH)!<^D0OIoMUXD}>Cu+p) zf>;+-YfX4D*JlpjX<71=9FrzqwUvQV=VY!FaC|n`e*2aL)u**`PoART;J#p#$1fN- zQh0N87^LX5oYSnZ7Y#+#x!CDRWq2V=vXn)QC3UG)KABaW{BYvLdJM}@h*ViZjHnC= z&xE5RDI_|OL7c!uI)~^$iiw)hF6C5eazjNq=Qh;drA(;^A1${cF|}z$d&Gra%Kn{G z8S>ZJ`hfn*nx1#1x<+vVi=Uk?QU|4z!cp;}a7wg23MzO*Rm^g(AtT$)`Y2P5_VII5 zPFnd8QzUaFD2CEH`N9f2HQf$p3LKH%oY!w^QWJo*D_cI4`^g;ln3Gzckr`z~qlva| z+|9B{#~y})v@O{jy5^rpi_)KF@ZfUkb=?}pip7#4Xk(fSCAYMa`Gx(34YeR?@Def=s_4!pv8K4JcOSkWR^QGf>oq8x zH=o~g`%V9KkN)cs?XSzxEc0t-bC4oem$;t>ZdLh1u1S2)AKNO^7cS&l7qNWij>5)N zbxV3*{Fa%<6(D8HF>}ttd{=6-h8(E43`iPujle1B%@UdQF-=@Lrv5Y@QO9o26=+=z z9ad@36abZ*=B(31@`n|Q<#irw(^AhrHYZ?u^XS$SIe2L)jgr~}myLQP$Hz8uDfdn- z>EoK5@-k>68mncgV$$M|L*~npa*3`=89RVQ6m&DTc|?VLrXzZnlLBz*GyvPrL8PS{ zAxR=f$5Z5t^zI!xGNcA+H_UluU3`z4BNM(SkJ+oIQT#Oe^K@ytB`jK8K3e=yb27_H zy|0n|gI9sqN+L@oQ)<>#Yv)Q+qWR+)!$i_ix$N_yl2eg6Y*tAB41j-qdhgBf_ipn_ zty0Rk-{v$Cv0}WY%PYTxDn064g>H$AUH5AE`t&cEbbBubS~ziN+_v)eSwxk7n8rO?vv374a}0$Jn1D zz&TIKGqdAdMaMyfafSrz4m&4`V0Ow}O%vjbnOb}u*?~fUIU$mx6tgJqO-*|pN8DWq zIg}>@?`A(5K>OUi;Ft+swF!zG{wV`p#_Qd{y23)!Vnk)1k??QkXrU{#YP9rn>gF&V z=Hbn*cRDG|Ms2jT4ji@-aQNDy4h-o4;fI$Z^t6K;C)mvBpTIo)G)+**$Vj`7846Ev z4j%2wZfPzq@|u`tsr?c>r>2!%R0o?E8($r!SU%>Fma*^V=zP7fyNuOJYfO*z^i|8PbLu&f z{(pR(b6{pmw)W$W&5mu`9oy{KM#tzl9ox3kv2EM7^~UCxbI#nkb7tm#f2Vf6wV$fm zSDq`_^~{k{ zMzAOaq*mB>CyPZMkxN0hMr2)vqg!DoI;l+$RCa7Z8b$Oj=1go|vnd=YvhLOQq z93}2Ic+IaKiH3VyB(V|!R$%B*H0bI?RmyrPUG~0cAk=Vajfc4nLtwRVlCV!U215i) zntO1z5sDeUx~B-LITNcrNU8g4F#alf?^E(o^5vu#;~q=t_lXW~rrpe9vH|^$&DSPX z>yc=WO!Fm(&$R?vGD#Nx(r^025*C?t<~lq`-C%_%nc6#FkC-tAw(@zf6p-bR^=A!8(Z*8Hx<9(@qpl%>X_&WSYNifL{1$**CiwNq~v(47<5{K8X zK*;Q~TXN6AJ}WrWP`uuJnt^d$nk&~B>`dKBOm)Do`9MqW;!4}=t#{#oT(l4m_R;xEn0bb*Z%0qvJPfvPmjJUu;LIb? z*ZSDX4WsQB2iF`uuF6%=$%N*wUO8V)P;BAh@Xvxxj8MvZ`oJ<4I0ozb9aFJ;>yr_C z{jbeC(&U(fWnD6ig*rXHQk_B`7H6ri$C*GrsK8NhT^+6kIpQ^`{NCb{$Wei`t zjR2lkQIk1|!n%C$U$iU>EZV9TeaMdIYQ&?%z!M>9(A3GQwDbbHBzuRxUYb79xGr8s zxq1WNNYCE$^!P8p7Q%GvkAHvoF;Rp?aX>#5<7$d9f;@{I=^+%GaN{q}NN?I0bK4qG zm!-ZSM{_~0iYZkJst(Wu_3)vIXm~2+4KOWjX(w!hos>l_kz5|hI^gnT4nZfl?r2d zW?0C}LJP{tk*zZB0>>1=ch#@U4n+xIR(G8&f&YES!qo-}`C3!v72?GA`z{}7qUDo*3c&W(Ok~=(nUHX%-ck=L(GSjmt%C1?T6C5 zd$rWR$^2LEj&E$-eIn8WeT9svZWWzOA=;{Ku)@iG~=5Nm&U0 z1z(NS6l68mv3MSRUsh`r>;HI0fj1O{vmFRnRsc=XE-8dqQnCUp#4Hbah0Bh=<846F zAgj|<3G0<~G5PL;P=l#LTS;Lt8gm@!`6d=BgorN>v5{^%R`;bs&{c`+Rd*r#7J!U` zCBl>;sxLEG!b@PW?q?Us1h+n@DiiG#?ycgBj^UO6o9g3+btcq*3?tQkYQjDE!gr~# zZ`_%6zws*v|F1w+UPQ~hnsN(ul7GEbLA`>mhIj=fc#Y*QbSC_6Bueb%!aZtisWMj5 z4spE{cH}(+Us4b$@Wekt62dA)J@XO zw9#RlQ2uxHlvT9GbMgMFY&oqp0)2V0l~y#>3-L`ggbK$s>cwgQvUC2L(z+T2Zab^c zNb!KQ495M+1`UI9%JJNxk!mRWzp3&+{c`8Dt_T=4uGM$3{oDHWO#oR{6a}!EnddRx zJUbTi8s54R&4_oe)k_FNTM_@O%*6f|87ZsOTFNbEQi!a(*~V~f_@(2Jwl~S#t_-Yhi>;0$yQf2b4+Kn8hN>#ZmVDW!ghNukb6LhbWia zx~Y(TVF?%cdiug98ms%RAb?&a3|JB+>NVysGE&oZigf?LD;XEQx9_ zbz#5`#qWoE)vN~w_e7@l1*ET*tJmDyZ0`n9SugACyzh=iJ)Af$b$SLM46}7EVtg06 z#f^-5e)+USXNxko{FmJ;Z%=PkFLvx+OZc5<6U2{`tNWXxtwlxc&o<}hK%2q5fR3np z+lx)QOL`BZ%CEd?^C%ua?ysmlitb%JVeXALU35zU=eNcm&Um<6z3nGA4Gj7m^P9c% zoxS9qtO3o3hr8f>+LrGRAi63QTdNj7R(!XP4}RePnwFr_uyAkwiGT>c|KA9R z@gE4tc2zRgXA@)TgW$++LKL081*`fCN{GveUX`hBWvKL^pwTEbYE zwD+Iy_AYMxYJUPC*TYW$)VjF7{RaTzf0(v&_u@PIJ#PL1sCRE&keryea|yWD)q%gj z$OAZSimjiXzuv9B1ic;K;VOIZ;UFw#X&k%WwscN*v}H`RPKq^M@VEbHWN*3i#<{Bu zdV6x@!jG$`QvZ?c5(u{>U^R8@%nM{`}gMdjLUdEU{i+M0ASXXRdnL^0C3gL ziu~|&ZTS>7DQ@4s<1#U9c?tFX3lo!?`(Are=95+m;J6PxLUSPPU2^ z#Kvcp5QJ3#%xDqyvqqYCbBC+~K%LowkR@z8Rv7p5<_0~M{(j&>x-w);ZEP%l!&c}M zPPUJxD<&ZQXgQSxhI6iB~#oQX?FdO0HLhpB1*sVfMjcY=#+g9n;H|POlORj7MgLe!ZOGGIB%d6ZoxugFM5eE zL`X5n2!0q>kt4q>1f#+51%34otdn#9%fW#{xkpc!`;wRK(nAo7_vl2nLDb;;7-5W% zK@bVN1a2%RiHrDlbPZXbLGW!$Rya2U?>&1m@&bfXm?j!cR`in6jmLmc8Tz%yPa{|l zHh)_UO4jbrqBJ>{=4p0b+lM60VY3-ms=XE0WnS(OR9J>wi5G3~+7Wn|i% zemrJ%$uJ>jP%LyqEm!LExpe5U^d^ca**R;EGj@$3i@17YO_=6L<>ROg|3u`%NMS+T z;j*TRfEJu(NlLNjZpRS}duf9M@jhvTV{sCD&E$H;Qt}^_@d{8!KicY>JxEQ`K;XoA z#?-1vOa07;Qtg|AED0BTsV1jadnJ?Io5C3lfP{3)h z{hqRp(3*9t3c0Z5rj>~>MLfobL0|kNIwu5)$(aS}K*D7n!w;No>2L{9i<4rl@NeJ6 zUhH+U`sMY*MP5KORgy$U0TVuoeo}54TL)A!#=7d>48bk&_4c2ZkgoiWnvwVDYI*dN z=-?*JJmbNHl~ZvI@G!g{Ou8`4*Rt=h`9#F zJv#8ZQ#*KvSfx#)?^;;?4BMuX{t661QZO2@18ZVxMY)aq2;GRboHvUb zzH(T?r8@E8Mp-$j#MZ{QX>#>UQwVLy&$Yo=GGlgpX>JXZlU54nbb*!;^wY65jVPDS z_@QMWG=r`mz}ph?AL``KQb;Qael^tbE8 zJCC7LwhI1Mr4v?>B>KY_2b~FY3Mfi7V5T6T6wSsW*}!3i>mPyx^*C?kD(7X$NU45kU` zS+anzVc_A;T%5%nM+GsKX-G-3onYZS5$a&0C3#tLzoulU3J)y-4|-zl@?&B(^bfaS z_*M{R!E;rgqb9om5Nbzou}T`m6J$R_dAuP96ak23B*e0GW5G^kL@LV$5gw$z5w{(l zgMAv@RRvz-eIDGnYWszj^u|n`c80_nZf=;~nc^yZ9s(4PL1v!kB?*qJZVb?$4QcOJ zh|6AZMH9}Ai6>{v<;j_FIGr>0Y{-L4iDWcQnzoj5Zcc0k#${`E)GCvqFoqOdfj5VB z2VeWDJ0-4Met#2qBBveq2&JSvQOdL*49(y(ej;DV`-E@KoV1a)803XZ zJRd(2Po%qC@Z6ouhgw-s2YlvAUc1%u2HdX$q%XI!9pj>k=nC&GHf{<%c&+!g#-b&P z{wt3mPyUO?&^_7M4-?c3>>+S1Qp{sLCNrdzg3@f_7ol)iv)%c-0Tnsl;b&Sixu-$b z8aJf}{GP|zU*@8Brgp6rVbB~?bH$0jaLR!8ZA^9Fm~lHX1FP1RA@`6ufvnOS#Rbkx zV`?Z|59D{Xnv2e$@{Vk^*4n|t!;Vi^40=#MSRkn3f_m(wj6Vs7O7+;mzWJmv27yU~ zxci@5?P){E#$?Mii7oE;up6^0de2gsVJ1pshn`H1Ey9R+i4)~RUUUrfQ~n=Y!z&+) zaxtoL)bNxkHVZ}d{5j_MFl0CKnX|KF_Zy395NI{py(9`N4E&x%p0_(p&P1F2p(GS( z=7g?czwF`6-pBxgo&(?A2gu;ZJiauHU*eM^GTm#lI|G9Eqd)7Z#b^i~Wk#S4rgu$xb2y z^szM(%y*_K3Q8Y)^FEPNxae5RR_QlD^LF}!W62qPUf>YRtx{t>l0CWz>?`B9lz7(sS~VY zt$fhUtN}^z9Cn} zuuwk%o|0(j*QADGm(GD$&K0?h_T^WJ744PV|)Jh)?*8C?0@ihh+1y_YE zV+lV4_D-1cbNP7Z-(Zo~h-Y18hRdom(Iez2<4nMtaLYvQe+B1kJLjpd>AMw@dY6w& zsC=x((V0k%xwRBsk)t^!Pkcb34kw+5qB`9t^)eYWOKbe1+fZ1_{T0H$M(1-7%Vyk| z%qjvebLQ(q_0~(6=ygGQM1NU7BF*}wA+31qxjmcDcR=EL>{iG;nhpX(=v)_jmoz99 zLtpsI|DrL6+=)OhMo=jOYq+dbB6v@ssPkzV~Oh_x=sMX)767*m0 zUuJlcb1hPmr%6wY^t@oM=66PUh8l#wY8h+6D3Ji&-yriJ5+yU?IM#fVnuU)XGA!Ja z)1j#zi2o0)09U&Z{Rc8xS^4#NyAdiWycW;Hsn>V5tf3dv^)Iw!dQH@_;UB<+_dCLs z2>fdNW0f}TQ#t&ET#mjBLf=ZU)$gz9|D9|&vt5#;Ol}3oM_4Ic3+*JTTS|H~*!*8W z24JRp4^U)lzHa78>*uvi~4B04qTkQ~zKw(#>V{PsCzpDwI28 zTrJQ3PyF`}0XfY~^D+&pNV$m6Y@7$;JJT#e>I+%Yh^Pn2{wqgX0sK0*`4Y44un4mH zU!hn1YIb?V$k=J`$Nf%Pmi4nyz8=7$$C|b(qU#@<=8sq_61GFyBvq}c*l{|Mz+ymP zH5HMa=<;2zR)i&dVxI6LJQm4ci2z_^fJa~dZ!~1A29QW#P`{jw8=j~thf4DsYoKhP zfdQM?L{sK}$r^Dj@wiAqSOb_s8r(|h*kuSzb&4CbkZQmy*xdgg$N(g_s0-bbiB(Y= zNeNdIt)x{9Sj#M`)uaE(4+Zr|nGEV%+*nJ?RlP;(-;sAMo!)ah8{K^?yS$X}xm2>m zEhxNRST8T;K`Aif)S-ALnm0p9Eidr+lptBpSEP8nJf5C(GNOVSD=(4e4<4S0EQ33C z%`5ryUKl34HibVx@hy3^HlkXyE-6cTk4Mj${65;WKdkG1x^op@^q)swdd}UP4<23K zzXPB@dJZp3ryW#yy9ZStbhoj~y-&!Nk~}v(OBz~ll6qH-9m_JeBa2Yf8PZQ}yH7SN zi(F*%0Z&hk0h0}>AMIU({?w0E^Nt|c#fP)U7Vn@BCAaSi+MVrD8!kWMym8)vv%CVT zUmW?mz8GCKY{;3KU2Joy;`4OiZJjoyxppjBXBhtaY-H7bw+YEpPUXG3V9=^u8mO(s%C?*|7P-W#fT@|s(r86B z!iX!@#Kg3d4-SOD7eWFl;Zc8pk7FGO`&-^LklV-T#bEDv$q9eein+bhG*RxQ4B z8{5g&#*-%A$khoHB8u{=j-hqd)` z-Obb4`#*DYc5GcFU2cL3-kUZvP8{CsQ~X;rr{!N#;#T+2S$H?togY_^AwJPe1Fs-% zRuiW=Q>$m2_eSsT6<;%_3Oz!t?(jO9UR!p|^J2%d*Me6kXXpIp&Fs5dt#@TMbvDXJ z@#${S`n~+y0QVM<_9^fPH^4#LdmDOTG96N*RH%OUpmn*&d$Ux;3Fuh~^6fpV(EbsP zs>9lH!CS3-DAgvg$gM)BK^GxO#Pjjt{ptFiA?(l&N0cPeFNNy$=bNVrKzEa_O~oM= zlV8u!=A`uyfAplypD$2#g3`9Tg72Ht<;A$&xZ$3-qxsfts_>(;ucI7{oY zC$H{Fo)tn&=`Uoegsu-oD5--!DNNgQVO;4GpfCyC?X`!HivU#0C#?+nD{eM|w3by;4bI3FMk3+xin?@l#|zvi@i@(F6OR z%X}MICl~BnVq27x_?qVlL%6p1_!g)vp)phN9lq5N{^8V536{W|NAQUJy~YBz+kYVLe%{ro2Z)3G<;QV)+KPpZ1Jm8BY_KS%1iR*LfD`!;Fb+! z;M8Bq02u`%_UW$-vv7mRel$fKBS0{~J|DY*g?M+-}yj^%eQvwmgIT8dQ9IPfYxZs4wD++&PSDKU*&cAA@o2P z!JA@(u>AF>8z`YEPb36Fu?I(jt_49Zv&iOIYZcnl1tp83Ybf*Ef`q61%bq#RmMX}P zD9Mf}3ygDwS~nu4du;|dMQ!~Z()f5ezjO3Wh>$j^flFMtC1&$!iHlfI(lbUI5cGbF z^hJYMz@%W1ht7tIPVKIr2I`ge5LmznRG=RiuJXIYntk@(W69KzJskieB0}fGPQ(;v zjMgU@?1Bchghj=q0MA|)28B(#6t}IB;b^W7ao-@5_el2b<|al8H5nHS6_MspOC{K( z8;L^<)y4DH_~q?8{n)bz%pWXcVWF6W%SxCdF-}8Owh^H!iE{R441;q1qL;zWTCQB8 zj#DLvNlPm#C8aQeJnls?up};t5^yTTR8~359T_(si4weFmlO0NBRTBVE48AC%DxW4 zc5@kOh1%Vawxo@S|oKn07`c z!zY(jk5F9CU_P}VARj&UySNP@HOzNSaecyqZ!C?uz=4{+NWAMD=~iFG2o8>frRD@B zN$r?T2^;jQtCNHqw79O7#JmoMCed^sacnaQbQ_tVqB8{0)lYvVnP9eC%gx_N=ff=w zYj-z#9eUQze^7pDTz%wkEj5sjLkyh$!n|hjjk51n93iNT&EM(GARH4U=i-)dwrZS_ zI7c3#R1o0{ZLEkVQ4pMfiLQ=uz8coDif9GiH?F44bFuKucXrGHpsAMfqDJ!JJIBU& z?9&Up5xt;Y&u24^g>a*}ZTpvU7gt0>3@Y$ec)8c9OBAzi?H1_#3XqiF-zxCDjH)0t z5$knUCVHl}nbaM}h3q~3MTR2a(bJeX)YF*|c~1RRQK62dBz@w*U`WXqKG;uCdX4kOnxSv?L)7{ywg%`J^h1 zgl!@cDuCYjGcHnFO8;s$gIjRT(rPWS*%Yd*DGYtW>ri}LmTnha)6zBR!(UTWwK3yq zbFH#ixCTXzBt~WN)vWyi=_lH3Q5BW(6GSCep+dANt>P6{*}2s5Zvy=brDg|_@~L^4 zNp!~58`Z^rG6=>DlJ=6&SF;K@q)ZB2MhFx^0=5)idZX}se1D<3Ao*mDsRC2>k+JSOL z6-+a~!_TOQ7cr?4HSY9I@yd?6B}0x2)hJ7#3SCANk+@|@2@P8qxc8@w)#}*X7D_Hj zG)hx}c{y`w(?myEzfN9t8N)D#n2;7k`|QKnsltpe8)$XJ_q%)F=SR0lSY;}57erH- zreT3Y9V>ygJlEQ`PSyM|70)b!x zTeXNHWLP`BbX>5IaKUmylH!Prj$0{Gz$al2s!XON5c}48k&_sRSre26zKd5e@2opN zZ>C_NcM2qo+?nElahL^+f32fZPKAxWa2eN|_b>lhmHUO7luQ(ErPFGq=X6`yVcX8$zC=IIoQkbS zlw|Z0I5Hl)u5F4@K0Q+Ek1H)|_1)^{FWe2+d#T;46b(QV8)reR%*MC@PbKY#NzvN` zc1E@G_8~u_fn9(EPT*Z7J`8e{yz`pr`V4n}>w&Dg)F7d!8Pwp%s^hP7$ zsF?=K`MV)^&1+|g+6}!1XFn1R0&*PaVLi?GQ5vJK>Jj>)2qr<#so_0mE@QlPiMb>W z!bR|aG3d3ZnB;u%lU_EH!K+pvgF@GwD4#@2f$Z3L)4LgW4ZwmdUBkiAq|<59nfvk%smH!jH}APrs{*_hrrcIKf!O3MUS&v?unoCn|D_->jf=#n0_!nbGS=wu7iuNC z+Q=;R{&K>#R=uV!_CKGQj-UtyGRaCS`TE3_i*aoFt|9XF04Q1`rsP8bBHt-61It&7 z?iut;$N>3e^6;vz8{)dNqC}uOp-f8&B0*yG@0IyRi9jLSc1a0tIi|IS#i3mR5N_$ui$JdaZ$>b@8&L(F0rVj>G+bCrIx>3#=lO_fqpg(1 zkVy875f&``B8KOlvsXt=z_3X4wVNA!93fONu>z#z_qPM8XiX4TlL{J$jx$dc5jzSU(MFl|=~8dIb&jbGR$pls z%>Yn}2o2}mp?GES>Mp!L@`z0k_hb9r46X~X0md@nG_1+D=nN?q;4J>UF~5jv>ViY>VbisG1BdtFWShrl zPAyq3*^=+zXwEP1{iQtZ4UOi=8Pr2>X&H~%EDvBxWvltLuDl<8Eg^T zjXt(-EchkOfTO4f{ME&i%GKG^_csrRVx82=ovuf|kjW!ghsQTX?@QbLOZr8R3i``_ z?7Ky552q48_UU#`o&hOs-8uX!WxMvQ($U4Jv?zd>({tSiXh$k&UO69NdzE|KGy%^9 z|L)j+<(&SK5UuN@IA^Qs)h7vBKZ$==H>%}qTS*AlzGao4e@yn&^a=-1l#BNP^WTiK z>C_M`IUEoWl)(RKoS8ZQFwXg(^%nBDki9lb-w^0J5g_cUB}h4)1|VQviwd15baZ&( zC5o#f7M;oBZcZCXNuo7Cq;dJfGb%M{r`IiaOHL6`* z>TDad<60h&9`<$*z1!KASQHlRytGbqUd8+2%I&$L5`+@`sB=Dg`UQn61IO9rc(j_! zw)0}U*_(62ncS$BpXDmZ-lc+W{$?J;uGT&KnK`KT2Sn`W!LoQAndI4LJEQkNo*sE8 zB;Ahpt{=)hy9#O26a6>6w=Rb^yWH_z8gH#M8}u_5!~6B_aufTrg*@nb&-M@L7RF2IVv(?Vb{pY{szp-rwfzBzpdd?@j0>*5!}SXM(GOc=l`a$aT4 zzqC;3>Qp*fC8AK_%k$QEt!QtO-}~a(TvDmhr{i7{KGbW+a7C5aOeng=wZh`Lh5;` z-5pP@u4qK z;g%+IcY;xJgi-QdFd_R`|yD&jntt`%p%j_(R5B( zmL$=h8{|1Bx1*^cT{SWoI(u={2`2=m;mS2ZCbr=kU(DQO!P<2~tYD@Wsn)x19kV^z zruYt_bNl^*8~fnol^K}obA%W%N#Yx^!34AsIk=>J`T#2px^bSSk@E}>{B-Mr$8I6`Rqbr+lU&6xzOqNc&kfx~dvuW&DI(>}{_pD_z`Z+t?B`@oQDMp+2^) z1AIxGXd1H?HQUdZ?6SQ)D$63u@>M8Bq0k;)9`mF&eI-A=fUufII!e3orA@ALa&qKm z71!0AE=5q?0Y;JSSKk!6@AGZjT6&;t9V$4D0i zlo#~{1)ZLLt9kJr5l5~?90^A~ELel6%q$`eTPu)nm~9@)2{M}w+X?IPrmZ;*u-QzQ zKi%j#ch;THe)qlY2@^HyY&b8uH%A(`mFI30K3mUI3zeEiQF$K^;A~_$2-S&t9B7Te zXLRk+a)F{_RW13DLReXU4l@y}stv2QPNm48bma%_T2}fIX_aBI?;!`Rx;>rX0S!-c zqG?=zo2NpVaaL|@*;5GGBaEDTWjOjQ5k$Of~S^L6k2KyMC5*Kw0Pb(|Dgcucwxx>F>Dl+D-F6k-p%6NGD!)`nKoPNbnR)nB!?5_+ZXy8u%)qqm}T&80%R5dvl-Z$RZyC=+?@Kx^`)%|Py1 z1%m4guFv653i6MFE>i#0c`K>F4-SGSXPK$gQFtsxNR z-3wu|kC2_vA}g1eI{|r*(!uYT)s|)9T}5)cJVP9X2;0_g+%H>kVm&f}COSxmSZN_W zC*q~&<2#(GZ1U)X;1yEjEIO9i1a@7ywO|tkAipZ6hM`g7r4I+Ke-Y2Iu3Hl0%EN7< z+YA3O=Wkp=O%gW1`S}X3x?hTZ}BMZ8GzG(IQ#BROAz2^f3WmgbVdlK3B*RSJH`MHb*On4LZM6U_;F(=xlx4#SOPC zUF+Q5x|s+Ubqq$)^lGc};t9cG!4S z&!x>mp~aH1xiylxsUn^9^Y3v+1+D0Dt*5R?XCuekdM>ZlDKpw(!|P7zGEV!_=2hI8 z6qKJG%xNzLGWV125!CLmoplv= zM?{(9qJg~&uFJ1B#w&kDL*r{=nG=?zjfT<@926BEA>|l`r(>?%P_l{Q9&0LI<(a0L;ry=;nEeCBa1W&nI< zal7<9((CrbJplL@W8RmTss{F^ywy3rJO8=Hs?*hypq!=Q?*P}+Lzt8)4>vsi_u+#Ci(SObhyGe&w9g$GyKBiB$Zp;rY3D2*%!cI@2%yX zPWtx56N&!^0)ZFx{n?L1n)5nO%J*vC&iKJmBLs}u<2&oAt>%u4aj)J4r@$WJM;+~L zi-yNjwD(0Hkc!)`tC{1y=F*BCgy34`^TwTL=hXBDhDY1|tRL;zejZMA+p!$@=OtXa zldIRzZ|ezi2(u2)%KRQTS(rTU`2WpaVd$efYks;blmCyq;`kqTwc3K@bs_!XFM5&V z+UZJ@#Tg?WnxAT(wxNTT(!d%ctP&gd`1(xu%?Ah_ky7?1dI_J8##dXfI!p@hFK;z> zI9kCuQS^tmy0cs5xrnU1Ip+U}@eD2c^i~cY8)s>TyjfmzNyoNw-tV)!lLxPF*Q$$u zdaHxk#?!l7hBWO4+dF-S>Qp7qU$IFC9!px=i#MmA-fA(;RO7fRtGNMp0zPfsZbj0S zW0N?~&28EG)VS7@e{Rr{dQaN$+;y=pZxP3p$J{@Yrab@9fbQR3LQnOWlbUfoF) zdFMA{2OnDx(i2Dj9m>XeE=9L&dK4Qyc<36^wws1@xI8cw7oI6>bJw>v_qA4+ulse`tAPk z>`V%%Nf&+s)gT-3a(!1{NTOB8S}~uVuubFjfPc@#aW<;+i(%_L>f~RQYn~~hTSPG6 z81#*_+N57R=vvv0o^TY@A_IFj7HsRYKkFkNZ&wN&H2ReRy9o`#pRb*0?D3m^(MrsH zeU;42Zk5rXropsh|0U8kh=C_wb)9nh*b$uHk?13fjZ4dJ?+Y0t6V>?!nLRC64#rD{ zwA-zCDamd%F1({M9sA<=>~8ZDConyTc3V1IA2}yNzLQaMGeI>j_OC3vbY8+U>qI$FY4Q;J0#!pWkVowh!K)Lk4Vw2}jjE}7z7?bZ623Hj!r z5hdmGyldEmFU35zqlOOy4{D(M;8cUxqrTUrv=4d%VcQ44xzy7*bOse*A>t&`K({RP zSvxxb4V(PzDbwCh(~QdlJ|k&Pdh*Qk!8q%j>jaJSt!sm9FHZSR189&p zDFMOo^!AWFDEu7E@V*ll1XDp(xCNpiJ#osg#6Gx#@8ZW&^=tEWsinUV1&!(lv0@QP zRL!Kkr!a>(-xAU0?bky=??!!}(PmQ(L=ZHm#U;lq*(B;O8i)vgt6Cxb5HL^%r_)gW zV`xALa*GA<1zhpR@)e(DKBydv=W;?>b*^QZa$)cLP**t6o6>aXWlKw-Esep(2S+92CB@sVi(TQC<=xjvVvmC1yqh8bRBf#sr2PEwNQjzv7#SmK8 zbs>qZ8pa9$y&8PW%cxN~WfW)C4Ikt-w0l`rjU{NT#VO41jkijUbwNF^CThDR2sCUC zR)8I$_+qTAC?(Q(i$)ld#>r|`_8Ce}lq^~E zC6em+k!tyo%1v#*;n>Y~S(rUp$9M@HkB{^@l+S~z!fp9>NTLi}jQO?L8mQ*Z4{lS? zEJD!oz)wXPo$?P8Gv>1oVP*XJwpsOSRj9sio%&~#cld*Bga7+VK7xG&U8=JNqzt-@ zDXr8aC(bQh3QqU88`^m&Gk0SyP_YGE|0svK2{fWEM3u!=193r4lAIlAr8Uj)2gPt2 z$~gH54ytbFl{zIxqEX@bbV%An7*&O2$kva73HkXX3$QOKoU>S|NZ)l3evVszCY&me zVuo`N{aei6^$sL3;&?za!NtlScp=}%citJ85od}z5Yp5M+ zpCg4ksty_~!9mZiM-8fqSvBLM0_)#B%wMfapyHi}Y+h3tbT?=(=X7nkky=!JKubfW zrYdF8^%-_zS0w;b!>XHiQ3X<-7<#gd8Kvtzh|y^4&^F-mw5>iY>$_#w@sAL&j_gtv zFJ+3uwf${&*uO_!tJ72DXGTSgm}vK?)_#Ye+@S9}cj;EAOP8F{RvNwI8AK^Me9T6= z!lkak)!iXZinj0|mnN!%FbW2vbV6MAb^I0O;k==86q`i??NI^}NiPq+)FK7amcXcL z_E}VNtuH~t_p5?kSn+oz*~D-fU9kES3akWnhwz&7CTP)O!#xw>zcBorFH?3gKGJd*V;XQg6T*yxu2qH1J(P`EHlYQA4f#CJLLPjO ziDS>8Z0;Jb1g$Zc>2xYv2S!o%n-twrA9~TJqt)OO$Rv>x} z=}s@&ZwANytu6uS(8tXERU4WsyTXXa^Dc`Fm)BOYFB82Hd7y_opoSH~;|!6_p_;<$ zZ(@9QwCXHcNXNA&Jffthw-7kcnXtp|dpmP6Ds2g64;V#n{olRq=+IyeX`H`ssA9T) zYK2Mmy4tI8v zwV2=i#1rKRmql0=-VBqF*3$vonU=@g)Xb^IA z4IGBu6WV^ye5Mn)Xc2<^5_of=4g^ai23K7JY6os2xC7tXgT4sv&bH-|2i5?Jytrjd zgzVxa50^lkcn3?}Pb>~a7~IIrTCyusP!bNnHVXl8RQL9`2HJH;jXim#>;}f*KX!oqz@H9CAla!)g%0!u zsZMNqD-YNS-|yiPl*61J7V@@R(M`X@I8?MdOn_6@?~(*ny~3MiSG=8A)bNd$U&F4I zyH2S&RMPFxnzRXkNucMH`c?vO%oTq+B^d;bOLgb0!ev?htrT4p@WqwKH=w=(TZvs! z!c~!ZV7l5tw+Ut{09_fxjSV6+(dIBT0->HfPmww*!<}jqCHb{o^9?(pWQyIxT37f( z{XX|zPNRJOJt8!U7agDa4JCQ5b8DeCK_Mn*kVt6%CrDf;c_LMT_j@r#NKFhMsWcZ* zZT}0<-OoI9gDl!U`wtT7^Ua8>=G1r(LsH|dXu7vg>rfyeg_wIzL;*X{XvgRmO|gLJuyV4!Oj!JCpIjc zmMw5Kbu=LCzqmzA62`e!4yp{KbGQ}3=$<;o_iU53h<9>B?TP2*D|ULZr`_;b<~*oD zZXV-OIV1CW6722x3b3o3_0YQO;@Y|XHbyN?{$e7fdpTLupJe=u?@Hd$ntq=a_2hVW zVC4dz0^gXyL29J=(=iS8Bh2CNhPxHTv&XV-K+Dx_g;SkMi|kTXF0^>kus&_ zV?8|me{_9gcwo)4ZYIgZwr$(CZQHgpv28nk6)A)D6boAG?qGyiZ9vW%*ni(AJg=SbIa(EtJtyu6@2Ap(3~2xutcxG^;5? zZ#GYHs(rkjZ|}A_n`5_@_wk4K07O`2ZQGLCIXqEA^AE(lMoG%qH-vK8qqq2FUmISx z%^X>`R-%~L4~C`;Y0F^A5%={osaP93OSgxyUMBM^4c_ceZ#y4`|$w0 z6pD&Fc9SHgbuK0emvMPZU2}*R;Ony=6^T2EM6ms7<~n>iokD*Z`Q*7;6Y7Bj(ma+^ z+vMFr_V}rJc9PPzy_P;z!sy9!8$x|ub;CUpahQ^RH&zRD3_31T{%QVLGhRmBjQwIR zZ)r8g{qqYVfcXxtd!_M^@$tIx(*amn`JJE3e6?;{?^R`f-|v2iBw$;hTSW=%Z7i_a z&sY{P#pzK5-DVZuV5gWgd;fJKFf5KW1@zF+DcC znrlqhB+9sN8$<$~2;|c+Z_pEzVCTBJR-d;|sPf}(7nnF0Q}w^|zj+~Cv?m#^I@A&G zI(TDn3Tgfnh=UlQNc=f15wt*2FQ2CrghONo1#+MgtQKGHWuM+KNHne|<%VNd*ZhrP z%)5_iS46#9f-Ugc31vSUOY5$ z03yOT=Isd)g7G=AifnrA$kSmY zshQ^#2&tJD6cAaG%d!)WmmIk(SXUOz1(CT!q8_GeW9Ms{RR~|NGE6b_livs6^-I~0 ze$|?#cI%%5Yg35*#EbLqhlnQ|mf&B2sFjbc=MU^B0*G(fGWTg~0jsmB1c^hO#Ud^a z4heefhai~^dkRS5f$+>Vgr#qTzDL*w6^|KTGGu%RL?^?u?AO)REBCXCNE!z)CTeFp zNvJ+fh-HDAS?e*cGX7o2jj6KI1PZdBOc=oLV20;Ng@zabJ>{_PKS+g@*IvtH1CP-Z z8mZYoNFBdmp#3vfOdB626ge??p@V^?gF#^sKL}Dooy!hKyM0R{&;?y=l!+{XPRvIk z-*nrbzQ!$0eMTuq>dY>%E^N(UWs@LL^XZ+MU>Bukt@m^>t{!Fg+8xyFa10~D4jC~?gE`G9AI1h%f5>K@4OP?o11CzHv-y;gzTaM-e1Xz%mXgpIYp0!W zsvdMQe=Jo*7)A3}?i!=m163s+U2)m7?eY-Z1N~Q4dtAX87@1vl7Oz43kvfKuR+&va z>e9$Wdo%7;l>nz~=2EC-3-eI^eA9Kl>vE;S9%K-b{CiH1y4)fW4U6(366^-=+A1Zp z3IR-H33Q^?K9RO4(8&NxkUi-V{vD+&g5XKStbm`3hdo=79|>tN3|4+17{l>c z5{&UUvWMk9KFYdw|5XC%@qOhdv?55@pzSFo+Z3CKF!E@WPIB`%4eNDRtv6@zfd2Uk zh#(52UvlLFVGtGn$s3xi&|b=w2r`Ih1s$E3)Qlo-ip#1?&sQLYufHCt0QAh>>y9)= z*J}gS?VNGa&O_kYmP^nLt6)U-9a2eHTLj=vOIZ^f_S1mInz)tjoN?2-mh)zsH&kFT z!E&Zl&`O}JZC*1laNFt5g0$C!G`D)Nu03IBtFbg`Qbv7RD${_5e7q}DMElFg!FGA1 zr7gg@^F(@aO_{fsl-t-l-+i(lhDuSnYYrktv3FOlNzDcsn|xl_XL*P7@nQbA1WYd` zPhoTaAq)MxG0L8#!jz-K^zksr3KPV3>1r7sar8Yd#HM#dx zeg_xT%;A-5>dJGOv$S)8lPnLPEmL7}?DbN725Yzs7BM%V4;6_VAJw0J*4koS zmWsbJGz*I(#XU@8AW1Sq#;Y%W;nAW*LXg}Ukx86PY-q!fwvSt{)(rHn)#{&eyRI*D zrG9TbCp+$_;AD!3;Q5NH=3_LBi+Mwu`FSALTa+3RSEyw8k_^f!Catb}A4h~@Rw*1W z?-z{oAre=JvyrwVh!fF>9YLg(_d7w5n|&t1kegk9&(ac5+t|Fqy6v}uq6l&m$hkeX z@pnC?F8ssHYkVfwZeyE4V(a|GRQ@%3N0)Yi40;+2Mx7w?DIaa zg@tRijOawvDp&k>-wk(|*`G)T(_R@dA1?MlUlHosWVV)gcq4+A1jjGfCcRj4IIPwA zHbRBY@md)m&#v-d5UQp8qV4-3K8+y8s6bOx5hjN$(ak^u(Q;kQ@w~~utSw(Rb8t~M*2zd*HrDBgxaa|*+`pFziTpE| z_*#lvTyDbK7|20ntm*O69iqC5dgqnxzG^2UdD&RUBQ@EXPJ5GxZ*EXkv1M9+>`CFH zkSCkab)dZSka8I(RD1&A2ULOeVr3WgYEG}Jn&Q;;0gqQCn?N{rjpTyVH ze*5i8-FXSw+Ks$j9SET`^JBc`GaJ9j0UdRg_B4=8767M+`yJ!(_!ezONC!>kY+yOT(j1lPk`yvU-#%u(w=P5I={#EY7h^1{jiB4_QF(LQqH^FwCl?2O8K0OX@8}f`5puM6 zKwG?$7yYk0v$m3PBdZBy@|`w5-EkD}j^gnrcmv(EU!AFF9>luCkV<^BmfO_TSJah8 zKDts+9VaVT)7&PPzW~Z*)XYa$`rD_=&IL5CXp4f5ldw)B%=1)NgUb27lNq)hu+dZA zS+vC>y+w#`O9bB!6#hvnlM9$wqb*+DnTqJqpsi*m_bt4U@_C+B96S-77%%$E=XQZQ zvnVwaqcE^45#9Vta_15*S?NSDqmd2T8pdG4BJNfsBfvIA`2!r+`~&pnR%|USO`^{-@O&!{251a^XZXB&$*Ez){u(A~_#ub98xRp51k^bhin}K0IfC6sO&m z7`U=>Rk`T-Ys+UnEQ>lis(w#N>gejy6qY|fx;L6qrmqa=s2V&QEWK8&3F*Sg@iDnv z&G|YhoZ}cG((W_**_|PwUc%WqY=wymtgTgOBoV9v@A%vfX=Bro=)k(kTdh+bnZR9r)utEG`6QpixooiW4l}Z|r^w>9z4G?fOj+5My$7cjb_dG$P6?~-U73{cW~T$N zfGl_^={q#NLle5v=HO=|PQ;DY;VP_W2{+S>r!hRNZfL08GO z&|VZeUFq2GUCo-!s8IJ?`Ddn5-5YtAO3~ad@JjgcP(yBt=z>RsSB1IdqlVTw`1oo! zQN8vQzzVj*p-31fU`HoaqutQS+)A@7u*T^>QyhXU{HtQfm_d~}`~DXBxY zFlZC3R4hBiwda#^(qENhbb9#_x0kN#S_h`c=+1#jmm7o2w-?>{zHgqe;zKygJg$&Z z)1-DHj)ZyN?<869U6ano29sU;=9`S4X!AfnwcZ{9Xl$^&xCNq@Ve`vzgmiHQG*;m1 z4!{wnfx>bPnV0&q{PtY9879(CpN=l=GVp};2f34(*D@DB?g3Fb4(uE!`u*2#m6GY) z(|Pd{!`3d{-(4^=8HRsvMtpXkdu}z~Xmw-zFacZy_wOH;{}g6q5zp48d*1*2{*Omy z6Bq5x>b{T=Ma91(Ab=a11cX7|cB2vjF;1&0cvrE>D%+B47T!$0e#6G8(HM!Nql4=AdJmq1!##W0#rIW* zgo;@0cm96d+H-c=o01s-`vi~NyL8lq0bnBUXRYNg7zP@R^F0~s3kxxk8N-q8^x81C za~~&VJ-j=1xto8vqpQFu)%hHrdGwdm>)J%3efD&lbg_4l>iG&|&%irytmvL|@i@JX zv;M|81-sca!t*}(6?@7UFv|U!eo8kjaX$JUxaOE=oxyX1=xVB}KKZ&21b?8bbh~;} zKQ_UH?&i`!kAL62xm)`svHg7P)$5aYxzeizdm`%Di=*y<(Uu6~b9A$S$?B!To$&;7s+^4tn+bIuwElK>!JN1lncLW6b42(A!Qn==tTYC@n?z zwVUfLg;@*(b)V4IKNr!o=?8x?hHSP-EicF4t3Azal=+*bC61&_9lpJT)B-H!vk_C3 zsO3Qvh}9HA{vb-b{ctiRzsbyerTQ6JPd4BAqy4qP;Vf99jF7v+R#{v)vHI!;&SoW=D7U*p1y$IO|^`{ z&3G}30~=`r%pt%V;eBu2Ax69}Gr1p7fL_l%(3j})xWH<;me#PvlEZ$TROAg#^Hx2k(he+XbpV8cV(32UkMK$QKLLY-As`SD z42R=c`dfh^MDRo%F!-VjpJ zd0>5gpWyd(T-wCChE!XcUy=f%=2x-cOgB39+sN41s4+8s{T4SE_Ysn;xLiqJz9Td& zxX2k7r%dVq%nrX__nJErz*abURglnoGE0s0->f<4gCfmpfKYhH)tX! zvPPGf%O4Q~8a9v0++6y*ZM*R#ijxW_BPsUB+|M4&4Nn=%e37)&V)JK1g~^}J+M9i< z&TNCZ(R@(Zlr_-I%g#`gN=ZvbYx0DOg~;vo0>F?}9ScIeP+?1O@NVh|tdSf21T`-P zLSUHgm_4VWEmTd8ZnGwCcm7SxwYcGyr__n?af;u=5UJj2`cg=sw0=>Kq3Rb zrH}I)_+v&Pau^5@r-DR*Q~3`D>fH?qjh#e*YfT+bVdj(J?L))l5o75@R|`-ICA0?@ z#QtwB3!!qKsx&xx*C>0^4{HrJ;)lso56ZvKeza0`DsH79a4aPkp?mBr{h4!VISR}4 zoJYcoklfl{E*Kf@yq+65ksH~pKU@c$1b{=NuxT_)aiu05RMH{t2o?lU8GfD3rG!;r zNxk^x+2+ccQV^Q19+$QET>!=kK_!dft3iA3qIVz}c%W57o!7Plh z2#~5|OSfuK??}|N%7A(iMa{hfp2MCph?Zz)5JkX&4h@^DtVh<+o|*-X4bH-hNM9jR zECut_&;(lOb!eb#X6l2t&Fz08{D8is8lK4~AF2iyhw#)2zk;kZx?=@>pV0SpoMUNP zDEUq@x*|u0vLILP+cIoquAD}}LP6*>pN6HS*>cD&tc`5zpA2;V!RJXgjRR9JYVCRI zU)(t-0|01kHl(H|ZqKhd*ONB1P`amNb;mcPp3AYGr8g4e#70t8LB6L*mMbTg7b@@{ z{H;OhQY4n9zM%N2DEAdBLw_T0@jTfEtjnc7*r5+UZB?vWhs%eNTRd0aa@Ho{@F*Ld89Tl87c1jF1>VYHl^p0;b#Vkb z#B@XD+yt}2Zg8QM`!%6unD9Zq%6WkYy0ml%pn~c*n6N^RMd+%k;i@ORLz))4L4!vs zEubsVl>om7yIk&_bA>@Qc{Axe=pX}qG-toy$|rsU_(iiMJSz=R}x+*0h^NLn2eVxX4}s1hDIlY+GDS+%UOM<-tpS@2ulo1_-uM%Y%&Qq=SK z&4G>LQ&24fjV;*7M6co3-4>g~)0YS*u3_mks-_0|v^BUF-T}eC(>A}j z;kqBXhYJ%fZc~BpFBXRTmY3Q))dU>1Ics{>pu1{edrXwuKiH`Q1a<8#{p?4=JGUna z{dt1dE1WcmN8p^4hu11#u@>3D8%opl(6^C0@79&Lpi1%0&6YhYpRMz-9`ZhEL#3;U z`Tq~AVLBz?Ab_@p;GgzM~^HGpsByz7&2r?uEvi#|A0ZRyL zG9*@2B3nJ0MLw$v46y-`F`3Rj)r55acGCZ#~>WSg(^gg0I^fDY?tU01Wx`yLm0S8`A=27jq)sdISQY{L-$!VD=;`>$E zNv)=F6q~j>4%y3x{5+nf5}lS*4+SWbzUPL$x#7G;TI%$cD1=xugNVfJYzM2MZcj`y zb0a@BODdsYfxywJ!62i!%7)`QCxk;?MAA?&70>HpKeB~+%_wMWN$W<^P&E6}+|*yb zvlKOe8n-vF=zy-Y4W&*F1{ce;1Q`D=q{J)KriB zP+f7A`N~wv1ygYY21cy$cBVPqe~Z)SN5EnAZsItVK4Il4AqoDX?e$LM=aVAWB{}ER zlIkMdP(qFkRj8c=s|=j!at}N>0p|JWgAgHvKqGNI<)Ob`d<&lbGrFF3hYiqwU*ML% z&ncW@?J?6NqpsD>vbmCx8MWBj6Q_K?JlY`12UWLAGIx`B?h=7nyT1})*tgi0o31Rd*5KFj=Fncs4S`< zPAio`8!x(9u+`SILS}u+iVaReay5w2N@#kzRaTSAmaPX~Wll?v0Qo=pU+>AN3(`{ zk-@I}Vv=%U)!uwrLLEe))1~E_ji`b--TuxO<{>LX0km>K;lQ1DtuUETH!%H^lA&#C zv=#5y4P|jU43Pwoe;!Y~UrzV4f{@%TOMF`(_zM{S^F*oyINYEuR-K)R2-4t8#YFK< zXf^0!If4NbjD1rQ=qDox^S4|=N1l(vLA@;8%t?lM{@E&DyGg`Lmb;m2R;jn ze4pQL>?NjN&z>MmRhhdMu`krp*?mX1$SQ9wKuMO22h4N4=0c*7?K)RpU)$o02P!$_ z&s&B`gjI?M0Z-A5m;7I$Z-_Pk$j*@Fr?qj3k#AN!LxgiwjHMNrZBeh(<0&+Nn| z$Bf|gCm$AatWa?hP37)Q8Pj!g9;3-|8luD>`r>C!E!La%J86_O=)$Bz0+FyB^yPE%9J~ko73l4fqm=%x=n@SAoB2 zEN5vk2q_j|(&VI~%4jpXRIUAdi&-h&lw`xNB&%B#_W<7XeG4?arqI)TJL}LAlZcXN zcJgX5R%q`9H%!8e^3uhyjnOpBu#;sNL1ZJd-S@=~aJHP^#ho@iqZ-`Y!fN)`NIrIN zrwDIK)Q24bbqr?p8I2zK$VbF;XD$FNfD=5sDTknU!OAd~CjDf>se98Z{sKFk%zM5( zIP?XgnkdWh6q)n4cQ^&zGBR`O-aErdNo;%l?9*a!H*4Q*#>X?FZ%gc-dmcgwIhz76#p&gUYk8R~sxJ-5t{0yZGIpZ+<*NI{mF=}!K);szfH?D( z^uxn%msF8Wd5{V3oNJ$bJmUpcu6NHzcC2Z3g52-!jr)}~6B&$WYzjS-P3`%^rN7-< zrdFX*FKaVnm#*tA=bwXvm7rGH;1K};;12#B>0tVUbd-CWJ7SL1uDgmp@zNa;UyR@W zIO@<$ei8tl=KRq%>HUy`iUkpmCWyc=vix@HUHUl6p@(Wkd69*l#gV10oz`GvqP+dy z_3`m!cYV73y#MiZw>_gyMN11K>pCR+D67k(^|5<-412vlFm`%ATe2FmJGsZ&)Q2d+gPVhEt9!k8 zNUKV_nGM^NlOBSDTe-H+(C*RR;oE9O-0s;JXaDy0{Bcpuv+;i8=H_7?#D$AvqbvWJ zQuVm0<6$1-%CduFo8$YjzY6O*G-L~RJ^SAGeu^74Jr*(4<~op4vU__j3;T4jiT(Ld znX>+c*?qeCK6-hv`}k<{tto5D-)1C~?Lov>ZnBTPAxYo)``%1_hRbZOlT z7LJeG+kuk4!&O}zoonXL_RqVQ`#$6L&|Nx*9kS*#$WM z+csI>a#&hdIXa3~GYdOcuWr?y9MqV{QMtUF)y)jw&xOv>toD=rd)OjIUKm>13myy394|FeVh;TMlD;uZ zkE-;`i5SP1D#g#=z8jwf!yk%S*P845y|-&chr=-q6$e-QPcfD0GRCZDfTJ+o)T;3E@%n@dYeZk0So!l$nW{YQMmOd0B@EziE`5` z!SyxxMJ$Em!HKR!kt+pp;Z@XVqLD~NL7AfhGTe4A-%M8tE*zLnv%uerg5H|dky+B; z%D}&z6f^a(?mjnaR*DR6w|G6w<}PE3%YD;pd3?@tGMDb9BfhI?OLz_-ne*yVGAvl& ze{h?PN*3xnB-8aPPho@vHGo@tn4Nk30yic}%#hO;C<0d|QF@GRq_V@N&$jhUKRN9? z>B&7mGxI$+Lo|HJ0DoT({LmNRO`qnKKH42Zar7S%bDh18KRznCuKz7tkzY~bE3C3m zc<=f9Co7?O>bs{|`OHcn3rS+SoQXgSI5LS+x}33qGwg(#jBG|trh0lYB%9JhtK6On zsyE}NlN^)wLa^W2AT_03uS-pPB4th5&4iRYhhp|b;vwVyfRsDCqRvF(qW5#;_od%1 zbxae0S2B*&J5-6UuGyM}z~HAxc5V=-j)Dr*Ic_O`$3BsccWUANi`x4G24&cA4wbuKq?Xk?%#R z0*sXSdAlMJW?>dYI+?)PYSo7>%wY!gUPzw&I|N{LNS39&B4S%ZI`v>#)35@xY9!fa zOEV&3fh6+y*r8W%L}LDOwo4*?biF@oihe;$HS7xUH($v^qN#yRDWEB=FA&)kuhYlF zz!S0`2=PeHauh&JYRE=~Q*mg43a5I7%nRcMK$RsI1@AU3;8}963`Qrf{AS?Puo0y^ zGb_Tbs4bZ1wzl9YHnuu9Yg11*;Zq}7#*8I^1UkX9?vEDuJ*M*22|Fe{G4Vm6ndOII zm|1YNMS)6inL#lldT)dliCLmk#_xCXg>WVUaXn z-NS}eJ~Q6(aTeAIPk2^5#MEaW3q8FG!suz}*m3+Mc{D$ybwLuE;1)&;Eq>KuwCx!e zIV-Nv&R0!qmlC}z92XNAl|#t}f}R<&wjZvn z+0P%nG1a5sxd3|tz0-6OJ&!12u+gWZiOtmL^+sQs)qD-BC8wLJ$NQ#pZ%_TICaMYa zCdB)BUPn)6@5Nu0;&e`l)5Cv_kv9(YV^O{=TI32xX$BUZz)~_f?Ly#-n=TnW7Mm4T z$5BiD@EK7 zDa9`Xs4Dk-=n%Sggdp~LHO;HUt-o=xe=pMU?K8E#2ND$? z$&<*Z!(|>2T*tK*Dt1AT!C3z@-hFN61)-=)ZI z3`m`7o+6F0a?8fNVon)IHM)P4FC6Y4bISxxpL=TMFr?D_;E>9&phFzHmzA|txR)+6s>@ZSff1XDpMCs140zil<|GK_A@NGUlL30gjPHY6dl$%L783a}w|o}FEB zU%y4!Ko$`^)a|`g@~X##?*s5gjF2G0g{O*ycbpq24{1VIl&PbK+DDt3E2GQCcUkB( zv2G{PzzaPx$ijRQH;5L^n5{DZ-t=3(9M=GO)~UBB5fn<1KR;9I}721q0&KkSp)ouVV`7L4&hsnQAqX zxErlG74dSp{|NwhOd;&eD_u&X<(MiJhR%W^n^E+J``ep;b-#kP24>Rt0-Se&=FEvFUreZ`s;pz+Q(wu=x&+^ zn`wfIFo&dMD4XRvK5Hu^3CPk?%a|<-Y=K(a3^D-i#v^#QT%2w;80IEe`ulI>nr8|3 z-c;)A&uwTh+b6Z~)>IF8sR*NHgIQl3*T?h<>LZ$uUcq!2O>n;uf=>sV9M8YF&y)gkX*O(HVqD86;fm(-HOi~SroK% z2cYJ#y6&#UQ;Um0Z3qWMZTU|e(MeOY*U|h~(fw*)2%sWxGAH}5yOx9qnLTgd$GJQM7)PiGSXMapUu0nWTrbVvBhj^6K3rAHI_vmy;&Qr! zgut*Pc%9H&m#iE^yuCH>91g z!EavQ?$zvlsJYoK$a#ko50q|R^+=)J7C&K8Csi{IT z9yk>car`Ls2dK!~SgE!hS>I4RrsO&tyhb3Bk!^i^JQbXYj({}%q>|fk!SDuI%p$3`6pu=scg2$oxM2@*2; zQiDv7nbRFTaecJlCjzP*;36d2a4GVna!IrHpEzWSkoIduYnR>bU>GN*OIbTn6tmVw z=_(mb@bM~+uV+!645;@S&hw{d66aPv|9j*dZQU^R zvUAzMS=F4doKOXFRgvp=Vw-#RhOE-u0!K++Wk@W06b|C6yfTS?tF9CC70G+QeXtKf zR(HcB={hiZWH36JU zDLo=_@#3 zRZLG-ylejLFUjUJRR?IzJu?rf%DugZL_gMJFG;I;tYTKH1<$ggg;s#NTlXg0Suqm`CYK5P4bfTG2D(65BhEMfT{)D^hVuO9tk4iD9WG^c{eo_M2gGhPFaHkg8P~?O$ zT>H}=2#Yi{9eQG^Xg;U9cY|sTD7>Q$T&BbT(oWBbOd9G~j*WL|PRyCC-J)V6phLrA z_io<9E#|a)Y*5lpTH;kyiZWxntXZIK{REA)+NsB+7A^(O&@z^^lcNDC;5~)S8CbCr<7&M`JXmJRd&>|r|vs{Knhf&E1Hz>j;kung-W@$9WvCE*8>WtzmTWW>C zxT+b>nMR^!jwB~Nf2bV^%I3))s7nFAHNmJgDab(}JZOm)7ZkwBRr{L2a#-BD9M0le z_7*z&t9v$2jQO$}Fz05ZhZ_;*s-XsJzlb&b&Z(LA3t`;y%U>svR~E7eBcnt2R%A2u zWpzqC&`U0tD;QArBIHQ(#RC-mK8OvPO{Xe!S{20WrL-HXVy+x=T9dC!#%?T%+i^xW z8v(}%eUw&?*EzG3sj?aXPkt}Kd}K`BIJYCW)`R--_vVlpsVp%#Q( zR&SuJQtqJ#ehLqndJdj#&RyYe4QuSCv0%60F<8Fs#*8_cd9?c?O<2$TQy)?`WMbpQ zWMuW9?Ei$-cFo@Tf&0sf(Ae0-3gXC^J0Z&o+QN>5^$aP`is$aO&{3c>DQUNeM}u3> z{eJLmaYSs0Ss(x-HJ9jc6h$Zo5()oQ&B&gDdAq_vGi3n&Bk??tU?f{_$VT=KxURly zIIB;&4Zenj`GSC$1$fhXhH1x^A!bb=4;OEpWpx5;o8@$TipC9tq>jx9C6#*-aaHZ! zJdmx;aE(;T_}DDe=;92qBglNUaBJa^0q_(_Q})>UOIh?{RbY*#W+c1+kJSmMUJ-;y z=reyktHm+ko~4x3sg8WOz~QB48n96HFuhSN;#0p|bzmC$x$oBGvKQp5@(V=4#hL*q zCpiru2q%x6QcWOO_DGC!Lzo6cGbncjgvI1X`xC_Av(_rVVr{L?$ANpM6=}c;GK{#Y zQc@g|e-;AlmS}?XX238Q$I*>&$u4jEN0QacjCmnF^iOt{^9HW}w zv`cV@PLrad3v4>z2=u&Qx|X=@4xNfPsr1j2!Y|?=wz%z{EJrWGk~-X|M>w2m^gySx zo#K+R3FB;|V6o5N4RN({Uoa5T?6HgWzp`Cp5t9DUbk^Fn31)n5*&2(WhIr;)dL$Ua zz5aepptO0sV}j5yJ2+ek9tQ41Zu69ihI$M6S_#@|qcPZ%j>y$_pZ&E$a8^NEB-LNT znUx+>Ln!CiaC?(^k?`N@AAauxoHkq9KHr7mG}mOfqI~24_iN7XYWOYV%D|nFH8N!! z6la(G=n582>Ux>t|6>l;rXXEOk;HbNvxX5`n(;W$gK!>5H#LRs_Ro0Mak1a?wna|R zU4Op)A+4QvY{Iq9U~Ja%dN1`fX8Hz@x;aRX?fV8^m+?(8e{d5u9yPv#1LwlUBGYwE zk4jZlo2w1qt5e7Q8ky_k@>VC2neBkdUUvNpKDq1TOePum*LkvonY`{u5G znnZO)mnBG&xBgt*fw%t?m%fGO0OMOIWqsrVg#kJ~A%XxP0g?b<<<)V*wzY)TSI9yH zxZ37XIZ!5R-&m7vC~~XD#9x8HflN@~&96o;q8q}i;@#9Zt!X2Ib);@4i>CrN0vmxP zk2!S$H=XG5y7y{a4_VATEWncB$?#O9YW&slddNK|+nj?OwxAnNh<2RVvzQmH##;3{zCL~6p->3W*}=T1_#+7qWa*6WjfvUhGVXAi7T z?t;d8ek)y^SrvOY58$>|ch}1}t8hABzDIiOJrMp$z-3@6h*px-*gX&2jaDw3C*jkX z7wW=JFc0Mf9IWyb0wP`kajX=*{Vahg2vme>GS&Wi#61-L^T4YJR-)D3G4#S_(WhT& zhn!X5vm{B7@PT+KBMZH!(2?~GFnj-pAT0c?!5ayeI)_pTm{@JUl4r1%g-)W!hR2G( z>g`2^)73z47XgofB_o#OsfkyI>oNB<0io4rR_;o7V2V}I|L)tMUQNk zhbL*oZ%@=i?{V-)2Brj8fiEXnO4j4_Klh9z7tq9+qR9UjS$)Fu41BARePbwRXG&WN zzWTqC18cmbF9x%2;Vuic`9qRPRi*vb3^5|xYec`Wi@)ZW&`whpY7#V1fnWasSti_L zk$uZ;UnZ2Y5_J0?aEEj?b&m`1>LZ$BzxsvFbc<(Q_z}XU0{o3ZkWBUoyI~Ak4)!}3 zqU1>3KQTi_z%{0Avm|yhMV`NlE||b|%exI7j`zPYmH%EzwzJu>x+|9;{7hZ;m54Ch zRQlg|2(9Bfot~+?a0@0VH09oo3dhT4{%beP)Tu1PFRBZrHch>X-%QVZogP;Z&s&RQ z*p8AQ&|&>sK5;?NFRsWw@HKJ*pM~+6xW~% zl6HB~etgouboTKPRR~wT(=ccDZ}mb!oY+s@TTm0c}0R7f7%k_^`|XZ4u5US zq{FbFWJvoidU!0%b08~)Kil44^&oRUcK1*#Bl4;ocNp8j{j|3>Q=lCF{5}hndnU2*8r|a)ku-dEnfALVovkjdUq=)JM z7j+OdeLjgRs`?iXy54_y@N)h;4>$9KlDZv#c<6lj!^6|b-+4&-KJ?vJWma@3Aw0B@ z_g|v?VEd~mXK+8eVA6l)n5w2oPflE8PszpK&6Bpvi}$Pkt*^+#o=+-6P7SBB_o%a+ zkr@d&%lDwy%fM}w5bPJgY5!4Fh7ufO>M>MV_tBnLOXI?i-mXXV z8vbemcc^^1Og@_1leUTt(Jf;2xT{do5?lS6$)@kN9NBqbh7(L4n*{_?R*Z41 zZt(wS&N)tXv7qG{3-}sCqAU#}kI94mTpm4$`))U*t;(dbkj8LUf?qzc|Jzo7&F=41 zw(J)QtGzRb&$lhuvKk%)K<4WLY7~$jJ`J)$Yhw4|U>XTm|DOfK zzxrpEzGHjx+SpdfL1f^*A(*j-dHbJ+ONpUJU)Ju|A%$YpW`d>ke>5S-sT+2OZV{|u z#|;%=jU@j#jc^pRuCZ^dOB;BoQ~FncH{z@PpCv<9^f9z+G^lT5?qN)j@9xz1%)lfBV^!m2-A;L@-uH11#Sn1iS3F#E(%R(Q+P9D5?9<{+_eZ^ zu=)Dsz?%VAP?SB7csku*ukG~I#Y5v`lZD94D|h265QoUjY4+(Qra{#B;vR+EK$dY8 z5O%niq`!)QYILndXa{|TUiO?`SlSx_bO`V5(0(Y7q@B;gW*s(Koj%Yk(RJeAbIJB!;8 zEU;E9H+|oCSGS+HKaLMmMtqwDmmnn9LUz~BPv5VP`;2QeZ9mR$c4ptlnnG52d9*gx zaJ$wzwYF$wt3JGO=w= zY}>YNTN6)gO>EoxGVi|o-QBx;|H*lB&eKmGPjl|9}ZtvC*GxZ zw`=F8_V){mmsQ&qUAVQiL;6QKdUW`ZDGZAgXc5Zn%brr}?-M>fcs;D2L6RpWyQinu zb)RcX{pTh94KLU#(m651OCR*ElA6hETlcTKC35RNA4_Y)wx3@2mp!{eEB8I@KK36< zw>4v5t0BiG$A&(mM|6U};$d|qV&VGu_PwNk?)3e<|FuE^gRiJe=rg@yGkS`j{dVO3 z6Y;-3pmK_xuvdct09fJuKd%)rGXJ?&l$oLFc*23?yV+v#2|Rd<*^3TS7%vSw&uxI4+F4as@p@|z{igyrOqiNly*^*qjrt5?E5b*e>jJkhqV-`i$ zFX;U{xnt+)2m9M0{xv+>#cl(Pu;IN_DODwGt zV`2u`bd%OvguQv##blqo9Zl|QvLlwHG`?O>F}f^g>TKxvtR#o1n(X8)qaRMK9@*I~ zZ;;3h-!!@{H#~lrw`Ei{YJcjd@}sONsVBu8A~LhvP+4@}8gybXe|v0c!vFBbVlX}2 zWCwqU+-&3S+J5?QR;_K>CB)3U8SdD&U7T2TYR#p)t0DR;FvJ-+nwd$?-Y-*lZY)#n@-`pcq59Ay}~&H6h(R)V%2G3x2=Netpg^qo>UneDArR zd$xTzs&jAt&|D<0+#T03P2soMcrfkx{n@dcm2(*!5yz^|(Qqsu{-NMK;C6lIdC-KV z4t<61$oP0Sap9Pxs)=TxGN$nUX5D5AZ}^Fi1GS;79>~Uj>cgK7zEbe~J44;^qx9r$ zw7^9D?D3(BD+OEuJEA9?>8DOT+s_YFvCQUn)m1wq(bj;Bbk|xScsD0F=#TcSq`G

;m&JR$d=a7vU1Z@F(gz<85Jnee?-2`%U%X0K1%!J^u zlR=lQ#XoS0fQg1);%A_j1xCnLZyoEr)RQM91VJ5s2~Gb1ve~mas&&r8x*cy&pujG2 zTLTAC^HsEFwVbQ4O!T)*{Arm;Bs3~SkEFy^x=yCLELl^Vz{&;9mfq4o1|!;`2`-Wm zv!(hdS3M3UF6YzQ(5qk6B#-efR*}Z_4A6=+xC}5-A`lIP97Gl_jgmpZs9=#Vz1Wo& z;zqg%0JwP__GYnZZ`{19muJ2kEEaEEU?`)3{sd&Mqn<{=pkS6iB2pKIgj_`S3*?4H z91sL&5FJOAJDhqcI(|ZLCDuKx)bnr!dilt!Y(LZuKqhN_Csz~4Iif&?h8p+p&WOCu zL{39kiws)|0POfO(5qeeRD&mNL-*@2ML2!Rc`Gi;x~J3U)diSkGyc6xlG$`hfnFt^ zl+N}v2jio%;9Qe%Rpjn@i}YiI=ydZIjw7^?^_^1G3KNU`fv<#gOkpfjKp;G0CU>X2 zV@Y|Y*#5i`UnL$a!TBNescRF=Si?2mzAh>@y+k-!b zzj>%~cB@XBrAZbD*oE4oaabl=R63czR!dkqC8^jYskkPo6q+{y5;{l;eR&#R76Z$gr(u`gv!Hw)jXQ|5?$14>H zGT(A#*mcX@Y#NL(+Z>%|3$wJh6F}lBDZNZ>I!4U&Fq%v^j2?<+rl(svL3JL)B+QvK zq)m~#ip_+=VJo1=ni?HB6RSyvfK94TkDA1kG*;(a(x4zQMyBy-s^+Un^r`zG9lTzS zqL-ByZm&kAvuUY3*c5pbqN5;mZK!Jki$on~{bLlkiu6lZP7;T*W($?lou!!fu`4cE zkCGPCQ**HW9ceQ?K376lej{j=LV|Sg{QB@zuVyx=LYgv+44}U@W6IVyT`5(Wy7j4 zs&2&F_l}ki>m-MA%NnSXzu|mE0((%wi>Q)cTY3fK-T2*5%V#QULR^PCx8Q|*xqG5J z97EmAJQhpG{xBhKDSGFKmKim(nlVk~#X!3G6<3@6>y4$SIIiYA*gy&Gd0S8b{LjMl z)UflJamPc~ni2V%V#k(>xX>s#<9YoGdX(d7hF=*QOL5V$-K^%rI+b7lT-(E#`gr8fdEcj=Y#rV<*{&T0(tiRjmt`#6qjsgjOXN)wgVg1JTq_ z#^TS_pMQz?g$W^x{_9LdFe5{A1SUvlNs>&*YTG_{PKLB9QQ=Mu&<%JWRC82P}x>ar{zSAIiSSbM*0 zw)6bU?gr5m23u3ji3;%bu^C*OY2IgKPTib3K9YN*H#s)Wi^_{?TWWpjI(rUJ^w~ay1TZqs^(X`E>PBl|2qgI z0s;-0<{!qqhr%k*mN&ae4`fN!vXAp z41U3vbud=2=Fvc;AyAX34b@}pL;8zwGzY`HRH;gBhbB>6W$0P?k%C+6p44eejH-Y@ zlVn&RbMz7U|BDPqg*uiN;y8ISE164V>QBN-d3(({*e~@2r)^bBdv%2mu=%rd9fk9j z|1SDblTJxMv>LG78tbbf(>&?5Y@RZ(wqiC-^9KY(SF9dlpTR$Lj%Wpod8b(e%qNbc z|3~h(VEA++g)MeBj?!0|T6J#jkowA@f0u~8bNqn#Ei&q4!rRGlv$$JvrVY)0??ux# zG~TZ%Ey$VP>$~!|a7Z)>FdQm8KpczuREms$aG@`K<#i=LMQiPxdMCiVz~)?z<>wNH z=VL+tH<`405!(Qcdj0$0BKdC~jsFN0UhJZm5G1nlzo&C@Ya~<9)|ScC_Z;@JWh7ri zR}+yYR(gu}-Gny3v5KQy;W;YxNbWTsG+&N33u_ec;#cM70Jg_hxaZ@tZcdH5(@NX7Su%cJ#m2V5 zlLpO7r^KPEm-qAALrd>f^kH=8Hl=qPC>pomAMKRRF8xaNhH&es3#Z<=lp2VM@cJpTTsg>^J zz2)q5+0tG5_g<-#LhtTS@Jy?9+w&PlByw_iq-1ub| zra}7TRChFy!|;hHO)W3i*G&iGke8NK78T>u-tRpGkVvM@B4#6*mFgUq&Au|0fY|}u ztn+`kx_3U+d9CoDWpC<2P4#px^KG8<@$>k&`8?}>QhCeJ(?5hv+#XKsUbww}+)SN+ z+~Bi+e%M}mU+8#m`mEc)qhDQh`uIHG+dVmZIW_gXwtKCfb*;CYGgtq<)X8Q8f4kiu zTliQTbG~h(zPocpee(9aZ*+6*KI7Hu$=oq?@%glC(Z0Co=C{s)?@CBH-#zesx$NQd zT(h*5b17-{SnYiKcweh==_s+ayFT8&-o7$Dyt~;szHqaTwDM49*w0H<-+8%=5CHfP9&56&Fh-qg}>swKcxnI{wp7IpuFhK%Wcls`3Ia#Xu6x?`mN1l zDE8K6L=Ow&PxmX+!YtL)p z2xJ|}`SN(}p+>w+e@;+^*D+p4I6tT4lmAF4*ZoSY+3pAGJ;Uq>a$kbC$3ddT0w%mW%`L=xavlFNU%ad-a|=G zk>Y1{&qRKy?1zrH(rSQ85{kz2su!3)n5+#44bKAaAv0^4wT8I3$P!aTZ zx<-e*)gUZ%3vDxNK~;!r4AVPS>Pai8rETRQs!S6-BQgmdj|!vk5<0XW*YIz> zB#`(4uDSs}s%C1HsS^8~p1X%l^ZG~;ZT>zq5KX+{|0^jzuN*9_6OixZs*LjN>}w(r#y(@PU$ z54XlWXJfmkNVw*o(^c!qCGNC3_p2U4GzS$b-9ZT!4*A%6|Lo2zow1U;Wg8 zGDUM=8ZNDhcel_LnjBZPj^q;W>4Sc;aCRGRxU%POrL!8zoA_J(QhSpRUmAUr9}2|h z6?qmE>l3wQy&;yWj~w?fq5TSw8!YB$HkIBHV_EO~b2`itAh~AAEZ#jGGAImZ$*`EX ztx={sYpROLwcF({gue1q(YOj*e5Oap0DAmzE$FlL#}9IPE+uv8lRM`0vRa`w5!aHFp)B`Uf=Vi z<3BpPMKC@K!1_=?@DlgQ0@ebjk81zUt2d+`n=A|hNxJ_hL*6aJn3fa3U2L=`GpJ)r?&!yS|DK#k+FelO zoJcXu^Xu?2_3An%9N7&y9!b-3ihj6P0|f7KkY`NO8enVcNeZd-U81HegLW0XA0Yhl?0hoXP9v?Jl%mTfsJ1Ic$F{a|A@c=$1t z=dFuU<~%DOoKKd_tk$PT8t~ol`?$h)RkxoOL)H4V&I4cnygDv9NZs=jN5IraCW$sq zi!3@8cA>9ljq}7Cdt*ozUc(SmaU4^8uGUHMl=JuRPJ^3-A1roNHYvAAMw~7ct%@pG z^4PmI@T@ysx1VmPlfyr4NW+e`*ek)>_>UXK*pMXf(k(I=uOTw86pYPATgb&t&F&}i zT>OxVilb!0WI`8K=Or-K39RE$Q6e(hgUL92u7OK(Uz(fFojZmMay<2({MnhI{L#wU zr*N$j{j0@6Ich?0R-8RR5+B_%wf;Ob?QX_6W=?!mhMZo0A#pG-W(dM7_caYWE+Vh8 zSZ)s#1H=$hTpx*`!t}z*!5mc~O~Nva9A)zSr}7f!k)waXP8Cj)?S3g%MqeR(fjpBl zY(NvS$?PF(((ELksd>DG&d#*BA(@v@j+GwWP<~hAxuGH^DN*J}G4z9^>M1xQt@LEl zcolb7vhzVFitSF3Co+A~w()!eW~E7OaNjB-^RYv`&`Q*Mi7B>N!P!@Od%#o0bSpAQ zIoivEV}sQS=>pZy+aGmO-SH*|$2Vv?FJ(zk(I+H6N$m?52Fx7{KPe5D7}U58$h2jV zBnD2qH~8tAZs~Q9L#rx3&T`9qr6wjdK$p#}Or2Pg9FD@#0p5-GADDd)nW5 z+IMKBN$@s|`rW~$<1R{v{M^8&)6S{Wj!U00@y(`=Ewc3h7k^6ow7kH?6sJGk$ncf{ zOnuS&D07uY4F&_GUXop}HnR^3j2g4jpcXY?0cMdwts;k*brNwo)hqv;=AKb+ei)JX z)~UUOWtpbxM??VXcFT=s#@N3 zzc%$tE7MIq%fO;mU{yFtWGRotyExEIVGbmvAx^F=soO^IvS}IkJ428iKAAa1Kq8F( zxt^`0kGhy+<3oCCR1W4>-q!jo(kIZ!Ep~%Is~-S(XDlm)Tv^n$n@C_%Hus?G2E`AA zt(f3MC`>=yKuZzXJRA&Skmc?2 z$M-NJ;2#W@1fdf@0!_4N_9@H~c|t^@-53as%?k4peJjx`rUyppOS`0zG!S}6twXo? zqzg96%zMF9+mq%!d(rD4A7E>Xv`=9X*d+SE-r*lmQNWU1n29qYWh#B|JlEqFZ%!DP zy^u*tSjx#_%`&qPog>5KjqAer6T2zABD4Np66Xs0a9P2sCSIS@OYHZJ4pMv^TPkR*+!kZM@onFLb|cf2VUJhwETIxf4V z@BmN^fi!M)HEJFwuyv}e>oU(cc9f{pW*IDrMB%G`JTscrQ#oIh2yraxNMb3;!!ps} zyqGn)ULvgBfSv)B1NJ|#RA zaj@N+LdQj-QG1$uyndo+u!uH;sq%A%tmInXC(fuWl1@NF;L>Dzd?d0CBMrx??}iNt z=0l^s9q^2RLreoru?Js&7uoB@8H|H3KJnTX1WZ=C!skdrxn+nN7eVG-q@&DV74>+RIg_JBpd`M7Qn)Y#C794ldEo7U1y=gbIE@&K z-*FnV!Rkky`EdXnhhBse5}d2ZkLEQFIRw8u44J}TW?NX=G)=;OoW)s%D_~OP++O2G zENhbitA5SH((X83jH~8Rx&~YUq8MP!(t1Ov9LlG*#bv>d_DV3g5-jEYU)3T>CJrxf zL54s{um^C4h2vvczHg&I7%*U{D}m*O^BmI@S;kle(?s~uj@6EenzAQp5|bD#v|9Y6 zi}S##pD`UuM?;>4&>H(PJF*-pZITo*iRZ#m1b+(ph8DgLQRa$CON%H<1KPa>P13G@ z?JX;E%IO4tb*yA7ybx6?bBk;qdK>ZCcHOusIfnq)>Ls*Zhs@dndWfl*;r>({HY z`6~G_EXFvfakpoW&>(4-{6LjP+(B%T;ER`wH*Q44-8TJL%Ew_EJB5kj2)3UoSOlAI z<}MTPw~P#hd|h?zc>PXy%RxNfhR!QT@2m%`jH9CUB4%XAT6GXeQb8*6kP@t&WLM+u zX+0Lc-*YMg=IyDC{-zuK@f!eFm6yF8Pokb@#qqlRa6@%7%JgJu^L1f;=0XWi0*qOQ zs(^0SgzF!Nz}GPr(rD$ADV)p|QDpvDhV;gB_f;4N#D_(1H!kI;h1kvRvp}=SX96sk_&!_As z+Acil6*kvoIxpagy8g%c;#06cG%xvW4o(y?ozj*|*K7@xCze@Z7NeK%fG#u)A=g=& zz_GsdfI`RM!hH~c&meRJ?{@SMvvtwe8~w)-#%-{knd=jzVfZu&mpuU&@1*8PCebsh zV-r4KJmH#|5sHQ{R!{~`4+aBWY>uDU=Kw~HQE5~g-uJhv&O>FU>hN-`-J>_MfhS&lMMN-@wK&EA?vQ`>4P)8Pz8AzU&~FW|P`4Nja@? z88f~*L{Ph4`0BmApB9`sVva7E+4yK!yP5KQ*wYAWjHG!o&#&YF5apoypWcr^X` z!h#8gm-q*h+N9pUx534qz_=CTHXLtY^er2(_0|l`?uBd0!qh__ z!|d?ylLD*2uo~234fs+Y({g&BjrBNOZIfaStX+>o12B&sOYaYM`g!M}%BcUCc-nv} z%(KOzGk~7vNZw0B*X`PqzA1aI62?lsq3>V;w3sxewg0t)XeRA!^SZ5Z3i#7z`B9i% zcJSkLl6jS(6IsLSMn#SP9FK7=Yrs0wvN(3b+D_&7T&Sj(I}xi&C9!cVU9~l$z@a+6(+SoJ!-HD%u4;*+$Gkb<2Kv`m6C&_|*3{864t9(D^~N zMI7>`9?1Vb3z%mGQ7eM{mVFo}sM(lzfCYjseC_PZ`o%00A6hg^j|~5^EZ9uI_bL}~ zy0gw7JfqTh@pboeZM|ZQOUm}+|6|UoqVD}p`H$9pcplAPZ;D>;9`QEuKC8QXs~*zD z8b4ot3u)~J)Di&p^Ty^%i{@&Pie#(UE zwqNo=?tFc(eO=5ODa&yN_ngrDJf-eN?-^uwTp<5Rf8o**@Db8J`ULut@rnLl?>!`4 zs1y-=fyNu{{~I(i{sS~xI_@^dzjuFs#n<{sEuSXoE3q7EVM4+uGB>qsh?xqfohmiZ z)KOZ=Gv0(0SZ`pXV%rzqNgSJ%wxEti*ROIxMM}eoUx1ynontsI}|j9~`>4 zw)f~!zqsh(v(2WVe zL7#eDs+gkhcz<~$Z+x91(AcD2d&iG{K0JT-er)#Oab<8}Ri3wY^iI<4o1F;Rfd8!P z@oivtIW;4J(egd4t`|xV>7{XHP9_wFQ@3#8;+opEq^|f`wGLPV! zQfmIvXAQl!xA=@|yVY$+x%kQ>6V`35o0g9k*W2NRN7st?hl9XO9D1Matk)8}4=uax z8xXL*{Y!&w?Bnh|xbyF~tvy;ec6ZX78C&}X?Z$+HUI(m=^Y{A0y zrOZI!c$Ra|cm%L@Q&`i7`#;;kAQgqvb5$4Tav+TY64_HYL5&jJ)ze4@NQ)I!c(B6c zd;8KYh1^esykES6nke0EuAOR3PV_b11>r;!@_{3}`+n&CFi?{s?vbFL9z#%`_USLY zJ|_$1*YfHYvEzsG!U~M{mY1p;1Q;OXBd67UYTj@_N=WdVr_n0?k@tu4Xtc@i3ROWn z(fzO#RJE&nU?y6>Vdh?;bdl0OmYriHf)C{fFY`V)@2Z!#(7*hghA$(>1)LQHMa}h6 zQ1lB$QBd$pg_w7AQk#HeaTINI1j<6{?PLViG3t0sMn%#XInl;&5L58=bA77s`rMtf zQNwSgi<$Y}j}T90lw){y%vB^Q@!}bKg8q^>m6T2+9o5P6YXpHyvYbP*oJX?!>%&1I z(Ch&!wFsE7V|dX6%D1nY?2SC2;!^&GVk1y+cSpy>bz2nv2&^cj&bu6GJ3E9Lb zdAI43R#Eu>!L#Jgzc}I-&vMF>6>O_MsRC8M5Gl;LkfnriIe0)423sI0L`xlnFit2* zrc-W}KNd=YUibr8hk`WFPf(0Fru=CR2}|W%vQh9dOWtlI1ygaNNY}{w4f6)_y-CBF z=|>fHArMRSlZO!@=Zh#mTpJ|#w0M8v4rJ=+AK#Hn9PieMF|65kRN4G(IFv}h5QJmY6o;b_m0yE~q zxR3!dA21$U&v8xM8oGd(Nw6U>KxfTLcZT98+5y<|}?;oR&ia2{>&1w{;jHrvbL2qyY% zjvK`7ab^{QH3azM0AUb&Jx!FOsi=3Aa{@3;#RM=Q+h>MTOxAOli1{jU&`1*lRC-Z4 zY(CyH$dJrnF%tW-=7|aH5W4OX_!Tff&2emt`C98^29}Bx@37y_qS)h;nh9f&Lx`5Z zQ4b;dk*_H4OT>11Ck6oyDWDZHs*7Xg>*j$4d!Gcw@ZKnXGZvRz#eKI4RJ{n zYg}Ga_Obm6}3eyeKk_wXnF##C&_)=6io-=K)4PPH-@CjYt z?l7^b5oIqDAYvCIRe{#(dkPjr{wY;#hiNQu-~PnSkGcIA8TcW0@7_lf3$?D8G<>cwCjNQ2|Taq_zWEqsZQ}Rx_U>4f3$FCID^@3v}nj&pV7@0j2 zFRriRJm*H|{eHJ_Y!@&f@ezECdyEX0R{SJ?_(_87jYJ4YG$ML&A(@gK9EmqUI(dTD zd;#xo+6}kQy;8O@DqH2z8;KK~WwfUOcFJNRHW`B<<*~yV5tFEiMDBoMA||_+P%##y zf@@~I3EjXkh$!@#V-rknaDET~gFPrUX^y5M35U-y$>FH-%cV}SD(IS!}1Dsw7tZ_m2!@gPG2hbg}GzqO_S!(y5sq)w3`r#lzagvo{_SW**%d z9Jq1bcBZ@OBpkAInTp5kGcwQvQZ#jNp zDilZ4xI7(Ww5ayA-*J4jzWzqVh=w!ANYB&@*YZ_&5ye2huiz}%#8|q#e8o}>C(JmqI?&xG4jA=${}r3aeuYPt{p3Tgque z1nqqp(DH{yz15|jNWQw#eHVk?VE#OW_qL^-_BvGPR$)G?FMJLS zUv>9d&@3S$HQv(rQg?V527g)NmMIt~-Mvo1k8X*4Yfd8Z!LT?Djdw! z0U(+V$BZom*h3+(wYPOQvp0~oQp$6{j7XB|I7=Z1?4G7|mVNaOaS>^V@6I@p zLm9^79qWhfPcmF&hzH^=&D=>vL~q9%{;dlkNzSexacFYfWQqTQNGqR+ng%vV!X8;@ zwS(wE37)xL8sO)kA<_<1f{5_$JbnX;4Q1cYmsG2U$oUedlS}fl-YNnr{5?z)5f29E zf;X+ktbxQ|o1U3*Fp~^LU7(UhYl++wLpo+{_U{Atlwis@BAhA;wb}y_->B$2b9Jo* zWA(komR5BrOL=VC?F5rS)%+AWa>N8B_ZWpCF?%7T)N4Y?z*I!=QhWg&dWC5CykMp& zs?ELZE`wf!5E2>g80@)D54SYCdP3`PiX};E*mg03mM5$;PYSR~S?Gj;32PQd32ehW z{RJ_`G;;akEg~hI+7-O%Mr3!C`Wv3+b<(p%!nf!66FJmVa@F2m^O{Y($mme{GxDBlpCHeF`g`H5zaWAx-CEp5C zm=hAlfop_E`ZNw7G?jf%CF`Oo*-$;$GyCvJ#j3=92BX7+d5!Pl5{RT!&lGJG`gM6l zDy0y>sBMc4KSD3`MUPOtamBj^Cx~Q_*ArmOVPD)QZnV`I#et-21R_}yhA7HNF|tix zi_;nonL@7*hCw6Hv1gS7)Ce$|F?0;VZIy5G+oZiO7v$?A4kRySc<3IWfAA^+Ke`3^ zOmm*msVqEeaPv8BYlO)e4)9Rp+o_g(Iv#%%RrtLP7uq)6|{m?!yAk~ zd8T1WfiEmhvxZu1Ts)$|O`bSlIl|6TwKZl$5r`uxnnPyBv0&?B zw}KXHF+Yef1#=U^^2lO-ofvd4Q)niND^y+pM-gzPy_CR_9^>5{ig=O8>p2SS zo_6SmLf96G$%GhhT$VCe899cxp>fl)flfN+EKy%hx3NivsHxBaYf~TL*3PzSd#f`} zOGlMD^yx^e*pz>Ow`GuPRK#|gVNd;gltbefit{hm81)eI*8|k_zk)ZP;4k-&HbJI) zB7lJo->lrmV?}miCTr258df0P4cn$2>R-Gd-V;6CUJ|a5_Qw4yu;$+D2ZSHEC$GK1 z$jGG()19oa9f&L_L5QSOpcH(~!4dBtp{TsIruEw4YuiqeFAa>%5LN>uzf^L$nR#<= zQcc&SkU}Z_{Zl6IZ?h)Do71DBHgUssl{$8?3lDnEaHTtEK!Rn5PTsbjh3y^2X!LKG z^+n65|9MWo2hPz8wm|iB^G&m@d7zbq@<$hoMD%s(4Mo0LIY>Ph1{K5942D9+UjFL% z_D?=&@dvr}>-{mNGKxzz*PF|5UD!-KmWbv|y11G6`ZeQTs$WUOq-A&KBCw7S_45X5 z2eZG}yo_4k$RFVRF9PUG@Z>nN8)m_tO(r+ITNYhSytot+(tJi^T+>gyqev~>)kL61 zYW*RL3oy-puND-OXP3%`eO>g|@23xj%MWd$rQkiC04JR5H*Lu*18BRC-5NqGL4IFmZ zH_?P{%ZW)%xt9M=(YTkn)~2{zIZjvL@EA|@+=bC8ISrSF{zG@seKwe9lS5YEa{)D6 zo7s;J9cDam+e-NMsKEtMe8vpR@&6$h?jP2d6}6&MeAwJ`ynp>0P4YvqM>sZHl8Dqe z^8zKfYm$XO#sN%)!Qm_X{>AIRA_ITzF2h<)unxmoUF-3Shz41|*@c@Zq?tR}AvvrD zHN$ki26=AoM(c@f=XBmz{luEsBVm zML9arGRJ|#Z2JRo|63#O_ex+xmh8w%0er@jABUvwQZDKC$*UWIf8$8jKeV}yagES4 z>)@)~j2#NqB-+ymd@je{QhS$U_&=s>atLe~*0usqC-}8<#phzv@;zA9+9&BUJGn&( z3wMLO1)}=eUp11)|C4CPQZl(sPJmhan}%e(lM*63zRpq(d&}wj;rZCw;M@V?AfXqC zZ58%L@VXEGnT`j_?crqy@P>KS$BX|`f$bHX*0aM|#PIq>?uP*3?1gPc|I$*#(*3E) z=h{P#t09N1e8)Q){rttI&&TzRQw#su(i-rujtxG~&fhh7FDlx{ElrzmJ^wvRbDl); zV;mX)fVJWOjTIUG!iw6Of3V^|>QV6*Q!xR?5*(*rm#MjgO|Gn-?W@=AW2#z>QJa&E zKHtCkwIY}av*Zpkc)%rZY*!(=7yX<(k4XIf>zlK8EfX}Jv!HdCf zVP_8+u32lD&~JQQ?%o}}wfSu3+?je$$><;U?r^if?&{jOqDf%4%}9B)q}_J*35#66 zy&czo_-#izc`bqsEG9>n^h;IKEKg{(}{N z8rk}6bmqn6JoJp7W^~BO(PLz2#8$jNU>Z5Ux};TrTPJ+Ft$cW2dG~N#@TH&M+IM<+ zfi|>uzYNIJJ4qu;}r8@yw#cZLV1pXLVBjy2#jlZiMq8 z_eiVU!(MIp=~6LJscjIsXa3sx{NRprsq^``fBbZR>%>}4rCwi7Q+?k5`TMnqYKIXoo5jvDmPBYM*5>$-I=^zITD>1n?COqE5&q9mwDkAUa!^8&5(e^>3vz!bL zlN6PAgGS_R&{q}bW1OG8_c&4t+b+ZlkI-`EH!Ri4SxC(i#JW#?l&tg-+5I2D8G_FCAo%>MhrB2^S`KU})o> zOnNJjD&rRZ?`24=#LSg#zt}j+!m!p%I<*nAuOp>x1_aQor7%I_7z$uGzZ}nCe+HVD zA8HSbl`rjTkBltIfOxBzc6hRj!ts(E#n?VhgcLW_`?|w5^f5i_mp`6lY2EyaW@U>+ zN?AkLxw51rfA8uzeqT>tGbv|2jd0S53+f5AbVpn|BdUHD)rvqtCpOd}OABSLq>F3p z7Ev@zE40NSWsJrv?&YY>PwD73P%-fx=&dTrRk-1sSimfaZcYD&lE$18X1%OF%|bR| zFv~+mYcR`1R%I~DMaG&u4>qat8sdv0UHWU`P5aD>=KHwB2^4=a6H?*@D{_rf@e-Jl zaCv)L`at1-&KJ#SM(0;kyz!TtQKfPBn=>2F8p%#E*E0ihIQ_hUNLtNkfJe`iC<|}k z9&eR0A+}$Tk0g6|yVsDD=DjNxS56I^eA=hNlgb;D+ngaO4|+_Tw5HCA(KZp=#VA>y zO(xJ>-S`ZI>lo_U&!3^#^aVp!fk&ofr6Yx#$zW68mtCns?mDBf;E&p7qSEk3PH+ky z8V10J=MQ3!C%)4j4PI2Ih7DRM8r6{$#?WTeFJHQJ;z>pu>JNoW8Td)X<4Joy9Ck1k zHc`(m**mn<3S_E9Y*_+tH{(S2ubrk&ww4&eD)g7|s%r(f-}kP;xzQn~(ss zA*A4Qzo8^`^vqmw&xM2?SCg$vDKqRnA@)}KM^13&9P_Kd2q*UhCp_n22`4&k$!%C_ zW4PpL>bzP!zSyy(=xwj>-@f&dVB<1{ z(W)eiLS6+ilMzAQ76#5Dy);(IglNym2PURE{e1W37HM& znYgQ^qz@Ecj?lJO7dV8OW_w9O=*}R`3szH`8WGU*6UF?EiN)XwMHzFgxXAw}U?62J zJaAl_~eYd(vs%n`1i zm-4{t`xPgkw(X`+=2phUv|oWY^TH`Yd}rwGSyX{|Skzl3*=M0H=tktePOQNnawHY; z(1ccibgHJ$YAFph4`0%5pFhR*bu}B091kRe>Z_iRfsCOy6gg*ISDj@UJ1u85x=!g^+Z`VyBW$wyN?@hA&)#=C{tld?6*hq#pr^Toq(bM1gW7(ac( zl^ae!$|Z5-8bL&dU=xjQ?PXF){!*<31RNU)xciaoB&j`$DPM$VQ(rupJyt8pg+L1 z>4q|%4ZBEJBHB*N@Pqx5j**l{T^Oit+IBXeu?MFjj#EdRR6HVKy=DvKzu1eP-6GhF zT|btYAb3pCt}pCX=i%(k_O|={JPiG~tP8|F z8{I5*^{4f;>p8t&@>0SI#oq1BZrG6I0@%L+W{UnZU`*Pz9V@FO`kOqH1Rg3V8o?s+u#2{HkMS?`#I#A#2;joj2VSD52w?V@v;JyY@SLYUc6vPy@N}VF19DSE1+gZNS&iPs!C*xc zpt7!Q(Wp}#(4aLJVKhOvlde0^WEXI^MD6ED{`A)XKHRl|tZxBUFEneCGcv7LCT4pCm`3jjL0d4E7Jt-By_%;!jQS>%bsU7u~4|c_;%>zocVJ1oP_;wnUeV`|5|KlMsymkO9r{hBA7vH zb_-%1mrIM>_}#x*b{dO2`WN*wr1`cMSgG8lmd4c}H%+H~o&a(ogsiyd@HVt6wlJnu>d<<_rOIHQOED~$}B)qxu8VVe| zb$lLio}N8@h_|;DbaQvJ} zE}~UXTZ$58H74Hn_i!8|jU+G!C4eizR%YKhNrBlo)d@hZ*Y~AXKm^VUB#t2drE8LH z6TUHDheK%xtsqe}vnBRMf&8a{IB4id=Lmqb6V^HqriJc(Avp;KMkpChK1+j4(^CCj zUfOC{W6{$paz=i->N*Nv8$>S)twJSe=A;x_seCC2w`Atu70In3{n`w_2!4V!l!B|I zlmq|9GxasIPmmVIIR_L9DupJ49-IIH%}3_dBegdS@E{2kOXY?ALWA>F3^wEqT7--K zFWXcXf(JND!maCmn?x!J>Kemy>3;0H6!HRDUpIN{vW8fX7#YF4M9I*$th>mPd)HjC zYzvn54ExEUtiS4`)7xo=Pe5S@j#CLXS3>R&cLA|!s-+3M{WL-BD$sYDyZOdRWe*$i ziec5E_MK~qnW$&n-Xj1A?#vpAeeyf1bzYvQdW@ZL%3)hCS`?$v3>?-@gt1=-V5;Fn zt8z=pd{MFuo=kjPU0l6(o{bVh7j^v|^-p@tp@?td(b$ewkq~8h_tlU->QQ#;pqpPW zc}ojRwyVFEhxtsnPyeE$4JOFRHAt!H|D)_Jfa6%2HEr1q(QkLw{e_NNHI;pH^~z z2h=Dt3wOpm0^gI7YhrzV2awXB8|YC9qOSO=1LAzVp=S1b;(ACq>`dWT((uN>7*w$i z#(ZDqz~vZohfC3FDZl=DepEB9tgx9X^76kx7)nIe5IB*6`743s170%QSgE6UC`I_ zn-a?8L&l{k4iNj#~YL@7WwZP zBlWX<4$Bvirpb*1NvJ&D0H@?IOVM4-ezhaY$|I>NM~Ksjy+r)(BnNX6EfNq*Y_b^a z)I=zp?2{q?PMU%Xrj&o%bR`lRDZ~<5O4TzdD*Wk4<_95{1<8&?OU1Bht=6q2E8IZhzrvg_6*CwG1oe=IFLzixE2}KM zB7jE6b&r{t-p?Iv$)J$WlZVy}$;l`}y^7W{tb9Uh$EpPJ#%;;@9B#rK~1Vqk|ZM*#OfafjXOw5O7Tg#cR1`Q^nt+PUs{UiW*b{=R1ECwm0W|M0D_4wMve&?=aNiIAH|{|CKi-o!YqEV-eLG}Ow%T4Y+cvCqv2br z*@@um>w@tIc>;0Zl$@a*hRIiIvIWW1-k%1`ZlV?s@Y&97Oo(?uK6I8`EesGas9Pko z@Fhud4mPU5D_=QMRX}62rIG8@d|73u(3H91D>cYWsMx}P6&hq@vji5x&p-Ezj|Rpv zx+&0ab*W28Q{41B<8rDSxCEy?#k(1#z!9YJF`?Y;!+v6Tv_*AS$AAn4_w;Lli%>`^lw62k=#$fDj1lRK(>D! zaBz?E zEhjHvxb)Eq4ZAzX1^h%>^2OBFfpHw`py{g{7=r0(G=doeHR%ZnM&JuG&S9a#u@J#4meAW$7Ggos(Z??c=mYh8~ug zf%enCo(}!iwAhVTO$IuH7OD2K?#MCSaz&#;*VpQ=5rBpfhqh=Z1kJ~fA^$S$9IPS8 z<2^)RL2l~EGSD;g+RH-EXS;y^jYsKfJ#_@0h4CG~Pt4=Dkn&Q6aD3CXD8r{q?ikRP zsPk0;{;ScLT;DzNg7`fGtZv(Pb=lcjZp`Hh@LLM5m&M>|eT6LUB^jN%`jke^=Q=g# z75jUW#j3KhAEbZJXV!~;bNScNw?cXMW~w^U0Tu#l7|KqUrdy5^#Q)4Pp;ox~e~_5` zuL2=Y3C6sxKZ@!S9 zxvK?TznE^h!*XgL?60988k!vEZypKz#0;<|WF&E^re^laRq_{gucbqPwgVy#QOA>h zuKYxYSH_8~Lva~_#C2DF+tyBkabl$2@_LL{ z5(5_XhVHKvEd|T*{Q%OWdl?b&yIiwNg)?DGgfvqy_}K?a#1H-1iD^r}3J}{5!)_AC z7pd|CTwz0(kC89u+_>MLRa5)2+n#b6R;yijP-g_%A^I)ck0r~KauC~FJm^lXH6c%{+r2Q50G6LcR$p z*~=re)8@)jSGIO>mmtLTle9}lu$>Z17B{Uj2{CELT#kzd>1u8!Sc^H6lU19Jn6_Xs z8zby`ZOJm0Au&;bt-*A}5wc&C1h)dtmHte`(aN+2+kVHSx|SdbQ-_3x4IprKx^Aw( z4C$z$nK`Gbt~X|eO4m4>_+vT$fHxBDv~uIl^>^i$Bf;m|tI3PWnV$ESb{gR2NPV|a zK7;Lkq^3E&01FSOM8ja@!9IDtQd3{jZbU!2IkI=U)3$ zd}Jvvvi+FlmHc|JqW`;M=6Y#dT&PY)cB?FY8r^Ep`1|PS%hoaKW^i_gB*=T~qBh&q zd*p?LNeTUswv(v4y!RV0)HOvfENWYMlgIk5Z58(n|4?Z7%@F8@wYjT)S~~Y~d4lY) z0O_b(?fi`mvr?J)=>Ar{ivN(7MEu<9;qvU>uFX^5ve`s8()8l>>3Moc_^SHhk0+^vzT zzTTK_61OO$X~5BVJ;T7r>&+8|j)=cyJ~c&3nic^>faHre2zlqrpw*--`leH5(BRwX zi)7+n5_)UW%UjW4(&Po*#|iHN?_v^q(9Zqd?7itnjholg%enPaRGQaYk`wPe(0AQ& z>Np5v?aa~E`D)AM+1}B@x#qRZZ3VylesT^ji+5i+xk~*0^!#*udFRmhHiyW~t9iwR zt}?kgm?SyA^?Zke_YxE|__A*A^>OC%U^^$Jk!I5EcA(v-5WHUggDZq~lZo z9r~9^ z!_N6&_sdJa%}4z@H_q4AqOSz#N$4Mqo4g-4o-cJT!qPn6)Ppsp;4e*^AEk#XSsU8> z5`pWp=UUS1{b*k9n|EArA7z8UcsvzLosSFUV3)=|=Q!EcptHuJ9fOZs-l(id?G5b( zHBFddGd0bXppWX0>NRd)#H{~!LuEaY`93YLXOEU|Yx=^3Dhm-VonAd4k8j&g@}^{H z1}{Gz4&cYrjRoSHfB*JifB&^mtTVpX|JK-R^I-v|BjGyehmH3*dr5vXEk)m%K`_Hm zGQ-7l4mbFe=QccHC0ROv(nURVZk*Rw z06o|N1vB5os^!chD-H}|edB2ItB*a$X;QGpEZYjphkLRDSiZrSd!j9DQQek@x;FnVVx4J#d^*t5^~;Kv}w0 zGCGHJkHs9ue}hpM%s+}z7s`KvQ5V8r0nQ>b*9ro3U_+0&CppX{QW^+ZCs;{hGDtLH zg|Km!pSZ_;ntzj$)}Nw=7}uX7f}qi#qJ*f>pCW^(N86Rw0)ZxjH}iPkr7+-jS-9IU zL$K1pb6X8TR%zlVL#y!jacdf`4b-ld(!u5~o+6kmrL0WDnl_p5noIz%S0#J{JDns> z2lvki)^4b5l}&mcVnSYov8d?PcaloU9Cv&t`!NnZYd7$N<{gPvl9P>B*LD3hURvqE zK_0!0ywsPikGz~nFR?o@br{uUe$HVctZnkrqfrvvFvwKs%7s7zj$Ih$-+jt-V`UqPd&LZ{+xj+lUv%5xj{6a zz3)(EwJf59$m7!l8;?H1{UzI~<+OCOPgkaZ)c$N2fO=oHAwa!9+X1lBmknIz5)WyD zKpVlU`P~@H62>jhW}9pxb~03(tX!mDuoV(+J!R^mAx%s;Q4nsuTJ#8uHL<5zFC({{ zq53T_m>~P9!(7uaatoN^Sac)bs~Y-EsD#6%nFRU-loDdtz#)s8MGmUTt5o%eCpplT zriLv~l8j|SkkF4(TAp%|;*(|e_gyB|*Pg1;metU@XsWQpX)sS;-Y`Q-)x;1^#-Ml$ zQk)1VJHG|@5)JdO==cyqDna`XC~2}FncgsNSCQb*lRCqMwDErh9W_|D4lK?=a0%Hw z4(_ES1RZVK>taF$XQZHvIbb<(K(tXs26}1a0%K7NP%zpk4E@AI*e#H7K4XTK#!CCx zG0_Pp94PhWI7sZDe1nQQ2h4c)l#xs?dkPt{mQXO$=Uy_eGTE4LLhz%-C6SgvCx(ew z^$9#*$$k88GDs6%P~f>4CoS8 zlJxTSR9W$K;Z0T^Byw+zS2eyA504-P#i;K}M`ZNbZpWa5o?gAW>MrY-vbZ%4f0sZ@ z!o}q?ZIyp$T%@3^t>)2mZQ$q>oKTNkHvm0?`=~Cx~G|wrxZvc}ZcTuVi z+#(>fGblI|*YUncqOcm{Fun7zt~?gh<8hXwcOua!nvN0=#=UgAo5OJNx3&=u9=!3b__EKsuImM z*&8%|(l%OcJs5(hiz5^XjVd$2;gNBP)CXWlhM_MEu1?WRo$AcV3I&%5AleDG)^Rk@ zVsci+v@?MX`W-D)exey=M;V%jc^SviJfS{AE>rY<*pZ+|3Q)jdwDG<8D3SNA!U(-F z>Sc1Zca!ctMBU2qYU=_W5~Von{oV>0`_wvR__I+>X;t0GTTFO@<4=j=p*NRRqu?+{ zeXC5r@ysnlh=LIgqAn!tpm~EubE`Wt^jdxAn5)7OaL3H@(HfmT5%Z#3;Fp^0qp59y zR@>5wl%wL?`=lwhV{x4-1VW@aCba89g$}|))xPf{6bOE-Tq-s{ps;NO}xGsDr)}8Cyo3rQh)%NX9f!isa4{Bpj1+sG*SUC&* z#-n8R6Ko$p<$>$Fsfe+O5=)^rAPt=iHQ?~|{2*#tb4m&M_4eZX6Pyy)EQc7_HY*d- z&V;~PlT4Q!`Jpv}2`lBbXWHWHPpuI~4w$zWb`zPs^0=CT29TJ@rFpD_vdboYj z{!40-R?8`fTYkgu89ZH)8E|0s?<{kWX`^>{IVC1Gip#sS`O2iXOpK?*SH{Fw2gFzC z#8*jpo}GtpII2sWK8@mC>Yy-AugUi8FxOjtR2gEyPB`)JFI1Y$b@3)sp=&C#A{uwM z)aA=+syDS&XvVrU>ypojoH4etzyGw9yJW=^?CBT*C~uQi2ujlgKjU!I*nSK)% z6bUjiOORhoM(S&!Pz5@}S^0SJojWj`J4hx?e{6-$#N|)AdV4bQZMGcvyydLxxyH&^ z@y{PRci5d)9mO86p=c^#QDG|JLg@~ReOo#jteuTID8i?c;nj*A+}&*@iZWffV!qpF zb~wQc@{yT)IzaL+wP8Kn2Gn@^xz$WQKaFb`H2tvTgnc_F2Bo_0C^Am{Yp}R{ZV>BA zgj%Bf^y8}zu$SvEzNR@PZ;oC^_R_X31I7snh9 zMk_GaJ&^Ypi$xNIO`6N2h@B!9q$9f9?+~0VczdiDpK@L2f&o(0EU`}K_&z;6`>XH{4RK~1cXTOP|1(7tiI%@L}YyHZM50jZG2DY%bnK#hEmxL zf+d`ze1UM}j6IaL_i6)qQuQ?gB1m4OMp)TC2tyCq?cwR zF)zK;;?FDMu&B}G_ZeF-;Nj`Q(M4EuRYIAit;K@yVpH^~#kS6lZyW$|V&RZEYBGc$ z$q*ogymh1T#RI|?g7z;;W`lW{Afd=eW7~+=jFqJK75)Ro5|By^oS)4Nex1^k#seNo z4u1v;Gk*@%Ab(<=dc(mDA=i^b4HM;q!iV@$h)x%Uq$XAsy2;P1kc&l&HK!I0$frbu zC6Iv2h$olNQ3VVaM}!%nD*AW$DkLgVROuE6s=a=KwR33_>-F7T%?>1uwc^Tf&nxf` z>87Hr&}9)kQX99?%5I8a%YO?;!57y4ei1-@Bf_ZUo%3vHIQvR^?w3%2aQM>)DGvkP zMb3AU32Ho{n7TJ58x0S$3PC&DKC%ZV96h=BAwK2}IxeDyj{`1@77^0=JIWDwSVEd8 zjn}L}moG*CI@uS$3IPYIT{>$`1P4Gok(qp%E5h_T>=qsADRD#Q^`XhfFwAvFMK8Qk zn3g`h320HGJOy{A*byeiPt_a>?x4c2)qNGMoRvZa&&i}C8g+UHfi;i5gh$>pUc_L4 zZz;WM{+Ubw0woueHhIi^vaya3qbO{*8h=xMHn7w@U4vZmh;5kf2@-AIlqPohmBpWG zLu5wr`}OQ;emi~7m%A=VU}ofABBC#zVi3}ts^(N+7|Go61U1+yHq(b!2x|{9!vCq6 zD-_3K=2um=8@$YUE7u#0;so)NuUDi1$%QE4P)C;yd>IYdZ-1gc#X`=*f0SHxy~|0+ za|X^(f%wn?VMG(9v>n87RIH!8!)%&w$}bNzSHGN6srn246;rB>an+z-)%E|kXQ4_D<`(0FBjuGrItMmRO2w^z)&AS%IM{;PBTuer!3!#R?e?gdkYr`;NChQ`e*R`Szx}wa1wc9W0R0 zj4MjS`=l!dZ4p6-Y8sI|1dmSdv%em_IQweOIP#V4F5O$E0jgY2gf3X0BQzh8ECGx6)rCw{l-2%2N&fm_kAKA~}=NU4emlhDgR>({+ z$FegP8uY$jH}sOF@Ib=UN1%xUQj30?cqlMMhJR+YLMf5L)h_x8{wrD#a>^r&2e5>X zlqw8%DJ`exFd*ur6N!w@V8*~dLG_7Lu^Hj^$J7tuuwcF}o`lDMMgc2k1>C-0(@A74 z4$oK5w>#rUgB5N#W>E5r-~3p!N%O9|g*Ty3i;$0K-2BiqjO^(vsYpJhk?P!lSpdy* zg|pU(ZGv~jy7{dp*&h?@QFT7U;e-ZDV|q*eJ$z)$aml`Snb~3~h_AONB3%i|z) z3}LJk%UW{F4u(BxcwbgTUshC~c6gt*>*KG>bngn}D(TM)SgKXO3Q<|t6xubRE>@z< zSg4U)^g;8SLQEbRY@Er~kksJNBkhQ1Y??R)6ccA-9&2MBZ(<(9Vjd;GsdU4!-W+r< zSjxQNS{yV7)kDy!nl4fwc>L=67V1yMU26JEEZ+o{THRE=#?jfe033GO_n_%Z{>17! zI7TQ348u-GZf=_v3S~|nt^99E@mV&t@l7McUBFDp+r2j&heMFniD$lKi0PE zds>M3=ij$j-I~y4R}bu^t{q-=Orjg|EN*Jr(88%&*qY(lGTwKV+J4SlgY4> z(o;2mMD)llSVdV_eP%9osus(ag{7{ctLyKXHVZIg1UuZI3q1L>d&+|=%ZM$@h%Z}% zAzM>N;zOH!1hDUxsjh@!C}(;7JeWKE`R?*WHHQ$2G1Xf9YZ^+JkjQLTZa`542Au3S zv;_lluASI0vt&`)^i2MuPaU?*_Z^1_d(`<-?08Uvc^g6;cp96%a`#9F-f}mMYS=~@ z;ux`VQSU~rR0f=3<1=xEPTxI#)jEA=u!zh42}>3=^9umwP_zSEZrP^K5YK zWzyMTyNQOjkN-OD!*`8<98|P2`AzAmgx~Y}Ydod3@aM*dv1>G>w=YfL{@WO4l$5yA z8A-TR`Y4+()Mh4;J@Tobpb+Cv`o!Y`F-M|Aw%2gqLchXO@U>1qqzL<9#+|GDYMWuFD2||TXK_pi>vV2N)y>I zF1Odu_6fj;z;-}xV?M(F{yn|In*LDv}P0AZeV;p(fB4yg8omK{b`Ok&hNs zQLRdgR{icL4aGI*eFCsnHZW1g%0e2_(dqfv z#^t%#YV&-Y&|e!2nn_jNguqOO9(my=HRa7BMa}Go)AiAKG}%gydc`C@nG_uSbe=IJ z{Ed`4l}_ag%pR6u?Ys))JZS;&GJy>WycAhfRfRVn%ZgS)>Ui_`@qsO##L=!`jrL8L zL2Sb?n<7rU$*$l`g&!8;!p1iOm?F!Xb+rAA7#J}*jjdbGd8eicRYhnb19|szId_{9 z9kuk2gk}fxEDMPEeNs!ak)XHC@nwa;gHN`Yjug!z%d?cavNYjC!e=FdH+zhy3bqk7 z)rYu|cVwpe^Me__@8FWDGwbq>==`Ez{XA19FxJ$Q54Bqys+?;H5;1SKWcB3|j4v*% zr!ks#pz8V8PV{tOB-?7$`w=(s>K$ipSa2Z=ihR88c)p;VswCes?5MpQL>cRDIk#K= zbwS7p8A=`ek2`9r>{=JKJy#;jyzH^gTre<$Cmu0)vLDG1Z_AGd>n8{2gB&=Qpky5- zS!LO_sc@ydwVb+(k7%6szFoZWPxYJ}6fg@+EiMlZFD_1v9&fLYwoT4GQR#BL<)2<2 zls>qE&MzKyQE*Y9pKQGPWc8{(o_+D(s(VGZ=A)dNoR==5?(xkK9(si=-?jhecx_wu z{PTODgS)`~|LEst|JTnA#LfN_t}Qb^)TXTwA}dX@0ffy0ecYiHB&F3fmE|N%2a8$o zBp{z7B1tm2f2CI6RJTI0V)1Q~x4*1rP09j;wSyYh-}m0?J1>7#HqgPp46ctRJ^U4{ zy;r$>H@|9gbKT^!(rK}&{Za4H`o6l}`LWuH|I&+ZrQNu?gG$oY*53K<%GI&4vDU`z zzRqK{f%dX^2J_2(13!~Z^!4U)Z~yGBYMl#CYEqWX=YW)LGHreIj(qFhIwbtl1bMMU`p0K*c7He^1JKW-hQ<1yB z_q+*rdv$yyZtG}vduZyd4S{OrwBQB3x8fy>X`-)sowR(}8Gn2^K0A3Aby(uQZ%v}v z|HS0H)_K1=Ik^(pE zjhUbJW}|}07plij8|GdFt6RDA4Qa13-Gtu!on^enEVj+e$dBd^c`GOF4m_J36GZ+9 zfwaabuZjjM_+*haSB7AZC0>4rcdxrPR6KNSb~lY*T;Lu zHQtYl;1>bzRCrmg%dN)Uu(mLat7K69Qp_FUMADM1f~K9Kv(@UgkRWy!r}AX}FP@{V zU&H7DZByvI9dcr{0lyp3kc2zj?_mNSlXvBP^cqB^-;njM?znzOeGHn+)jiI(J$Cmz zTw4b^da#IY!?U#B+@0uCip>9prx<{z!xi{TZ3o>J;=AMRlq@HMx2savJzv z0sjph4gdFpNtr9`tHGx(-+<^%f0Ro@J<`rj&)(8k&x64W%MSetZn0c=VtK};_TTD} zd^o=!`u4y}#v4{(kB`QK8rZ@(&>RE&};h;>e zPc!I!Jpk*>lP7?k83fn7LAswf4QT>vVuD`UX_0l#OaSHI%-DqhPV{5c_>-JpG(!qs zso!iJp!JHG8sW%lNIm3)@+4Vtq>)C*q$@Ov|63sgav<_yue+E|C6fRzp$KjR9=d1W z1ZP=G?}ANI7!B@gOyf|9>8}Yyl!GrLc3|@yzUqiV7`q3phSx9yPv`r!mzr(DXoZQ49)E(VZ zotAK`gC`6vG&8Fba;Jfhb`B+T*F_4V;&Mk1t#*RgmelrNnJ<@dRse+cSi=ap@W#S_ zV?XAiq74=24u04%&*oME#7V5AWRLT+sDncYDTcV(^|2JFQRnl$6aK~V{(z`R5M1T7$rXLlBk>2xQ82~^C$Ot#)FBYx$+~3^jG%LX{k{! zU3oOQ`l&%2q`)L$;_(+YIC=TpkV?-m2ltYHxhA)^)V@Z_);~fwpkTD)k0!NA4iuZ> zK%!I@C|yJHiXjt6BelVKaY-)-p~~4O{cRAh--Yb2mR^*J4<;Tn)0cW_D!ij5=6baEBZMkJo!$$9YWb~p>ctbVXS9Wl2U!buM>!Hs_HoPn)4L>Rg3 z8#7EUJ4`j&;XdV&AbeWU89t!oGT~zLmk^eMMX(q$e+OeYQ*0Phtj$}4Tr7jCSc7tu zsyIJRe@%p&A59^b+fDZko@m9z%`s-_w@Hgg&T6WTDsY)d`+nfl= z-?!b2RHBp$*K-~*$tePU`(hTQn1lMHTFwltLcEhUmL%_JwIRX(}VdMH_-ElJH5dwetN5<%c6RP)dGg{x}vturg?8slgKYvx&m4Kor6i;^%N6}Y~*|U>LxN`9#5~htK&rKu_9PryJ(vLAG>Ea2gCA^vK>XqP+h|WZ0H0BCCS0%_XO?O6tmof!hI7ag` z8o>hdPgtrN1@HV=caG-I%mMZl+0D6U!w|CU7?}lD5m*I_1EAIB0p#m<9Fs7y&y4Wx zHBh~%c4z_Vl-r?dTNUJT6RIGLK^D!L#DS097!o*BAWls&$ye0_bP7FGe{D>iTZ-2x z#wbrr7TY^qiu`L+F-G~~Lvq_#eZ+E0dV(l=KlMQ!ZuL~}MaezNx783LNp?CnQd0dh z>!h&Rq|w==ve_hakLC2wENf8am@Sdrt`RAU1bZ2ECu*iHS;M2|;RcrJ$tzO$UY&N^ z2XRR-9_TTQPEG$5+_|p9E4(5vH$3EoI3YEH^lpwz`)=^{z*yOJ)%bc9i|OENlxe?A zY`{kG?^>wyl-qu(XInB4mbebq!y=BPWxYe4R6Fz&j14XQ{mnP72{uv&(BTcvog(r8tBa` zwIZvTTNe|T56><2l~eCU^5V>fOz|)m^>g&mChXnjmQQV_*Nz(?liKew_ zv13}aGImKtbSg!3i_bObI&LPg%~EaN_smXCsjZ7i&i4eL^Ca{Bf8bY)FEUCdcY}|B&$hrVjqq=_->kn7Hh$MozvHBimq<<~olUShcOB zLe-;dWQnOVzqSG{AO-h8ptiWe6;?3C~PO8s%Lw09-?;zX;~15y>U{U z-MC0|MDLiQxJWo+;=|-7Ld6OjY>#@$1ru3CXgOsV=}5LD&)|jxOD7**>AMbXkXzu! z;{lwB=!CHZVlyv3Nkq-UsB@g4BXZz^G}Qdkpi0frT-FDXUqw_re7TH5HJGls?wwtw zt>`ps-YQ9#WgU%DMEUPRS&xD{&N06+#qnU0Ol4p`7jQUAvz>b-ACZfUBC7{dDJFq`7FrR_*t;_f%*Ba9u1C?_B(})#4OOfX= zefAuLzEDs`QuYF0W{xe!E7$1f(^^%+9$Q9reS>rFf!_e-Q#W1TIwqIE0mC6%`9@j& zYN_a7q)sO5K%lM(V;8ah5C31m6!x@!Lz={dQD?|uxOur`g=BBxAtmW4wSMCg@!(Rq zQu=*;CS)Qry5sPlOnkvOM$RxNsBS&8xkMv@0Qhg`Bc{O%LN=7Uk3RJVLJr_LvT}aG z$np1}*4Z;6X}={UF6iU}BI)BEyR~ztj56O)bE0O!$#}bPpr6QTIbV|2Y16WGAy{bJ z4oD8GOHDqgVzP3&l5zolb6$~!;p|_ZO^=-AbSG?>VQf)u<&NtHH|3wd{QSyKL^)k7 z5XO<6STJDq1MO^8W!9Cl3}I~K9(ImdN(qy1cBslh?n5djg4M5uE)_!uR6a0bAPN^b zZx7uOBHW3Vc5=2%K6b#*>O_OD*touGY6Cv0SjiIjsRigorww!E zj9?-$vgL$ApR&iTE#&B=_Ack*dvJZUVIDAB`i?}YYpi#RRI`4Az^sv=D3ydPUtgJ7 z_@mL&-7$z_0x=$R;WInmg&=VoxF3HeYYYzHJej6;+w=-_hf0)SFGpYX`fu6lA%>p! zfa!*Fzb?3FH2GQM>RCvM1GHmV7uavfY4R45Nlmgxed+U*6r`=vFwUlu42q;Jl#Q5m z81s;7%iQEh)_cb+m#_MvENFs1=oM9k*-?rkH~`t84BsvWI;`bKK@8;FMLI#n>Pbi5!)MMU(-t_L41 zoE=#~fVc`2^KQUl<_{G_{sdFc%t=Je(`0$6)}IqX`$_L9gNew04%2cg4;v1Wdi?!1 zb%U|q-vD7@>haq1_&+eTx0&~QcZnca}Pk5DYFtAsBJrkdpeZktQQEB;b&mOS_C&jZHa z5EO}S{sDCNw#Rqo5UWdHmeo_b#r4w?G~kMMYf^$q+?F8yq(}vmu$VacF#e&lmXR8f zeZz(@XJMT;1KLJZ)^_0%1m=WkIm+~e8QkKd8YNS$)&p;4ro>byjmF*s#jY$qChad? z8|a!1Mu#=2;@V^RbjC9(Oh@L@R`IKU;iZ7KIYc_JX(4#pNxzNKvNP4PAZ?2-(>;$8 zr#6VZ<5xWpNMOFTEDbR!ZFT*;)*d7>f0~= zj~!0Dz28($UbNrgBDu{N zWm*hlS_HnAF)f;VtZR5EvZ^%3)7#_v-68dA9OAJx=`}D^ViGY4ThNJ7NxM3h4t!6p zCs0BfKPJtcPcbYW8sKrV;_oe(R}0;y7IsO@<&>0{gm$ASVdb);pcvDTpk1JHS%{y0 z{wjETLs2^uXC9I}cSfglQGd&O>HyvRYn4kCN=V@n*U$1tF=KJQiSZi|Uzqa=| z(UwP&C97b8dVj@G9pul%ASC7M0r|Mbc(Z&_9eQa3B-ghS{dcHk(4E8Y92AUab#a6w zDV)0-(Sq2F4n$7Eg4+qgQHv2m_x2_eQ4`i^tVJ(oZoy8gkXUW_fq@!pM*_oplcZq{ zA6tr9mm(u6R}l|rp8JOx!!Tx?ibfaai1d!N*|*jf)pq3$jN z%{7P$Mw%a)gUzGiKgV9xg-AnWPBvbHVZE7LFRl`m`s!uE`r_$i*|gUwH1f!2(k>)Q zaWk?QpkESEefX~Y7bQl&N=rY^tD}Lz4YIbz+t{%RKF4B9&}tC{g397}TFtZt3OJGc z8yI5#&p?ZS<-eG!Y-nJ3*-0sXO{kVS@Bq_d-q(yaVNE0riQ&NzQtt=OL_Ew~W|r#I zPyw1iR7vj-AnE$D0kFWJT3MZ=WbwUvpiuU)RRv??Bj+h-Xk<72n`f+~N( zfd3{Ns}AaL`&FPCEmtahs{J}CAuYss+i+V(?RsJ}hYBklbU+ZouFlRD-Qt&14?owY>w zVguHRo~TAAN%xJE$|OI(z9f_bu_g9@V@v*RKBlFW0gE36(<+s|I2UH&zM6!rMkR0~UDip-pb-AI zUO-F07FGP;1e-sMH-@G50W!Atya=_Ha8nb<83;(TT*&}L%~*p=g*fRQ_5a?bOh6R$ z`5y=}XBKKwKO;HAVtbE}UQd-aR+1^B;(-DVlBJn84Mxk~P?SHkW#D5I(_&ob0V~bD zKMGhwcV!JUCYzL=;0e)m3EOj23 zD+o&fSp9F^-rf_PB=5G;UdVJ;HZXSR^luT*KSkb3F$U)<|4WevEGCDNfx$ytWdIrz zLvoLWrV%s5>|dC?|277-bce9Xe`uPIMKo@!T`llQzcHaQr!e?l*gMjp(jkp-{{F8s ze-9zV2TKW%a6k4GF{l-oi`99fAZl~ObI*I^gDxxVq z1=Lat2Es4@ha18rvi_}Yp*mv>x)Q>ST03Sl^?0JLr=TR9D0cv$#Q6Weae;%V%tVwC{E02VP*u9US#|jG z9~3(fwFK;U6J@Yiv4_=}m>wzIErjHFgH7wiv`9K@90kP%SX3j~5#Ywl2kcI5o7c?d zgR`yC%ZzZV$BiMY?KI^6#W+*@SBZ!MudoZ5-c-Uzs~9J$(EVIzE~pl_hnA-rO)EHU zM>;DN*~bmBD~E858Qs@`fh{Zdyj^d-#^*ZTZ8!A!&W>$t?#4$x(JSysm8^%Cyk|&D zqTTlnZcn#%*Y!3__|A*>NV?`epK9LI%Yvw06~~TF&vpFBpz-tIm-TbJO>O+t!D^J^ zPMzCx{Lla6o&aU&YPWo#R$^=Sf7D9Y{?$sb8~@fyD7gzM=ho;be-!E2o(sC1?4F)8 z5zDhu#TFMBeBd@pQ;oHYUQz`h0ov;RuW*TLO(em{v%_ZHyf zQti>Px_Ob=>E8Bw@i#EL(kkuXWqjw|<>d;PnD1nd*Yf>_m*;f}-_z@@WxYd_ujl4u zaJ16Oif&OwrP4{eQ8sO{|K0EcXl5Zn31m8)q}%=?E!Rlc1P*A%kccH(StjO zL=#UsvHr(pRqN`nd#BCJhDocu=-zvqo4_kzi?z2=n#wvI1iP)^cz)bp->knMffISI za-VO!jnSL@nP=-+Y*O{$V8g_;`x1Y{{9ZG zHt+`>M77h4=up=ty6iVy54q?4sI7yj^|#f)Yj)g&BVBX&N4lo;s)?t`@76nO?z@;J- zN7~}xT%;MY9oO*z9iV%0WsvR$GH1Uli>&+MfT~ADk;pS9?+dzGV!mf$=G?)&iJV{c zFIKCxG@u9-1#?Q}oWGb9u~hJCjt@a0#nd%9U0he)pgNOfYwt_nCr=p-ErezFvJk1{hTs38U;kl3PXxH4tN)ln{a$_- zKHPXaM(bW6!%sbDN=Y{6kvkbfnQ>dPigT|84}<|S_Q+|bShRGruyq^a$;mJG$k7}B^NX$2Q*+@&(m%Sc49Df;60A` zI!COlaD4JW%nGz-7Qr7Wzy27gaz6 zQ{B$J_6T(LU!y~zP51uBq;{v1t|f=|;FX#sASyFAtcGWMZsD-FpcAe1O3+a8)nj8n zwhKVNfW`;kmfvbk$IyLp`htlkaOgA@`;^QiqEHqiLTHowD6CdGWkbNF?RY(PSLijFbN#4t6VR28x(vs z;xt{dpVY?nO)iH6kD2Emb1NC@YxC+1xdG>Dr}p(r8pzBN?W6dSvJ1~9SsyBMg^HF{ z8yb4s0@Nym-}lCkHA?ncfl5m6H3v)G*1(1OdlhWff@FmVBMC?#a-~hqADu~bsD|RW z`4>m(Fl=>$S_~HBTX)_@2LV}NKEW(x2&kE8sF_07NB}fCrDpNJnH!7kauMSZ zB;A7VCKoda$W{~)&UNq<`Y5z086Cu)W)}{KX$)RP)5jC~k1}PS97xHlY7jzn^}nfD zUj15=PvlIEg!}dS%^$Gi<>Uib(zF%L#To006>^RLS8B*VCn(gGB5sH=T2tCoOC}<< z@AwHj*Vn{sq^`0Z2WnC>e9eHN{U{#&VuRuzg5Gbc@hav1oY3#%u@RKU*(BL5zR|N6 zfE_LUuAKN}nk>XVCFl&QwY%27OUl~?%SqqZ+ZcN0;aA~fLka~i zwRj=ZZBZZM95SSA1TLY_SvfdDsNXRpHn9S58lp}BSmJJNFbM%~20keH=>2MR;-85e z`X)e!djdB^`rJ}bFQCO6jLwF{J{-&(;E7>u8Yn*0#&thC7c(UZl`|wI%Rpdb4OCCe zi1GeXPqu>%_QSymklli_?7z^9A%yj)gD@}F0o4<3R~TOJBgiF20enx2J6q~!NGHX+ zx03`hkI)JPB0_D<0jS}AsNp70P4eN(T*74yuI10j;AN7&D2a4Es6UqXpss+&D6hmG z#IDQ?4PlmukecYn2!;_*5!qT}w*}#~Rv=aAfIp$Q3PGw|)C@%+h?=Djz5xl8jOHfqr&%CZ+2YC zarR8|tDdl4>H!4_MvI`#gL4w9u>P718`Ox2XH))u8-Bl!r#CWne+Momik) z69}jX42sbYAm|eA4E3u|Fnn`CYBDyaBTXhmP-8Hc?h&4M1sh8tZaAy$&CzAblUYo* zsz?8VxdDsL{5)p#3Q+Iov)q5Ic*)|Si7Q5z)B*`g> zPc23bs%qxDBo~7N=RY3iH9+`F-7<>Si{*OMYkn16^G&SUNf~Q>VJCTI9=)ay)DGai zUtVKa+aG@mxD2ux5ZcbRW29?0;B6rj8Rhci3pTiax~EgzOq^uV%P}@e-1Zi!%k>Vc zCA}TM`y4Z@_1ChbV4%=KpkJrHPiR3w)B%{I2Dp-I?-<D6`keB9&E% zIY8%qQZg=p$g^OJAnUTB$oyaNq=+iYbX^`Op0J~TMP6e%3QM`&lX^BI^Y}R>Ye!q# zKh@2AK)b-u);=(H$4>lm8a8+QbPyrYm&(x5Gj;jxpl^3B(sP~v8$sD?UGG49X@b+l)I5mhMghVm?jAj0*Cq{ zJ(MDs{+mu#qf$nr^3K6!7wMpta8Vd}-g|&W(QNtuW>K<&$RHq!GJ*&aM6xmq|O2m%5&Sy0I!Sw*tI03sQbI7rTM;MdhR?%uomzwdqT{@2~@=XsxcKK-pz z)zzm@9gwQG+IqjL8c&;`j;-r_Hg|QZlagDrmSVWnLU3tg(AGuG9dkA7%yiN^f}g4b zr3I)%+EsnD!#z2q&s5tT*%RztFruh*CS<2x0nPcB@CQ(|rWv?G=(z*07121obkW8- z-_w+u+uu(VZ8+-57}9%C<>6Pn`WjJJ(fxp(^;IHZJh&0yQnRxP~RoA>p;uU#e$@+YYCoeeE3M>lmZU21JJ1%rz z`GyohskEg>r{|*Z;UdpN(zQw0sl%5>L~dT$)zlcsEpVKB|CF-4ky4^CcWA=4c6m<@ zMJAI=mvX$Xiqo73sa8t!VDe&L*RYVAWRGJ~HvF1?N$ulXGbR$lF7EcY9k10Ay0@Ra z^fh|4KqFSXCb<0b<%hu|*nKT*c9T9rU-jm;c(H$V4B9x_*bV>TbW6>-Zy}bhfmP<; zVxJrBv&lYtAW6{Rj)>`7r{^Dcqzt{v<5&5ba=)d=bf{Ue`ehP%x^BOKvQX!b>+fk~ z@?Hu)mHzs*`HONy*eQ>2@Ah6&mTx`x%yv`4mB3Vvtp`FXQns(8hz<7>TsACBlx}EZ zgB(-ty&^wr5sI%n+_`0+l-OmO6RZ1D9*G}SQAj_b@+#%Wg%n;!VnfLzrL=*J55A8+ zF^Kfmg-kKov`-{DRF%EeySR3!W$pa3mu=rqbL?q@NHU#? zeV%)nvd2!kXJ_}|E}gHxOX`^S;;4Eb!1M8lqAzdxh8I6QfASe8<(j7NkJyh@CixwA zI7GCY%TnB*oRa1{$tqC3YnKZ*Utv-|WoISBPS!jsOMdmFRIYjL_Y4bH@A#cKqv*Kx zYgVNdI;@^5R=S2LmS%t34o>v$ZAHzG(FJ3+xzxpxg$DZ3YhTfi>N_5M5 zb@>5Lg5DnMXsXo`*=PZwWnu4+$+aQr_SwBNqNyI_;?K$sx3Y+BNu9{ zP|sM;Mz!^2z?WbFl}$ZA_XFc++VSHvVozPAu$GqO;yv<9+j^=kR~&t}#h=G1pB=9} zTlzXce6>beBx`4BhB4<@G)ItMZ{F$7Bmr-??n;wH#qGzXc~2Mh?{3v(6P7eB>$`2E zac|hyU7=Vy*ypLVv({yz$On}QJ{G5aAKl8&$i4kiu-&V z$$=kh4oM~r)9g`{I~dQoD>!)ieog1kZY~A)hXc%2r=PkxD3zFGJmH5#g^YJqsn_4t zy6^DnI9ufBl+31PUz2OXd=iXz_4;R;8ODMRv}&E&{+M(A=#LB2=0B{14fF0E{Jz&X zgY6=tyWeup8LwvJb16PD%!kD9LV_h<=NwoK5=1h#?~*y>n0s~Mf)FJ*rHl5`A*kv>7$F6t}l6~`_6u&`xoFP6O-m};nB2+`P_v3 z(&Ubhy*Vw^*s$@&aY$<5 z*ptK6a>0+)nsCa782-hRvj!Ya;(^7Hih36J<1=c((cd)RR4qF#zF|&d-t|Ts@D;h- z_p7>jq;|ZpjPL5Gf>3!5=G~~#@M9A>^_v3le}DSPXRDL+_4Oq0oj>f85EX82cdcjm z!OvWh+~MC;8xr&K#Bo&&@0XXn^UC|HZaxc$o+6)BNUB&3v@TScjG(FLmJGFJO)a3w zH4#iEs937EOc}73cd34fao15d_UVmv=ks>DzgqPrELZbdmjB7Cox2%%3-6to^IEV@ z8dFn zGaG|HJYdYH_?-BfFp>(nX4Z=wijk$aT$d{PaiyHtn6Y2Eh?Vmmx2+plEJoeJ>mx6` zBprWiOZf+qxexqDxZopof|Nb!vI(+WT~AoHF*Mh*e*+emj)32n!dyqzzVOYDjjAl;N*;>&g`1wGbT_!o8EZrw{au{PERU zSkCr-J7Z!at#xGjg%yYYUKy{fD*Af;D-Yjfy!JIs96kQ0)w@6cdLVknvmA%(>Z}~s zfU<;iNijMf=43_%Fi~_f+Cr7i$3C|3cqpaaFyJbbVakKoLdw8e2nn1bUi^nYmBVWx z_;Q^w)2Nt%ZN)qu1{&##}T!SmF1k)~GC`^}}A`AJ3xy)6x>< z{cuEbrDcrM0h2KYEtA6`GbxGsUfQc_c+FQg_$ew{s%59Ngo^+8L26`q;*X!WT#)43 z6=>9M3g08o9lx1ops->8ch_0qrI|lGM)Toiv*%nPTN4xYeSKX!?Mj>81;C3S^JzDD zqFMgVU!((enN=+$8Jucqd;X$YiPhOwrd=yI!u^pyb1?ijedGv#BFPqB2AKDaJ1lfNagLwFJB9oyj@>* z;;8?N6pW+CD8kDyoV+`P7r0Ij z3LkfSe&QZ*q6&GC-1mnaooUpMC?>oVT;eWeW)&90JNqPW&)WVm{ z)D;&`CJ5?=vj%vHM7&mIUV2ezml^WoPhUz!_ADLjcZl9>dBJF5u6JeRr}(Zf-&Wo% zV@>*xdTC26NskDxFhyrZz%58G3Z{qL0u=O4|J9HxFD9mCzMuM3k^LBY6e;oMrr-`^ z37&!kVWzChvowD@lTCQ9NbipSqRn{uWI0R1-Up)R3|na7A3mSB{_=%~KRI(){M+K3 zj;cfi^BLN&8FImOk$$x~D)7pO+$&_|!^Ut?(^P@YmxexQvdQ+%>9mR$rP*0ujfQVL zf4^tUO2Xw$cJaJ?A?e!}a@w#j453!jELYx>bejq>k zB*nt@?LkYA?`876x!9b->zZ-J2aYMbCd@099UJuWx@rQTqRpsSW zwsPpxCx|I+*|ATxqThGGJI}?|blb&~Tg2b?Yiuq|HOA^uR+bmKs*(j{%hc6%()Fd? zSElFdssuLIR~8mp2d6yR(o5Y4n?vDCu`#7m8|$mGfqihV2OHaA^A9ndyEnQSHb(#>rsfb!mHvm@}1K0!mT z%xS4bfRj>W%re;8R;4ffvbZGbiF5RLycHA`7)WqSTVG1EDU+s%QdVceTj5i3+>fne zHp-Hd8^bw!3C`U{6Pq>ZmUZzRqH9$xEmPV%=k&AW(}!kS2E5-a=#?xHC@Tj!WSt5V z-8(j29F|2Sr=w=8TQ^TN7-W^yZWy~etuIi@WZcReS1sUwG{ly(xgte6iYYA;*InEQ4W7j!1 z7ADqOM!Igfc4-=Y|ry41VxlH=pGn>^G${M>o^kiA*1JAOST`ig#+zh_{ zEP+Sa;swXMq54S!>+`H7n;RQF8v3yt&O;8l`HlIqy{3&mgI4{_rZ;jZeMQtdk7u{5 z91481ug-kt{`QgfI)bg;rfawz!FdiooR~|a`PA!h#v*=Z`$yJYn)^g$o z-?K)F;95+~zR}c2K?=e-mPD<3QsDvT0kxZX+1syLm==%v4SxyA9)5G?qQu3x#ctz; zr3q~&3!AR89`pR4$1VhTro67YCx>Yj^xZFU>63^$`NE!T+=!rTXvSGPpCQQeTJZO! z0ghtzlFV-}Lc^4E)1st<2a2#Wx@&7ToU-fhl6waHPC2y+v`!wVO|5=c(C0EFzTh%J zj-1NcwPvBmR7a=P?Nr`yxNusa7E^|`n2mcg>Yrs2`dq%x>8Wy4eTJj5T3z_p9Nv(1 zWB9aq&X4yFzux7o-xS`rs(qjMsBFGAKDqqh_J+>#0+-TZ?PDk7{CjIDZqf4w|=qqztLn2mDtp)OjdF^%2KhZ0RfnlE}dcNAPVnHF{=T^t6loqUOZP zdQt*wkyfV$pJYYn#tav7C@YVpcfF3g!;jET^N6G30qhF3) z+y1l4#evOJ4+`2AFwm1GMCWoolERGJnZT_=oTV-xa6}Arz($;zSeU{`GC{xVqXfi%!*gDp&8dvoI z+d?dQG@u-kK(SBmn#dzkjM_OirGFBhnjc$#8}1lxzSe2Zc~a6kY~lLwhpF!M5;3LS zGADVY+h&ikHe#M5)}9N$Jg}EN2=*h z?&fP!dacyCup_?VoYUU=-gEmJFG{Zw+fAzGN3t)MV<kCu#Is1~6qn5cH zlLzw8iG(%GwP=MbEa&O3=P&7V5}Zn+7&(sBbX_{rvNSPZzprhq5juNy?!Eo-`bf%L z{y?0G?EAKxCAPbGWFCYqPjrsiOR$PI`D)Nzor*1sW@=qyx~%7RPj^9MRptpM$C;vK z5wzHHeqKI`Bc)fCAjzM)l+=4ozt@)X%-*Jbwkxq^l&0BwUrCMWZu363N&d;6yJg#2 zbs+~K%Ut*)N4H7%+-4E>&vVqfQ)6somr~u{9hV%fl@8(N=`|g9TIx-+Ug^Q)*7Toi zEov=saQX@ICNTjK<8j(>FO%oRG`5$*-s8J^n3T!~lLn+I3?Iy=lx zq*d$JP2_ZqEwwx~Y_l$nNP>-Tb*#+Yauzz2SJZo!;%<6&zRh)xRyghYVE#2pmu@B- ztnBkUZK^ytf+`K=TB~dMmw3#&+)B^0fQ@{Cn#r2OE;m;)UGNU%z|K>}Lwk>Bsjj8< zap&49mE3C46Bu1#OP!h;%h4_ulJI^*tQEIYFNFW^$AF&$vV^{+&iaN=yy=j{ye|jW zn2^_n;vv=#s;68uiX9K;xH(q}6!cs)qU`cj7YN#JFE|ea=ES0RQ=2X7fPx@O^zcCz-jiD|th24D$p>ZFWrs zXh}r&Rs@=`*X8ugJ~$IB`MCX{!84(}Sl$`h^7qf>6WlLq*@%@Y07KhJQmDnvS{WmR;)-@iUyH86oUVWCmgh}m>pU9ZZX z9r$?++hEG6d#-n%L7I?O$qpyCrtoxq|M=rA`(LOD7&b{=G<>KRow4BmL*VVQ^P$>< z;Z?QAQ(r%=`S@h?;}h*;h6I=K#4ovzQX9V;3vL4?<;!l_s&ne|!m1VV6Qf3rpGLAO1!^OUu@!DbL&+DBeF44n=|t( zfu=)MD?8uCc1o?D{kijGj6jKN>3r(?d*^%JJ(V1}2K(MQ)>zj*zN;1(8DKGGI*=+E z94D+9q17Svtjbl#tZaeGz|cqS@ENam8UtJS<>Yy`r!I4N)SiiSep4Dfm*N{`fBH#! zFQ>wr(py}*%4ssk<+Sr|dRiUx&?*|aV#*)e_rzgUv}H{>y^D<|yN8w{;`^@eeejga zVb_k-v1jY0L8PAwH#Fj0`^NiQB1#<$UaXG0Rhcryv$=MjBu%b9DX_uJ2m~*#&h+MK zXMe~Tqo$XkmYL?4->{0aZZDo;b`8IjJe1tLxYBf|*vh^sh47tPrsu~iX|pw&x9O|$ z`c55|aq3+>GA^Z+%}cpqmTt+;6C!IvO&nG{*XG8$Y^}KDB@5mj1bUudA_w?^q6s zJq@z*TZ*_@cG$x**_{Xe9((pfjn|U<+4ZA-(q|oew#t|ku+1&@#A1Q1hMMa=ao?qD z^^uC?c{h`@qq*=ozM{(gmp(}Ge&27&uAgylhqqOk!W!OlEbiXJUXtm|y4KxlZ;w)e zYYKeQ^}@3iCEqe8etKz87It@ZI*E(}i} zPi72$Hq2U}|06IzVW`clU9~e{MAvl(kJ0zEP37iEdSdAVfz^iWVa9!BkSlY-5H)LQ zmhh9Of;I=HTk-k})nOx&6un}GBD29Y_STsa&vN@NhX>2em%b|14R7sK?z{eCAHi_> zXV4tyb}iSD?GKrsnFT1eUlKO8dLhnd$as6^=Ea!s)ew_2W36LrU$yJP!*xr=;)c3# z2Bou32~s7o%au%h9{v7TH+D?3v(F5q#q?Ul+C?+#t77aZGK=1-(u94n0sdMPYg3Y~ z{qBx^I-#-wvqdHQ74!OL+g{1)6qah~r4zLBY9|w$ZH@1e{dG5%F?6mQT)pm?M0(d2 zUz@Wtts;GyKXtBOoIFxHwK}>+`99YB_ML1tW!Q)FW`$RsMimRYOUL34!lcRAgO1Av zl!9x6ZJB;cy)18MyA$N#gAhxt?4?xrk8eryTv@%{EzQ?#-`8}V+l}QRA^+)A=R{)f z&Zm3oc(U$)YTj=%lXtX5&86YVQj@{w{`G_*myq>lI61&hW0A!?&jJ6PKH*OBA+5ZtGY{Mp74kAax%j<3zgU?TyCGFO_5R&( zdXwJbOA9A4LHDeaaqEl9RcqnB=h(|=y*Ij_?(x^{%fEP5pTBI!t-h?Uc&Yb(>k@aG z@^8Y=aPp2~y-?nru+xF9*A0rJ824*2)hkx>Xy<<`DyMv1quprm*;>bQ%=SYkT|!^v zM)&kshfTh7z^NNAr>2;u*79{Go{AMOsr8%QknRf)q1+p!SCaJ%|C!W8E5u)F>@Kq* zKOrH=J|d=D2!Bs1I}7r&8Dq21v6|8lKe?e2u$20RZKdHFv4~#Tb<215#MM!Oxb@FV z9V^j4ToX&*ep+%7?G3m$wzgk%hW60Lv6r>nrJGvDln0;s*=H5fq*U84?T@#5aj@R- z^c}`+(8)pz+kD$+?*b|7yB7FGdRbK2o(#=-u81yd>v`%>>Z)-meTd?9M@pWJh3E2t z>C_@h&X~jNbVhr&z*cw~JIEKCk}3GU=2kMXV(0paQSP;K-QIlcgrkb|Q3~`&Gn z2z8~IEKkal)#=*acc+C+Zc#U!+S4|6i^Xd0kmcy5mcp)avR6cvL3_W#vn;c%QTcIw zn!Xz9j^1A+)iNJm`l@@UYPaFWzWJg?fx81?>|%SDzm>&|tO|aV%;|XdnjHM?G9Ua7<3Qa3qm`y%SPB@sG5tI49xH;W$>FJ-ax zPPO{Scn>&R8*=6lHtY-QXVg-*_dQ>`cXX-e}7}v#FCaWwL?i8sFGH zf1z||2NtKb_SEXM?w*Qo`QbNzbiSPU$VX$FhiCM+UUCdB`chZb9gvT|L{E_U>z~}M zk~XqdH?0pmDn9mE%jr#?V&?uw#YFD>Al1$>F+;1_x$lXcYWG^LD-G_y$y3F~)Y9OC z^SW|+C48s8HGO9ZI47iX@;zIGA$DQ0fvH}(CRfQkF!*jE+*8+IK7(tC}2CnGv$ zWP1mNFUp8C6d&PisL=H>U$It9^6GX>8GNs|Z}qC%)D>gXiIO9xcjx;fd1T)?U2jtt z5TCBMuWDG;?JBd^lrB4J9`StSvfFN^wz#b4duEZ>Wp|mtHQ86~0^Tdi? zf8@=Xrf}KDtez`Hvcb7)bLL&L3AvPK<}r7_=u=LZwB&V(=5^f=gN7>nbDmMl-T;bR{W+B3SG*!5JAZWW&jZv)q<>;4@Ffo{_FveoE7n&(TqiI@ z%DeLUXUVAJ-lB_Xmf{}p@ALb8)VR)gwEyY1R)gnDB#Z%@Pjp!3@LKAXC>@FR;UauO z&bMKwlTrJ+`Q&C2+}k;-Ib&r?Zr*&y__>lH>YU}?OxDlCe|&Jpv|Oi+2Yi`o!6R23 zXTIJVN$H5Rvj3)ZEom;o!}4iLbLos`DYj73yGK9$(cj$vaXZE!>d1x0C-K875(StW z7JX6&a&4p{`TVt3_*1*8DucuxwKEyOkIR+!uzjBapU+$W8v%WBdm@X9Box)|T4o!% zO?^U?kx#&L#O!EMoa)3w@P%fPVu-;HzSLE2Pt|I4MRNwpG7O0>gQOL-p7nQzPd z2Dyt9Rgxb5ak-22{@*(DS)?)K}J87#8J49|Ij$#NExk_m?pCs!4#(^gc*V0{d0$U@q zb=f>iUWw=LjLW~w=pQNEt9~tMLc?lD=IPJJ8KUGYcV&wI;oojMGetk2VUT=V^|M}& zExIJ38u?=kqSX;bL<@M_YvU9T9} zSTc25hP+cgCk2UtDc}!VbLVcYSB>0JDbi!WaM>c{yj0SOW>@!DtEGYkRvFM=H;VGushQm{bW=|cS+Bf^|@Dyg&`ta0&*~!CG9J3sU8)^2b zg|cF89zHj{Jkd9(kq1a@!d9`2?Nw+;N1Pf$I^~Z;&p?SNl-0 zGIAX~VkGbR#3zW6QRs-=Zx#1*86GjZ==sDq=rp6yak)zQ>K9b3zfqL)yyz3Ohf#=2 z?znulCshOk*Zw0$zfnBFD0ECNNxnLiDq(jqjDzl z)laA*7`cRx7!jXw{^jC==NF%#e{b=(qU{kQbFa8VyII`8>gMQ*t;`RWiV?R{LTM~sv`Px=NOW6b)Eq92tuBNyKh zBL&YlK0(ZkSx4lwQ zul_wK#lS@`U%j1i_MGSML7z;!s&CPZ+$QqAtal79ygZoZFy5Q#TD8bN<}luu`LJpi z2cP5k_e{^K0~{8P<3BQes*ZD{Iga;dKJh*i13fh*53ufaB3_7rLQKhntSU}Ktr#fG zlsv@h=R`D#fg(-G!>qMVMEe*h#*{q5y4RUVjDg}z$z)a)XJS|klw?XCW%Y9=CdELh zrsSWjwa&!680eiTd5m?h3$Zc=$}%O7v#Pidzr{d#rsN4$KNsR~3{+@Jo@A|cAuh&1 zrKaR5*1fL8U9r$7Q}Q&ciYxIzEL3Sqo?-QKB_5B3YE8+rthKJhGqF&EDS3`{uN(0~ zEYxgDo@Z5YBWlG$-%QC1tbT4plUS(Jl)T7V>qfMXg?dfNORRg{iNsi_-;}(}s^U%z zi-m?w$t$dW?!=^6=%*=pm9^HLm=_C8nv&O8_Y#PevCyn3d7V{-K>QX9Ey90UVD%#q zhhw2tQ}PCDErGZg3vHN^H(B>SB<^|zZ8IZp!KgeW9(V=qG9z!r_&p>Ze+BI|BX7gh zJ|v!b1<{$2w`2A`B3^g}?K30qz^FVTYQ0j!pR*?K#P~fTn!JKAX5?L%+DAnDR}hC8 zc{gV7V@JN<+(!!_|{W!Xiwxv}!n9D~Tj3 z5=u*Jg~RobNMa&PbhH6D+z^Q*E)q&d`xb|rAdw_RnCNNiakvE%Nm?Y7o^}FAAPkycF}$J|6x5D8_ZwUWoNH<1)YnD)^I$m5PR zk(5P3_tCzU$MH9jR7IHf)7H!5M4L!zBBA@O6!>lso#UWb_-Hi@#*gS12gRFVPhfQX zh>>wnvKf{a6X{1xjf2w6uzZ+KKVo4Vlx~JSiNW|2YvZ77Gb}$w$Di042j!bt=xm6H zu+X+D;2fGX;r-bxv^3G>t?=SZS|az=bzy znuz4E(muF=i*3?06A{7CKEKdK>MVf1nwg1W%mave@ld;&*%?e~0MR-g>NYbI!~6^& zy2nG`&CJeXc%KrV#zTW0Rmo0&;=p0FwwoM)%?Qp623 zX*!A6anL3z;>MaZT}0+NXe$(Pb4{9VB6gg#LyEYyCQX9KJSXi=CEWIA%|{}3hiQ)~ z;i#K6Jw)aY(<&%Q#@~`8@+Lskcq|Un8AOywfavj9c?>3)sFDEf$72;RI>AJp1c(KX zy?}`fCYmQeY{SfrIZ-7Mx`M}E z!{|IG>Lfzf@mMWPf~b=Oh2ya%n8*mCc@h+b$C_d~BZ$sPP%Iv6hQUM<{gR+~JQk19 zi6llQLCJWmIVLian3@Eo;jtE&&PZZm5|oa|T4FF!#M&e%8;`ZZ=tL1alc0P&)*2HT zMf{lr72&Zqn9eBTY7$h2$KJ(YUJ~~vL*;nvJ&evvA|@HC!ej4aB3}}Dlc731))v$G zk|>c3HR7>$7)&%#B^heLV;^92qKP`mP#Yd=kBN*XnkPeDc&r1aGn(j}4E5o$ju=b~ z(JvVqz+;^-Ix)n^WM~ABb;d--5L1((F+A1<(-}i7OopcLSXT@tmROq%&Ec_b7@b&R zXEL;e$GT%8V~IbLp*1{~fa#1St|mj9co3bfrE`v{}+iik;pcAH}#V zc~c;2bF2rZ^A%Ad1)?{{dSWmTQ6&Z1Z;tiC=s-lB6o`d)Ud~G|g+$Hl49N*xC422H z(fo~KMOpK*M=YLu>gGBwU|ls}{Yt>PZos->z`8}ix^2L^OTfBEz`B3H`m=!bsDSnO zfc3P1_3VK4qJZ`Cfc3h7^_GD3u7LG{fc3F}^|^q5W(dFY3DD;M^vg$Ghq~^c$QfwZ zpkedh95%b=<+eLRTT4g}^~}x*h`eIKkf>?NUjM9I_B-4EO9p{<@_S$7f8xRU&1@^q z9a}yK(mebuDm`aow(G<03Kkt#2rW<_pmBgsgZ~k!08>hu_96<1xI#auY4y#P<;q!5 z3H1aT6X;YxlLDFx|G}RM^(>vP5L%!Ga9dUTA^(0F4858lb5F&4j;9COoB2p7lZt)CXuBpwj?N1!yMxWila$K6%CqEl?kz zaez((G!>wk@R!Mi=#D#dx8eV$ot7PW^xL-FKDg`LzNna$e4*{%J^HEnOG#*f`T&iC z|NYYdJ=_dE+zdV33_aZJA3WR)-K2QMn zMcb-Mg_-&!9x_)$?gt~T4Zf9HXss*{DJBx)DQ%FK3)Dvh-pi==&3TQ6;$9^iX7m^@qv_O4;#sNAF&{TkC!e1s6 zx{>8L3rXIm<{@en|I7UlyV>TovC6qQwz)howIoosS|z(aA5K_kN#9uS+nD6sSoe-~ zpKB{y(I}%dmaUCm-<%UGTPu>KED%=o33E$?jh4R6a>8c024RNNeXWI)u$fF~h~1o{ z-k5H&*&NWP%#RUPbSPtO?rY()6!QT>@3bssMhvzl%&qBff(B!<6xGQMi%EwvO1}P@ z*ydtxAEm2p<3Pdn>XHkSwD)a-UA((p24xN}F&1c4yIq*1zAt-piMhb0+D-9YF!g

WN&Hot3)_2jd&=Br`Usy~UgIv`YUg7QF)!C62VLb{l<-c#WQL1# zxB8aUa=q3XSD;f~Fi5|rl*;Pji@V&@&UYxpyh`tT&{f&RRbm1rD?C5ErlhFEvRbbv z=qhfpA82i7xLbota=2a-$Dh+Giy8@7Dy4F{+`?U^?Wn_qm{;qy0@FCeR0NnN08{1( zMF=#13QUa=Qv+bi=n~QG(q2a# z7X_NY9iZ(5&8ZK9=4GJytQXw;x&UbI2%6_o1Jhf;bVv@EvH;V3z2i%H3t3z)9daR? zYN^C=HR`@Av>h%7;L6@C(9cuQkJw4jk3Q&UVlUj!loseG8}#GC3`|quel9P}j+8p^ z0?SKWH5UGuEMdvzqBJhaEDyMg{gQAK$qayV5&+);Y(el1z-$Cl0X~xucvh4$2Y2Uz zh{+z@HhJdN)}!C2-Vw(`=-@j}k`Kd!@dId$;A2D`0je{iB6z={Zjf%IcpX1!4a9fD zpx%ToWIdMCyqa$Kdo2901&81vv)7%6ALccJwE!a!tO4kYU^PIem*F+Hs+?9@y6*uo zx)O+Y5Uc=r3Bk_*&m&k4@HB#-0CFMt5g;SnSI-Bhj-cod;BqTcQwDH`4fI_K@CSk= z0Gkjj2KW)dB7m6)7CJ?ACq{+Sc0kBw0jLQ^@IAms2<8L4hhQGSI|$|iyo6v5!1Gb? zu(H9hvcctPq$Ud>7lN4p84=6?xD~;4fHN2{?souxAovy@R%;|YtS0304XF8uU>d+o z4EKu51M})rt>61@(RM_Gnp>|yO#p%^0NoHwhI_gf86G=g-2z^r5G{y-W`Mi^tr0vz z8?rueQ`Bh0Z2H7&F3AfZmad3^V3P+ZjG!FA{UUILotvAT>)whCCl=gkh7}Ay2H+0_ zqtAzw4WtvthiPPvi5jt(!t=r2W)~d)Z6*LM0EV0B9d|Gr9!k!U6o&6qBm}x=Lr@Ul znh;P=0qhb|nx*$j;gUS*(Fn(#Hn<1-b8tIl1VaIeN5B#G%xUGs#0whu!PINOGX?={ zs0QeRs0cnp)GDAlA}WG+5w#MiW?$+Ctt*QytJRUq+el3XsJVgIBdCd}pMk1`s0f}z z)N-JnMbz@*i<3fM;G83f)O-RpSfmEQ!-)D3s0R@hK?X$q08}bOMQ{r|tjRKXSPf;M zW|X-=hgFT#6a%9VNKFyI_lSyM2BH=M zH3d--e1)h5Kz&gMd#eC=3%LwJYTknyAH*KPhlrXFR7XTb@Ghd}0o4pq^Wb3_fMMN6 zYH~r%4WtG^O+?KBsuH3icn(psfqE8E5fp@nHJJsxl?7_BNDYFA5&KM_9z;|G84xuC zs8ooG;1)zphljOV3lD2~FYtLfFq#I~@D3muQ4#!(sBeMVj;IKd5cLgEt7~Czy#d}r zEORbDZg*|9y>;P>3aonjbSAu)(ptJzrjl7m63E$^r5g5g9#m6W2^g%x) zL!89 z#{WSKqOcd1!F?^4h7v}Yi{|`B=w|wyDr~*ir-}_6sJ1ln*?aGphS3K>8h}(=fy#ua z2p&SzZS)G?x%Nns<>bq0Dt+&K<@o)i-(@}4( z8)5*qB&wJ;DTkCDjllddFjx7A<8?IK*~k_n`StM#Z6mw$$2nq;Q@O3T(RA^T0-T6r z?{qg8o0N^?Bm-THn3RLkZeaV_1K7^Owj*>~e*kk ZDng^Hf_hf|%cchGe4PytTG zu{TTdv*!qZ5l$W84ljV00m>t&1<(^g9mEzvJx4M%{i7dFRg*ynV;simf)Qi|2qB08 zn28`8z>f$X0@#EgJHQ`5AStN??-A)DoU3DRw&Wm!4*_!f0M!$q5rRGd6A*lY*diE& z*!p@OpJ6x_LqATZ-M{i-lHoW&Jc2v`oe;zV^hNLlzz76+0lr3%kHfqI_s&rUc7y-O z(IQ+HKzRi70CGAt#@&BWJj5~ZmtJXv2ct@#x#yMn8rxXKOGTnWcNdC>k-?Zi0u-v zg+|>xc>!E1|cPbBEm??poB17cCa6*nG-I;9d~j! zaiBWZ*a-W4a3!LLD@;lje(xdPdb11{W75azY6e$oCmGZLb|9z@a1=oefGY@U0^BnM zY%c+1Mes6*N-a*ssWemabLa>g9MS-HJO_9gpge+F06h`ZL2MD!Lu|uf&t1lWY&Er34|)B`v(1eHn+h9`HhZ~M{$k9HVu?@cu) zQiLNqMfPxgma3l&GKev8@Hwpkd*B6Z_86Ec12Zfz3v(h1(cc-~Q-q6j`ZUR48j~S8 z7{N16_XtRFK*Gb4Q6wxuKuQIY1+W6r$6=^liaW}*ojtBz7RgGRP+8jsw-%#tcdBm$2E92H1>s1U3r-X0=Xc;`FCSoZ8v%H_T;7?uZ__1t13>Y5`fQ>g}O)=EgN$Z+NZ<(#UzEDV- zH4LzWhDI=>a&`1)n!UneEfc8uWjmEvblmfTPvxxN1%{)*Z~!r68Q%yfoH*8 zS*yTZ2f4-8wi>W zBTps`n!QGvEh10G0gS&R#;&k2eDgmRtGX1{Cx5x@A47WC1ic8H1HI5z!?mT`wBeCD z90tAYGlKoo_ZZyLBIqvzLg}wx59$rn8-JdwXfU9`@LPf*{M3B2mtG-BmBo2fPT&?f zk-EeV`t4%f((h>eJMWD)|EFIY>bn15T(?^G=QBV1!(=vzCR<#m(KB8DH=XHo6g^|`Z_gN{MWuiG+sJ4`x&KpnHD?+A8x~riK0xCDod#$sKr`X5lL=Sk zq6Bi#0`&nJ2k10FQvsR@f0ayVw=Cx^fEK6^&^SP+0h$WXO!(_$!WFr20XwuneSpRR zIt|cNfM&v9B@@ms%LNLc1?mGd4t~LDAk(#Ye#;h`@-0ez%_DvFG!N;~ePRD&_l0rl z|JGw);jDz77W`XJ3r0T%jeZRJ|I}6?5m$7-CA!}d-CXJQuiPVfK;LY}3oTF|pmBgs z12h$&nedm%glF{4=Dg4X^#K|O=rll60h$SanM_EhPoDNd3)BZ_9H7$xO$BHs{ADuX zDSh&+7h0e`K;rq5C3P{zoR{3iwM9 z5L%!+&)cv!Mro8?x89uf zCu~sY2^2Be^?r>_3g^bCM%m_%>x8wm&Go3Vl?nQ?W&N_%3EA}-o6WJ!jUvK&3+Luc z>_*iTVL5GcK8kZ=x=41zVq?8ee|nA6eQs=Xwp?Iy!eU`0oidzGSgxqt%=tlBDNo<{ z*;cmEBd|F{U$!>Hxyj!~XrL^L5ms^uOX2C1MFIUamq9(QrK9)LgIzqjbq9O7mN*LN ztKH-$c?M;;mRJh}s@)VO+3vFx92TpVu69$LG#y;jSxUF+yua?vIoA_wz2Ts%Jd3>E2|Af9;@qwNC6!#SO~#MGriSTvl~UPV z9^o!i+Q-;J%&YZ!^^Px1E@pALJiuM1?eIsmuAr;9#b#mxChPhc?$)4^46fJ2@dvcZ zqDBH1N~v5f*AP<-Xx;)$LlD!P@R|~+#IjnC1T<%$g$sk`k)U}64ct847&Jctn)9)O z=GDMd0x>-eO#OhV!npDMsXGE}S#5$q^8^|*XfALYG^fbH&Ffe|^Aga!-wVD|+bLjb z2TY$+1Jj$pw8uH3yX#vWaom_%c|+_qCQFRpRYTNhN*h$xfqo6Mak(!NNz}^PfuLAT&a1o#)g0ld3BRGlJS_9jk!^Zc+t@X|rc_Wv@h&_V+ zh&_V6h`klC?*!d&|gGpHs7{2C_4UQasqMuAT5ZyCJ`0=Z$$xoi(sTvL^l)> z9@{+m1$19a1K-IS!A}4u>wsE_sC9>HWSQcK;~6wE@FX)e2DiHkZpVY5CcqIR*!^n5 zL&-UYLhv(69s>`CL+~iTqX=>V+>Rh8z=6}imK|U@f@}cePYXONVx7z4l4J#!9!L!f zKtlwX0pbwc5AZ00i~zSINDpv85cEwuCsa@;26Ce)3 z?EsG=xE0`bL3mi3v+%GsAH$ae0-%2iz;XoF0LCM@0?-4&C4hzqE&#+KI5#U)z$X9? z>nL(L18TM-I0bOv6zF>bU^#+g0OJuH1?Yj`2tdPA@UVu!u!g`T4yhRccoe}O0JkI9 z2XKHN^xXrn9KkMt@d$Rn!}8~chvk7>wt*T$1X}^(5NrW>6u~Bd+YxL8IB*j5T@SGQ zBs{D-FswRo8IRP|0Q5kx3ZNl^6##JvmIFMB;75Sl5iEm;HO2=IYk&{*Ujk~%5i9~2 zk6-~n4+Qf88X}kr5Qktkz@vQdurk50GQs6`q$VBU059nKEx>XF(*VXJ_!^)Gg2@04 z0alS4em0C-=U>%Z96i`O5$2c0Tie0UY<%r`wk~gN>Pgf5tD)C!HCVsKrhR(ZbNQ0i zbMd0YxHl@c_Nofnt;6G>K?Bkt8g5V>GQjR!j0P?(tn1M&pv}6nhrfm-%>bK%f?fz0+k3;nuJPPt! zmL!uq+{?x~`-WRhKWX{5KO@(gq#Xh7V%qJ*W&@x72y-KQf7zVh2;EAbQ^h31mYD0~ zbbG!7+zOBt!EFFfAh;c%ID$Jk{666JIl2!P;FuiUjT`{5AeXF2$%d5dNXdzmTu6Bo zDUTr~4^p0RRN6`Z_PbNPt+&o}@o)i7z)>$-GTmu1h$f~@%E4z>qeYCQ(f?!byu+gC zwtS6Bkc{LYAOeC2G#SYfML+>bl0iulm7Gx#8YKtGK_p2=az+V)q$VR-Vv`Y?9B)_M znRDjM-22>_Gc(UPcj}LCeQ&M$?NGbcS_r+n${#6+pl|+$N<4{@K%Ff zd}5zjCLVEzF?!M#RO}QJAAo!y3IO;RL?HkjLA(oK6o{e#mVziQ9s`H({;q%K7DS8? zbA_J*c$EY|%x%C6A_0I`uK`|i&2kj7O zcR@=Y0{8_$s~G|h+3w>_4X?LU=L2j%Xw~`AoG}Pm4T03~_1^obVsfEKW(0ldcT^;j z$aMaw!wFu#?TwC>Nq5PeNhSwzMvqOBy9{{kvUBdfb2YLHpj`s(GH6#pyYBA$)C~}9 zfrs0mMS*q?v954o+&BB~rK*a%eZGNUOBHjD zK$6v=-XV!@F92HV9Y9Oufz~nw0on*TKpS+ESZjePSUe3qM}<@bI+~afmZ@T`kw|_7 z{Z0oe0ZH_F;i%gQF1O=t;TFV#uylp10C<%ZKuypKqQOp|GQ*o6sDLS^1aae^^q)XX z0&J>R~((C z{Ho}y??Jod0M`KE550UbKt}iI&Bn`WzXa_M%F}7Lt*sZdXMSEt?U} zsqiVLRdM1v*%1#0S9l3Ze4Xey(gS^SKw%0X6bFRvfN)1#GZo&A^0sulDuHlwg%1H3 z1mYyH(ZhRb~@{yN#qp1$Z%x`#lZ3-Iz$!W0vxgjAVW z=0_wtps06GyEh~JQ`5%i-+*FLP%Hz8b(fEHr*7BweZuGZtC9Ti#5uj~K20!p`61`C z{s2lw3(nfUxxo;5^tZH=zbwlHBlsx|t+ro(M>mt~2gS5#@wpU2fO1mhC|#kpZ$~54 zIeoF6c15NOAvh2a%V?X4&m}dcNTugn9?4yPYRhbBbuLxfKfYuQB_5NQF+^eQIWu?IP}02Gr=jk0OB%G{1Xs!m;a+dh=G#@n{9)WWdNFW zgUvjFW*XtZ80+AbNdV$+p!f(aMxXcxvv+XJPyN@!woyi)mvf*O<5xg0bP+%=Sf%K3 zx9$PGuy&wl+K8o#p6Td~e=?!JP7R`edZVD#fL7x#SqlXN6b%2*U`XOFUy=EDnj<5t z!2lsc$UtiV#Q~HC|E^MS&iI!nd{(2M@R<%h;S+kg>A&Vp;J={(>|{vnmnuCZ?kA2QGyKyd)20aOa0 zO8CcALi)zOS$xPqYXHRolm<{KfGXi1Qwa?l`xfyb1FZoR2T&S7r2wjge@rEmXzZKE zhYYj^P#i#M@IRpxG$1N{NH8#3crXU4c8}cnul&05U;qB)<3kz7f6dl1XanBASS4te z5wv3o+Hq<1U%z7s+BXO7oBMAYg>C3BdqVH*h1LLy11JrkQUF!LKc^Bx?`r*H-qi}- z3g}iqFA#@bAU+PI0gwjJyIP?&fZkdSrGY4v22dLOQE33ZtM!k0S1WWYpj!dGKpc93 zcrBC$KpH@At%lYBdTTY52A)tF{Kut1n%&6_42(ci43?KGCDdyfb5uup%5?xm(_`F_dQ0bSsYM*&=XsRbX!!}%&r8@2lkaSKb{-1?` z+yc(&>G*_(R?9N7RJ65yeF2aQS_vp7pj3d00#pnCbw3rB`vQmzAp@-e6bDcmK&1ex zgnv#Y%))PQPLJc>9SAV0?Ng@mT#1aag0(P-he7?zevA=bG-gL22 z<#(}l{(Hjsylv)O%-kt&X#Mo6_7JgpO1-X&q-W_QfwQhLZjC-!^u6QO)ij8&!u73c0Fay9hC4+9>MF}*o0GfXS znvZe<&CP)36rl78AZ-Ap6o9nQ=+=S7UMZ8;7n!Jwhk1ePg?KX>gkxgB$?4BPKaxN{ zRkwkDl!1O8;-QD!QV0482Ko^r2c#d-{aoJLK{g(+0ZIv`A2z|XrO~2?!^08uL(*uS z2tE1){UCt1K^y>(2E={i`aDSEyB%HQ%{_Y`CQ`VIh z2Yp5Gm*|Uir3COkh@=4GfJg*j`wKvThctJLdtr1g;C2;oT7phY0NFsq01)W_NKdiR zm;>S=fR-Tc0>}p9?Om|4 z_11vC0Kgm&KZ9BjGeNC2dRpngv_69R=YT#L)Poq0{ovdvg|;+b;LuG+)-@V9Lj|4* z2XNF1&<6t;XNB%5XlW5yBPIaccp2bs(t&snz!QGJE9uYTC#FL zbpmvJhV=rt03Z>FlighlMLqSW;%>I!bS!|8tN^qG(F{N~i-?7-Lv+N!{8b+ij=9jF zV{s}L2vBnnKLDte5ch-rgU8YBjclNM?oME&Q~-;902m8;K@1~^I+bNY&!*!S3O$?* zFb0kpFtQ|o?au%dMK6EcGb3LmvFpHvmGPo4OpF%5Xb`CZbOMnQKn)Pd0ptgf6hJZ% zNzl=M!h^0jC?22}BH+v*hy(zZfrtlSG>BILbOI3@Kn)Nv0p#a_Mb}+Ml`@H41`f%< zGZ+A(U_jsJZ_qdh;wgY-ARYr44dNkyP9W~@@YU$U(9_ZY4|jnx{2=ZCNCx6>08!jP z-AU|bOLb%Kn)Ow0OSX806;Pj`v637qNmjhOsf|-9OMLs>ISe3 z#7+RCLF@p~3B>OJYJk`ZAU}xB=xNb$qNha$9)1PRpzZ)2HUc;ZVm*LmAl3pH4PrHb zP9RnSsBs59t#V*m<-j37c%~FUG7w7uL~#Ip7Xdg3VgZ0IcPfB`ASR>HF=Vq~vwPE3c+os9Y<6lhn?3(i^3+3h zZ7q?yq)!E%j;_M;y2Fd>_U}tMy2qx-&9xHB>TY-D30S&m#Aw;|0uAQC2E*tEZ#YG! z)7!-`JuddWEJ z{*`Fv2j4{Zh1UpMobhPete>lqJ#{nMo@BZZEB;A;`77%E6w@VfG~NX93V<>oVgdLR zL>vI$e3iZCu6P+?lPV_n8Yx(ZN<hTa zv10;Sfj3A&1U<($K%N51AODWPW6=AC3PciB{PJjVf*bv=H+7r-J;_8P?%=*jLYOKn z?$&{gpi32d>yIQv&<}vxZBXm|yMDGt_MST+X9DHd7&w|`72KzHCYe~o9XvK8NK>oU ziFju{x;7)o0F(xi96)stDF8GDkrKd{AW|_LH_Mv1Pk#|(2}IJ@$(jLZ2BH;!nIPH% zxB%h{PzwjN&Y%`VcXxJT;+0ts#3l)2>cKkE5r{Vc#GM1YOaRh=coV?eATk3e0wN25 z59ZPzh|9f0Ua6Cfb(bs=dkbPBfUO{=0*Lt@5PSkq4#aFw3t}FqeGk{$j<}N=zE1RQ z?xkg3!+7^rHYw_BFPZ+&EHY)kVMbtk6NAJ)!W|a=$m$zL`UBXaq=*D z>$W#KZWi1nQIkwg;%Oe6B%-MZaW_SJgk`E&YZ#Kh4wZl;YM4Ljc7o4=S`?s7_XMBRXgT z04<3upzUA+w3v~AHVV|LFQmU0H;Y8xLC?Gc^#MKeg`-X<_}v}v#Tr=#k4AKiMTi@t zV@xr%c%3K`eR4D60f6ZsDgpQfL}dogAF@0ijp%5KM$*;E3IJ#Z;#~kUK@tvHX znl~dXQ_*85qFwI*S0>ofc+r)05}Vx zFM!)1`Y{|MWHCH_(c$qCNmVC{37{E>R{_ifkpRF25J^C7I-n&7wdu&XS`FuPc`CiX z8tVZHAap+JPyqf?|3=Tmpy< zt^U!Zxq*`n2b#@+lNAS=C4kL#!7F0`n*9XF@B+mCpm+xmbC>^vSu5VN!{A~m zpqDeCmqrX-^h||s0KMRup~szh4fLWM0St*>iteCT`kzebuTz8QpWY~FHK5h_OV&cc z00qPUGZ=&ntp)@Bod(s=myK^%3mIq)pg4fi04fFltt#QhMbAIJeVY{h_HAK-KmYC9 z&}(g>*V_KKeXZ>*^sr9oVV%&!I{)h*);Wj%vr`{rpf!Nv07?U>6hM{mkEw)9_;!tb zkb%|!iUTMOpi%%;!at@G&f?QI_CW?(11JulG=NG0R0;o>O1Ow`*w_adXbqq^fYJae z1yCjYV=Cc1zC>dmWS}*G;s8nms1!hz@IRvxp4m=Zy7cwlRm_jx#W_WOi4?CG#Q(l` zZ9|`gLZ5{GF`tA&w*tBq(Doc?dk*+R3Hl@y`Xuy^`6Lv&70|7Kw&y_GbHE=;&=-=R zFC;-7g_L(g4~`0<8hG zuMSEBLnsZPH29;^0NPFRpRt<++NA`=6%<#{eobh<=HFil!(qGg_-BVQQjLB8O7yMV z@W;TQ4!ji6mTh^S)s1oZ3RZq76AT$>4WKxH(f}$2P$m3Ntb{F8w2jcGm&VYimw(@< zm(b_lP~}|CCC&dnkk6y8szz4WKxH(f}$2P$m3hD&cm3=8py^!o5Zj+^OQ#)dx#^!D-Xtb?%34Eo|YEe%>#)niwU0w|9aaE|6F}L^I{8;Htly*oClNAl&G%0 zC|@niDmB%!`Dk+%kuo`P#ewZ$p~cDPXu)T{ zD?IxsA0bsI)>|wYbLPc@ZcbP_bMu70bcXo^dyFyS?Aln`riI)6gE0jC)WnsvuuUIV zH|KCk`l*xB@cV9Tbra(mX%pk7!O?0Cnq-Qj!@IXRXCCx z8|a3%O^435TV0a&8;|x8Bb!Y}vpYLWYgEFpRH?JI#l3?#W5e^q`6Mq`@%g^%OK;aY zddbX#B3P4`>-KO9?EG{yHEp5E_w-jVjIl|d>fpjB1F347l# zs}S5pO-K8NTL%{}UCxZRQcsUAE@5C?TwK9WQ@(;pj)9GF6$1l<34?a4O3Q)>1EcK$ z1_lk<<8BLcb8xhAvNAV!c7lQb;}zg`x3eus)^(Z}B7HSeWqskVgrL!_cdoY0dHPP+ zjiVxZeKTJnyS*S%rH}<-wzF0xefdUhe|GE864QwHl-29de7aZe2Pnpqsbzf+ajm_z zv!4kn?HM~R`chiO#+&U;7nD9vLhk3FmiC^Pu5PFiu`}*GTN216Uc952x;F3Y6zIp$G?`4)?uZ&9AK$W{Tyb_So6#(u zA8Fp$rls3MIaP3t?(N$dH>T<{w>wse$eyXfhG#PiHmXMBCmh0zXNVXp_s%hHN$S+C zo@VfhGHg^;t;CHUS0B~;BhOp5h4szrj^O6L#&+R*xxSLBUnd{xtDhvq33t(z?7kR1 zoE@FNnr!Ghxjri~rrs`gD~3?J6oyXEUk;Y(Ww`}qd*`Hzr{pDO5aYR~pJ zoQn=hB}2C=uIbReZW;)xO1?Xo#g^xlMW{L+|D5ienRrfbzb0Vqn53aETM5kwdnq9An#wyd66YQ>#rWxz<-ao)Ryuo$k zw{nesn7$R~`48N9qY8|Z(UC_k#Fk6%o(>dB`8D}q3x6inoPWK{b|917YqnH%0 zn64%>3Bp0Y-J%|uv3lc5a+Ueu8S!zzW;ZH9 zSwT8~p?jk3{_c`iFeMKb?PBeFq3@%k>;a?f@}ul+AyKjnth3IFh=;``(T1jM4lc1b zIs3`Flgr(jh^!rWqm#;vwysii@<{Y{!wzE0O+B~x^!NnmixjACy;_w%$?fS#RMko@|pAxNzOKh;G+zPjKaa^1#g9+%BU} zAu{wS9jlO%UCbDJoR!60Jf;QqC!3bLvueLRQ%+>pKe1opepzLFo2ytCUwi;I z`eYr`ESBKQWZJ-oUvI=W7xJdxg+8V;7wV+oOP*k2mRnA}R->OurE{R19x^pWYKgrT z=<4<>O4ow5BK!N*N_DG@4uvnFq;y$AowhM|%($hT<=36%Hq8S$Z-zIGyU5Vg6|rXK z419c=RX(1ol#wh*>Ca1AW)N|oYT+f@sKl^BZYUq!A|8zd1=E7Tld)pABDL?mcDOFw zy3ci#lttq(`=2ODOxy|e%zDW-Y*g{TmqW(Kr+P5m=Lw77=t)ig_psQYUJQJ`Sq?!b zJd-CKB|)aVEu?{21YOjzHX}#{*&jO@9kxZO1ahBLL<{7q+qn(+=nBjACd~b59-iuT z5gqEX#PE;XJUF6xS8?-Z+Tis-U#aKFx8rQMcAnCy{ab8{PF%thKbR`mpKu+dh%1== zzLHqf6LCXmkm>%jdzFz33dtkK^s+q3I;GlF3xHRNuh<5 zB(bEFB)eE%bEh5^;r!B&BpmbiVJRF+Z{rLc9yrMtj?|8&M7;CydB9YkNn-doh%lgc zSf#UL*_@zDkl!$r?}7Mpf=*KUlv}P&B~>hu-5EnNbky$?#Hb1IX()L)EuJ)&#F)~w zIJR}C5OkMJV4DZcy$Zn&@D5YdK1W|UcAnJBD=?nkoq`+JEPXc3C^=6L_GF*VBy{J5 z5nqu%yMHUYV}LmJk}l&@Wy_Vru$PygW5rhYG9+t1>VM5@B>lLnvFX*bd-F_Rd=+-5 zet0jz6w`VtNbx*6V)Lx;J2{L8&A%k3iCGeLO}%sN0iD&(a8~G+16FZGu4`%;AN>4n zRg?21?9p-C^QOCNR7kyb0g-DSCCwy*1-ol5#%H=F9 z=^wqzd(ZOLuHp0FHtrS2`Tn zaKq*kF_rmJ*r4EXRJo_(Zpx3RqG@!;t*FSXnI_Hl*z*AM_~jO!7byW>@}iD&Vtp(t zlgV<-Vl@m9P9cYH#LbHKyy}9j?`f<|ZSq;oe;cMFws@tyWv|FZ{wpskc$0ll0j$X5 zzE#g7csR|Ud@nKJXJ-3K5MClphdbvalV;)W(p0WAdLbs( z>;g7VYga_4*xS!@bQ|km5N6>Rd~h4}psWmLt3 zE{_%9p0r&P3_r294XVqIB)%dzaMG$*T(^Z$gf4%fX7YXKPPkLjxcv`5$;hCd%UcxnO?{$a%j5TFyxf$3- zp!^Tz=}BKO3YzK-Zpf}PBso7uMAC2vh{x1fW8;0{kq>h+ik_nkx7a(4FpwwRXX-ioM`sh(58 z7MVbKf?%51{~eskrUAaaw=i0X=wiOO^I_hXP~ltT@r*6#{K#;t>m!3jSW?MdbxZZrlkaq@&96cB0A@3WNuIseh?#t22t4( zkM1p=7M`Sl&aiZF5`-HGdf=$wQ3nR+2;Xf8=>jQ%x%EWY4+rA7MWeB zYF^u~FX2fB*N6`4Tyl)iTT|&fXVU;y=)He-3wuj0^H26*%b)xTx;2bjo3eAitu?IX zB`TsQUa2P;K~2fW`Si)(te9^G?md*o&z07@_1ECCRKB=t`K@1fExRTYezK@b8KYJn z&V1l_fBM4=|6kntvj=4XO-rgYD;eiwe5$@atGV5j@Pcu zyHQj2*|-H$#@{X_pf8v!4t<_*?IS}j^*-CwjaP*87Bw>GW>G{6uzz;F=a~=SzuBr6 zn}cF;FYly1{pq)L`Uvw)=OzisO^oe|bLXc9-(P(onjDw<@>y;2I_3LWYv(GK@pcDe zjlssCr^XCT0uDhU-@5FlTk~~Wmm;z^)@-zYA1CgQJLjCgIM|t2V{jW@({T?7J}r-Uy&e)%O^m}%&{V=D$(K~N? zKZ7`93Y$Yn^qugu06L+Y9-@EoVZ2dnq?$or&w9UJ75mi1*7)9_ci;h1fPASBu}3pa zk#W9vxmbi_Hg1MQFXTSL#Yg+%RjBKceOgt^a>;AU6U{T+t)y#`6cw*l7$is9@r+EE z8Q0Yq5$z9M0*f09Q#ae&cXM5$eJ>5RT%dpT{FlF+dM>kPM37=&@ag>De>oKdemTuF z(07^>CH0-jJ0m7n^}6ES@@t4ipRA-t#3}oc1TWYY1y;Ia=HfGvwrgYs~m^yQ!YPtHs$qy0H*Jf!3VMzq% z_4PypDAw_HtMqwO6PiG=yY_P$!c{NaYT6V^XWA#M5^amymtz(cxcg0`rB4Q{4wD^i z+BdkC!jifWYc*95!z_8WNg3zXqiHu>!zSw5)^69>8WH`TY)a_0=&~D>5s3n*bwmyjQ)k|uAS3c(bRWh?Keanj53hyC+#$?CwEUGy>T!+ zbHv;a`AilW8rPq`xU^E$%Q`;e)|BX`TJ%u!^LMHFW#$jQTbT|&+Sf_9nh(jP-K6hZ z{tyY-A7c@{{;_&$<203}9l5bY;=|m4{qgxL+Le_!mZJxp+^(4{@u5Whv4{0#ul=So zCcihkGU=TwC&~I!^{~o&3@!#@35fo>?bh$>Bw-f4@VnSOu3^fp{cQUueZqWyNmoGA zEk+c(uTPg^-Enr#DUPA6=d%5QNaz69TkP^Ohe%4>=qrbpd|ktMabGTv^*HR#gx7N@ z=W+B%K5$4{`aCgaG{`AZy012a&rHdG`GSwRa#WZQajU1HANw##sFh48xp6)|Y*w$M zLpjDmT7{vmQvKGh*11*Y;ErY4ozxBO=w|)j`20r~l~E_XoXN=ZG~!;v=gqK!5Ay?? z)q7v)Hy?~Lv}`q7T#J6p7R`?E4Gs-mKamueY+0tC}7*NX56n{M{b&4tjLEEXQXA+!Em_H&J~5IMyz=E!)6G z1&){7Gn#%6ZXqf#njS#J< z&h`%$obK%i(HXvylbk2t_%x#>wM!ypUQt}noe5e4 z6R#La*ER-X(((;P)C6)0nB_9vA;cYf<{o$h#fJ5GQjwBoXGl{yQ7)lceN$FWDqN+# zD^4j!$Vt($PgB;L5Ldt~o5_h#*Q(>OtTrv_j)F3`#*H>}GZ(M2t{^@anlw2Enz;^5 zfpT#db`?ji-!utJyf~^hS&cUX+Ul%D)!HcaWV$uK2sM-}d1*IdsN2CJ%ELooS~ag1 z^8K_HVD5f9Zw=q_aZ~AMjHh0EnO8c*SoVvk^An1S*?x1 zh@1T>zT1AXVAChzNX@l}T15vIvPThJAExD|JvcP-)*nXYRD0NxnpX(ZTwc)XCX>Z~ zs1a?Tyu?qqEy&Urkr3D|XqL{TOsM-@u_H}(jvwo>0)~oP)kz3@zT~qYoam}}eYlX` zeU<814F$SEy=pA#fpIQ}eYcBUq866$R zuOB*W-ODT7zX4bK$!w_-pLqR1bYV^HqbxstVz4$rTdleJ8!qJ%EnG@G6nsFTIU3i@uauvK|>+HQ%in8U|YrF_GI~%+5Zd%Ge?ZX(T+W zWShO5O>epWB>U2Y-^BH>-`K+Ugw8P)E=2izq=-NEPqy|kc=dL;CNPnce@r2JlOymf zXna<$l#ojO)POpd7Owd1ZF$%ZBSXSNY#lDbKpA6(!p}BoELpX);~c8eJI{h%h`hZ_ zxTR4|i+{6hE95ja_Rw@`EymmQ-9E4RQB@D?xC<(VzhlcgYDDQ-B4uhKC6RoYRLs*L z%#4wkkLi>VGg!CAI__~<99()c{Kll>y@}vS(L8m=O@oJpqsTIFTZ}>na(EYp9{A(EG`>Nb z85%6EP(w55{O}#TUmF%))j859cf~GLB(^X_&1UJ7;0NAzLnoW=++$YW(OwgFy(e@| zlU6?66-pOsgyJmWyO+8G-v4?ymMqv|2?&60biNri3#W46e-?9;Ogbh z_3+^z2#$1-F%n#cE7vXz1akQFs^95n$PdHb#kyk4_BW4P-R9GGAsFW9GJh`+*D>}& z@g3!a>{=zR#9o()#u;hFz6men(#l#@KZzNF|;TteZF zxh5UqaA`=wvtRVL?)*qD=5mfHr;IwTF!$G6DbN;0A~No#v3)i}uKmo*v}NZRJCbh> zt`CTrc^4`Clgm}m(>Iv*)%m^1;tj%KaWcG_+hxrs*k1~aVMMEKWuDvhB&gZ?zVs}j zLTC1c=?JGaj%?2+Ez$Q2!`qM3q&rUT>UJw>2Q+pNUwc0!)AWdTNH29*2^moSqCT~E zph8=e+;N6ItoYIMghEF>O}d8B5(&APa06xEvTr=BtWii?mX6Vi%k+sWeFkt!(ek16 z4@3c~EK zPd73@|MGlLPWJY_;}?$KX+pWaontgZCB|)V1`3YXd(;u0sQ&t~*%AO45x@%l?FtJWv z_wF-q9{N>)LnyqVrQ$#75P?IuqwDY8yFlv2>1>rNdxsvcM%k=aleYq2Z!wEg0@lVf zgmo9zHsntAOXu+*cFoKUV%mi=?4#r#AGkXhwco_njwr!pHc7Ma-)Fv8s4e8XO)16A zw6hp~T_!Wwt-_$N1C|unLLIqt^O0f|*RLurl4UFc#M@_X^80#=HM$eDOP{{>ba(Mz zTi0@9M&%uc4mHYfS%2DBTfS2qA~4r*`?X9MW9410_R2B7*;rOJ13HIy&m~xDSRI*T zks^V}u!mi=p@!wbNtHtf`l~p#jdrxmE%O)i?1PWRDtglJQNlPh#lJ>wXzV#$Ep?@M zJBPdKzn)!>FVXCc5);e|rHte(e050B6k*9Kl9FEayy9__HZ2&e9!wM`jP!b|eZck6 z#VfwATDOWjW4ZmDUpb$JK!i)h^;0Ll>BM06wMdOw;=AUoi&No5SfT=h=`~gXF;yJj zVp)IYVd7)m+IXd@Vn|$}loIi5%nH@ZL|%W_rFqDGfW(q;tv_p+w+b7Tkr3>e)FjK08fWfu~9fNp4B$7CB z*T>B7>WLSQQ1NL_Xsu-5?)J+E55Mguf8piy%`59SSPrJRTv~mPwuG})-}}5<>z4Mz zTQcc=CGTKjnPxvSk!yXA z;Xv{@bR^xU(2$C@`XIw(Ec5Z`y)5C0Tefy&SK3JMndeJ2Sn6;vGNAgm?|Jghh~cQ- zidsiQx_cU<>!;*gbe`_Fj+C)ompKiZaeP_vbj>J2=aHG!-bCfAnaX==k1;kbTiV(6 z%D+~Mm7^6^7D{{~m~b^fX2VEvAkPEGuBvlG%}y@NJjcucCk?j1+7>vm^PRbcTx#zb z&fvcM>Aw7%sGF(QG;!^+IJ!kn&2PPf7}=}w7hsHO*STR3Hp8w=zRuy1cjZMEO@D3{3N zR&svRW_`jwu2M|@aYjxuH(peuQc1qA4)a&OrR+INhV|Jyw{_>tubTQ^H~KB;)b6I- z>OHwiFwPMe$m|2llT^?5$?Fl)Rr0wWz2;9gv53RHq3y++M`)To)IPGeAn6+3N)sdTGGg&&{DHgp|HTx zxm#H3rAc@478NLJ5xfw!8m)bOHs;0KuQA7yH*pI_*qr3ZutbxISn$Z>^$g{M2+iMH z<%MxDJK(7l7Co8bP!*1$`Shih^vy?XMY5q)j;k-&$>g57u%6x{Tprf?J)^b+|GuiU z{F=5eKmTJ>x(adV@XK2fG6BFbwTEm1J#GH{!VMiAl0av&_xilLMCL@#3%LC<(z{uQ zUY$ErObW+%WPPcP%EA%+sG}o&M>av5Hvf((h4sCBd(CegEkXq{AGUd5`tI==c-k)~ zO7OH4hH+JBmj3bR`|!(b^_;hPtK%i_^_w{^YvkwO;H{=8=;##+z|;D!s#CelbHBRw z)VlQaJmZX6`8HP=&K=Z$ zWlji#xovMYdg-ozMb_PwU=&I_GPJ#IAa$_4-9N+1+u#s3Noqko@@sJsOS1bF?4Id| zbegx3OayNn$o)+m%0fS#ACab2s>dcD_iu_G-Z*GW;d4Bj-1Aoar65+#+v|*z&HKdg zlg+*ttkW||cI(7!z@Koj+LE?G9YKA7sPlPFW?~j}>s3xt+7CXQ{%N7F)rQuQD!I)! z`zkHew<9(PZxwCPz3>_P{iWcwStt3@t2b*sui4HAFI44fQO~-^}nf*n-%8c5Ta-XyC3tuTN>{_PBT8m9roKrwY--HyTsx$jYa9~(wfOY(Uc5lf^`caNe3JRyP=l(U z%KHruVLjYQoSvaoBnxo&E6f=O*DM_x)=A?I;CvQc*jy_b)456KT}&Pi5x52!)l3rn zv|lA6Iq^JseyTnv=KjDUOG4|I6-N@~`Yk2+-pvVW?CJUN2o8&eXFCknHo|+%NBz3O z;E&Tf$nQ0V4SAC`>w0Ei0$6uKQ=hBArgud9C zpN~%}tg*-Ubf=I%rQkKDxTRfUn7;gFvrbM?>@p1I%AQS2*9S#oYl74A&T81`fT$y!!m>VhEniwJ@yhBTB=V z$n4ZbZZRxHACjgB#cUpBeH>hvj~U!Kxbt>1w!&&V|6*g!^Q9>37P;<)V-L}b!o}mY z%@oXS^uIALu-c0lQQ7_1^u~~+N5u2K!PPc^w$f1jHKb2Y26c8k05;hCSZ zf@PAxbbJ4z1HC&>^_Jk7K3mX_sp7caaAn898Bv_oUZNF?2nL~&8_SssuIjZDah4vA zGb>~r^BUtKUqdq&HXq5*9+{`@x>e`Ld?LYuJ-|M2+-aKrr8IVxd;ZNDaczoEl-Vh9 z{Q8(g-l!9@{&k;sm>;}O;)iHV`Q^>G{`Sfyv?A9Y-x{4sjmCeWpZvp6nOKsj)vk*8 zg6#kJXDr(@3DZ`742+oDm;SGNEQG*47Ab3vboVQ>E>v6VulVyjeX6r0__V1-`;JWx z!v*KYOf8~2jjS9~mq6ofVCIIa)LB7+*QP;1u$_FBxnE5r`}$-;jkTr4@S5KR5_uAA z{3u-24G9;H8?pBBcU?*1#o4p*9wD)+1Gkifl%I!-%iiw!;0kJEaP@R?_f=FlvK>){I7GBF7N<6f zr`k(tG9G*TnHP_q4O^NOoEX_Y!MM3yck#TYYHOl4 z|AHs)!u#NS`_%dTuwKSRXD=YJNu>6Dk=o$iS|{-qL$R^c%z25(Od2CBbymcC_;_da zcuz~`be5<|QxMTMzkYV%5JA zD!vX6XZ_mBj(ven{vY{Dzuh$6HSLIx7K;nlM=(B8MSOWr>u$1;^9@(a=ddmx@p8T5 z*@KJj0+Q4Mj@Frn0k1ca346aZv?LBsRFBfB1@n)8yG;bb1ZKPOLlW_}-P~ULkX(di zt1-*c=UbIZEeh+~{mS!O@vYd3UQRp8C=?1BZW0jGJ7;vt9R6N@99Q}1aPFYGgwV3f zt+}ysc6nfAb$DJ&!a%cSe}DgI|9EfyXcWKO%jykV$g6nyLLKx!6bWU8tPAQM3-dJa z5Sd~;{!p(~@yjX5)cX{7{s=Z2dvLr;MG&?{my|S~U7NTnn?&nQWYFi=`Tp{m)5Nq& zsORdMD_7oqSin;<)>}#sV-nbf)lEM=K2L4H#KCPWdcB47S{;oY_L(UbyNE|I^EDg6KyGk%Ho;DA zF?%*a=d=k)V$o)SkKKYN^>g?(-KqtS_0qC}ag~C)AY*>edA77~R#jg0#faQY!m=0H z*_7M`Pru(#hvTvRo*%8*Xq2qs=!G3@c#V5+Lw|66<6+nFn%@NG$2Faq7lP{;N@+h{ zUUgJF+8>-cNwe?WBS0Jnz^#hlOj@|2*tNQ&H(omg`>N9gObt8Ge$=!SbH{45`nYjD zW9oW_dzd<3JG)&7kM+Seo3Gt>+g8O$#OIuNb=9mdOfOHUr$^IDN9~at{_h%#BG(S2 z_e0+`7GA?{aJ_p{B)H1FenP25+l2SNDM{>)xH4eyUo<))0&wZC{y4O4QwdaXPSGzO6iEM%Z55k841aAJper z6p!QJnPGo!uRc?xPqv{#p2W_pZvClSuI3#c*#|D#a^GO=!eXYLwACW7N~sSoHxMIQ z!i0E%a|3SXZq|hbdZkJt0!H<8u(0;v=5;dLuYTc|caKuk&a_X7QU?T33UQd5$tk_IEs%j|x0Xi&OoW#b!{Y8jUb zHntu#d~mp*-lXvO@(Mq%^t#b$Y^{ZyWRZa58?9yeNTe?161DQ_ocklzREoemh@H{& zHMwdA#3+R(Up^@U6;ZNseu(~(+z0}<(8@f(mArs?CfHVLpg42qj-KRa+84`5>8i?E|C(8Y;en{_yQikFcpGps?qR~^>iIEnE? zq%|5|IkI+p!t=&QFKG@3NzV+|4)jg?xgTQG-!vF8!l>2gvmcQkBA;fX_Ub`tojrmw z#TCf@=i)>D-q3tQ-o zS(Q{Gt2%O&7PeDq)H8w?)%%^=KX|C3i#lzU{hnSQ-I)47At#M_V50ZZc8s;F*NCpU zO=~NcVpCWSN3!0GO>g_B{7;ke(FBH34!Q@sRDoOlNmThip3ZG%X-sepUZIiv@Osj_ zl5oLf5uUpEDPYK(w!nNOE58cY+Yjs7QbD@S&DJK0&fUy%H|^9d>F>Xk3`Sk$thr;C zY?j}?pbzBU)xe-(2?#H7dwDcMd+il*p`D7$+>VBB(|hHijT=HfQeXK#M({UJ8_PPl zhxxPC3$_L`K3Ke2jH7J!;t{5wUIb;3TDn@M#IXmpJkfWO(`|8MIjgZT;`t|Ur&8%6 zdF&^Q^1F==_Eu(dci?4GdDKQWQK5EnRqPo@aU<3NMtpYFD&6n!S>fvZ4)|&~iEHduSLWiQCWTz* ze4=nxs>$ppzT}^I>1NG~$rH#Ih18m9bM1>7h_pyGTds5)mm6VG zP7)Q`jvX?KdJ7d(&gjlcey`xMGFh35Qr2*ps7HS$>ONY@V|PT&kar`f!EyE3^#h;ordvP{13drp#wVuh5aa=R5?XI}I&BY15 zdWy%p9al{#0}kIWe6r*#j=kC6+ z(y?Ztc3jlkhE&g#mZ|kzdMixc?5N4VTF0#HI80|P%Ca{b*3Y-{%nju+yI-C2M3(&L z)msS?9CgM5$;|-p?nh%{)N3Qkhmo%4TrC*VbCwq_S8C;VD6hjt^I}^wY)9yC6>X*+x2=p_XA(! zhmz}Yykv7QkM^keg^eH0x{0%T5g_A~?c^7^@wAD0e*!Ch@5)5P1WZVA3R6poqQ_dd zXp0>;Oka+GYRAG+n@f=%{gFe9;%tGB-$wA~e7f^CqVdW|f4bSP-?JGI?eThG|;;$5$-A6;~P(3f1n6yNXXTi+o@qziFE@YSNv+4v*Iv zeP_RFWR!0+IZM~qm1tA`*rh2HeV2aMId#)1p-YO^Fy5ct|6qmOS-!ol+K~MI|P(&5D@8Zgm3Vi-#MOh^u4}+ z<{I{1&$H@Y_gb@=y(h0k`$fmfieY`%!(Eq^;4}+Gzp%lPe57|be(|T1Dw&1`;IxP5 z6w0M~8V*5r??s~$Nvw7BjiKQv@~l7F+VwZ${n*bq1k$%#xm||@B*9`ciOosmXD7DC zX6}we($eT!TBkZq>a(fEH<;MSrB&+aAv}3xb_1wkEidzGYu5sr_9~`DLbRr!Ef)Km z{jF^()f6htRnTTCjAdA=iU^cQ{rG!ZO#r{1^aYKp(B0NS0H53`YTY`DifIBVm$SR;S#vd;t?B5A8xq=6<#%#9+{ zwXTIO-4I zIQe4K%7Mo))*pU$^2M;VaX+jMMh@cKTYq}TGt&$;gI60R4OflYV!p^K&W9u1ps-mT z%A6njb@+^-{+wLG5&7^&=&8|ro=nPd^5L`4Q^WVI`@;iT4SH{OwA29ZdkAXE1zO2v zMfxt5pbs%omV_##=?!(I>1tBvR%(b0tFj3Ls9QrKZqy^9ur#P!r!m5OCpU&)&WzRg zR$9w3ph&LP;uSL&dPW}|&*DaXRQwZiBzh&_7v`rw7FyFp`jc9zwz2t&#gTKrkq!`* z+h7dUg**N5nH0HBpK}H%85n7kW^_s+xEc~Z6bNIK|C(yEPaj!%At5tT;?v;rbB1}W z0qNU|@O7qlb&aC@&KD|+HW$7IjRm>Hh0T>+3pbzdu$^pWD!S`sWX|lvrA<|{WtqtX z*x=;CT{g1+82OaZ0HTT&LQ!fl@~R3EY6{MMJt0d)xjqcHar@_tVUPZ$wPp zU0<>sO@d2jyAdoMy9%YPDi>Na%}fmp?ScE!!4YypQE1WvY|U5_H=J8iFZx&x;!>S= zWLhi>boeGKQq0txo&E384WKf2n3zVP&(v?G>D|q{gO6W)?O2?v zi+tfS`$oftw#-23Yj%1o8e1quIYdmI{=w^)`Gj9glahv)hNPOgW^7EpDr&yzj_ z&CN-4P+?(`#+%U*t?h^rX(HG%{JnzgwI<3m!D^8%5#8x`g{)2KwnwT05}_}m0{;VBwiUEboZ3ib09`L?2tJvE1-uI8^P4ZR!D?E(S^ZBO~+%p3s@59 zMK$-nm>yGbXBfaU-f;+BG za-6Btf7hd{f~d9*Nb4%5_z?WD2|dqFZ8z^_T$B3uOCEs3Q%|N>p%daLaVQ?K3lu9_ zyzM*ih|~jqa@-=!u#E8Y4uFeG*J-gx-8CRpYZLW3p z$2VClMcQ$%+kstlpV7f^Q1Jl*2T-*>Fhv`%#g|BxMx0kcd&$h_L>t)Ur1k0EGJ8Uq z$gK7&n|r8_A&6eh)pew0ZMzBdR)_vWtO z8;p_pI_eI6!lhhdSJj=D-$KckO6e}q;jMpnt6#(P;DmVsa>_VrMIjWt@ z@sf{*JJmgC^nUAdSd+9ui<~Wdge*hWl>M7g$P4aTFQZ|gu-k#76mlVa)oqB?U5Klt z=If-{dUsuwlqdT1&3^aJ`_F;6zSb+g^9NC~HXK6lVsX)ZHEx)o;lb-;i*V zYnfEFCe%twcQ%B0O3@j#MU#RtyT_Sn;dSp(GhT2=cc40@2ozvI94ILwr zcBDf+OY!_XTTp}J$YhCL%X@Dbk2)(?U7|Un!A-XtR zWjp)0ahz-W}b+7W)dP z(@gx1Ofu&7;X|#O6T%4_X*6Bmh`g1!DzWo)jzdCjx7X%_`j^ewDzTR|h)v(z)SD|) zVQx?R^-x&BP1g-h2A!3_*ahXA6I}QY5)D+BnwYbZjO6=|W5>PWrVKpfNxQKfv^N{+ zjpA*po=#=u{digVPz_Tu389A5!3zk%QN%^?cOQ7L%@FRlCgF^(+w*i{)l&IbUu?3d z@&TPpjYIbHLsj4O{&^{r3p+PLbIC3Bv`Q?)YVpxL>uSwjI~3w1P%WmV@kl|wjPN zMj9gm6X<5Mt}|KNMz_dX415kqR+1y0T~)W67()+8NBEOSJH%lHV-Gu5#W8Kqwz(uN zl$KKbG3^BnPOq<@$NFTQDXJCrfev;ROEoP!qq}{$N=J3m$EVA^+rJncF4jLMY4t!l zw_VSohhJPyN9oDdGjMuu0XNhJg+pmoO;sDRiMAIt-=0|CPoB8iG3#bTVVG|8-MHE@ z>1sRoDSa%-{8BtKjR=ZzO^$Q5X|=`>S4EH9JpJC57iw3L?OSB-kaXKRsamPyVkj6n&E$$}^Dv=Waj|%c zchHIO`5PonTPLaTj8LZ?4%ah(;g12~Qxw;8{!lI{?6Bq5s z;h3W(-9Aq*QRFpfF~h1yinc~iGiyjU!x*oXHd)ALIjBx`zL9A$EYO*shi8LBcAiM( zQ+%1+sVt*>2Z!vkK?11(>u{}@auU-tR>AlBoffeh`?Ts5Hl`%xvOt7n)ioHcLRg(< zPiLcWteQUQ$2?yiR~{$$zA4s(OkYg!0G3P8;8P>tVa~E2@Bf`#Q@e2?e!9RUW>~Xq zp;pGEWs}#{l)W8b%ROn$K1rWtmONT3ZMtC0a&VgJ+$YmgU4!!yJpd2dW40QD0ADL~ zzH&R&i^Z%!{EMv_z<$Pl=(E^}kQY~+I22pC&KX3l!l4P;)-JOCuA9O^w!oo0@@4-W zCgfHR{m$Uz=JLg!uy3t&-<81&?p|r7VK}{9+>Y zR3nGrr)~r$iT1A;$jOBcQ_+cutgwp)Al6fPT|wWXq7K$BpG(sB7U0!^zB32rA_Rw@ zpmB1>V0TOjY3lOA;-*WLvg%f$P`5w#U;{Q7lqcE7hWGavJL`p3Qntv4RH+P>e}{8E z)e#6z-Vb1i(&>GPP=<8LYOsoQNoTN%eCg%l^);1B?Q4ta@}zQh9Cp%H+oy@s`Qii9 zbe5X_Tq%tx4;0IUo-regXowyqKlrU2is9+A?DJ=#qLHq6h)F@nQuH%@$bQx7q}}+1 z>n9x3T@;&k9tP3kvpC@Ojbe3sazSk;EDNhG{rC=mt#%~6u#eR}*_*?>c*drc1Fd$~ z=K8Z+lF;1FM2rzz&YZnGrbolAcdZ;GH&-R(4rh@|rL8;rQ$i&5LIL(DY^GvUCi5}leyPGNAle*{ibuCV_#g)pmADzAuPxTt_LpggDrMf)=EYxUT zc=ac_J$}9TFgQTxx|*a_xK)*0?1Sbwpscby^6W%isETl6F1KgefLskigp*jvhoxj` zh4Mg$XGGzS1ggPAGWW*&rngsQD!5OB^Fui7=GWy=f|PK39%<}gja&ZQB^(YXL1WW* z3YhM?S+w|b7weM`DGz;$N183g+-YAwD7m~=GI95$*VGocAJREXPYU$1w1)ZjrJxSL z^;p^0hQOX=lhl2kyLq>x6+4Xl9U2Rr`c{ki(W6N@K|(Y!r4H*%@m}jvYi+k#MqKXn zGixIGMWm=`<&DK7wS_o z`#K{g^#hDu1zG9r58kz0l73KIhzpt#mF)N|-Bp-Pr#wK5;1)Uq?ry_wly1dt=5G6L z*lwxr%K$vbg2d0cuTwB?vX;a)qK=k zUjSJ^et>bnR=}%(#DD`BZX{>R6r2mmTo=0Zd5>E0miyd#%Q%R5D~&}gD=G|CMxoMF zmpN;#Zs&ksEmfaPau1%&dVd;>UEGA1VVSoe#}-$01zB158fVCe+YsaDD{CnA6#D{m zRR*=OwWg`}xnkzljpR7R^(@$uhxRA#E#Atne`6q~Ro?o?9fI`cwDhPUv66!bu{cf+ zR&AV~%pvDqdU9GKS~6M^T8c8lGEz(VIbR^4=PijD;`X&LZ*fz4D#)m@x1=|G1eFbY z9&!I;MYPMcaOBkfRN9{_dS8K7{4Y1qmvKBk;-?P<6&*wb#oU#r-#WgS^{H3eAP*lh zMg3=%KxO#ALQuN@XeQ}jLQV=_fL&Y#@|;{6%2~&T$WmNgMqNl{I#nN2cITQU9y&7f z6NwRuf&T0jbessGGm`;~0hIxk0jI$W12O}TZiE0l?#I}mn0eompp?|-$8L}Ud^$!f zz&)JqQP}+uonKfKR28~piuH^q58vZEdi$sL60@=UE|zEQqrPkxJ3Z(_&yZSDfC0b+ zU<5D&=m(4g@)|&OM`b=r*cgCTK^eH=e3W^1&GVdab-5O6?gB5A^x3cVe2OAPeYQce zFq-a}y}CKlz-0;P>?ItN?)hs-X?iyspPf!VWGBHDnWwQFpJ=~haCk23b=xU!|NNH_ z+3x7l6b9AYR(2Bev1!3eY;LNXO`20SP_gL6B|NYCMTySc*vutG%A3}2y&nZznPorH z4K+oNNWNjc*zt-sLjR>BV?I5X=AK-YZBvKa4=`Fjq&jNTuK~DL`w{IFs7T-~6-UVR zB(%SP@HW4aKnZxECP`#i{II*6@G(RH1HtM1RG|~~uWNDtUL5<2{Ng&&sEpieXEB@D zp-^9)RV@j7zh4#olk|@KV)MJ;p0TtnZ0--Sn=^qRc?nWG!TtYG%oBJ?BF_u0bf8VF zb>8k9k-T8GV*&vsl$8EAZs*0m{qp6?C|Q|Lir2`UnrdYZE0VN<{^kCy7;!4xFS7{3 zE@{0}m$Pkxz8NfIO6v66eNd%qVSqAE5?coO>y$*lj+0S~plM89LikRoWIn=*w%)gk2iJK zg1$ubQHEQ&&aiaH$b*#%a_-{5xOzFKedd=uq>hirpr$o}lvrmEbiS9dZrN7-T7T!O zGyC$_U0{xJ;pM`l=mhzPjbwK}=r^XPp=a!onfr*R@AggfXW2zOoZlaj{F+zKRte!} ztKH6IIb>*yX33%(Fy!$E*(sKk>(VyV2w8YQ$Zkv9?9!K6ME*sQwp+}N`s;9vEFhXq zTJ_jNo-#qOt7PUG8)=&A&o;=!Gfimr8!_Ej{)eQ3%%pORSv)>7RxvJX^0*;|jDCcV z+E;A>2BO4_D=vVtakr}O_|BlyY1(vzLh z%g<4D^3-ryZqR+`hd8))g&Vory*QwBPW#l`FvRz5*8Gbtxh4_5u5aF>40TRI)k8m| zm#8Ye9!w6g27Nl3l)QcSt17chS&>A~N3{LyE$MM`?(6BQa1VroI*eZr0`TVM2L&TlvSas& ztai-``XK16J2sVD>(6p$Zle8HoBx<&A%oP*wN{_R!Pr=O)42XI+h(3(R^VQy918e< zc~j7|c@ks!MEoNje+B}@&MUfRtjIK+!shq8^F8eFN_5lpok76g3@O|WpE3=nmZsm1 zy`B%6v-;<(^-acQ@V!=5QIpjKu3ReaA|bXN02r`N$Lmcsl0 z8l)TxxJ9)3GaMy8q_Tp}qo!I)&qV?M?nXkU&BC=#-IBqt-zz(W46(%y{bvKtUQG)) zXC?gNj}{uUW8&;DtudFF8v%?aj0TLxi~vScAd&)y_@XQKL52yQ6()mgq-o($GggKm z$3Sg>gADX`3ep%8Q3gPWV<5mb3T7P_9(Ma}xZ1%9^=Z(@eJW!#u|{T(*GBfpM^ns$A~o|Ttr#6kqky@*MH;6 z>mqKb%4h;hvvgbsYKP(&m?d=xYpf+EOqLYJ6y_AB6c%-8%8U;XUy>K0ED36K*AJFA z8kUl(6}UgX4wNCx0BHU*+<&_S$`Gy6AiB~ZL^r1l5i0aH*+NU-DJf9*olN*v@46DJrH-#IM3exkZ@}DiLMhJ9BqB05xY5i0VisqC0 z^(S)z96**KjTyjd1b1^P5H!Uk1BIhPU*} z65F5kDNrC~oHD#m(F5(0(F4+DI|kB{{G=rWSE=MbXa872vOBL^kVWIr^R!snk><&e z2E*M{fxq5r1i#m!QyOOjX&|f)twD~Q4SIk`_p{+)3UqPW;P zarE~>!C3Hn}WpoJ%tb?j--uO?2|0*Al6{aFYEl;bhp9;4Z1(Yae5ZHdQ5o{fl z-hFzd!NjI@+$7`$>Y4E>oa{sM^TCWx3onx26F z2Wb9f%OCN2k^tfKAJp|t^#>aMWQ^p$Ve=e2_`+wVrtPhjo9v{S%EKn%4UNq3JSwM^j4=lBXJc3g_Q=f9l{* zJZuYs`u>xS|CG~HbvGxPP-WD}5PAGF;D1vA^mYX0<}UBq*|=d{W&Z4#Au?zxutx)c zT!SzieS&(#5Bdj{-xCKEuN?8MavtohvHm`~)_R{RxCatG{H)~3mOl&xMXzGTzn#!t zX3Gswcce(*`V!QV|0;;TdJw2%fY7aWM6S1nt7P^QhS7^OB9v( z&&c^dTKG|N+HKu#f*>R`dBNB6JwX68D*THbe|RUY`{W%c(42qq@snI{%2T?Z2xBI9 zrTkn?P#7ulNZ)2vt;~rAj2+!q3)1Cf|4Z_h1usoretn4!_G2hG;0|zl;;=ualE2OQ zL$Mf|{RQ*N&2ovCOXcC;RPc{tEr@ZVBsSGRX!0_xI0P*V{Vzu|29^mwky4YFTKS(M z0L}k^ym=awW!>B69FXfv?HsD!p;4|ElN$9G={(|MUVx&P`r`;@=n#qL1&QC6mN4pfq3PG&`sxq^fsw7LfgD zdq2mV@9P>A9jBsl>WC=sui`y3*5rQc$i-`8lWkL}=flVQ;JT1;c$7`QlI`Q&$sJV{ zZu^b_U!Gu9dqw1u=Hm7R4`kz=fYz7yy~bp@k5X+!;hy9#6;LMPkjRMWLKRRx(Wr00 zmaubT&YI-*zOQpD`UoI}7bNH|x_Lt-@-}6Uj-*UF{#wT)67V9b+OhFQ?@%rvB9Agy;D}LGVh;cR{yMAe3 zQ3kQ4)NRX?<0J4 zd3?BZJb5ztczCl{A01C_4zs7pUUpoL97Gp>KiG(NL6pb1DvZX&ouwH}7-%7w_OCDT z@!|6+etd8hT^VjVmpto~xxTh&J>DHHa!4Q?CY8B4;Z>kE(tBcx%&;-En{P z(dWUTP1okJ<`!|UL&Znu;rsdZ`sMm%^=)O&t?6@``=+@J0=^Zm&g7Nlm5%mZ8V|30 zpO4d(+XLApW*fJUaKF6u=RqJEPnF`?vo{mJeS!@$%a2=syeu4W#FMtJBIh1E*Y>UF zvaEnBh~>R7$O3K8of}$~YwnEw(22qg!Y1O*Exf;H&`#0V;OC%NjUdEwx!Kat*t8## zpxQhh%#KH6@E>LA;a|!h(Ju!&xK(-F0y}(MZ`YT%Rv(kTQ#G}^y0v*UcX%xEAFSv+ z)O$4DH|#w=tgbv%`#hX%Ol6|asZ{=;kr z-B0$e2@Y;f-!IK6+kHCIsV}s7j`-SJJdfJlI%Jgk%&1m*_r2Xx@4Zj5@4j!_@Glih zwa`y--g}fPpUmY-d95B@@s~s=U+w0`RCz3UDZsng1rzWeCAEl8;1KYxJvNN@R|-#0 zLEV|l?Zwo=KAxTReLvh-mXEGhN}VNu`Y=4O=EfV7Tk?~Wq4}}FV~AS+Dn>Sea%Eukp|_RK1IPn*x2cgmn-V%d z(&pCd}cFHSX(%JuUe94_XSy3hSYlE7p2y>3CFK^2V9KvXK)IyO3^-|n`y&Q<8JbLxsSYy-JM*S z_YPD-O$hPlaJt1$2Q9U?`KUYn9i>VwUX{)y{8;&N6se)!Q?*VhtP7G3PFLE+=K)X1u?#lksmKLiV=~D=qM4*6F~=yz^BXd_N)%4z3odfi0 z9zq@=e9-#IEIusMH!alLbeQkU0qrcgJ}DC&1cdBi!4wax2(a&RhJ~8o8|2E$U{V5&sLP3a;k#Q8V zyf2obzt8t|`$RSPG2oOcHzyI^%u0CJQlbgI_?tvZ-GChRO1%*-laeyJy*V7`fi4#J zauvW5A^S9=O3Oy}8v_)j#6p`-=}<@7L<7_y{D9=64IT|%@ZhS)+o>a$f-;|!>XnWo ze$Jg)b|_j$1l6J14#UveY~U-b^kZm#DA}9h{gezct}oT5kw>k}xlV|Y{tPU+O98N` z)Urj)xeEbl_@C=vWYLh{%gQSOyykc@Ys>KtD)Fp7r?#`^cBD?M%6{WUy$yzG^YQ6i zvSprJc5HRzx-;Xkx>Wl5$?=lA>7J%~S9YNhBhsBEE@-+VxSzUQ=B<^`Kl6G%Av3;X z#=>iwRImf)oY_W?c9Rp{o@&EInPqM9K>=X{oW}7(kBNqLuN+3DJcemu_}OG%-_Dm) zM?0tHMn0XT^FEfah7VSzW@%p%v1}{_mjdlkGfd&B1m7z;#;j0*RejLDq$SAwvT>ny zIQ`kF{lNswYlAE5EE4Kg+*mWPIGg_S+?nUVl_KI}xK%58VWu+wGVjqL1EO55%6)-q zMDWZ>U}4#mlIkf{YNTI#DPM6PW0k^01?c7JeWyi6P$- z%z$5IK+3FWYNolZAgALn&*SmYvM{eF<@sWF3;$>i^ez3ioF3Q6Wvc5%tO&cjwq9{UecdG1O_K|UM$Z=3o%G- zof?G=(2$32+?b2P85&F`SIbVtp&GJY^+3?5t%b3b<#`^r1 z>S)9dI*EFv`Bs*b849f^pks?VUeRs4#UBK&h$n6&S{?woGHPp=#th(;Eaq0OQdX$e zr4uu&9k5)^G>~ZhI6^a!UsD&)A&`E6G-MNav

8vkQ1p%zj$KZ1R$gh=?u7G$|E?#$F5$avvMSU7b?FJ9VRyns*C9ifQL>?>!AL-{ z;5IwBo|Zx2NOHWy<33F(!>ssS;c23#jZ1=>CVdqz`HXtgI@Vh|3j_Vdt3opD<~nK~ zK$|x5?JkE``6PS`_?FFX68K0@TdS(P-qjavK-+j!xRS@*415TqQZ;m4XVa(XmYJ|c zwIpr>X{taK9i9)-i@aJ#Mv2QFIH=XrH6p=pn@xALJgX~fH?6kaZhOmc%P#Rc96p&( z+69|&dzE2+u2o&vW_^nQ`RU@b?861k{e|qQ)9QELQKaWHm87Qt{!SF~2y-HXeA2bb z;s7IGvO!q`)h^J3FVLE1$YM^`0iH$f?>#({XDu!u?pfXZ27wHz4hpByh8HWR$5{F!|F-ZK(@9?XmK5|#ZF zc$dK4R8Tr{AG7C&n06sszjt5#3gMiC2X znG)CkhCB&bR}Sc>Pu4~4Hw|IIWvR;^%r$;ee|GA)OetU2W-UYT7%BDA499iXs~;HG zyki#Z_3nt_o<=74utQ9bMi0PFCPvgx?wlC1+I5!H=}S>4A{(*u)=^mIZJ0j{d{j{n zK(!xW*a&T4sGp6QM@3HBgT{TE;=kr!ii`v8x{2$0jZ4r$`gxk;HT*JkZRYv*9%gz@ zr*8s>>=zDLLx6Q{vGhJ2(!T$C=+GxoKWS>vCy@&J!|py$G;*eDPkk7O?jYLoJdtC2 zN;qPB?G!w3%J1}vIyzqhw~3(`E~^f6D6adL-sY3g#vHTsOK92?(x2z!d?*d)t1xPf ziJR+nE&3cPSc2GI1IB-hm6mRcej7>xFx)o_?wYk0PC)!pa&fv*S^0Rb!mX@%^vHp` zZ0jp3nMzL`ImNz=ou{c$lMEb1zZe)v$^$fsQb>ZK@q316#k2ARR(1AX+e5<^ydekl+y2POh5 zUyvwEP+8{Z=zxj4xxIfzUNPDRjQ_%*NRY&ku-k*+ zp(qQ+?b@)Tmx!ZOMKrIKAw|o2b`pKT+KhV8Jd8``hM-PLpJ5rhz1b9LOjihD#=?AY zdn5$8Fcdp>~IFhIq`Lg{hfn zKE59<<2nJGqzJ9A4M}1aC4Hr#OIu;dnoF`rBoqxOUOX3#(9Rnt#dLq`3YfyPx)IiL zVT-ZHDN)A?vh-sY)WFLVt_cu2LmL@S3NTWHf?re{2dKY}J>D^j2}Q zZsfjViW!ZaL7u>AQa=OR=^*sQHOu%I3b`*=qxeU78a6+Bfy-L&j}euvYkQ@}{P=Cp z`aQzx{W0(sI|yGdm8Lyo#*b%L(ZYxj-!$^9@jgu z2hZ5e7J=UG-yWTb*pI?fY3TjYGGG50Q3}E%9d5O&Ra=!kHx)HF-Wk|sqV+rWxZIoW zdU~L36?B36)H(#Bh>jFD6-PCS{$%7w>ww7T8L;-RHS4UK-xbdLrlDkToOm(iS+r5l z>PBrx|P=#wyYzJzznWZ?X-q2}@ zD0#?G>IFe_EySdfTRo(nUdXtyDP@f(V6bd$$+)p9>5eC`3*QXs3TWhEjGooz&!s~$ zZ+kq4(W^%pr4m>u!Ye;|k)&BBMA^Y$J z&&#(dg34(#TIafq@EBuPU?}wGxB9Wpm#~W-RVa?Fxj3Cn*0@+)A-hy_=`@eI=q2ci z0x=0P3NbhoR82XgMPYW15|!cMbb+6k9K(WN@(339`Wq@q(e0sNA(}&mK|dc!fEx2( zRIuqiU|K0+Zi|*7u{iSz5SeM^Tgatg4tJ;H)(ml~=C`48xSdv=}_MKNg%n0ZQE+ z+Zl5swues<>}Vx)60h{I#vGfo4|E$Bv$U@D5Dl$cK3Qe;=5$i4$=c3jq}^P9Tmz{1 zbgZzO(z2~3HcNOTqa$Gu4kPdgE?WADR75Y6f?hKp62zjQSo5#F|LNBU`-cmkvuMj`H@5w#VSBLH!m z5d=w2*p%+3O^*wmRppWtEDD6J7#x9E9Gf9l_4q4Qp_uh5fmJp33qrH!g3wrsRdIf) z`o0jG5HJc8rU6SHO=)=3d1>F8`vUGq0$PHg*lDC}C zv4n92KyKC|oQDEOYYL=hSUUc0);-vqqEAbWa1P@D#0wWE`05G=1$8<#|AGfz@|}IM z^SJ@kNwDWLN^DLl>-2`yYl+ABz4wV|Q+>kwc*5A=INNMSGvgBr=NvleIKfLqq#|4? zXxgg-l5iK<+89>5eiOV2@6ePj)fq7j#WBP4Rdiws{LjD#DMOI2;c<y_G@WKt|R zK=4rDr{j{#)*<}}bP0ARV%(9Fsp3e-xxDw>#V;Tonz4(ZT}J}npo&2P!n%q$s5S7} zm+C&8e4CuuTYJ+p|AEcwRUzr-Tb|omId5*3V zh{TxlSQ~_OE~So_%X(Ie>K{>#S&aC0ov=GsXTRvYp7Y!NH?VnjyO01P-0vz-?)t7@ zVxo9})6*v24d!ko$0@CLYNZFN)8+b?#e8&Hy)EuC2vVtgEXU;jC|`-V@K6M*a=uuu zF;XUej3W&0bMh2FSlooP2UROn{!weORupyu2lynyFhE{uvXZMjxD|Xq`ukwA|LOJQ zg5W%!b(dle^B!_$bgUTKouS4sZGO=fHjd-II`XbsiyjmCK`-GOlH=HhXE1|qT`39M zgZsU`jb*RG`JC4=Q`CX^WLgWMz9)!E=x5+xp5+e9#CfPnGZk}r24`^Y=h`*W#tGl$ zoNfTBl@gLml3`KulsW?fsu)m_nioc+h5$Tff@5drOm3>@Z*+RdFoy9_0g5Za4Y;oH zOrhs$h)J+t^_{+wM%)H6cb+f#H)4U`F;pq+b`PdFGLfqoPp9-Yr8~>udtgT`c3^@$YLXEm2_&e6!;?2q9$_Kh&b@6S3{1RDyFWE0Oz5m!K8aHBWJ^fRfmY z%Jt3HaKoIUZy>X3`L6a=9D7iLvmtPdIQi91;jm~RUM%iHVrI%~9mh!fZ;Yo?*MeIE z14b?xP*D}4tIbj|DHmxK%xA)%nbACDR;r9o%M^g}LS4M%6$MPHLwtrykrE8OzOjw6 z8sg}>J|PI(U#ir?s^+^t!DMj6c+9LDh-YxNUlo{hnp67KC`JoXXAMVmXu?PPLZP$} zisKCg3&Z&Inp|817MSKTFFI8s8x^tIX3nOZ=zSe0Op^?4b&(3kgM^Dhm&!E5y5d4e zhN;DMQ%{a{2L+4FIynXx+R&ns0nuObC7vVNK0pLxIWgtySOKd71mAs_1D5luxxoc| ze@g+m-NeM+0~NgyhU{6FwN$oiSb;pzsOaWa-o7WeIyfP(A1bsu7$EnC!p*e>l|($3 zC#Hq7n+1jWtJ`gN(ThdoDvq786G>p(K<%55XMrobBT+Nr9h>vr(=s>i1w83gUaJPn`jl(F;7|gn5)vL^u`lRS+;Iu z+?bSf#}d?7wm{i1Bs?`&xM-GpVV8B72bM=zfLg%t%U0@J zciTx=UdJLLy3(GnpUYK~TIlzHv(77d&Rn~8^g4fo4VBw#6NJMWy@W(zhUStvg6C+Y z_7FbO=gs>rH4dOK0lG(4m75d=9c{vp zQaQkqHK|9;Sh8Tb3=d)x@t~Io3cMn`trp6crRol7HSw%miNe>`d>F)b*%8gUuHVW|iNo$?yopN7;xM;v z3uc)G$U{E$IZBmO*HQRO1)*AKNatmD9Sb-jRq?RmM$-3tb=WgnLN*mPOlV23Sgo>< z>q(t&KTl5+ZVYpK%i885b!C55UIla;zxJ+OTN@D}v~C@D?@TB<*-PFub^twsu%&0w zA*(SV)SJ~$BAbsviD{M2vA0k`q{SLIx5AM8Qcb6v_!hWK*71GW%u2n_Wg4sz#LRrg4Lb2sU zMG>L!>D7D#1M`Y>vj{w`o*$`BU?J{Od~8b-pgk)BW?jemCb*y!ocPk6J$@iJ`gnA{ z&0z%24K<6;d(3_WszA$o9x%k=tO}upN=u^t)8&q!E6lxCEY}V8O)DoEo5mWR&nfEU zoO;bUHQKRVU8%vH9VfD}zF(_^*g3E)ZRUdk`L^B`tgx)|eHl4Pku3|#=ADf4VLJC8 z170^Sz|<4ZrRigJ+55eMpn*|EE+bbL2EupMa}_jHnB07DT70#aeZxiPxdB)#R$L|^ zEeuGH3f{!<3X9daMqN3s&lGBzZk~YlJ>$7pz|*L@Bf?Y8la7kiM4R@+GEHoXPnEJ(&~aNm(4%q%5T*S3*)s z=JcR4iM4WEXgLhSKSJ?;y809HQlmShB{R)9OY_E3Vx{6j!PWjzSZ^M-E6 z7lm}H`^w^)*V>iiT1!a&w=3`SzR|h}j0EW!$RXp6r_^uq!lSO_K>L-$Bq7sMs0#w) z^j~$E`>{eSB3ViUL60U0i^=kjN5~rd%sp}PQdHuoGk~4?JzSgoe#ZZ>%4MyVn3ne$ z^3}6J8wGVa*AK)YQ16bJ{k9-zpjA=Ih}C6*LHam;Rxr+s02$;_@EmKtt~BozwMp?L z{C80l;?krw*5n|#^nwfgE+u*Vqu@vy?$5Zga!GfdryPrsAtOHfU7X@lpq_2Bj}u5F zA-oIWezv(YwiUp>8^ZAn`Zut0JP+o4Ml1~_Fu(#C=lD#<^+Q|;_-{Rs^hp6Htag0n z$RjLy8nF+GQ0VWsPH;^6KVjt0&l%Sv!w3lA}CGiD5xo|@DI~S-zZ_pm72IMVwlztc^Z}4P{C+u&HG30xp zEm+a6w9a#sak^bhbN1B_7H?c3jwg|KJyMET?#1t7OD0*^Eve^hxx)ccM4Yz)^7@q^ zF4XT7g~deqPlf><5!Niq7pGo28Bc~*Vrf2MyMO$0F73DIHsypel-?E?=t(vlr+n`K z@s6FkyLSfFjrTXuL$gyA@>s&!*2Hh-k#q0SxUR2wx`1Q=@A(btn_GFm6acWyV-6EQSrs-dwlHU`ituFn6_J?7B;D?W zhH7n8*#<6=W{T3G?}}6)p{^8#oYeHd3jVInq0J(*RUzscz1)!3;So~e%4rUnFr+U) zHD-9fUj&UhGHB}XuNL-$vZ2lFKb>Li#e?(KR*|zE1&Z$XEdK86+J2jpg>dM@=HY=WH=9ynWw-liHp>TVy zpPfz%FOdMpND}y}YX;)Kt#O*EZGEiD*d}3BFSBqOd#qPApn+WdKP*!owFB=Gb>J4C zrn(lVPxH&RQ3`PH$pp}?o$XUyy$h!VJT>X)l^B^2L^z@=#-` zFV4RlaX@JZ!YM}p3DNl(n;ZTv2Ejos?l-lIZ54;QM-{8yE4+_DtwVeQJ$k-J)EBn+Q_5f)8XI&nmg)Nw%w zEfA%ZN_)8s!UlGg26VU^YY=ppu}TBR(Y=vbzFrF~vwO@mTM(xclZ=ds&tHOzD)bmP zBS0VYMLWea4VWx{Puok}TGr|q4VVS&;>t1zt4L32Rlj<%I070$Es~mu#GLZjv0kZ( znZZf}vbW%*o@Q{n$nie-yzxfYn`Ofw!#*SDKrV8x3o{p&4iD8wzl$5Y4xfWZ-(bq7)k9sMTl=jlJ2&! zS_$Xz!(~tVGcz+Y$IQ$SGbLtbW{R0PX69?QznjeL?(DlW-;eG`eOoOZ zRh3Fox9+K}gN4@O{ingo^XT@a=lg@RpslNJ+|}Xb z;pjN@>-AxA!oIDnD_i5Kh%Vme=Lc@i2M5Qu+osX2@dPQnm~7rP-!@G?pXc4twS^SA zgyPna40P_d>-{I&3C>1(eC?VihwGbb`i!Lw1UEU5#pU200 zr|azx>rePPZrAerz)vDcFDXwkvN01e**YdeX9b>ePhV5WN0E1&9vkX=`)3YUQZn#W zW8hAp_6Ow2JiOfB-#a==*srXjy07xAdRx)BI|cChv}>;M@auq= zynpL#=XhP_({#-B`EkiqU>&B*jk~t)-SV)z_3<2V_q38SaUPwZ9xq&-(idU)^?vKJ z@%ikvc!J*T`@@(f)?3$V)ZE7EYe$FYYv|7b#UIamki5LSn@N}F`Sf=(^&;kL&-pLc zjb|#a2PzZvooo#d2?zHF+w>FkF}kzYZd9do$hyYw+=0~S&++SQ11nD!O^#1;_q7xB5YO(L!yyi12+3AV zec4pKi(VXqUUteE@UPE`Iw)V2Gw@$$jqfE9Ie9k~j6?aJz;UQ9`Q%Y#0#1&o!cSz~ zO=VSA_vl|V-{Ovb9!jo0i?EeE(1eTAy42+tmpWaeCl#W<2Ktl??|3Ib zR|qK&>`olW`10JM*~W#3_0&8gPgCO4KBn!t~fMfC-)hBz;w zo_bTHPy-yicxnP(r8o4z_Q-rJQpxBU-?M-F;%? zs_a~GZ}+XN#F?{HRz=wxP6c3eLW8jcf5=vc;weD`6A0;ZZ zE%hr7d!xL5{@NG6yA8k~xL2IA`f9!+r;nQeg3BD-rX@+ly zdrK?NS&#DZz04fN*$M>mS&hwEO|om)9wb-z1EleqtrRh0 zzDO>z(qQ8Ry`!Y7^z+DZ$ds03x6pob;oIxJ;+!fLpe$k@rPxq!Sbo^k{Y?cS^SDMe<_))AH218#y%dv`leQTl& z4_ODKVG&IunVS@leurY6L;7lj?=-iXy;7KQG9u%`L&>CR!1S`o4Sc5=Q#e|jcJZ*Y zS(MUmP4n(UTW5t_;qtwo?Sri)k!~m5MydmK&zBoEOAdNt$nCU0YoJ?Ak}R}Zuei*cJf))lQo!1}z{{Gm>s;OvpkxSr14 z?k@@;?SuVHi=v}$z$kCi?tjE?vOLz(#HPq1X6QwR%4C3Wp>8x(sXj5qd`Tzg*m4!` z`vUj&$omjsQ^xCYhJdGp^wAzcboy950%u+Z?tXzi#3;C8LDS>%Jp;QhA=UZ7m|xu< zNO`mSXJ*m2d#9PzcW+p0grO!3ylwXJfok`D-!y9TiYqsAM{8lx9-|_nhn5{W)I@!V z41>}P$u6zJ_Qf}2d&NX{^PX zuZM)1;GzRE1L)Tr!t&ISNc}cYw3&6u@}QhWt}V)BI}wShO9bs>2@=D%VsIp9kJQIr zb8F{PPeacHI|r5Ca*DZip$Aj~Igs#aN}n=>8-vDkCaW87q@myG~;nHbLj?{FYv@FG+3@pKvmL zTBK@Ib1adjo{*j7u>UCP0{#&I? z9e-ztAIiL_UJYq?W>ngEOJ~NeQGID#T(qr-BefUxr@P5D6YDjyEPbSb!9^QHx)c}P zPWKm9?SZuuB<|sYG~}y1_b;78hpDraDH!W^>|%76jA7dpk^O_zj-&nA`h*|zB=0ZW z)VP~ay2Dm!(Z`%}D|Ja2ROAdUu)`}=w@lCjbu$DUneRSL!=W(}XtnT2abNS4*+zfx znwCd?KgH(Uzv|^$(z)iMmijL6-0xc<2DIS*kPYI{{dW&E$9RdcZY!}o-Y&_-AfM`Q zXF~NslwxxdE{85N)ND()1!E_?>6kWmXF}s4*wNn&47km`L+i?pc{T9sA>*>@6ld-i zbYCB}R~A<&k8_1C(P|$UZGOUzlYO|a?D14*o3XXNyVVFm$`vwaK9K9#o|&&NWV11? zj=~O+Z@b`@j%U3T!(3Ty^VvRAu}0q(spZI%Lp0!!_#_sp#Mw~E+nxsbo|CtYUpR*c zG_$O#(vU7yT&&J?ixB065R8;Zb5Kh!*=`*)H-A!$LfoU_bFN zg&FpUJYsK19uR__2Y3bAEe^i*A?B**EYvNgh&rSYy%_dTI{_P%v{1+k>Hm{tRyHiHCv-0Ac)lh&}w&8D3xFL^qeq>=k7G zwVX6fS{;$OMiEcqeINXrL(McTc0D~@3Wd4!H-n}x0NM~%QLut@@%6;iaf>Iove9Ro zwKcu94Lt@S<31~x^pJ(Ido@Ls%Jm%c+tX$Bz^pv=PhwI*rIE?-d^*hWb>4xhrFXH= z>0E$xgJ|dkm5AmcQpeH4CAi?vFdq=<`>2N{idJvc5p4V?sso{e!UUU7s_jNUK8XoM zPJiMI{}dMlk$u9QS=O4V&uSCxAX)XoRQ0nu>4BzrLs^?pHD56L1AM?Z##b>WeElfX z6I2<^q;Hrn1k~9##NXdrCn<*~qbAc)H;e)UTL!8d%0#)Qg=j@I~ zyci{K9xM*r`C;w+aJg%;8 zF{!~zm}BYC(bPYA9fZ)jN0wYrHIg3J$e3>}s{`%bH%abS>m_sW@Gs291bMu z&R5G=7&pD#6w_2*Nxa8kf{>uJL0M^5x>6@P7Img)n2&vMY(7dj{?u%MWq+6c8D%Mn zZuzBr3utQd?1s5RMp4AjB3|uy-Kz)`>kfrR9?ki?AO~rWHc_2gTh(tzPQDHed>rV* zp=@Cx^Z--2&n9xG6FFxIgUTcDK`EWM!@)i?IzR0yA_}GO-h5blDOna|n6xTT@zrtx& zIl84~A!>dHv4QwRGG#?+H$&sSz6!4)OOKJOs0wjiv8sM-fXr2IMT_`=nW|(FU-Y;Q zAz~CVRGCu)ocE#427Gwcv_{~P2p%497EvG_>gn^=J@!}Vk9qp@DKlPhZ7sK3%&7CF zN>>b3ldE2nEvl)yGR^r0qt1)`M4jo6agommON`E{-tK4G=8nLLN@*H{C6D^}P+9$i zNqKdfHdv6Sc4MK(E#Gtho!=ebtrJo*&WJ@ZQv>S{mt##YX|cvMB7+G2>*XzToE-G2R5Lp2*7=@Pe zjgv^f#b{O6Gh~aYtOCBk)g^KK$i&$tx~nMwI{T;^+j;fVk z>TTJ3ww#4fKC=zl5H>H(9deFAVD=N3CbuGa)q8()?ZQc)W3+UBI|PUnDTpl`vAPy+ zn11(`8IMapmHMoD#;L1&mWQ@OA3W?!7Vr_oI)6G#YGmE-**sU^PfACO{gLm|67D_Ah&i>%8 zP24KK8s{49F@QG0<>Q6L@uW+b_cUj)1mE@;- zjoxa+(O}n38zSXe)_B%J<92GSQn%5tZ-vR=GM=&Xkd!WxnixB52{NAi@m$FY`{DyY zM5*`aJvO-FsqA@JZ8xTsR)sPS#%};=?Xl zwZZIumYK6iPxgaNTdNY;PuWa;x5TJ3QEiQB!M58|3r=gJ8my8qvPzc-J>=Lpx)c7T z=ajJw4q2x6l(Xz-9N8(<=50f+ba?%^1CCm$=V#XFxC;C_1ed}M{XBc=k+A{$NfHA` ztnbfOW@K0)PVp-3HYZA?Ev$pdipED0#}|{F>HFpy;H>N}I?CCEV>aIGIui=U(}3-F zqB&Q+TP~z%ZW*_9j;%j9_t{)q;Y#QGihEC6ge&&xakCxum+Gkf7goeNbXy@pmT+q_@&ENu_3)^j=$FCEPy3$JUBMN**6=3d|<3f8eJ-; zIvee6sQKH%`3x&*eGG)BN;N!I$Sg^y@c=YU1sYtMA*-1hlW^oMU+zUJW205J=mI)>AS^O8OE~^ z$3~#W2Jj)o<5fo}t=fW_M1j_eCag&h%*CM^+04hpEAJ~G--{u*F!Z|95~^eyD1t>A znkbf98CfQImNgQuU9im5&h|zQC;60po9A@q^jp$^PhW%`>Z>pjwd`j_ox!3eovFoe z&;@w>(-7q^9)SfC%Pd;55cGDuuwlDA9tYTDv z&6%kGL#ftLn`XP7DDZ`U5j-L7b~gue`pa0X1=&%AU51JzS+YlH)!ec~y}d%==kH?@ zNnGEc$dwNZzGo^qS0dF*!_+hougQ%L(d5&OeVdpUsEzCf9_1}hR#`!$AL&}Z9qPS^N3MQ`>cc-$GI@S!eMr<-KH)xvWwPm%)Vo~7QsvCHeYjBG8 zuCBOo#Br|*YqxX(qV^WupFgGJj2(rc(~8ra4=JhjO2t`?yN8K&Q7FPe?h-=?=(mIZ zNMnAj7L2<}JBiI#TFe#UB_@R@S_Z(AdoW*0w=OvSG^Tgbmo1ZVP4Ko$`1k7RI>KkN z49jO=1TN-Eo#o-_9kuhRlWS?Q!hlrkCn<8(Z(MtS1ABEX{*W@Sb#j+W`Q@ug^Rf(7-~TeCCwqqYAfVywsR0u_T%#~=#d>=&CNza%^hxJ;%#5wY02`%baFK@09o+u50C?@O8(eG2hlz(=cxnaIInV z$0~G53ocy{Y8WNnB(GVG&pFTOMMZIRdy0urd*j^D2ktnzn#eay(ZV2elwu|PTcc0C z%<4q%QVJoQlEej<0sH<`BiwgRxoqfm?pKvC&sfT z+%scVILW2$3N1b=(pkYRXz$04CIE9uQIp$TM4dQ$!Wl6^XfpZyJUvU!gm9P1_|d&L z&0czCy(rM^(1g{|Y}7#@A&x&|FB?w34<>G)USn3rplE&)jncsjnBAwx3N9V z0McvCbf;4>=Q=l5J?|XTC!aR|GAG53$`rA>1H*rG+|g%?+6@v~{aI!T0UiyuaP_>E zG`&SI%Q_h@^2s4JcVf&MH2brvfI|&j{JDMZE6)e_;eny+gnDlHL)#ja85(B6hM{w# z0Pcl+?%kupn_KA>Ws%1dxy(hA=b})IN|!t9hT4Wo!}3h~F*3I7J?25|F2-PG;C_UF zULtVN2obn(s2m@4#cOni5Y=!T$(`6O%!_ajwwiLUL->U99C{lO z>f<|0@WgAA)Fn%*TBS=OZ^FntUsl{F{<_QnXE)PfuiFn&O(zvP)NM}^~a#wi#Rtm~u^dCP$O{o2?;4o7)ahE8|bg-js}6P7FlbFt64HVev;xSi%x zR3zH=InX17MLtr zJeGNcV7&bns>gm&tF6YWoH*+Wg7&`&oYh3sWEPWwj&wgA7{NYf^i7TMoBo0k;kT(Q z8j@xOYleeh!J4Juga0sjQ}tN<<_70lh(w)s!?_=Xl5ihL2rBq$d!0dY$5VzDU_(KY zVI4~MZ?0>gxXFH#Tsn@c5k_g>@~McAlz*imsdtcTAVJJfrv+R4|DuA2eg&c;>@^~E z<~&@Z-RX$!&%uToHo?yO4>$Rr0w+GvVp0*`CS14y5u?S-q=Bfvl4(F|J~RNf!@ueu z+YyLU^LlMa$ddUBRhA@LJolj4|F`8R3QltDIm*Oc9Lflirp}sIT^Vr|^bkF)e<3aZ zt3n_!ITo=u!*KFHNSdMsM#4op2?>;-a^~Cr_$Scw3_|et5rbTr8mj<@O9Ybl z{7(NN#{Q3$3_$sdfIRQP#0mM5Q#eF|P<*wby;5tP6K6v~3Iq8kZ9mQsfy5bt@*kE7 z#v^`-18NQF9YM=~D6zw<(tmTL{$Mc->LUVq_hXj5iI4*fga{8LRt&aGv?VuE9OTR2 zTSn4UHX2AM&Ib@lQx+0T5RAiML85mc|D-Qp4G;nc7$9tAaYm3&)38Cp??Hr9{uSsD zNd-{_xq;M5Y_Zv-EEWz5L^%2#NMS9MAQ%V`1HnIHKYF;kQno^gVfr}Ml8|=*D{;u;muYoai2*RtmJUM1|KmdbZPS=9=A}>u zgH3+Z>OmyiU_ecYli2)|rVeE_l@YiGP!fMoku-nTE5L>d>qGgc&ho2ZJF?0da*0DD z!hQ##_1_w${3neXFa-HhT_FEiI;P@pu`_)9C$ZBMZGy880rUpD8A>MmUS?Y|E+re) z@Xi^2X}}-qpEO`3r*BKc#7GE|p71=eO zC>KI2e(5dPlI5Qqkv}^HI|3INc%lu1Isz2}2+;IdS0b-w{@yr0+E4le)L>7doDUpi zZ!uNXO=o`@Cq^(A%xSj?Wi#u4-d_JpW#SCXoo%KtZ+9-z<;!^6gG5;FMNTz5L)Qf= z#M-(Df9J}7dlm%n@i(?XPiF9+5nocd2REe;%lu=zlYxB)f+ZT?S>>NR(y!;pt;*

PsjSH~D1)^r7464*6E5`qfukcqN2IElB(P{WI|57bb@COo09vc3UaP)xK zZ@E3ugZ_ixhv2~4&_!_S!yQ6)oTw6Mz#U8bh&Z&drV$17H!uruAN6Y!wKD#QANpV2 zieM+y(^ud^zMk7>lSZD{aEWLKbQ@@FeRiin*-H)A|BH?PuTJM@j=Zy@IQWCoD6z;y z;%6UXq-Hl~pfw0aeUGvY99M9#{xeFzUk4d~b~B|Yp0P3lqZG#?ClvuT-UJ?hotO$- zjllB%`qJ<(U8xD+Fn|9%ThekF98x9nsgZZScgU?QVSm0t$w$TymexP=d)WVsH9w37 zSm$?g5S>bGeiVIzSB&L*?*`N`fZo{7wg5Y_VsKPQ!0LZZ_J>jMR0?=hil(!vlXU@8 z|3JO7$l~9Q&16hb?vtsFn8&R63bUKtsQ?V;LMKsI{>9+G1QqzxgC?X6aGR~RC~d3s zrUFVF3Z04=hC>to*KtalU|r`-?JGp_!Wu5;_a{xK4UptZ{%`LE&ML+NL}R5`{Fx)o zW6o40O|cRpVg61CMGWv*AL-^OCO;MN2x?M(HJ4^=A^zW9^cx^aqY^O(5Fmx+Z-5X{ ze+zI1BPy5lEJ}8hJocornMXn6ccHEl|2r-LC1f61LKejlSpv2&g!isI+2}Ry?_BTi zjEQ7X-_WqJ$5-)|%92?%|L=6|moWg9!(c!Eq9KB=l4R$mjlr-3!l+8SbI8Tb>Sl_kGE zj$t5^H4bCn>hUD4H$|@!$`HFD4}4Q`;R&* zj{pCR{J%01tgi-_aQtJTU?>9&q9`*1ghEiZHvgx#|0?}U5BmUw{xZ8!=$C{o_1c>M z1@}jGhMZ471n@f9$m#e3N;n#j{;nCooEUN#`vmao8OZ2a0vLlTzgzcT_5IQ84^Z1U zJ8_#s6G+<_dh>|;V?2m|_fjDDYh_hcv{9aBS27~s?Rf8WmA`vgqR;s75BP4DG4 zdN1z?a2v|nBJ8d6+*Z_~ZcInLjtxU%`Bl{a&5InKZs;~N^Q&whn{GTeB#7-_h5dK6 zHIPB}F!1inKo~X+z<>TrF;oAl%cLJz*Hl?*h%~{k8X$#hm$wN$gG0EjflwOVQ>|hD z4H+`f{#UlhU+DBRdGKmX|ESagC>Hg&+MTsQ;DO4?Oth2a#0$g^>b#jppY>5Ur*-Yzpt?_e_dQp(F^2)M}L(OB+Anm zp<$G=7q=NY5d8=DrtdGnKdSQKQ}TKTgHWEDKp&?gP@cj^YfwTL(3sgEDiEdn4-Rnp zJbl|3bW_El=U*r9W?4g`dH{u7N5QUIVsTSEfi$6XQ?ybr2A)sSjee!K4S%Jn4Jj$k z&j#tri$&cH+2C5iSi6!D52YdX~BwFMy$?8ZJ?kh7n;1IrHC^5pOp-Jo7d9I`)qo}8 zN9t2nvG{Zc7Iw|wFTnt;fER;)zb^FOCBN6)F7W(yc60u9mbOiPkG)A^4w!8M>jX6^ zE^A{$^{lyrZiDrih~Eur?2e(RL1}~KluGt*l;_joys0d<<$HTQJv-cbJ)W4z?{r-| zfD*b08H{10zl+h`z(sGp-P?$Xu{qD~`ejZ#%dGmI1^z_^~u)&MY z(#^8*;c9t%JWWA=emdB_UYjazZC%+<8I0k>_ila@yS5|WUh!#tIJEJ+zL|Mh*v}7X zl|4AyXJXfpz2jr)l$?2e*}c?!VspFVyk%`Rv%|ZsUD@|Vmrb|hC40{I*^oE8@-6=b{#VL|C!-NqYu$Oits}J5y6=m*TVjKetdFPHWAlqv z)@urIk2A>I+XoOisSltiAYdR6z-vN~H=zZ=aUkQU?!rGajxzkgIBM>=D&DZ>Dt6EJ z>43Co<;*~zmS5#KNR8%1xgS$Ts;09|Pf96bDv=`LWV~~o{2j@cHuvwb#xWYSlH~Ao zU$kuYv>7k2HeR0{d;w3V+cRsu3-}Z5{a4Q?fa8#m7*}22hs)<;UlTr(eN)*9HeJ5; zRX(rwm&@nMmEvn(&s+Sr-cde0JYVleFV810Fi72OAMUs3=jYS@{{ESeiAG(UEHwBH zo6fwQncnS`4AbZ9%an*>+n7c+{FR7~Ro(khW3S8Iy|ZI?@~!^-h{zDx>@(g~9UzI~ z>FDXg{^z0X)0c6kthdAKwMKH<(@}7AdtDnm-Tk6W)>mnWDkA)2%k^g8Wr7~y>DTQbVmnLO)0kC)H&cRz1Aqfm6#*DWYM zFu*$a{q@P{*P{Wm_6)w2Y+t9wEAmDUk5{QVk<`9@Q+yv!51;#KzLyHOaLG9enI6ETp7>&vY_tL=K z&eCpA+l)Bb=5wRH6TZV-f?IVHDX$S(vd#|`Y&kY>q_PKx6}hj|Qkj5Vb0Kz>ykgJr zM=APg&8f3JD)~E9+Y=g{`!`bgI~;nrc=-cAHdT*Y?Bw$FmKOI8_uH$>tr(^fcjmsC zMr;;yH+rwSTC6i(5|?~?IS}vxF0dA)D-DTm=L6TKXULvZK$ zb@`4(`-%C3N97cZQtQ#O$`1ZSfRo0W0M*f{gVCXfrX_{7=8*2Al>7pk0P{~#r1yk` z34wA54icfDxv8E*4$*SsYk673%(#RKlEx?Lx$5egl2_Ax1*a6WpCo+G#r3fouCtD& z-X`Uk`E9KZvRQ8uVB70+U0H8B0@~bIRxf=4a)~gLZ%4TVxH$`z*2~8oZ$WF1C5p)2 z;4o8;Nxx}EW8*v^M&ZWzC$i6ZpFJKXWrnP@gb&8QdXa*D_|R)*Rl%`+P}fUa=| z;v-#w1naabxZD)Wh^}xZNacZ42UwKoUrCN6W)|5cD0YdRp%bl6#NirnX_73>(GIyE ztJiaxS-Mnr36@PUIxE2!~xNIrGeexWYdL<&?{t`+SYMpvvpyil_OKK>w>r2zhP%$Ie$~|l za0}660S~I}zUc@@Tp8^G&h%VNVQ<~&0)6kC+)MjPD>Fl(|5mS=S&?G%l#5N>arC?^ zReqXYcXQ z)jUVfJ9Gy(JP)`wo^pH@8Z-_DN7>a#?As)T=&y*I9~pM)Z0{cSE& zx&*W8o8&Nb;ZYJqDZr|TI7*qqgeIsIeb}^edWFg!XRVz_Jb}!#TU@YwotFFeM;XGx z1O$4uik=|+E%%>`F*1lrGoxi~ld@>?Pak~21jSd{4*W_Rh-J9C3asT4O5~eZX5pU! z{Ub$FvW&P%)aJ?z@uskAYc%5+)+3I*Uqxc*W>C~48}Kyrv+#mlb|TPpE$5r|nrd>R zV2xQ5SLF1C3SpI5l~&~Pb1^?2imo(IRd}Xn`1dXMw-2MJGpoa6LOGyD__WWL>5HPm z#id=1{|!A_i&s&0({CMS?aj+3$}Z^;dP2j@<>$Axf4;$t!u&cQbkKW(nkwA-8hjCu zo|xx`cyFEvnspBD(^SWu>K~oPdeuvqg)|x_7p_b9lK?7#04Bf;wNK&P$RD`h+t?pd z;w?M~nLg#&4$-r;@cf~aT{1sO%LVPqy+;Iv)J;)3lflQsVLIN6g`7YQ8B{)TU`ldc zmNZ*z47;92m-d-JE7%8RYaP#D%;cK+!$zuEV8gmXa)?~X#Rl%rFqMvZ?m?SUukK|1 z{Yh(2d`7F*Znq1Mv6BY7^AVd;ckRahaQcg>jAzi&T;o_#l}^;>U80_&$?H4<9WW_f zxQOu!oZhM~PI~R4VI*o6nnht~qj-F}WCjl?G!@=t!7WK{S-OW%Nl}S-QJ?oVEinD; zRG|2l69iq?Ip+lPn8GfdsOQ+U?`=^-Iy$B8a(DGB1D_FIrX!Hyof8d$T4DN{N_Vfp zPn)`M+X~SQSg2Lj#=F?+DlY^bkq!qQccqo-z_;s@_ZOp*_7~iZ3!e`ivgT7y+NJ@x zZeM9@0n={)w&zRlD{b4poOyKWRB*e6pi-k|r1m#Sh$e;i7lXq5kreo|>TNIy2p%Ko z9@d7ERbvE+oh6!ZFoZM|tVeM7h7KWf7S&KGha=aYl>5{wGosRPI|4LJ8!Kdm=aINg z1Nj|W0+$fP!Vd156Ht616=6DF2`;CVL+z=KO6@$8*|iE7$|x3H;w14AygQr{kOW3* za0lGVLB`3gFdEqerRQY9u)(eaC<`q!0#qU^)|9?A@7`;2OEGbej-?O9H9GESTV`!{ zDRo%h`7L>NMyVGL22K%wH!RQFv5@X%o<*KU1@ajD*FRCy-(^?|zSs=9bBVbxr0*{V zj!>Vh2QD-4YGd4_=4w_OBpkn&(R8-S1A+eF7T$KAm{GD&5!d-8Pa>HT2PPFMKlu1 ztMH|AOPv^=`3*vog`{(GTkhuTnsHtjb(y)XH%|=*F3}ZQ(oWbrjSP+1Th2r`XnF9E zX`xJqa7{i=eM93B_l2g{z^8k?KMS$>RNt{?-}n8XIom*ByBBkxbl%}+1VviZDiEnnNTQetaoI_M%-4 z303@4vs0_U`uNUJ{Z&0}3{tgGDP$5?&qO`HRdFR!n$K#y)4du^ke6s?ppmVlDydaE zyWh*55^9uMU_H!(y#tXI4RwufvmAHC8KSb;<{byf;~5qfd=Q>F!1bbZNS~{-Au#NEt^x=? z!y8}+LmG@#hxU~r%tPo66&Q>Fxso7LU46U6=aD8A^;NpSf?$|!D71*N72h-H8$`N0 zqenhmJSTaGO1IqWZghw2g>ANm>v`mWi)0zkVoy*AeY9R4Jg zKLpQbdS~=CTpZmzw&%UZmbT*JQQiPFIi(*K490pX1%v^pO& zlKt4qHnyN#6#mP-V^H)`5SrrYpFY=P)A^&)!EMEA3C;}_{^}8{j|&X^M-=B8*Erxs zh{RuS_u~n^4dxfjcg@!Quq6%14nWaps(twJ7JNF>3fiPfFZ21%__v$q}wOcyRCo9@AO&yaln0b=3y#ruy;8fE8xftA$ zQ+uPJ6^j$^(W?oo;%)nJwJH7J8uU@iK4)UeJNGSjwBCs?Yi1X`(Dh1#_N27_Szh~$ zs9y->xrxp-4yntGt77zPfv{uC>S0tHhxVCLtC}?a!Y<7{R;clo%R#Zl`5 zq39=9m4pPdiou@d>dZwwESawem9Gst+V@+o=$0@`F3bk_;AlUF1m)M?;WNPGj&H(e zT^bZ%$c6`8qEKg)w06(geW3YZkU9|R23o~cg%FDu8NhZRd=vz`%q`LfS`h%@$FT)I z49B-89Nwu_5`<{r2kC{tkoY0D|wYzwQiSF&&hjpN8)P#AP(@i{`(b19~_~5 zA;lk2(u14L$@{E~-ozffY>b)>p=p+57X~>=L6=OE_gKenmwRsZE^X|5I$AjNbTR0v zgAvEu{o`_0W!1u+>k4QR;SRr?pCLYj;9RYDAZUp`x9c!qK3+7L;8FVr>>jZyrZ)rbPU6nwA<<6MU*D=VYBMLsJI-#M-Yx zpp@RYxlF8ak5ZP8Q*9NEUGB!aKj8B?p|n25*B~a&jpP~m$N%J=hZDb6=O!5x|4i6N zz$L68`Ov237|x~aAKy2BJ@4;t=htrz7Jacj5=r#~dZ)$FRXj_LS{K+-Qw9C3?ij9> zw8xyu*_cuQPb1-&xhYiHNvEHS9%X)^o$J(PY3+9Z!{yJPZuZ|Ikn;)k!NQzx>>29w zQ%w+<+P~7zKsN#jOxbMg+uD;CP8qE~U@i0#b6Ni|iwU$lmo&7pt*Mm7B2OuobDr;S zny@dgo^u-g{&J)m-4;bm@3^xY-PRMQ%6SE3nmZi=5}HN!uKXT@;H`a1R_fcYi?hID z-eQHWll9Ia0PB5`+VCBSOX+i=BsFuAaz#~#@9O6bI6qI)kCmVFmI}xXcGXcl6ZwC6 z_#Ei@kuY%|Y{wsA2vwgjTR@WHV|VSDJY+Dv$m|v6t|jvafg9n&s_iyCN*wZ5p(|ko z!%BDX{b?Q9thz86+&`!-NZ~u(&{ej0WqgmwBWqF?7NlGYryCQ7as_Z5j49t<7*f>*+OiK zxSdZqAneE~hhjy~zyJf? zy=2?1K?#WjP@A58HXli3LqbJIZ8SM01mMW7x?`E*2xj;O@F1ohsL3h6N!AYJ6R>d! zXO$)m&DGy_*G+bWRgHs$RSY$DA<8b=gkYf!!}ZpN`q5^&dxnxX;<8^=u$(P<1sKIzo2kT@1aF&ymXXmn zwDqu8T-Wq(CtmbKW@71=s1|fKN?VoBW2nv-{$X_N$2Nt+j*KwM3-bx5FBF#}ph&Hd z3If!w8^gwJxdXz<(8 zrctcl-=9~;eh(W*!GM>N{tA&QA(NJNPR~^DK{<3MNQUjeu|j)>k>kLWn}K3wC1ioJ zCzH7xdPCMsMx9weV972(L^1DV(aIeyk9@1ZDIsC+1%id%%2`eG1zOgmPU*8kY~>dX z$SP5dTpt92B=1A}sX5cXQCpqJ z_-ZPuF1EP_-mUkI3H5#s*ZCd*R#-8aI*U5pgX=b<{4sB8=vpWeF9V^v3_}IgqSFRQ z`mTViN*#D<9PdXt#>(%%8_}{`!lTRnT(69__@4h9j2fZ=oXpV(ojy*U(p3Pcei=&W zq4OHISrai5$g--ncP7Z9rB$74eQs)`y#T=hR%x#S*O9THRe6{(@SUnWl{m&Pb&|4V zxJ_a5fDh{*56}HPXwB@d3nkeY7NLIXBa3CnAP!s=QVpgkV2@VG^~^&6zxwKg79TD@ zU%b|J6y~^B-P)q+Q-cE(4Wo!?V$EClUBBTCXe)7CI~>Vo-HIGTJKzD zY!;JTq;^i-Kl#VzO8M@UYkB1AHF=En|fN{ybf)EyO!w>Ur+r7%FukR!lC|Lz7t3E0Xn6if0&PSZbCsvI^Er|>% z4hljReL+d!2p8alLwcJ9*pVa>V`{Fi=dsm2=c;7_O&E1U)9ZeE1G~b2nI}u~oy&_p9`GvaAE4^YE z-V&z0a87j)<)a1H3KTd)pTmSJ6Zd%LfSoigJBe%sBeU&iL#IX-mf)!N!+y+Cn16ME z;Ba#;u>gPG_q?z)7Sd&mJD07;ex_xNRbK`XK|cWuZ;Fi6jNLH$KW)Y#q;xI7f~Qo8 zOX~|8>ot0e%2R#dVti5t>(q=TuxC`j#VmH!FB^q)cf7YL2M!Ryws+ooA7f}kFJL?t zC8*duOl=Ifjib5|)Tkn)=c1gPIm01ym^Xh0j)DY0=WD|NfFe-ARKt;eMW&T+3G;K# zr((T*UmvBjjGVMhO}LMo2F-5sfm#j+16i`RPaY;y+HO_wg_KvC1jmoK?Q1|PN7PoT zu7h}1A;aF4)bgi+4Nv=`fdjg)2DT9AwB757C+%TrScd5fc?yLw9$X*d7xEYo-4ehN zVVTdI)xh5kG$BH3)}6+3KLX~(aPg&tASMaql#DEJyu=~;hTa`U zV!;@Wp8D}6y99olpostMCtlWo5>iK`Gv1~;X2h?FdWNRT%^;Vo5YbCvd;BNxTjowP zAGw5QqQJY;XCkXZbn~hYGJ_+#eHHx|SL0*1e=w_$C8jX#&PluTD6Yfo=4lR>9e&_$ z)ok8H)wXoEIW+6O@%r*`Cinx~jC5#`J^D++n#lS6yeY=WnM0cw(`vA8_ITnx({8`C zJBOmqcp{LneO!)rLEDK3cLH%4HBH^}rQ#@f)sX)VOgs=M`&o+gMx**AuY&>d!h_V&9 zgrJnV;@Ug+c_lVwP&(C7%e+l)iqmI%qBoE1EzSvL51vAH;QvoUS8M zM6)T?M}aI^6TUbI^YOJDOb8RUcuaMm3uV-H6e~ZP#%JG!%O6oc2w! z@_1KPNSNi?h`^E>5l=HNc`aoPvN{_JWDsrcnhjUQo6*I(kNh>M(X^uRM($b}m;G0% zQ)6DH%-21S*_CI4qXx_~LXR}HA}bE~cXHQ=F5o-E7lS~X1Pmm!Z4h4iSW4fBT6&&# zacxeZ>>jQ1c(qxCP7FmxMQx6vwo`~!fs>za67atWz+h^id686ZqoiJLV={Ud##Rz9 zJmsy{P*5Gevk(9FdKKg$$Iv_PAF~Qi(s8Q`;J5p11DuO@EWMRkw}87PGxY#nynFP^ zIf<)>`061R(-Z#Hbx?rQrt=GZwNvh)Y)l-%8W`9uxI|gn?9QltYS@#$)X0t^joBy6 z1{5!x!mwJRIa5ugZK5`cq=JriD8#o{s9a^EBw3%~#32E%!9ivds4~!Z#nM||B@%D( znBe{~(nvUu+?e`Tn+1OKkNG7Fr|+`X@YkLnpLDXCJB}-zPx7ZjHtIB+e+a~! z)LufJv^HY_0Ib;}pIN5^uhhPo}nJdol7ii-_7Jo?E=B92#od6uZX@$ee9$ zoRJNM!EvtZzn2okP`cUguQiKTgx8yOIs*VT#CC>+#QNL6n8J~9-QLt zMGA!C?(XhT+}(>4+_~vK=e+ms?%ntPGoL`#_-|%SR=#;2rM7YxZ`qe>_v&@h6ivB( z3gPte4|pG*SV*46t?=FW`@k(Rx}sR#LJU0=1g2iuD;`0#%2TwJu_Z?EU4((9C;ui% zHhM;|#bOJ+di(WfdT0u;ApUWk*xt@^q@V%F(aHXss#>>)42_(?Ma?GsNC{^*T*MF0 z$HVzLOaQ(`(nd}H!hF!*l>o(zKsB3}Eb=rzI!2=Taoffk!@`fe=qw{;J@EeV{A+`c z;yuS1#d}jjlV0o}%?n|Njv*=(YmCKVSI^}9oaN}m{I4CRd0K#HL8t4#R3CrS^h?y| zL1VF8J~JPk1)M5K%FY#}y<*6Y3RYSf#a6Ky{&vtupYzI&COSh9&zAy z*m~RqB*hTu|NxP&@ zL&a9-k=g5rf0ud%H_z{wtq-Tm4jX)}?E$!+{%Rbd`ISSn?MMUzBiw&THNw`B&g&YL z5W_bE>WJMBO~FaCOaTRrC=rgEk?{PVdV*yM(+!zs9kTi>i876ZF|a7lj^$tvh_wEP z;wSlhl)gt~We}sx5SXf#EdeL;`!S?K6v^WMKmE3k3&pvjSh5m!;GII)S<{lv{Y|9tKLdq2@6C+XO_+5GRe|1PuYOGXd&-_(~>djwuH2t{_)p{H{i@no9|K16r=te<;aL6!l zyXsJw2L6~R{XM&I#UcM(co63xQ9m({4XGdQ_AKQ$54YVAqPJXs=;|c$2U#1=D+w=!2eY#_ zV;-z+zA+q>NurFiAQVBcvhr`rtN)D%OBnN*`eI$HLvCjRwI!Mv4Hw5L@v-VfiNyo3 zuA^9Xx&Wa3PazBLyQ&`7;=!*-GB1_~7zrb5rT=~R`QOsUvJ8p0a!woh$xZ@5=S{40 zXBbQ72TLCQuJHK3C2g;W?zv+YeZ$K|qB=>Can^?-cx3;_)tSTh{Bp#qV1to==Py36 zL%n;b3*^!aDgEOlpjOX-3?Q%U^QYR3+8tPDJ%DU+IhFhyk))wmhrjK&V5ws(@ru?y zb<*_DCFOXLS3py?0M=Q`mP+D~%0Jf7BiVO9G@*X##+iNx$l3!3o``M9)}sA_r4e@H z-}OoVTfA`Ee~af>LvA(TFT5-stOai|EfHsblgR#W9I-;SQM>t7u2z*Mn55i}Xv`8z z9m3jTA^mx2ns8FPl>G=MI;6gf^&19K_WM7o4!C#W;tH9T%cGhd)sJQp9o*H>e55f8h_Q)PqktEEkz9ca zK5glsdyQYdxC9w<(8MqcW_cY{>mTlDVmKsxgGDwA2lE0yj|Q>v3$@#>!7E2GWr%$P zfzHG66dkCk;4A$>>ZF}X3f%12jvf^2AW&+ z;v44L(lNHqvVYwez$c^ku3=x@Qx<18zv-*}YoLSM7{=3E)FNYjXd_!e1J+#sT~!>_ z%G6M&SBKZDt<|gTKUB)_@fJh<;nKrHel-$OyH_vCyI^G5_3Hj5c>!SdqAry}@`oU} z`#3W9%twe4$hnV>RdMg77ST*;&0(b$9ZgH((8-U1vKn#pAgkkG_fk|O^5aT;)zIj; z>rV#7WFI9DMe3x45(19A6sKRgQ+X(9znMd)*4W@5*fAh)csod50(m1S_J&4Khcx1c z)Tged;R`UHLUy^6AfO@fP*oaw|L z-xJ&{eQB`ls#isS=-2OMm6bui(kcI6X}d2tZ6+=FycVi3H_%}+2mb3camZ4&z;e5w zYEclMh$T+4n{D3ABB=yaY3R}`?|r$+r>HBTCEfrhM@-@x`e}+2BN%L&W-kXvBPhGI zj;!kUtq=V95|S-4`@K4>1&+s)1~^R}`;|6lDmXA%w5l-(yj&e$gPux<@bmg3*RoW_F+M7W$j>ZErYy1gTf~9vv>6f_yx^o=;6V2nANDS4W=~rY^Qd z2~Az~+Mli?1jc{@Ye282)~DM`u;uhzHG`{9T{L6saebcyBM5;a)Gp)|P*DvzP?zcU+u7KmfcFI0Ncv%=(q< z@_Rnczg)Gidfr_N%)UHRM)|hf-&_-}`dIj+wYPdb0>C(6%hO!ZQ}qdA7_XLq=abV7 z==$(tW%Ow{Tw#6~?t&fDhnM$x@dso1bNRnBfUh#$R4Aw*AOz?C%m6a}j{(H%PyCAk zB+~cTl&r(4WndkI&1$whwb|dNGxACC?Z^v3mKcYq87;pVT)f!bFAHEr4&2!;)KYPC zY?d}@f1X?8U(tJX@bql*xP9E6)Zt3P>>sN~Iz8oox!pZK^%-uHq-OvEZTZ{V8+~p) zJss~JK>O!$#xn@+}SkZqGJOt{dDMp6;eV7mk$M zAb`(B#GcPR;AY1>=6ZitY&k!*Kg0X^eDt_Gp8*-vz4EkjaauY)94=p9K13)Wz`Ocr z7k%?QieO^{y>LtzbSv*#AB`lBL03^45|L=GTtl5dZZhGy=VKaQ$7xZlgowH!^PZ*>gtiI z{8)Q24lHWR$nlu`7*fXlp1Gw1`sNkbc^nhbx}8b8V_;@R!}~Pm{&7Z==l!PWvl77s{$-)} zK6zHCy^eZY9gmsX6Z1fXT3P&kk?dHlC5`>3+Hk$ReE4o6i{?Q>lu*k3B8N%#%g+m! z%YwBw+mur*qs=EWaX9czZS#l{si}LZ_2qScCtUK1J?AFMmtBWFY-v4 zBtc@AJ{|+|;y+h-;;&EK8#<@A)~*m3KMt!1kF~tf7n$Y$*q-z0-7UcNVd_elL$XSN zO2qOch?pD_|ILckv?iWgmY!42e&8&hFJX0YfFC=1PALL)HSrF6P8Ows9T2AwuoP$C zBcY%%P)N7UN@{9G(~Jm8E7UlZ{n?E8F3#m?+2XvM;?fJcaf9{eOQ~tD66W0lgzWuO zF!fonUet@(28UWu!*cS)(2s|ImT-`XTKjGn*~QvE@AvX*}Go20WVx z`EdL)Sr?G~xzdd2*uAjsx^gjj=UV`(d8I%nQ97p=R)Ukvjvf+vxBjA#3i~y{6<|Zsx|rqQ@EWwA-Bp;y7UQZa64B*U`s2bQl`|`ktlspb$U7GbPxy= zZBSHIX0Q0jG=0@Smq8~+W1MXq>n+nX#I)VJ<9i*0?Zj)L@1c#Yp>(%JXaqvDI1!e| z;YbZc%^enp?g1A7PoIUmJa$mACew+gE9yy=g6jg7D{L2)W~2SKdm(0nIr5?F0!gWN}7{HBB7MOW{}Yd@ud%p89Hz_X6|nkZ#a8dpVP59WVjJxg~|?n)gVQapf{h)*$BNEzSy;k%S}82{Y|3 z+gHHwO$5xnv9u9Mj&1|ng&&)x;M3J-zjvvbj8a{gu;9^T8OIQ_;#pjca`|bN$x@oq zK0{QRLT#Gr%%b#pV#HkncWz4}qW|!VvxSM?ABLWx2JOEEX!1-Dm8Mf=)bCf>sbT5< zc#xWL&Kj+$njSB?6GD-n$QK)VTB)^DD=uX1NjS|l*lY&wd3+(=WsuqAUg+p>Z z%u$Flbstd;iz=&dBFcjT5|Q}iEr0nDY3&38k?cx~N3&M0S1qwpvfpoAC$HLUs3#t~ ztUDjGpHJ9Kq_y-&>KEo`PS`=MX#}dzG}-(Vk2(cZ=~?yfVLd?2<`>3OAYvq|o4$Jw zCjCm%U}T{V1(9ePKGH)v4vLqs$i%T;qS`4@BI6e#KMv^J@dKeFp;43tSaHh$Yj!(E zU-1FJ_;sP~dOg^?S2%gNL#Qh`y7oL}j>J6@E1+0#2a zKHM%|y%(x2H%w-;Lw{?(*^_l=8{iv>>TApL3Z*LsYn+5q;&p^F5Nn~X39{Q;_^!BV zr^By1&an8z*S4Cc2lN3EZ=RE$A{@pgsG>=3O;7{6bn3leE94k9NnHvzqbmt~UsJ-e zRM=hvO|n#FMuRyXK#*j$uEHacN<9~)L;x!{b4V(t%$A3G097Krj&Q5ivq0V_d*~!` zS$}3xJAEe*TPSIAe>dltZQ7=&kIVF)GKY1mnzkg2*3CnDHFIyDulf+3FYiWXhrRwZ zrFBc^Folo8iY+s>Hf*aN-*LB{3~UqiH=`vMLuqcj)ni^;Tk6yC3nzR;P~$S6h}pOS>RJndoIGBVpcTI9+17 zdNl}{?+u&kmm#{dH}$D5=+~ZeTL;CK$+Qiie2Ee21<^5YP=1t7aqRcht(GF+37NlU zkX!G;N+RK^Ggeis(DxM|l1wA&XPI@ICmgPzESCH^ETka!2WSzxW26>l3%iL1uytw6D zttgdxJUYGCu6;K3d^kug9T@1NJ)o2>Hb4xB#L+v zYG+61B%@3Pu-}fTx$-NzPhgGoH2INSvVhrrQ$p8C!o*LmpRnEm|p(1c?SMb7@@ZsU2NY#*jVcS?%)X7x5>0PC8NzL)I&IaK~t>$aHKK z0y)yU_MHU@bzIdzy8}HC-b}4-rj-5*7PEws4cE`>&K<3*2(9H;t#$4G!JU)=NHhVj z{3y_yf~*AsKxSiBEDGLkhk?m&Hp$Mk1EPpT+swW1xl~?GavSzPTq(^9GOe;*=}g5` zx?$*Dy>&X{ynKSmq>{fpojlO+4CvP8l`YBhaH7LjEk0U>nMLke!738s)OxKhG8t1@ zw4%S$-@xf>G})<+7OIeiondT_VujsUo8bD>&3)|XM9_4>EkaGlW3^J+uZ2GP90#lx zj+R*}HVnyKuMp=xJ}?*1)T$oz74;hRI3xh|vH+j>p7gjF+N2Ww}nAo5g~+%RpW1rkJ#FT_if;^}-$T zl9W^f>u0Uj*k*7#L!UUh7i@)LdDYv|hP(7LPNOHs+)Lrq=mWgzTK~OW#%zBO^7qyL z&zEcXX8w(6dTyO+YL=J1b*YVKS%!X5>!K=AFyiFvBd%N>#m(!X5)%sO(D>wvCbF*n zqkuOuTPP!1ko2C(h{*%Fn48-O+_C9*uYFjTi(ouE9+6P=(b^)8E{%TV0Def(Ss_nJ zuZzcoPB*5*+rB5#f+-fvNg$$#56Sg5An%n`{*D$)qUYv0+LJvg7Y1h1xhN1x2F~E4 z?Tv55Lb9R~!>bHMa1W-7JzJe#EjE3qgb3t%i`jFOQMPB|nV3r+XAI-10i4}xadYyp zSG8Oq$>Y=irtta+_GL|COFHA?4^vfHcZsqB5Z54^ut>?L@gX45Rpp0;_n>8j-xB%Y z^Zm-4kr|OUY-49B@Z2hsSC5JTV`w<=+#<6@m&&&9{G!wsS{>m9>Z^CLXma4DXtce|Y}JC(kW7cInbx#S#fQA}v?Epnr0r&xC<*#%Lr83J>xpva>Tq$sGU zPmGQfr!#s*aYDDzh2YPr$Z`|L!j01#l*p+hKl9qsQP~yYrkQNR=;h1sZ}P689L_&c zyG=PLXE5z$Jmah0 zH!>Pr()_16`8FLEQDVyzv%IbRMZtiB2Z=)L^(9)0GA>l#fv^?x`KX4tX@>%X)j3G6 zyXNyz*c>@lw<|rFzAq*dzu+gdI6R#m4}BZ-N-p9zZ!7Fh;QV6yrXwIHC~|N^E<77c zjeVq6w;|@1dcq$;2b}Lx%=q+4cE-LMoW{-_H*3DQGTh_XaSlDru7V5aasyL zDIMLmIc+#M@u$Ggx5wfJ&}=u64ah4Lj%3m#a*y89W-)}xwes}F@9z%twlcI)9c{!` z^!pCBnaxA_mjh-o-)y55ZkyF$r`2vj3G0a%K1*@oPViN($mBM?dpQCq8KG%=$jtT$ z6J_swuO{=-<8@|HuWG<%=Bcn|h=|Rk_;zxAIjXE@6;1U~FG6Trj2J~S_dDrNGF%-K z%HB?schDZptyudMFwH|F+BDP>Bbo+Q60s#wu_J7&1r>3q-*H7HfP!(MNLo-SBo0NB ztRGxSuCGuHT0}{Z>Wsw(29&TF9k{Dw{U|Dg5Yx+pC^nwzObTAoH0{|)ZWupQYP~8@?i))l7 zB=uHIP6Riot$_K*R~R;~9J3?`%svwUvZJuY8YT*jIoD5G&Z>fRO!*b~ErH2a?e>)* zTq1I9+KXSadvBOpe?P26rl9}YUfC}mE$37Ha;gk+bG2P3YNLDQUzYH z{nLFU3l9?k`>fHlm?7>eZguUlRpL@;C-Zw2(pk)?#iYPX_Qt(oITZroopR_iA%hlGE4`}%Ua zh}_Q`hhk9d_JhnZ?zgFd+Qsx2HFpZ>FxP(klA9W(kVgLWipL^UM%$zJInamTuUZvo zNU$J5t;f!4-Z%b-Xzpm3{>oqY>QtDhvUR4yycU_HN4=TC(_XdyFSzz=Lh>T3P zEw9?$+q6E?S3@+Djfch&g=}c{l<8E~4b%1(ARwyC7+5mV<{%?zln*S+!L#2QK9Dz& zI>1ez1bjRpt47=E^zFZ1r#j(gpDi(r16!=Wg1h?iPV7Esapr?k2@Ma^eC-#nf)Aw$sqo>*x73UAnv9l4Mp@c5QS#N()O6k9`P=E=sPxcvFCTu+^5&a% z^oUT)*J?+%XyiM^`Y^rVaFbUJ+7BFElFw1$>R|0B%!e*GDChU+X4feJTW}F8zlfVY z##y!;?>E<`SMkZ-CDm8v@8*HvRMS?y!Ba+jKC!D;C5`w>%-tJ)wHBXf8rA)oyh+jE zhDxHmitT+Z}w-_w3 zJq}tZ!D%z-`bM7GkeyUx69(7MUx$4B8WyNCIzQxBS;dDdOz&6cVyG>k%9W6;Z=Wm* z>91}hQ-Qvv@5<`(grs*q9toZW6Cx*~ZHTV;1%gWAyoatTn|079lY+%}fjgNSfwadx z>z>vn(iH-)-2GDFxY641c$fq?yC^^SVYno9Wy5Vba@&a5%$SKWxv#~Oo}WODNz`fV z?n^7v`L@m9NIi0d8p9k44?K6sY|*4D#~ezn z)UJ7x;_m8aTIZh>IN?PX0e%`c(Dy^tk5#2YIq6t`-jE~hBRSqqHkNLi4%HaO&_&?6 zVP=aqRXN7cVc@w5t)2z6Fdq;p{#1S-wHDKhcf4yY{Ma|3{fU^M#JFYn` zEvpt*U=chXX--FVJzh)0-56IImbi6IvBLMY$)|>vsfKOUc;(79x0Y-02<6c5*zKl{ zEwpZ0(z+&t!*p(e}O~bMxuEhcgJ%|3} z3RNpEDH4(+z2Hn-eeJe!V#{)zn)u`FH23DIOVTi! zW@=@!cvaZjC-GWQFq-@xp85t@0ryu`upgOLt$^<@TyzEMbHe zL;8DYtW_8_AdBg8cyw}5F3l2|5ry>CzekNo%++I{6nFDUVWArq{WJ#f?q_$%Z* zS3^c9SX*+;EDVp^^Cv4XCFb>mf%zPnCj^d1Jn7&Um{6}@qrzY@GN}zklc`6yoRIFH z-F+9s#W93>^G5J!AI8#ox~6Qllo%CTodnNBaT~^XS(y?&FTe$Jp+*(mx{y^**$1|f zt&aJ0{6sMIgy?OnrgqHc6jKd@>qDdrF#!XLti1Am)J2R^;oQ)30B;JW$4|Eb>(tTj z-5LoO3Ub|-6!#=PZXX|a-cWoisNAyJPPa=4b8v=7JKu_-!7L7N%HbHeF63E{tSiJc z8tbGD@gI-l6_Q&fpyV-9>Nt{d#=eOyCq2;%bLb{3gnVV*KVW)*B%(G!k*#yU5WpEz zp7r_o%PFU!{0XeN*qwVe>vd)NI(8fKujdki9@S!8X&s!l2{?HiLzrBrZ#G*98Cw-_ zwBlw-Pesth6Z$#lW$`P@4{!x}-9GoKj=#xPIOu#WAl5c_gy)$en+)ehz>fv7mr`T8 zTmMQjg@@x@<-6(*%Rr%fgO6I2vQ_#g*jExRlfbcCD!k7Ayhbwf7PqwmJI0bPJ%A2xo@nk}c z){=6BW~`@_0vfXE<cq5npn zVXqmv@2(7_?&k1yBJu^vk0vAF``h~PXP77J?lYX>g@*}SA8)WCgEHQ!w^e6gM14j5^wfny;UO?s zmgAn0hQn?I5HI8|jX#GtpZGg61BTRKU9cGQ@nfCHC8N6u)f8=;7(Nu%)8)qHa1i=S zFF~2U`$G%-@ZUyIOD-<^XiK)rHWcKn&Z0^&$EkOPa$J$2EusEy+bmuI9Eyo?bl^_@RYfR{{)fh^UPr}tNIhl6_T@xANwE%4 z=+3U4siD^IObD3mqntPBNRG=H1oe9;+D6fSDAWs+CWqCs!M|LbE8MzYY381+R^Vp&~Z>}<`+JJEF&6~|aGpwDBHu)#jjU{d05 zzYxax1uFihGrHR(A@?FNqN0~&kPBMdu!OC=rS<@erf3R!Y_99~J#0Q9cW9HA zLUH8Ne;9`Uw?Q%}3`61}URtZ)Ps|+knN#;N3b>iYSBN9&;Q>Ry@DW5=hJv?+EO#|AQ~S8_Ezu5EBA0~ zk`%^+_y=f&VkKYE?TaE>&{DNeRw6K^r74Ml=nFKZUC()=--qh~_kWpgR_KrAWH~jh z0PF8{@^YI2Qxbi0IOWd5lHGOu@kgf4nv>{vUEmQ1P68KE&89D zBxT4SD6oC2P)1VB75ad_O&tU#=IRDKQb5 zeSG+~Wcfll-~X|aIJv;;JY;_1>9Tse{x6TW*Uk*`r*u8`|FCNRUnK!fcxh?@xsF69 z2%gT5ODUr-huF3UC{wjliiEtCpvvX4*vq;GtYpJ|s}vB0 zsLY&P7}%`*?_Aseb{CQyd>>tu5mlrBd)M^K**ax^neJo|1sgciFNgDg&xDhc>#d8h zj1wJ5vyFpGvCxqKM(Fxd(V293sJs3+elfGRZla&U!IrQc=2_g?qk?BkvB&9nnpEa@{`h|jHUv{+X8!ev z6^z@5JLfSa%jZU>q=ESvaI|LC7nxpn{c(%?l@YeSh%Z*!XXOH36w8ugN^^CjEZrTl z5=_$l&F}p`)668=GVqI|v-Wh_cOGLwC*HzkS)C>gQIY+_L@9{elN2`@7t`%xRhvGO zy2-pakHv>c^zQS3yQK{IuUo?$leIu)7{JmE(UfvGQTBt5RaEndn^^AflLpJG@_tXy zKe)KRP6;$mqSp?KOT$&U!;{AN z#4p%y9N%KV(_*VLRhZ~^ci_Ldd5u29iOr}wW2T8&AciKwhRPH0r9dn`)Phw|IU6<$ zM;3X;%d@?73leSfAe}{Z>*xo9(e}7 z4Z!OSaCA$jD4!02STbnQr;=2dBp@J?{@$flN-(GbpjVj%IvYz|5>@g|PEmmrCa76x&Ps&S4T8*;TeqHkh0$uuD3L2iQ+M zOdsu+dHQ`P*d^VrzZ(2+T1izuj^iJm3AW!pZk>IvwES-0;H0kg5x?W~qm-ex|MojY z)D8Z5ylyEw*_+V5^993YXf4QjuTOIlGN$AOmY;>I!8oC!od)ayj$6hrsPMC}s$Y{> z5biJHa3}2Rcf^=CJqHkT`aYP{u=a#$W8jhy5Cg$%B9a`50k{Ob$W9=HbL0h?AE+xMTt^4#Vy*~cME3$`!(^qv=RX3e%oQ6ZR8e2vi<}U~!c226;!LB9!PoK#F zsVAPY3qryz2tSCs+0>?B9=H#|0W>kWDY0YDo7 z&**quTc4&|ryH#Yn2ROv#ye0$v)d!+MsYZ?jbyU!k%*J-fc@ez%pzq7EVuRxFRv`Ow|xs} zZJV@pyaKD>$sbSOUcbQotH7Y){1_%47%tSA{Ucn+#Pt_km~QE~B=MJv`Xh9piECD| zNf^nA@7#5OD5`7RLD|W{!V`05m6?`8)z4Vv`n#(O3g4ccZE5BOde>TGKDQW%b8q?- zz|(2Fmv_Uh@y(@YyN{>i{>W|;W^@0|L-Rv_v@QM1_1tCi?fK^2&Nb-d+Tf+Z1B@4* z+?}tjJx{&3KOH{r=kLikuM9&u06e`N@Ah|ghKq}f_ii#=GHf$U9~hd&b3Eq-yxP1v z%jF5nf$hAX{f?{EYbBw3bZTjipU()3B-_BL}e4|bVXXZe_a`T6n8FX`#wX=ON{BMC$s)jbfJy{<_4Z2V%` z*8Fn24<*l*!8N#zG^D4}UEI8u)Vz07;KRF9LLGYZ0G;sax$V}oe37Z>^tyg`ul%@l zd7>1k=dEVE(Z8|N`;d{Lcb(C^XFolBnbM#`al2rQdb_vhS7ku}CD5$BnR3eW%Olhz;Iyq9#T`+jvotvfw6xND4GV9aq3NJ==wES&H;p4i(3 zTWl(+dIVaH?QVUK@H`8v_1oi_(%ig`0Im5`mY}9c;0-xR&3D;S_SGf*usm{hN zyBB|%HIVq0wj<5cgi`F|#KpZa_dX|kspdZTB8SB6qBniTU6j9K2|hiP=U;9p|&0VA~U^D zpB?xs6iNV?NNlpFbX*w<812ZWSKMNwf5*!jzVX5KM7CTD(a>T*QLT*CLYyg35zUxl zNLD$yfK|abOS5fE(=QUz$L32$jS{TI_wu(jYm#i^6M9K?sNRnIL3ERhUTtORUDY|nh39+LnS=1E(PpEFNXPOm)}5ch zWTNJ_lE(HFZDQp#K2Bd#>rgta{8uJiZ8!S>{z4;WmXj6Yv$kG4o^*VPgnP8#KCZ)ac7H)a^LZLrJN_<(tyf$NTBL+YKB;ZcNL=%qnQ_*%NJ^*!+Ixx* zvdSq1vu4TfP{VD!U+uJjO$B8<=#fcDnGDVGi4KdR#oEaD^1Ar)a?zBg z{qYxDgT0{bbAW?0Z{zG>>7Za~#T>vP*hXmf|FHPt(YMQNb+qWznh-cY%OK5OU zd0;d#JC81MsiVNqBh6{j*d+?lc$VST!*LfYr47xW#U5Uj*DSny1F@~>O$y@rWLD2s+mz% zD&hj$`x1?#)G$;G*<9iHSgv=yFxBIV?uLoh+amV|BJS=ad_1wh3<(CgoFuUO8rpuX z9N|oDC_6>devFO|O=>BZXa=7E$3lq7_k|pM&NF`*Xn@RsHJaa{$f#{H2_FZnA=a7B z*wvm;O795w`y0mSM(Q-uXsuB2DwQ49hfJQnyMz5;kO$MZlKetnOYo7*b1HbV3B%Do>ep}dd z*9|~WgU`v|+F@0{>E)ji{I&eF=>iKAXZJ{P`!rjJ+u-PX1Zqj*9`L8@S5NQqear@b z7FSQ&h+e~*lb!x!b@ZWcaIq#OdNy$>G(208KgO!CY2u5nNM!GNwx^3ztXdRlPIfd~ z%{Ith?kOLytRH3bku#@FQCJa@`yQ!);$>JEi6p_fL$7=y9bmFk{6X;Hp!xofJE4d* z-*)wXDogmNurZGpRY<6VpWl~H;Ag>vKf9rFA?}7DTfUfM$|9`^md@kykUpw20a<)s zxKf0nVExsdN=80lDnG#=NN@Mby%z0B($uiIq0L0nfx*E>@BIjc79yrMzw>&}o7wiB zNq1QINp?85#v{9sJpk75o3s`O^cAsA(>Ti;AO1&5VD3qVam^26E8+P_lf+hOY>#6P zHB)+^3<5ryR16?D(1ETv3Oh0a5K#JegDVgAvbRqJZ0yW2L#NFxw44Q?uj zpr+WZ*e(Dk(CXUF>X9u-IZ zz04Vz%0eQK4JanB*U->Z%&(|W#Hcw!v^lLA)u1-C7rl?ddVBF8XfS4_DpeXTYPpURbNYtoF%m0SQ1x~A?FW$96{wYoUk9+hQtg(^_+iO(uVcD;IQ zo^vj7eaJkQB0F#{XtY?`>Oax|1ULpH_s_xZhQ7dp&*Ny7Mdlc!mwl1eE>1?YpDV3y z*10lk6z=qo9d61hBVc*4QnKY~&sflGza>*dz zXRlHwS~3JBRdr~PeDX|ihl}ItparrRV#DdLamrjL(XV`v*Ldkik#T+zGgM(1ttM?; z<(K{y9y-d6sz=Rcdm$+$@-^)yN2vbTLUIwBCC6Dm->uQ%5xxZLZy|t?I5|nU$q(7If?j9?|QB4YuA3ak7?L2m>%6II+y%=tYuI4X zuX#GHUcAC}JcH%I^y6Bs`S=ci-Z+AJH+IQHd-)!F0x!QHctDXCc$aXb=K}P$;S|{ zW_+=q;I%8hT1f-C9FX=5MRcSHa$x=v$D}&7_H2%#)A-Dx2Ith9m&8?pZYTt{s8hCR zs~ia4IS&A4e9xf5zKs85j(Lob_=LcC9Q296Anm5YFB)ICUjX3GJ`BbSvT0<38Bc_f zVAq9F8*_pQ9TURC)nRBw*6YGDbAwNo$3fOWsFhjqw0E<%A)kHsh%r9c+g#Dgm9)5> z1p|i4_Q`?-r;5}Q7$6j|V+l#%FxjZT!W3irLHug*=+*uDkkECBSnRdBWy<8YHT zN2_`)D8F1TCm(E+3icHbz1$RWcOz-#j@7-{@5k+2XTZbxGHByulNhOg#K5}(6Vg6@ zoQwsLBc6?ENu$x^mqpctR4jm#U(GHWQtmVvV<;|vv=*B4*VHDF_@m_-zcUP)3cgazi5UyON^MZ07TFvJtV)G+gjf$uw?9nE|U zC_E7x)?m-8bSzU#%FF^5(-+g_F>?yCFwGADDs)R$dd*}w7cqt6)%wf-b6j+cjc~5h z9wQk0&YL3W%t_S*y@%$0Wu{xK|@ST^loSGL+=l61BSytJ=I1yPv$fP`$y&li>8~qnm@6 z*G9Vr*B(dGF+VK5tebncjyHXpH|oncggF^xu+9Rz;@>|Jwi;6vvNfRGN2b|qLI2%ncC|JmXUV>WILB!Bj z*z6F*-&ini=5LbE8-}Wj#wNK(#{Ai(fskMCq^QLg{$}{oI*|m)N31#r*HAb9`XQ*O zDr|O*t{hxa+PD0k`#E((Wm55&$u!6gmoJ!xs(UBIWSfdabg|SBLvn*n zRssZRul$pFs8Z49W1^zwxir47u(51*rjE8^*Bx-rR~_;Y3q|B~@0^V)vvF+Xz$~4= zhSVNoA~qZl+s?R@&v9v7*Qg-H41eV$4li6)`&qT|`(*_h40$*yNdIHUuJ!^Nr86<9 zW)p|df{_m!$wEas3@%lLP3)mmsy6TC9>g5C#TWn4MlqPi8CPm>YBGyAC^yd_OAYmoyw9}^ik z&gk;pV(It4OBb1{=%Chx=SdrGW^%xNnmE9c34j2^YRZMqHgkK{)4xyOL-j1(>j-pkOwmv#{dJ-D!k?(49AipuyS_{5W zcP?UiXeDZ1kh?`eldUlkNL3?HsdV3heVgzo&D^HyQWthm16fLLDKZJM6jX7miJv2wAP5hnW49V zeM;b{v1bB_s_nXI-Z$r8zas|xKZLzySX@cFwoMW|IKkcB2`+;>1eYMeCAd4m-Q8V+ zyGw8j?(XjH@GbJp-h1Ym$@~4O<7m38)~dUz?yA*&ah)<2!q;wx!aZKy0uFZN0noWJ zQ;s9+KgTPoP;-!bzP z*(A%@WLnOSYgWQ*)}f-b8K?h_+su#q-Rw>_oKJ_n2|EpL@j&VMd_PKZd`v7{&pBi* z#jM;`wNWf=Y3$SRJ_iipz6#YYe*$zgd0bQIek*<6lk~jm3{iu&hKad<%b0cCleF_p z_`D4FI{%F6_({2&wVGP6X0e@BfA`Ayzdy^{rPC&PhAd(A!w!9`AFD~xXJQ)+J&tTi zND4H-N8JHxzn@L4joLcf1db&Ca;&^lI65c^%yujptLfZa=vSS7R!y@EckK9>EZsUT z*0S5(n8B_3ATQFuoQ~VZ@h^uQ)EYX2vnv92hG}!S{=i|!*QfJ-RUV7*+vbnRC4$tc zs4eIUZ3L6T1=A8#-(zDHOh{r?#kQ2>d}9@iNfcGZrdnc*^mG(!fSm*x=4`@*eXz$S zE`1v7u{xWLroo^dH*ilx!w6LhGu&x8`*%D1hkPLbmIxfOl805(gj|V!FsCw(=#VcB zymvEpaK&85Rfst`75OP5A)uL%qRjt;USYr2x^5-P*Rn$$f(A!dH3V$@*% z=*g#091illTef89dl4AEeCwYw-0}pVo7z;{$WTm!-?1iJe%L}r`9GAv z_XqMXVn-nhOeqc4XvG=Bxiw%^WIo_=1uydsz8@1E)E2|i&2RrYPF6cQV=wi7XK64m zm&s&@P?u6Q5Ie;0V~ggn-ud(SJ4r^3pSnF8gNcWN&r^YyjWT$31XWd|}xHY=}t6Bal$ThP?}1T0-9jpI3`(KQyi?1#P4f`=QIaI8j9&Bj4)A z8iFT*a9k0=!NN=#LJX@ahXt^S)uXJuFl6(@Y)^iIn$L1%A_y1oKt$l;F#9ZAHZT(z zY#(V}0G5094bpO4M862)W76uS8={~ONXRj{W!JzUc~;|y$NX~$jt1~}D)-0h8uy{6P#=FaRzWcj=Qx>F(sknk3ojr_dQK}`AX^aK!|t;V(cpjhuXHice-C{3zS+1Xy{UJ z89KA=X}5j9x^BqLN#*lzJ4B%pv2#{g@|3(W}Z zq~3eIF}icPVsDq&0WEyf58C)7vvkT-X!Gyb@mI$Bf(eTSp;Ue>vus3LVHAfH6T6~V zNs6r4ICV&S#-2ttv?@|9A@$$c<5EDPDKRLHB6Z$SR+P)1Nh!`zl2(dBOhtgP7LZ|_ z3+nqjM!f`T0ikv(L~&dY>Y-44KkkqWNP|q2V&D*<-ix2aNIxSs{2i11Q5)cjCRKXFn~3zI-0_r6VMX7T5YE(uWoJ97OMD*Jgzg+waux|7x=+T z?e9Y4C;u@6eE#gSf*|?StcMDkiM3ad3lLxS?5Ir)9HNHSI)vYbb(j&+M`O05KWMiY zl%E2269ZPmJ$jjcHt4@lxPL||C?d`~dpdh`oMW^fP!*~{2wMw;<4?aK{4e4+DewTO z#H55c&SBY1NKFGmPzM4!{+2!pi?X8{y7)H%6{3F+0>>a?IgqIJ1CoXYBsJxbCKFOX zHDuFIoDdb{H`fsJNC3mHt_HCM22Je!4^i_1Vx2emzX@m;H3-|+{l_ppV-U!OH~2B& z-y#=3iFASd@vpPBXMY!-3B)H3{G0UfuIM<(>-`6!gZ$?9NuIR9zm1NA0Fj9$h6N!4 zMmFHhx8F@qRd5hj-|{&~Yq{JtaF7jTUk!KpScCf7o2q}GppikJJQX|dbhLD7zgkz) zzjoIm61aW!mCum>vQU48Uu+yCqnMd3Zs)MZb6zYTE}LU25||ZXIc8soStrN7DDQG2 zMM^*o{)J)vO7Ar-!YIn-r7py;tj78k)u#4eQDyyIR4@I7P*x*ko6@?>pwA`BgK69P zV+4OUg~abWv!DqjlKIKVT;zz&pn*7%Att~5&3zCX$lvGeIz?8c>If_8XX|}yGl{al-M=;8_1XTExsaf zeFFWc8txOz{4fxL|3#<%GaC`+tgSiR;(Hy&wb4kGo$3YEn?mFET4oBbg3!YXN)Mv+v?Zljz)(mH^~HE-jAnw?@G}hE^y4SvVE*T- zORO}`OwXkwOKqk8+{mmBET7ClGag`MM*~|W|CuH8Ox1P`_j<(gv4Z*IA+ppRtT)bF z_-6mL6Y?xHt2Wik2VIk*Xg)N*IbL{iib%9bOTt?JzL9#H>H(mUW7OX_f>r&;O{{mC zqv>>84|}TG&@^(7S2>9`RmVRLB|rx(y{8T2E%UCcMFX~l{v~ZCQzWAO?{rAs&z~&j4E*qs0FGW#a?r8_B`C{3>8q^-s9@3uD?$sXE9@L)H4nVfw2r<9~ zg()&5sX+#f`H%}|mC*<2Fq6oJkP0#+A#@w@f5?XV%Zm-rARTN4v?3kmE9hVE2)@$> zJ|&)oE(KI0_|*jRUtaV;nFgQj-%Xg`R5rUcxINro9Pe$Izp8**9ot^+5QSl|DL!_f z4b5PdMc>9^sxVw!qwU6kQVg9LGJ=}XC@d=O^MD@{le>!9MOXP@5rWT#8caWwoHov@Qdk91f=`ub z7;wKw%PvNAZeNDb4^;sH-tn_Z%FQTVqtgc(VmqC!TEi3+h>k(HX(x4z^ZHs&1zeVA z7W${$r|DUbf!Fe?@3l1PeJxkIUrWobG7o==X(9VVY-9GLJ*+sUpP$ktM~ z|I+dCo&L*ne(=am+sAPF)}#1^@TRMyiQb3aonZeZ2ubh@jLFjchj0@a`HK@k`?ak# z`r@(J)_ll&u)+gK+3aQZS)4sYo0(VFuIZXT8fN3>{L7uQMJ+FnkUk|m0BZe(tn zdgG64S`X7tn{VjqSBf5*SmR~7H72m&k8%9F}-rwyrPYUz%=5RxDZ0&v}!z zQasGv)t}2<8k+#Zv8j7-Qd`kA=vHv|^I7K;j=8hP!|A*EB`Msx37vh(7(JG@oidm0!aAKzD;Hgts%$E1 za<*@kETC>ICRe=_Eu4A0XAg8(<|2-2+BX^Gak6}~IW*&@w|><2_`G$tKht?J2-wvv z)l{iyYT*DTgeQ1u?#>QRH*L8q-80H`Wezeo4&lA|olOV4aCCrK;d9$dU0oYax`+Fn zD_gTBU&q8?)4@ntnbykUVzcX`>#g-oC7U}pSLWu#+1=n0)$`rs#L(c(PUn)F%~*Ud zmO}%KMe8Crmqs1ZGS@;MoBRFc=~+3C`{UN&+FlLHxvOKdOZP>atNZQ!xWvQxnD8PX zp-cC;yI<w5DeHG)Co3#hr#m}07Fs9n>Nt4eBg$n3?29H&ZWqr-L!VqwAGC>#FG%-vR1AF`}cNBPs@+bB`vX>4O4>$c;de9*qT~yk6T+; zx4AC3`N&hyR-6R4OHgM~zEzT3SM_m>pX7(UR~^VY#V&(AxSE^u;P>rDctTd7I!>e! zaF@>sPV3FgR#Bh2FNLVnyZ62dKjnIqY<1k=cwjVUS)1x#f83HRq~ywE{+#HR%dT6( z{`@kN46lgcd`50NA4bL@%bjhOAl0kB(gHX#KDa&}K@(vqoSk1uhei)$p-J(7bVNg1 zxMs8UM5e)&(tx_l$XRXNy@!r(%jkT*Uxr#6$sdR%cIxA!faJ>e%cs!wm>`&) zpWPwYBfpgI@osGv;bdz+)>%W2IJQwA7^LI*4N2{fClX@df`Q zF7p;irM7jPQ9x1J$JUE^9~N$A`_@UHzZw;~h<-+`4?{n#veMV8OAuU-67H`23>pWZ$ z*w8JNGScP$4y8{Tll)1WKNm`oRN-b+a&XU>iN-K4Z;yYDX}a;#rV^Ul#})fe%o@{v zt%p6_gT`osgSqNKLx?OkKDJ>ILx|_>{0t)GJCIY@na5BnI+6zLx(F57M+U}f@_$@Z zSwII-C-FlB=HX9A7Nu=vQn)(5knMn*$5^y#_^x!|R6b6FJw-DXl#jxwdmxfZ@6tVy zLw3)*mh>A_0v5CvYtM~WBgNUQu{vDLxG0PICC8O4$4GvByR=bk>a^Uwh!Va-{Vvtk zV^F6Vr;=UmgkoMltmuat*7@YI2t1K{J*yz&D^5rpF}0|Rn5YOm?^T&S3VAox=9)s zgNqXe#S?2Uwt8Q6gTva49}D^KOR3S{pofQZ-aIakLZAVnBsQ~;9|I>R)J>K=>8a2V zb|S-4^k?<(|h9E$u|GVuv`huIrI(9)7#LcB>s_`Si>-fz}UCYgo%Ge2iKBe((p>dRMQ8 zt9EoQfbCtxN8b|hN*8M-}Owc>6Y1=5}M@HhI|IlF%^nRy#*H=#S9+thDJy&%0?u-Kxnilc>i-jfj$GznRri z?Lq`GAseukX$)!vUuiSP71VTj%D^^wNNReW^o)?-2-RD5J?q7#m0=~lS&XXotl$TMH^Ef+R93sHb7V}^{s|S$3n|mq z%#C*WsrpQyhUBWs2nnN3%AA-OeY7L`KwRX3F3Kvpgjx}+8ttbu+!U!ny@sw^@(m@W zk+&Hn;dDi~B#QK=CX%OZ3+)*`6VuDbsf5=X zNrolR?yrUBxrz7ilLxXXZ96&lHj)2WO=$OCz(u}pzSM`SF5UR92w55XnA{T|$lH2X zdPEi)ZgUs{r|$L!TMlYo0b6JPBZuydWFB17V_6My1`{P52ayur(7MlZy_JgzYgk2V zSj?LM7m;z8^<~aZIS)>%%x%I?Jv=O=0)7g=zqB*{G1epsXYIf-2lE+zg zwVxm|9~aq80Vb%(bNX8L()Wa3d;JBUB@!Ion@LhcK_SGcL*NBLlbui-7HZcg6%9~Y~Duz3! z% z^`G}tJ6X+BLGiP@B?wudF`hDvh72zj8!AbMT!kR{wnGo}W`w@M+z@B_qiMj*!T#GZ zo);X7)II`uo27X~ZPeTN^E=O3Vd%HTOz!{_Nzl>}_%0=j%@Nox7CHLBVHn^AsQ>Yt z=d3tnbL|d%EM{oLm>`;Z4-#2h#7Fs<=zFgDuU&jf3%I)EtUDd(e1yf?0Qh zC;nmk=&xgTM&y@FqmQUO$|dvpv3??BulZc8pgI!Y|MQ_RV&u5z^p<^}8#mJ{KG-&o zE16=%a3DDG+&Zs0iK5K^)k?4z8`kh0U?m83D6Ja}yzU~!f-<0rkd5-3u6=7fS!y`I z%Cxm7>BJ(RHfX&TK_l3(c%m?@t~I2t1;4fPnGY{9IT5m;nyKUqCRMTp7_rj!wI`t& za(YwD_VACd$!}7Kg*&P;zI0PkVDX7XD1HH+r|}9}5VPJ!ML|*YdC;>ptoo1w^fDiz zY{vw-)+obfITAc@RR}prZc86sxxBfQbqvmNM_UUd(;34M<4N<@*ocDE`A_pc8+j$5 zPHNUYyT)X3?+t@lJEiK&HvebZUUpaH5rFplHa#>a3;=BfBrXrf#{GyJpM}mUn~ly6 zUdGL9&$+v%2ahIAPJg=w*<@DxRhJ|2a6$D-#b@g%aq*>w#6q`Ug2pM4gsyHAC9Ziq zN?G-M-_ya}eopP&{(`H8Tk0L&#Ze$A&*Ji3(Zga$O~9<_xZs<7m&qCL4EyUJ*u;{y zeE1jP?(i!qZnkf+H}7ez?_i=nLB5sL#JEOE@h0GEYO&_I5L%+4pcif=Q zU=0jjyx3oSlgKfnOK2yZv|i*nlRNw*!}>Ta1OwKP0=Y{V<`r=KvcFW?*Qw$chPCPl zb!f?_79SA2*C7cX8O+TF3xP|>mN~s+4vyEuFT{m7$M1^yj5~)ka*S@wqC!Ml;;Oc< zjto(ek^A#nN`|-W+`yI*NpK#C*;Wrtmu`eH4uV-vNiM?Gi~8%xS;W_OZ75y~m2(Tt z;RF2w5j^%@eeWaU4&TFmP#W=aTzk96EXwk!VI8iS**dA#Dei~BG25cWfQO$F0jh3E znv8kR-abnZDvxyp!j*R?r66U|s5N(U_^y9euZ7H+p5GOh%!xmvob|IhG!mSZDjVom zgw8*9oub_Xp0o=4@tK3;AkvLj;HSVpn)-Tug{9?~Z2O6Vacq3(ZDJ#&-lc>Ihv~Fv z*C~I)uf~lX?CzBUGZM_TD1R+*)UNL?S_O-fiK<5_GZ9db#y(0S5+m^d@}-4HJWH*;F4va4+S1O2BC`C z6?uRx9YS7Mc31c#0+e-!tlE4FLgNLJUm6zSno#HhW7(9nct8t|=ysPUN?*kL2pD3* zY44bZQZ}q-qcFDF)F@Va)fOsByfV84L7XjJ$-tI)mAa{|zMB0qGp4AOvPo)R(0mm$ zY`!35VafcHKv5G->d47MqI~d+_twZ;A+swN3d({%a~kl}*rjug4Z7rS)Cl{b_x#XX z5NQH*jn&OAcjCA!#0Z6uayT5IUIfC}Yem1PA;YrPM0t(9y&EyX6sJ!lD9CQJHz4Wi z>?&l*C7gq$Vvc1aby@EpkoV@l;qRmD#>FWXLEyHESSBXB1GMDy6m$v$kWuzrIcew= zO1ZHg&>%i#9)QjUdmfd}LVdXuOlIXzmP?Kh@QFR+=_`!H*zT1Y>D^pcz@&a>!AMbPhKhJUkMun%A*DwQ(MF&uM^(ohviy(OXM2r=2DYm> zi$cHbTHV#rmOQ$&Ml3n1NTdQ%efWOv$do{qe2eMBYa?mr_UeEi%%u)-=#P=O0UryO z-^p<@sB97n$qp6Ga(KNP+f=fWpimjfgwVG52<~A^l*k^t5O~%CHo1!5jle{$bj%o7 zRgUa^#h6EMDWa#^+ZxPmpc86xC#S+MblbjdhoWnzli06MK`NMo)}RMRt<#)Hq|A4P zZ;&UEw%%{I&n1(LJryZ~W-Ep?X+qp*2|oROT!j5J?|MBeF+75El`wJ%>re>(JA+9Z ztla7(NVsTu0*;+_js(YU)V{W2yuv~$ruSLb(wCZh+*(f^3$j`ad}Bds1(}s%_FqE5s(;d1C?OQle z0wv_y3Ul(qF2{rgh4TvWr60qLoeOI7f$iWT)X5cFNYbFO+W4ufC9N{^p+;b#Nk}Ra zY+3J`_{+Dun`pL7>>QIC;EXY}xJXVWv7KaH$B53lagl9uxGF6_o>sFXQIsdh#`Sq9 z`bS<4Dx%Zi!iZ2)exd&IA-c4thBm}j)YRLQtx!N`M21!5ylE{4wm67rRyb457&F-c zcnFxj>@#10vyRaQ?Nkm7K{}M-6Ru4meptolzJ3=zXMZR(EjBP%`HCVBx=6nw0oArPAYa!?(yTiC+m@ zuC}(xsydjIjSV^1!`J@QG2?nhcR7__$&X&N$Im&|KJD2ISYn?IItj{EFd+kHL5))I z$2+u(kIq(d8V~7qvG=FeHs-kt%*E+OF>;Ed4x z-7`c)1==$oqm?*zB7plH+lfG;S&wH^aW%tqAP>6 z{4&KF%X?Eg;x*fF--$J^F|2Wu47=|L=ROUI=R=ZC9P(*@N977M7(p;1o&bhp5P$_C zH%$o70$g9(PhqcW)m7B^ql^{Z8N5p3l8B3~MOe_|24NmmFqj}_B zfD^r4$X>H>D!(?#sB!+#*?sSNw(V-=+{(tOmGW2j!B5nabf^{!fXQ8WlYDc<=l%T| z{-vsYvP|=`a3zyD_;KxOOrwd7irfniv+jA73OOnzgYE(LK{l)M^3B+|=7A_>c&@P^ zA2b6OFGFe4c%0N-W6$|HC1!Aw{6IxUQjZ1EDYuy-+~8^hJ#rnh{sonDx&Ja6bY4wO zH>-_nUgDC$i>tQWF!d%}6L!V_A$jlPi?2+^T_Uw0XsSjlL(J!h%-R{M2IZ%krxo6p z%3M#(XP_5|wJOP^!LN<5$pCSVxW%LZ&c`LdjnH*VNU7@*WcX8#i-kpuWFpDCth;$T zNuU#zp$s?rnQM;|-SJ37JZH?h)zPMvjaw@vm2P+h4Q(fQ@S=O_ZrzzY4FitasmUp= z)Pv>+W042amorZ4=^faHOr5EVMr3Z?>^Hj*^o7XaQ&u)l;V>@dK3p5#AEVFr)X6oz z0S6bfn+wEb!GZ96YgEgO_gpMGhX}6qc|sW@=RL6`Ww?&c5>aIIW-@18jgAgMtYK`< z661vLs%QcQ!5^173wJ8e?N5Gu-2uaJMefd;2hO1KveYvc0H~RE5N-Y0*VS2!-0=7l zfLRu}TMXz(9b-H&ci>;%ED&qKQQr)?4rFTV?Fu0r5!HZgHW!x7G_4slxMffiKJmn% zjp&_8AlwQJp~wud^Y2H<{1BZX-P<9n$fgVdC%qXmP|@XRX;*-1FG$1=mz*{9M7~K7 zzu)&0WK67#9Zj`OfQ0tj3$7t2L3L1c>f4kIZ1Yy+SXFrCfHmO|Z(s%7J(Vv}EC(`q zJq0(Hz<#DxPpCtQbk|)QzmPt(J=E{CloL@TD&FbPPAeFC+?SL#F0%mD0>iV_&xxu~ z$Jd575x|GBDi&nvmpo0jz{HpRTF+lVi{{#O7{Vv+VQAXHDxJZimF=-Y;&m^26iXwC z7MSyMj|yXt`3hglLaWE10GX@vG;L?Eb5=-GJ>AjDMG~(EVG_-6{Kvs!`M8>v1V1{F zSVoavu7NJX#8Yb}Up~KP2$w((-3IYzJrZ`KCPqt=+rBUS&Yg~d*o*f~MXPD|>cor> zTb6n9A+>UF4yO96)s8-wih~yE@&HQ)VN0sElUa@G=e5bP=f3ARCFT;R28dfAr-VMe-#;hiY7x`e%oUD~oZA6bWAAn~ z>8#%uioc>Rxtn`$e=c~kx@%kJ>pFL9Y$jaQ;4nAh4-r6=q)IKHe!hV_R}G;v15ctd zl>XF-d%a~M<3qXfYaaqUXWQUw`c*v0$}ApyAZ z05+mu)vHnszcw>1MqQ-cFJx?iQNp@&RQH))LRl1Fp3UO|2wU;L85aUZJ%CLVcde;4 zt(}lj&p|OEN0q4(A`RgBR?R&6ed@H(F&nV65^(%mpQOrvK@4xu<$Vm6hbXhEXbe!s z&T|Mu0-Wj3g@qCTDy`h#opwII+SZ*gB`FHlp{6Mc4g!`)*my->HbViUC)l;z zzx&+Pz9L#zbR`kz*FBUFml!Sob5kMPYgqN$qk1}69THG~L+kwl#hdt%Kt`5R?smLYPMYa?Jz~w21ZcC za3+++?k|Sz-_5>$F>D`jb%W~reBhc!Z-Bv&|BPP2m*qs4@So;j~)F8bM(2_LW5obxxb74c%>2_C@4*2yv@~F zeEiHt{Nw4VJhE!SnUG(cl0$E_IJ7>#X$MxUV6pk{1|*8MvQa>ysOh!muK-+1FO{X= zj)iE^XFC`a`nLKi70gWn*1j!6Wo6{$0wSFVZu8)UT{rVIc(X zl;8Iq=6rM<|Kzprd;o1V=#^&syS}4gY~Bi+BTuD%#z|8 zeQMy{xcg{BTj*z|9pS*0Eh75L*L8lS8~<*y=I|{SJ4Y(p?s1jYihO@}yUig1{MR)x zU?^@eIcBs2zfASJu!hlAP7z6bZg~xB?fq+5XZL>_R&~9i4K}eR-1h9%%<3slr}@iQ zAn$J{NY?6p)3uTSa=4esIPS^jUJ(8@+i$}(j{D+apG3|Y92@26qi*i4W_NB&f(USU zf73j%LD9w~*VUZYAlK)}+=}J1%|$}^7BwlyjYa+tyWe#;ik5NuOwqAvxg&cgl6jib z$=QOShvT<5g@$qPtL?XT_Tz~%O~s_Zny~HRD8-3y`Q0j&?-J^1yf+8~eEcvLtAhTM z1SXc0DQb8AeTE1k-U^O^^*DF3$R+8oGZ|v!n*i70gM9^q{_70UHK`}JFRe|Denx;g zSvBj8eiywsU7G|<*-MJ!XwSgkMJyor(CR9XIS(>h#FnK7Jz+CGNIA86?_1SBHkS8?cH3|U{;I)l=w9O)I{^!o&b>tHAeU0!d_UBb24}{~eg)lM{ zf{|VoDIoiEd{vkC3C!J`|EuBcpZiA72P;`yu5HvhE{2!d*O~Zz6j-eR!|T%@v~^x} zaeuMy`$aK+&9~|?(WNX6Q5gJbd9Dj*Knne~0!-hms=|*#2`b{HLy&R*2ipDLZQ#|m zuTTtyfbpvZCy>@L3}3@$t5lN*iTo-qZ2vz*@#{|b+8>H_!Xl1srJ6;%|6Jt@fV~BB z&(!~8ktp^8m|U%th9e+9=)vfAV4?68oBU=*1`tLC7w`L()RO4_OuG$7LQJkda+E_1 zl+;f?1s8fn)BiKfI1|?ug}c>m%Y2=rv9wA&bvPphwtM=i0F|DMh5275^B&+Hj5aqY zW=J;}M~j2@`tb%>gAObzx9S>*aLV7*0L=R80*xC0itWEokXN%llIcS;9kp00uM)u0 zPvswnf>gkW&mr*2DLFxDHR#K$UEkk-PkP;YejR6YXqHLyrfLailK{x?Ki3J+0jq4g zomQ(+B~TfB(#y6M&@GxczI(g^_HJqZA~TTRR_X2YClg$F@0R3VhLDG-9j|0%Xv zCgdx^mM)2-yickM)bfW&fM(0;`!y|gRcejO0QhqPJK)1NkBd#V!tAHCwyZt#N6{%O z{ZJ+x@RdXq1+0u&Hs^-ol$` z5a?MRH{_@5G!P4KfmF+(A-14akB7VPGXI@k|NL|Pp2=SLsKc|srww3+}4KM#zIb= zj~8Ax8?pFuaItp$d|Lbr#`HXKc02#_?&SNXyNBb`*1^;aXY=L_{EL&LL+Ho8v%9s^ z%lVe+nGL42n>CahmkZ06m2;4Z*XkHr5x* zXOWA8d;iXhr=^J{yNj}dyDF0roHjL_bRO=-jXZdVa0?4zZ3~Obg~dmE*XM@Bt5 zf7ij;>f9j`lYxNX&HP>m$NC>`?^m0Ro+v;EmjLMC4yDyyWD|-D($fy!GGG{Zvd4P1)qOE|w9~ZU-#g;Z8sCPKM)&drNa*Tj+PHY0 zZXeGq9UH#+i~zNHTbo^-?Ch={pEuSfjxN^E2G^LxdANAo8r|B{Wq8%OJ)Afemp`Jp zIoDgq51#H%96jv}Ds>c*VPS;h@hr9hG~Jb#OTeo?7vwo(L&*Mb$4xidVX{ARJ5_uI#ZbpXyE{lF1SL0e8L0Ki&0K%5d>;(`hw7+0;*+pYIpGusKdObNF+8o4D;Bg8kZ=L`z&;9dt>7@^h zaPa;&g@knGXB#`6`==nzN9}K)wQMXN=XsL=H@)p!jB(*LRv9!0fA~6H?&j60XD5%F z^RprS=70@)>vi(_Nna0_M-tw}m(w#a0DQvMzv(@%6#Kk?Tz9p0$6XzouU@|owam-2 z8hduqo$sPw^J)61Y-mJl{&Pe2XYRJgy#0>w&cWatUhXz7_x-fqJ;56OMQKQPd;YgC zt`r4D+p?!s(MWWzD`)YU!F9E+AKH+;(o-WW5kcK&Cl^(EZv0=(^c0u-|1{InOxtOY z7>R_}r$G2P2iY|u{e{_$U4p&7Fw#5SV<0%I%w%&de|ilOMUCgnI8@ij^BV}FXPm-M zu$4861&1#m)EGv7Tc0v8-lZz2UH0L%>ImZ@=CJ z!&ul(#mr;OHvV8Cexa@`9oM7bhvhpQE{_I9@A!)W-!MhqO@5sPsY~vO$S_Fm2&8jq zv39!xJoV=g_sg9+>C^jtL%WSInV$g7dTl? ztag~W2NwwTn8C<^A5?T3uYXg35qIc6>Q4pc+U)VNaiz=IRb`L(BWb~06pF9&52k|} zRNqn~G#X>aOht%S1HH_Qj|A-INK*P1rh>UFIY0ek9Efcfvf*s+MZq=#O0%jX8O z^ZFAurPD+d#%g0XXc>B7;AupgJadMQ%V;)xhsHBxZva8t0;;u_w%)BvuehK6B|I#w z@M-FwsNc(2qK!85iZ64tYCXcC4%H`9C>S=Emg)?egeCD+J~gGxUmbU9pv;(=t4IH? zp!>+2$O$OuP->G{_9A~N=<32)81pQoUgdM}$oIoO&&K>G%QXqeA&s2}VeuhNeNYzT zLWNTk^}$^1BA@j1rJ`%eDX*OIujD~tVZ*CgGDD&MKDZ^B7=vTg7=wwqQnsG@=`FM$ z8m4?pw-4ZgdTdrkZ28bJ5Ti>R`|4Djqr7YiEpZR|84LqA zWKLNsVO_Ni>X?bOW|TN2V$%X|AJ{xRd9uqSV| zQteW#`uCS;zf^SrT|cVQ`iz$!H;yLOjw|i@OR|+?brxC8ng35!S8o~3rrvS29^lls zz00lEV8rb>+7-Mm6hX|l%7%_7@^R%SwA?RUU3&-ApSrqY8%8REH#{mm@acP#RR59H z359&$e3jM3UTLa8oe{FC3jQgp>%SBeFPeeU#XIJixr&S2fGFJ!!My5to81%915Pg| zz3Nh0cS=zs@B7Y?B(2$eGJ<9jsbu>DdynuN!%WOCb0+eyrB+fNBzO#M_E} z;p@t)=_BER!N!+zTOUlfP4InFmjm$&O9rp?<4@uhWCoVA$A(R^V8;eYLe`FuHx5C9 zTAF?LvWQHqqFh&~f!>KR=s~%z4r`Pm#V6DnC`yr6s$#8emRZE&pSaOaxRqJ%8+T;< zRQ7x`sUgmc)|$C`kky*UxFo8S!YmnSdJ3GZWe;rOY>Q1EVq<#p>_aGH?H4tQj@Z3DRh2Rt2(i4 zbBHe9#XRJMymnmT>Vu=JA=JAcLK0|9Fbrb@xvu(g5l8LJo%H;WYV}ZHyn?sXfWVGn zfrKkTUp2u<6S^Hu-& zfZ!Gv{EUKI`6J<4+9v{TS_GnqZ5L)~u+GES+)J!y^HpevjmM3(s1|l0RyJvHpEC|I zvFZEt$YMJN<>OvVN;y0poD(xCEe>ex*k;rvG3loy^_=+($Vl4DeXywvR5)QwvRIja1CRsbQNg#W~dtK|US@|0aW^-poQem+!S%dzjF|NVu?}Vh+ zM-w3*HHxV7^43DL@ny-mXSqwhrkiYUki35>Jo~bdUe;=yEWa^_J72s(-2vj>2bzcG zkA57=QgmWbP$+h#&iQ7(cs*lCXM0LAU^f)Y@Mg1zA@4a-tz&&TGUUKC&w|)2rys6E zz2DcuX^&*rbP>d!v}Nmi>IX@v^}gO1di&9&=-C7+oD!ewnq<`7FH?bmZM;q`;Q;rIaP?gm8xk>PFj zk;*}zw*$U)r0>o{+K#}^gyHuGXGALay>p(9=*;3&k`v(z>g38G<2lwX+P5r;G<&Oa z)fBrPVRT?GB8YfzxH?z`8{6bj@t^ zh-siG*FT(iIf`doGI+B}EGmMvXKgbh`^)!N|`w(ltpDh_*Z@ zO2*O2iFtFJC9X!>OF^mlV@l<%ep-!{oEA(CuEvY!ealkLbag4f{d1{dJ%iK#F3Uwk zd0E2$=E+vsUBQ{EEEPxFdvLE5fP8b##4d6#?3bIT-gB{%oF z3W6pQJ8=TAzJZFx2p4K-c3u?OFzYe37CwFPJ58rL!~vj*ROx}R{r#F7JCAoI2ekBJ z$^=EA(PoZ8K3NCPs@n!Cacg!GuZe7ie#z>aTdg*WDWb^CY*+toztCP`{u##f-tWeW zu@k9fJgzbzdoar3*HDEijVwS0$~JL4v!w}Zzr;bx-c-|Si!gt`lDsp><4UC%F&MZ= zJlDx7&vHstgblyQnn_ZIo@ZhenB0okNqKy6&2}&y|bKP?Oz- zKG;zHw5@8Gm7cL&HSkt;b=xv zP@*3=TEzSni^8h%Q=){#CN6=0e=st}B-iu$z|#!(d&YzaOFRzR>z;;ZBptnX70%h9 zkzZ~HBIJDO@kz573jpr#^0<~Gfpp{_;9|QCqKbf7sxgU>S&2evZJ$85k7(fs4wG0n zTL%qgI>g#(f|iN!CG_taxUSi+>Dv&|Oo{8_8ePWV<@32Y^GM~;K)}>qr@5%gfW9_G zwJJvZzLUmswTbZTM#7i;Tx)g02JQgcWT6npv7E;5D)(|nzAE0ePza|Z7lAele1 z`VjPLBy-y{(eXvmfa4jBD>uRGxjHksS?_t94VQd_M{NRGO|Xx66Z-RkNRRS3xnb^|8r}$X z=Np+}Jxz19wDwCp-fJtcEG{k;L$*BK>dd!a9oy*G?AW$# zcRIG6bZpz{*tYZRKG${b_Zj0p=Xt->*n5v!wN}kFYt@`pzdirF*69iD%dckXIA(N4 z--h>S=P7dC6tcCrIN^8)fZHpL!YFYvgL8ngC+SlkkE7G0)~03pya5>xpH7B6 zF;2LCj<1}IW!KRV&gAy1uxJ#*k~5JAybtHEyvQ{zI>+A~;i~&97+Jf}WDT6ySDTpO^9d>P6kmY7j1|F+@6q~CqScpelGr{0=0(yFXkaLjGqcA}{|r@98W z5cIY@p>3=RZf-}U#*L|&qLi4q>w3D^JfbN9KCrk%whF6uVmVc6-Nvmefymxt)MOa9 zeq#6xDT$fIxQ->eBn2mD0Uc*_st;-(23|G3*yu@?oE?nM)}7yy_Tc94meMN+r-sN0 zJk)0|AhDo2LMYbP=uznAKk5ew)(*>fWH_IEYb?#j1sjF2{Pk>CpP<5iAAPtDgJsE% zZntY_Z$wD_mKLW92IxfPCgN1*-@ee#M&1^hIt0%WOKNkJnonVztNdg zt>ABC?N;JliY@t@)br7xT*gau41NXc#r*Dk)@;@I-R&NO)S|4?dU$sJ^_l6&KpLXM zOK5J2L{*;F`n4U;Ud$aIyP_@GvSy30%DymxE%UYF^|i#7xO*I3dFFvc{@V&}mpnx) z9`1Iuwmvxi>o7!rEyk>5#%j2KJBG`KfXq=u^W<5-zBby2;aGEbIJE@i5I1JIxQxTz zT@k>)z~%i~K_(}=wb4Bvg=f^0Tnz0jCy9GCUF~%HTKx@H&2vzt6X=C0J2!Y>F$%af z#Gda(q9z9A<~}Tn&gYWtb4YkeDo6i{2+ozsIkN7sJV^tEj1nJ?rBeX`h4V8_Z_?sF z)A_Fs2K3A(w@_287-PH;bW^k1lcPpg!<)v@(2mH_b_;WNSXOnpi=K+^&!z|eo5p*+ z;c}e0cUraTUZV2Kl>E9 zTHsp8Xr_M^&byM%9YDB?@xZXk^SXpAhkO!#;i@5 zDejQzM7sSJ)BYkbi`#P9f+*(3aV4ca)@40>8_y_;MVNLY-Wj6J zI|%*c(hHi)dS|y{gRvO7*XrVJJS?_v$5uRni3s|Nv<>xKI$05hT*VWnqmG*2t&8I2 z8KC#a@ygO~+8ALi-fxVq8ceX^+>f@ z+>KekmS->#Qq3x-kS%Bb>ti^oj!`dmGz0vRyEr?=m_xq~@q8usok+GGEh;v9Ky{25 znkMca9?x5JpPi5lS&hg!3z}bUvHSTnpC%~8vFDMverzu1Y;qy8Pdl1PSs_k;y^{eY zYQYsqQY7mpK84eV43~p*f9YLBZen`b*e%Gch5fGw6&4|8T!-E}Sxd|FaM95!fT%b< zZ=J9P9jq}~tTc}Uj7iFxR4)WdS*Y6w^Q*&kA#k?)m;nW<7Z_pu6puD>N{73=x`Cec zst|iEuZXgOomx~@i-o!;4e0Z+L|oKs`)JUf)TSf!9Kq@rhqXdv2lZc3dfz=;S?GPG zH+65t)?{ow#=kpI^Z`vMS|0j9SN;xxj8ozAk`#^Yk>^;wpq4k+bLMS0d%(#s@e@oU zk<`Cipnh7YS)x~&8R=uH+PySnGJP*iV$dP~iMvQA?r1Nfs5{=FPc>@qgc~D^%|E+b z)(TnX2~y#ped}=fft<5Kc7l;L$^xR$$;&gwL(>2>mZ005Jh;6aFGO zD;J(e>xG;D>L=4h|K7s`vaN!IC!%xZ;6FoYor5W|2@figiOG)yN=nU}S*l87EJ>s+ zKr>jZl~x6D|NLqkpp0iEBbf+({HKjl2B1x%6f+82fImkAKza9{!9Q#xsSMhskGO=k zBmhNB;PofRbPG)QHxAJ% zit4z+L}PlNd7S#^K7c}z?8@%APV)F83;0hE(h{cPSIX4dE>F67iCz>}IZ3=feY~3V zpMHb=N1)(8rZsDY>ZO-9R71{A6{MBgUwl%fu$|R{`X_t>z*J%zMa1O;DUCmTfATR-nq~!s`4Vdg>V9fvb&ZGyx z3KlSC9Dn3?hw*?M%5MOpa{Bs5+4dh`%Fe;Gm=AzVt@$y~k(-!E0)ijF(NXMy{?+$h z=5T@X3PFGDVoCk~@60_0?6<3$;rD!&08rT#2K2Efo66eP=$#e)FBVk{lIp=m`S}^v zUJ-A+{bx*8@qjT^+tU57B?9^{_VSPGNkaPF%x>XyOy=N}@CBUwsBI0IzlOsb>Ejpg z5E2j6%d?gE_mgj^2pFEVoxX-6lkDmVyVVMUNHYQl7uw*ZC5Uzr1D`)nH^2=o0eOEudXJ9 z$@~9{sgwcox-BQ&laARi@rBBHyI6FRreC7mM5Kx3!2c0|`m@%|mfFpx;%Rat0DKAR zm=oYjqDVu)|K@mrJvaffGlzonbXN=R78Jjztk`zoBQUG*ie~?r$pc*1JG6&>FEGsI z*ZJSJrl<|K-~p_#tm|)}8`ghbI*>*6X(s2n?CL~Wtx3+c$%`FR?6oH>`%f1H|8+4? z?$f;Xbw&ZPK#ac<({<%F>DrBv{O+M0?G{LUhY;BF!0~TpCZ3G=9P+|r=)&4<`wQ$% z0XY2E<`@EJ;eY0n0aimc8~8M8QcLx0s^&?_gE*GMx`tqLDt`;dmibdD5Nz!KlL!9` zng%Qkf!d|H_ykXuyeL(1R@N@o%?z?U}UU1Z#b;h>t%lgaocI7RFdj4Wkj$Ez&&vb64A)r(q^$y>NBPSOlhqcnN;eq4E zb(B=9?jo{niBlawSNDJ6eeG22m3Q@vW0K9fDSy*?>H91@@X2zEWB=en90NtkK9j3Y z+)V1F|Hk2Mpk=D9bCs{0_G?@GE6)cAIP4EA_^VMJzqI@th$mZXF_2xa)gd>oy7q4b z9$-LUI4UmI)e*FIN@v~xR&{i5bw`Doer-;VYNMPfDEl0G(fku*MAD2TYE+IN4GXB3xLtVRO0}C zHtZb+{CsX6A{&r!@PjPhMFCPnH_nP!I}nrlkM!(bcRh;soR3*ahdiJr z9ctPJq;vF}@*i++mgJ9E?OeCP5P)K>&R>ePz<;*vMSmbY7pXtnro&pm_8|zc z1$H5>{i9(kIY_Iyy_RnA3V+4Ui5Lygu-!tUR|{yii0w>7$KJBBTSuyD#eV5)t`_)s z*uT27`+OccoVm1VZtj(O+`fK42b9n{tQszx;{p@zS>>C-8j7hQo2J1fzGYpk*Tqvk%*yv8@FS-uLKPI8=tGZy-!Vg-+ei) zZF7BEKHt2q?VkKD+*`Y+Kb<}UM^kNmeBIw>-$J;K9%C68Vsr2G2oRfHLn-bt(7zJk z6X@L$xXF_}uJw({|F^_k=Vx_aru0)4elDQkmtNb_%gs~JVW)4;yY9yC&Q>q#iwtU8 z@Z#wH=4yh=i#EN_^M|?A&(4=AJ^TL07lBNHEMFTRZ68;+w)S@~&y}|?Y@cf9LR%Q+ zLsJA7mv(cnYoSZ(fi+9&b8Fh~H&1s)EOwpmpCJFJT06WJFv|@O1mq_1uV@`B+g~N- zv^5=xxlnw5hrJ_$T?UrIM)f^>#X0e#X6c{ApJJt7`x+Pt-sb7y^Iq_sicCROUZCMz zK3A!%gVY4?vFoGu_x-Php}D4Kwx|U%p*4|DfzL^w*7HZX!~3Bzk0q~p z#CL-G($CXfflvF-PA(s=&ZYZSNECiK#P`SBXFFF%$JLId*L#a;+!I7|cbk~kd#n%M zUmIBnLmuzKJm;<)+jg97E7i>e-sIaC%VJ`;FKrw1^`^JZdcIldaYmirat%I;AJ4Z* z3(h%g`p=h!81xXktTWz$zj|$6G#wJCn0Gb*UZ42QpRxOLi%|6%OQ>rbWc?CK=F_!- zo2h*3f$!IX!>;(6LBWxT6L;tKSr<%0XnBcux)l0Ry!D+8=9MG%QAOx;WAV5A>SgDg z=PjSWcfGQ6KqV{)p7#~j*WVncI-R84oBsD9ekko;-!mA#cE1H92}yO9b9@!)WP5v3 zlRw3qPDP%U|18c={B3ZA!`1ZBo+d74)5`szd$M%DwBf#b_R;Lk)g^F85vb1@J}9Zj z`df}@o+yWam9eqZ(8}Y>**9X7GML13s(Jey_CXP1ATPp24q_}pQ!rNxxZ6U z096~Rk!%i+KQxo0OK|wkkpLWyj!wi($Fjhew_-b@vk0Ocid5BoEI#j(hoRAI!g6yAhAX-&aE z#1ThpS;0ai8J-Vk8oosH1Y3J}x{;+A+8c%W2-Q&Uge(J0A}glz$)z2lcW4=FG<&3gL=otRrB)vOnoG(WQ>6_lsS)2 z2_md2h`Y9fpNTSt5aR@vB_g8qhp1C07J>qGcKUgF5m+2*n-Zl!s_Y;4w<{M-4SC54U)jxG$br${a%%~XLuiKy z#{z~Sl!c7YgHVZ98Pm?~AjE^_N&C?OM5@PY-`!mG01S&K;H zXko=6GuJqML^Vlr6xcv$5(U=Hs!RjUdnc@QGfUTYvWnwyDHC>v*N}pdCFQW>3&Q81 zKu2dAb;TKZ1&Y&tzBHK-Ee}ngiAK5#^r|fcC5~pQQIUJ%H(Z$n^2LU5XKXTMBIg3> zsCgQaTV@A_{5ZJgM*I4y^`(JiyaCnKw?>wV<9KP=k~`o^61j?kx?7f7xmN>MeG2D2 zgeO6seVydmP`B7!lLB3_1Cu>nF(RySye+hdUIOF*U~W@dFBGZVASsjv#wBhl9N2y3 z9IT`46Vd|4&^gW_JN#zZu@_7GC|35w1ml8Tx{B0zcdXV_MTtStxd`d)(r)%j$(pSE zuOb?giWc=M*HOIYrILzGYL-nqE1Ck=mq`*t3w7LmI})v%Nw-ec2i;1LDO@${{$CKR zFS^kYDxCC_LBDa=B!{OH1<@ciRICYCzAYn~nY$ywVTLsSc)}#ISjC_BFGQeq)Nci) z!ChYWr^D4a?xu!pa?+S798?Zlt`aPFBvenljlDH9t1o5w$)> zNxIwH^i{hC@S;=a$l0Fk`@@+7watfz2}u)kdPdQxF-ZPB>m0J(@xEnG@VaH~O=|ld z$}Tg(WjQWU%|meubs$!$`rn4bz!j3IuOuP-)!I&VZLTYBm+T0FrXnp{<`6ixp9!>N zTh;ELZ!JO=*B7km9ywFxNbPQD6@W50E-v96G%h~u9VCoG@8(CD*KiNiKZHLmt6eCo z$CF1W%Ft+~fN$6Ofa*m3fwX&#QxbE6n7n@luHuv>mE%K0DG0fyNu#zJk=$swU#Ssn zY_ZP=*<`0*2wG0cuGWl++ffJ#sGm6j_q%km0Bcdv9A-Va2-D=IbPp>8-f*m;jMkXe zGAva$A=Jfjg$#c*#$8&M$h|H6JYu@HhXzk$AD2TI>uP1j@wi(JB_F|PvwldmxSYqr zGGpPE;4KvooDfy8w^jBPzef;3-r)Kx$QW!!#FFW$(TIH@OFe1$CT;MLod<9QBSFm6q}}{G&{<5<)0?}D`m#V zDYK>UwZ!a`c!d>jrr%L;5pwas84!+a{6~OtF_DOH38ATo!9bIonIrusl>rNhgz)es zS^j`k3{($Lb`&~4bfLU(p{$agII0uVl+tyZ?ecx`?*iU?puy38ncq(%ZL&utYj(8k z_?3Z;L)x-M0fRcb=qt_#7V>=O>BW4H4HzAK0hXy6cn1j9+uc%-YFssDF|`!5GJ#t+ za%*V2ly}piE+eM+;57WdVey-xd?FnF@3tEaQ0=;S-#Fa>(}}yxGNg^(t1AeiTQ3%~Y zEe#4U7&=C?74Ek*25;?kO^(=sytB5sJl{Kuyyt}lgIl`=3OmIdz}dK8)K=XFKZN#S z=SW)$?B3(;T=YXiG44gezK}$Hkri|3$qHsq;jS6?-$$s}(!gDFwLPX0uFPF2uy)eR zF-o!Bo=e#(t%$M>bHghAdo>Xg)=QrycqFMNZuBh+uB&a+Hk%{F%u~n&DAuT}qrnUB z;?Za;oeazK+|D#g|96=R z5z!e8|MIcLa4aNuc9Q@q&=oU3MlF8@^u>E@z|EMayP98yi!SEb2IQ1!3t-s)S~u9Z zWcC)|h@?gMC-it4WN3Sg5%wxze7fJbbABX<{AT{)u$-yR&RU;0AHs|?YEyy~rxkp_ z-cZAn!ma`>QGSRMS6h@IZlWr7PkDf9A|i&@lOwJ6KyUqnc=u>Kc^nbr`m3s6DHtb6 zFOJ>IgTB-8KCw~cIbNLY&uCz-5J(jYTxHim^ckKX%N@t+!%VzCRtwWWv2h45{oZ2y z?SpaqKy_<~s3w{o5k?_Ak3nJJ5KB?rQv`&z#+OB$YbF|X37^PMOVi$ zNV*9&b~0BZF(9gQ)G}2kU;&QGx}{-bFb>>a@Jqf%yb$pe`%kly6kEq`IV!RP#Bj{N zzL(h__+>N0(?&jg`EyjFxqiSm6Qg2#vyAIt8C2I%)}&}ir@y{{E-KhVA^2=a;)RF6 z=(pks3`iu=8m&`gCd@QKMRj7?w19N1tqC=ecq;&798?y=Ty_kIsg6BdF;n03E_K{j zY$cydz=TV|r2M)E1AGqiy@?@o_xsIe%eTl^my7acaS`_(>0vS+gTesAaAbyLj%KJ9 zTtY=(tL~ogZq%jXAv{7z+9lOZ8uyx*RXtX;aJM{{tr1H^IU0>$>q z0^?f~$>uVK#Q8}9f<@c=+n1-N zcg}m4dz$xN7`MrI?*tQ0!q?pc!C&pdzu>Q1x%!rr`}Hob;&ZV1`5AEq$A7U;Xubgl zBDHoc9ae{K8hDq)cG-RgG1U0AX6~Z@+7<5Vy`2_d9lEveDT}uu9u>a^arR>7G zd&2m~giF6aGCv3b28P6We9%bJ< zynQ>*KVPZdZDud=mhG5|f6Pv8^EyFx@^IR>WJ}OxbMg*Z@>I8BBj43B>toy1s@w5v zDfB)S@9xzMshUHI-Tqr`&u6^c)^Wi^OB9j zSZmJw5?^Q6+m7H1rp!Bpg)y5?WxIFQ9dPXvfwhw%MN9pz#~9oD*s~gM`sT|oX&_Ng z>N=MMfGq4DlBF9#h6gMO>s(sL*F-qdObm=}p=z~e`?PX<=+RQ`-0#B-(|`MO$jYos zB(utC(6)-GkGkLc=G&=XpxtJ}%Fj$JKkjp60$CA}T6!rpbuy>i3p$=lC$y z2j?qxH9x!XE_kkF2$rEp373NTNRcVdt;0HZ3toqG%NOPs66uxgQf<_I&$UsZ{SwpI z>lR0PJ$$kp{GtzY3(+gT()~5F|7CPqTfrS{o@#RB|$}ThDhjuyvCFg_Xn}c*oSIR+}-m1$G@<$RZ7T<47{Q3<(GO^&QR=c+jE0+fM zOloY%0!)VNmY5Q_soxVCG5`XMnzg22DUuGq4_IgO3gN%7tE^7L2&psndt~*bPIK~r zW@F2Vg=`05PQ#6{67Et-7!U_w6Ub9>Y(qeWZpTHD(ov9SB;JG#7Z>o7?_*KPOSoT@ z`fgL{dE8;-+$g1FUZ5k{erx57#}_wNZjzd91&zcGTAf>SxxN2|KC@|Z0wzORgrMxO zmMe%k--I74Y-l9}gIbI3@J*WQ$zYfbet(pJo@j!Bs4z9IPFkXsl!zqmgI*hV=W`79 z4h`doiVU*oJ8Ju&+nf3!*Dw{Ki!T2R)^n49@U^W}G=qduz5h&-h6lOCcFT1fB=|La zR#+x`(yD@~NUOC7YC8scT|*oo16$b+*9BE04}eIp*&APRW;bMJrqzZvx2llno$4gS z5@Ai0n5%?@P5<`a46Lput}qx4T?xk67%naR2XNrR;|;KpF_XTfVkgG*auj7gktVUJ zRF!>MD8$Yw|MfT*75;W<^3G12gjq{kl|(DG>Gj>~hMizWd-pytou0=YEVTgnm!tro z2c}*|9VOOKoBnZGVA`wHZ&C5#17Kfi#UR{@_TVDfkeZjlGL2&*MNnduv~lBGvbGJ| z#D`VwGY9NiZJ1)cg!btop+TB3qaQOw=mwdIF(Apr$k9=ef_@C@B*e}0D?5Y?Set(r z`A^b4-5Ub9w=OGC5wh^6Lpiu;?9mf&i;;^^5T2a@>p&!DF*(7L3imrnt#AA{*#08K z#pgT!q_7EXfQNh)RvwxMGo=}4H| zBynL++@_18WH_lHc4A_zD^`VNL&HI|EZrEhSN-)gsOV$WAX2>#&`ntjb zE*+|AiiXKVvf*GMITt0B$!sK;^4>~BHZJkskjk_nLy=7d3D>kA%xX?2jyk~KMl5fq z1B-14#wvSq*`If^cSV7~nN)0C;?Y2BmNkF2XhNbHH6)3Z#Na<^V#bW6*uu0Li(x=t zluDqDn75m4Q~jc~HQyFww%k*eY%|tPM^sFOeGybtV4|5n z(br#N$X|#`+hQbH(9cvXMw?8lWjjZ58s)KLXUiwKMUt)jaU#KIZqp04s1{F(A#vg_ zF&B9Dyt7WJW^b|$2>vSo8BYI|TCCfA8Ih*Yj0|~DO`t$m6IUIyKS?$c;z-FjDeUFF z#GoH;4IDE2iaG!GUxhzi8_fQvbq$sTm>wJH7@TQHw=INt1YsN(2uq2mGEE6r0+>=l zdPppbcgHT3Jl}qLF)znxCf2qD9j99`C=FSN4D!sLmPnn9fhq1=kzD~Ui1;MY&*#8& z<83T|Wsv^;!;mmXv8?3DN$JCw2U^_aSwL1>k%Y+}=nQ2uL0%KT6sk~-#hGb(lTTIq z(piw+>P2Tkd;2Hx{cjRX_jj8#cPLRLpCId;gLlwl&WTVEk~LlIZ892}j8Ftbh(YDS zz-z`Z1L_iAr$^)KUFdavCi>U7!sQ+DL`L#@@_LDFH&)zc>IpVqQu#?cRYP;u43C8X zD6qiWN?ollq>7BpwyZNjv8qDMvcp%Y34z7mgk40+Lk7;beFX6`EMU8aIA_tdLHB&e z2Pk903``TgkQ;gTd&Ft5e!)?1JI?YPRhD-@pqg^dOd!|W`+HvEG<(zba@FA@tHj>q zvOS!(nuAFmyV*3Feqh;+2$#qA>&u^SV!HjeEuM`QXH6j>gV&&9LSz3{4}Qk39C|+# zPq&3V+#PGwMv_R&d&T)J4sOsM6U%@x?Nh87LTVyxW9rQ(6;6% zsUC0#dRt5lAgM!X=?FeHrer)I*ASPB*AL_4flqv*h2%2w_IpBucPJaQNeM`V^Hiro z1|uqGPQ$=&f0wsAHQeoq`g;)&>FK# zN7^Fyvz>q{i@g;4 zm-pNQ`omae7^}(P&6pYE4}N^3B_O&-W+ot73Sy@q1mpS1>7n-Lgz+iNHRvhg3WuR_ zm-9hAdof)CW{grzg&rq{K%rNzG5Mo+?1agf|IGc%AZMX8A^z^hI{ z9MA3?=>YQYaAffxh0FhRqItiQEF#$CSH|V=tFD zoe>j@i!|B*(tHQ>BHZ2KafxDTwS+%-`(<@AjTJHC<7LkPVxgE(ThDP?^gWVi!}!qp zVFSpBmo4Pfsu!xNdM@}>FsrJ`at0`o_gg`SMx3}g`^H+xvU-}~ zqQoO}PB_z5ika5iQ_LZ%UtCKjk+oYu7QwW2q!|O7CwNqfcfz(awf%K;q^csA z2BBAVS5=WU)Tjq%4)yY{aS_9+>#HxJXri#xb!%k%X09M>w1Bj?rF19!2vy9f#G!y) zxLX8SKRRNRqSj60$^J31ew62LD~KBpTt#u6PvCMODZLj+VT8xMv+QOEzW5}s1wz1^ z)!xA^M;gIq4+95dYgWqF}dM)m1MHS`2G-k+wX zJYQMWYfs7x-%Jlr_xZ3U<|@9*_Dos@m{)6|KWhK_gx8>OW+&C0CH%Tz!v9P z(lx#&v*HbsGkuCgu{KoNntJnL6cfi#lrIq(jjr*jUh==F^%AIc`$bCWiz8GA3}-hG zZOTh`N|g_N%GYdl*%dES30Fd|AF2dASk4{;&Y5+C*NWRey1X;=v>!cRooaRHe!AhT z-|Gc>e`daRy=Sg@zhHwCJXrBGx|6yjPEZg-8I&*IqU>Fa`yufxjazMEH=y0KZV?|p1% z^~Z5}b%dNC^(dmxsK8U`Cujfh62`N@Z?8nYhs>$23q;J*SkuHrjJs}F z4?SPbd5^t$HUQ90})7Q?Yy*(_kYD`0zg_X)*>s#O%b@%!R)_SFPAUS7;8 z-UN3*l7Y-HVA|nf#HAMch5{d5@hL6nuJ+y#Rjm4X$mm6gTr=X3ooM?O?&ll){i8OA z`vg#x+mB1SyeYd}5rXgPJ<@`1j!FJ%Hd||?+Fxa^tWFn~=0Dp^f)<;m+|=cw+2yK* zM~dx4k|v>rjBDl@U!dg5W}bP7>)A`v#htt0f9kc2gQY)6Jk+DsVO-N?UIDYImQzoo zK3=U{>6+Fdh?ZK?m^Fl;>YKraR?b@A+_^2~PKB-z@Otb8NuQ0}txR$KdPeJXZn*3L?C5%zJGEQVgnKLl?~`? zk9fBVs06J*Te$p*#EYFwz7l9V6fN*IRlOrjjRY?{yhYZB;gczEYiny8_Kbk~5(msS zc;JVla$=L%vKV`@m2dh=IO@GKek&t#qh&)`SV0}?N}`&Q4cNY`&dno|}i?u^(J=?0}i7wp{`p zoIY7;7%nlic5yYA(s0&WUZj@S67t(fGSyW%8H+y)qhI`P!Y*xrmEj1=$S&7&dBonC zHgqTd;79~#qlxKV$h6eQ%)1R*g|dT_%Wh&Zc+2WBLp zfuo0-*E*)4jkCZ$K8_+FQA)Xqm$HC5erAj?f?w(R`So5=K~HWtfWb=PSAr^&wX)WT zurKMs*J~sC5qrZV6X9Au_PrYIi zuNe9%3VbM{(I2MXryYG!YcS5mw^}F$x5tRx_(5ApeZ1nH;POUD$i;2n!tNO*5@5us zNkOVn_=Da=2@hs)4te{)Q?FE0yOWUwrI&4J<0k_NH1#y`AqA^-V=+=#Q-)};6|+Dh zqf9m1F;N_v=9bX+G!b~k8qh=~|BFq)law0)bW*4Vgg_3YTy&V$-5V>&|v@Q2xl zrcVq~BcRlqiet9>1E)f^_wvs_4vlMH(K@DMZYx;#X>F4mfxabQ7q{U)~}*<33&f=BS@K3uIX%4rOT2rKXx1)#ID9&jE@OC}_euZS zN^WC|j|~R5LTES7t<{n4wZJ92_pqoDUK&Vepej>xAWjLL5+bbYtww@eyOlHLv8o8u zAU}N#jFWP1F`M0ot%amiUXLr5<>7(q;`Mdnj)~(u(EAUhu9%*MTM>UR{ntE`nPh(# z>`Fgkpc>FaUuZ*DJfNlhW2+gn$fy23o}Wu4Gh;*Mms~*_d!K}bs%xH_pm32L# zq#B_N4X#Lf5|>TmIA}8tu|25|Fja7mbE^9Z;qp~w*g8CM;btVpQ>W9GEOPtf8Xz|P z2tt048dA#PMn>-BDI8o9l1sxk_FX@#V#u>01EwpuU!v&M#7j#T~i~|?-`3k(OXPVT*C~EU1 zciarse@e2&j#A8_Vhr#EE}M1S!ZG9Et6=m-T~wNE+n})*`K4U6+3n=GGFb+vkun-~ zKyeV6!(gWpc5d+U_+8kmk$AC2Ib)=hH)nU~guyBTN5q2}C3ZRryIbGHCAZV4fLlpg z|GpiFK@B<41))$~*4eG<1nZOvNkMO8W^S-<@XWMQRQ1`2d09d@lvc>rHZNk++KeBV z{|Zj+Uow>)LW{=24e{lmJCbvMJltyKhbcJw024FX`GA6Mpk8CYFEcoh1 zSO#oJD?IUQHY?#$O{y%@sT>&v)K7Oo@J%M|uJdDS^EB(6Jmusvkf>cPj)!#WQl@r) zsm3zke1Dw+;92TA6$rx^_lJ;A-Ol?e%=)@CKhG@RV=<#Oz(Y9%{&t;r%98t0|8aR~ zC++TPri|IkDl`@rnu)9cc#Bg;F=N5_6S)EAkXEhxB$ecxl<6F@_HR(A4XK7`upHb* zawBq#N^D~^yP_!;z=)-=EO@J+&Gszn6!fc@R@g6-RcFBumCk{++w;<=R~D1@*Edl@ zHX*E*yNVVe)s=^YQ%i+}X)s@q9%fq#2BlUep*Ef7$h_7-*DZV*j-t-Zhf^V&80gaI zw;jtDt=WZIDz?Y+Md}zEq{F__Llq+gTamg}|FQ%duaJuxvqIEO{^=A|v|x!>>xDtn zTX&6Yod|D@GAEsJU}s>G4Uu|=Q&4RCb(vYG__FD}x%ME~fKu7tw;oTKV~trSd-Zoy zOaC!>-M7_~$YCJlQtc zN~l5~kiTuQfV}dAhWo{^H4B~C0fW@((DN|8*3$b^48doyy{VXY!Vm+!D}x4qp`>$f zyx*Dg8kD=zEyXC*o0~mTuyUy=>czQWNlbVLzX<+xhB*^RH(+fXSH0WZg6+u28F&-@ zx}1v;MixnTiX@f&)WZex=bi9XOt&ZN;#+`v2DtgV%QttY{N!?Z)f=H%&%#QTGb*7H z=7HZ13fg2kZoD3dwDfGsGc?2H=olTmSHQbcY^D4LxL`xAH?l=cS!|>duq10U$kh8{ z=MwtKqr?aZwM-s5e4Aylu1#h_zj11Qt;ENMK;3ySk{Iq0MnSq%r>S^!o3MQ4A{U!3 z3Gd1&qOs5=%Xln#DRO=UM!RZY&OP@}`WCz<;_)i zpj2U^R@;2=8S+np@`BC4mA1l2T#PGG!v@_pp@0nmVZ!vqxe1pY#t|^8Pcrb&r#fc` zU`;-*?lXF;X1Ye)=ZPkV;bI$8Q?&1XiVYiW%`{sQ&Xwd?DSZ0YN(XSY%472xSxs5d z0j^*2tYJvZtTqSQTB8f^PeUUYzS}bvfuNm+qfd z866mzn$Z{uJl&%gQwhxf4Tc>-!6*w)a-VfccTaS7poZuA=Hk7KAyMo z@kwQ+oK0>#JB;%$AFQ_S)2TWTu(u0Zt+HTcUG&yR3-Kx z3zZjNI&9!PuHh{_X4VS8hxcXpom9myF1;jnST%|aItugWz>zS+(G4M0u)^;R^w^Vk zQ?eTM%bJhYu`dcn{FjTu#_uQ{Y96?{cLa5a@}jB)*SqKl{WO88r&VtFnkJ^p#1P@p z_u4Xkg39H&vp{gVt+a!#3v_t~yX?&ik#yg^GLP>7h&x8{$jXc1jY{dVQm|+wY8oM7 zcW0+}mo2eg!l@4g1{EthR*5o>#Ti6eX!@yAscQo6D6xqchDzCoXy0W8$IfS>LJ(je zg-0n(ka`XWCCf>q8!xs7M1p$C4S>Pk9Lmv3hZ;yy8#C9@16E}*%&mmI(gH{e-Z|W4 z;{}I?x9Q=5O=e$?M^v-s{~QvPRyr?EA2p70YB+CK!+F z8umW2GMtA4u&ByZ=*j)LP*1mC1@Im$T6}`lq4gin9PG}xe2MeEzHXS0l&iHsDR=+E zBfs043ALaj*}Vx9oh|H3n@+~1j1^Z@>Rzr|WrA`-LYAlHqxh#LiyW?pRRn)KhlIslO0L)z4l`MW|?lup=j>FjcHDza#_?LY-Y!V|CF1Ho z_VYxH;WNl=Rt4b0h49+Xk?5j+Pcb%GWj5;{t$QsKjk22?<+Qi zV=Hh-^Z$k8{n`;hmfadgS&^N*#EIofD~voS>ZkDPOn`WEg(F6+1q+E;l~NfE6SvcU zRB?ZRk49UxV6bJ{yVCOnxe%%C<#=KLfvnIRvKx5xY)`%cZQ%!Z$uH4&CKiwtvVo

`zb1Cq`KR9=3^wj%H(p@Sem6N*5njb_@(pY*DBW=Ww?!33PR>% z?H3Yv5kuC}<~Yssl&8^|LI?>vl`Sv-yok*|26~SrcDt z1+!PA)ETSL$DuZ*^cpjj@N(fAHPy+*ax&cbDZ#LKq%h5-hX_gd|WYkM+bP@Vi7bQ>wG%QLJ~YSMatSO`G#?1 zimp@%6`KS$T8zp!xH@3R^{5_-b|FHL#!I5n{x}c#F|S|uz45wxrX$`!?Z{jiD|7$J9nz;I>67$v z&8cIIc|1g56*&M}T>9-ikGBVm-(AzZI0^ITD1JHojLH*|3;pdJ&o>BL zitjueCr$LXWH-jMyOHJ^efiHjn8x29p4wi1mnFpJ`OcIU!Jr4 z6F!Dn1u4H#FDVKCO5U@w6&?4e6FH zV|A)muiP{;A^WvIx#7v0@g@86+)E<8-6jfvyq;-+X+96er0P$aPAPy#mmWH%{uk?Rs zLR81CFj?U`P>(p_+@-0OWA)KvfW;GcSZwu{#6q!(k?Tj3TQ#ENvDZWQRI>S|>yCc& zS#u*<0u%Ak9?v#OP8aZLI~S=gb(}>US!$uzNFAnCLad(dv4Yk94AvOQPEb5 zrH9gYO+h6JG8Uv^DBCLinFtDm>$?_CO|48(Dvn;@8eo_1yR_Pi9|3V<8Z$lc!zHMD zQA3m)j@<;&&XTywK;6M3xGg?Rz@} zdB_8f+m?gEbY&?tEUGkSp_wciwetlG<%WVAXrE$Njlx;euZexGpgy~3PG*j_h6^p` z^9w%;fNO9M4I3%%#l{CYZoFz^4m5Q*CJy9M z4%4IVeQZ7g;sZukViGaah{lh^4_#$Dg$yNB*h&{iE22_vNkD!o^)^3{m!yqagm5}o z&QY0wHkFJH2ccGAe1XdshS{6Hz0~IR4%OoJwtKr;zV6M6#O3Djddf@Kms}fg-I4Nm zJ~#IEdZ&NcJ!YlF^@bl1NBum7&3e1JJ=De9TeSG3?eMr+ttF-Hc)5GL!~xq%1A5eS zi8A_;tG)+*ehu|t1hs1}^|Ir^=tf?!0hR7|=5rJ&#=TWeZ-lQA_B7B+>7yplb(;5@ zS@BwoMvkHKES&1vg*~Af7M2ZYbySZ9`6%p)prsM6v4%4clvBUT_NcLnj@(rYS99B7 zUDzjYpR}#99kBNU|2-TR4k6hoN^Y`(lLaf$FAemC& zyG4w6a)AeHC{@~n$ET^U&2!FNj*z?tWrxu?i(9q|K8)wqw zgG0_3N#*@p@#1Do3wMH4>20+65qsF+!5!8*Wl)~cV;K* z{!M@FLwJ#Iud!oG@k;G4q1R}JhRT8PwfF+7BpWX17CIA*@3V?hX-x#bq71{fwh?^C zv51;pf=e8D`$6KL6leWNYLGI1D%e0IbfUA2)3M{P)-@u1cb_d@aD>%Q5!9>i1#@!g zKUXZ&lQ>LG_HwD23PrJ5=vS&}Th~)8ofoKmRxibvhaz`VPqRYzVC!T?OIJfY!TC0i zpyG;L0abS~1+6O#x^mGFmDMCf>zP9nOO6vgBjUDs%Tt0uDye6PAPk6m+;NM9%U;S{ zx74U|P9NHXy`^A&>@*TMN`i z<5(P`3goOU!D!9WqpSKW4bl9u8QPso2E4eTO2X14S;P>$YE9!i+I!Ne z&O+FVPsAPTl%659-?sHE(AiOIB2*BOQblbBygj8J0CB=i41pdmHdYP~W(YUb#bVC) zS9BSONBlteJJhC?*#(v;4?CK;iFO%AHqJ=Zn4MTF$51JT+%thyoYZm)kO#Er#>Ij{T^PJQZ;nEpkhTmx7b@|vq)e*g9G!F}syKb1o5!RI zzD&qYfoFOa6r|2{o5MWVxkNApH5F~B?$s{OAfvT z>U9Pvc9UaKV*Lpc0O0cz7(hlG_!|-cC;<4Et-=S0`Vm~7{tW;i03HAU4geg`z*=9% z&f3PFR@cVnFVlsW`wfsR8vyX@=Ko(`=_=y(J8Wj>4g#G|V^y;f1+I0-qU)6PFSyo%?|mS0~mY*nTe7~r#*&l2YWFkT6C zuHVY8=~_8(nD{6VzyiXOGnp3@SUO<5KgZMZ337_{6o5*C_f_?C6zo>4#J%|m3Dn6V zWf4M|2)=92x~d1@-yXAW(-LBoHt4Iqvv?{p!I;>jpCPf-4a_FIl+ExxrFh@iHb_lv z=Qw8)r9c1BjqjzumB$w<+Pax9Tr)@gh2zHh`-8#IjJvMQ>3TlxC14hw0w*v){G@)9 z$AvZCKr{_5aU`cvu8{JCGRDu~Q+K5W+Jz+6=pvn2iO7&h=|~B5miC!ZI$tbEn&6!r zHJ;+Q9zL7*AWF#MI>j+)T`RJyP%U4{Nt^(qi#z1-4iB?oS@__0BuYfmEuDU-yeq2I z&k`t8^t&+E;fz_;X)mwA9v5m7-6WVES3aa?c)Q$iAN8D(>hq#UCME_@77aRj(i#ZV z9}Kt%kzsS+&~vK&(bDtnsUjQeSGkcbBs?)1x7r}UvT0!i@-Esv7BjOiFzSF|hq=Zn zv0fxcYqnTU09XK2l7XoaI9}m6Y$8-))ouEp8N^jx7N9t{ z05B;SnLgGu%BMh}E?4M;R}MPvAHi6C#||4qP6-n-S4PL9DC7|F`vn%T;9U(q3=4 z6X2td63%{s8eY#BOe!6N#oDNA=)B*K=y)x6wE_NhZEcO8ZZCKmtu|#i>mf-i6?>5U zU2zTjfs<-IwZ?>GQTDetq45ZwUdcX4mJl_W!u&I?&>v$ze^sta4v?SinDspEe84>g zAX*e6hvP`p!YEAfD3ZG_W4=dhcbD4;D$u>CGR}=whP8Eki-cqzUOTevkUD-L+<9BP!E!oVBLzK~E;7!jT%DN08km@JTWWYvzsO*(WS^pcaj2$* z*ed@&Udu=&Zg0~`YqGVpOJBvX>u0CM{^NDY<9@IBwXWvUds#oMlJKuTGKVbhE zq7S<$0$zdu0L*>)BVQAe{^DfW*qK^67~07jIyjhG8QcH+Jv)t_sa2?Mur9dKl>xZ! zlp(kdxZagM9e@BNC^y|?RyW9y-w>zYG7Z!QA9e+wV>c9D*ViNpr=aa1g{x0cVPR0I zK-D!8EDES_s5dBh2?;0(zF71jdjmSa(gK)naOOaepNzh1KD|pmc#~BkKniteX7S&W zQDngQK|$dHeSo3VlWmtl<80tjb-?L#ji!zOnsI>8s-Lp=o6I38WnOrJap4#l@D$`X zdGknMHsHDv8f=@N0AvW3SoKt6r~cKTQt6^7|QgBazzfReO!q?N+-_&y8Y-B<@miaaD6vZE(rr^omRGv zP&(V~Dlf6MS3_P7l0i?xFL2pFH3PA{v)`v{^+Fj?uO1_70%_bF7vkqrWzrRY0+vC2 zhQq@QO)b9Sl}Y*d>fITkc`>l;%zS)!pn}4i#$8MFaFt>h$>`iB6ZM{1fWrBHhT0Ju zwoSflN6hMOMdL!9V{ZWc*^3LA|6Jj{fq64=mGm;`!g6qtC#_lEaQ^Z7usxdTdYP{} z61Blxw|Ql8u^mk=LebcV712SkSyg#GIFneBB;v&?=6u6=(l}_pv0|U)Ez%@ABwL<` zOi4JK@vi;B6IcJ?U~qQf*|_MjmN0;8hAi94F3Qu5v|bE0tTTT_2r`dByi9| zJ50U8yO7E3S#(m1ipBf-*z^+hEXw=SqflCZ@tkq8aL7{q^VEEebs+_p@{*MPwmKtpIGqTk*!=hy z9@&YYWM%EzR2(6Lc?pczx)Tk??lC?aW$Hb0yxN9l$9>=KpFDIUvW>xYglE%|to}2z3 zLabu~2xo3uKd3u&-9(O-o!?3KiGeO(T5&XXlATBN5?{?i>P8tBD>XPZ?P@4*hO$WC z0TH1ur0Ur`Z;ufgM;l^zY`JIqX}#7eud_ldz7!vyXOlMY3hfE{CsJoxps#A* z>p#3^c@WU2BOFrjer~GFJzAdogT1m@Pk4Ele5{hfFG__JnsL9XqMv^z*StOKZ-Y)N=&=Me zQ{plb!&JZ^w6E9g7MBBW2LWV*xo~1!HZ4>XxJf2DQz8#^20*66K@x7R8e^bEMlF z`IH5V3hXig5C4xBIGDfB@&D)rP!ij-9DX?jWB+NJ!S&3mjhvwoqqn_Yk&`#^F>8 zT!|Z^9Up3%XbC77J@+GXQ`zi`{isj<3RyV-6ZKV&>d9908E=K3NmK>TIdAB@$i4zP zKGtADxgqbe07_0j86Vb0UXjJmF^RAqm^Y#70q)xM2fO%cdOA0yWs>L_oF+A`Lgjl^N1j z`Eh%q&^wI66A6Oe-XOg2jZ?}_&RXoTG{-CK`BKHJ63$mi7>;{`sXw0yP{?WE0q-YJ zAd4YxGSDdeSabIKdQ-ONWsV`P(VT~6fGztKF5=|LD-J7Z(g(*8wWt`d zh;ewE;cq{lHF+^U<$xIn&;>UXf{t}=VA)aeDi*xevQB`ay7G2b&MEvISM53P=jj*aH)L% zqZdty2SH4ftttAy~J&~gj`!A?T!obMa{kGbB+Co?GS zi=>9$<6q_8{DH)Q3D!ZGKVeQmYm;th6cY5f+_sm2CN-dI!bl01uJ z%^vT)kVn27a!%!JVXJ+_ZosEnIMv!?;fz*}=RQNAbNQekLfuJRV4yeA!D@fxmst$c z%xqQmkz4to8kjpCBuY}k12v-tYTup}-GB9yOG z*-m~8`OMn%GBv!Euczc!B>R|dm5Hlw*;bP}O?7K4Xhjg`AVm@gWf}^ksq$AwC!s)# z8M{#haB_K1C~Xu&~|lY$De`CYZZ16}ku!cwPU zB(979vf5{A@kVew0(x)3St{48*mLwi)hL`(wW6MeCxCz0mWeBqj4F4zBapq8!?S_@ z{1}q&!~}*hx$vsvJSF$8!(z4u(?Ztat z5;X>uBrIe~6`%Ws6X_y2)s5tHjWF%DKT&rxdiND*#Onh2bKLg0%>$|+a(PF>tPXR{ zS)7|R%lv%2ziY2+*tsX2Bu1$gAm)cLwk?hz9$)hw^}rR!XJ|6ugcc<+n}I zj$g^V|GkuWlrb>lM zN}Gbtg#XrKaB1n)i^yS=w1Q!`GQz9YZahXYbTts@K+$d0x|ZvlQ=Gh+vAH%$k2WZJ zkQ=!>&aXc#zojORdb&A5D|?9t5uX1s=jQA>C^AS*tyUy^zA@dOmgGibQ!WVPBfu~- z@Vy(PFZ+`bBt1ZwKq02q5laE_yRV=OcR8fuOrVURB>;yjbx-MOx zUVtD#7+@?=w*To1U*0g^%`flyAJ0mBa7eR4zyJWjc>h`dn)UzmuWfW~jOf12SV4tA z2|*ctofG?jg;9(eIHAn4e+BVv$D4YWDgWi-#Hp_*}*}n}V*gMFg1) zEeBqcf?5WAfFjo>5{W|rx>+R4Cg2nAGQ4G=1O5Pg4TMhI1qZkn;WrJ32JQQA7eKRs zE=XNa(8(zPSYn;DR=tT;^uzYw*g}z;%8;=)Ek$?4e2e?p>E#!{%|&AlN|&)3TRl~D zPODARRNnivm`OhxAvr(3Up~h^cFG^n-ey)@MZMrw%>TAt$XriT%An``_;AfjVeBmY zU7y7+|Ng3~b2FDdOv^m8K2G?$GeUa#}Lx# zY*G19dMp4$pPRJ|F6`;KWgI8 zIVF?RSMCA;2>^iX>*GI;bkWoO?Y1aeN^1xq@f@ZsH#?&yHm={y+|*b=T29N!sL7g+ zI*F63k_2o^uWmP5oJdf!=Dx`!U(F3q;zd_ko(0mZtjt)?&syI?bKAywsla zY65)zxpH$2m3%4lg5Q{&v^7NKG4})N9$@_^nN`AmfySHq7LFh>-1COVaDlK{_JB(M z7J*`ex+SI|=zYdiK69R=i7*Pa33KdqEnRRUK3{O1@t(+>w4cYE8HHdbAP}OBu1fY^ zL8nE$N4{zRLEwB%!S@O{BqB`4vhOmc%X?Ar9Ifz6$5T?`rMS?LBveb5eq>F=Q&T_H zYsU3u3$ea)&O|%qMo0ea1q$Ee(okp8l~p2G$s+-WS@UIL$i5&crCu>xnX14}o#l$m zLDW2A;bx0OJQBivq4xm-mF*Kv?|}=n#W1!(A#@STTCnFRIdqg5yhry`BE9p|nmeQ` zp4k?xcFCnLZc}lf)=6NK!~8iTgn0bqOUH z3s!^95m>P={X<_Qhr=tj2k|(Z^3qwo<-xd~mmUN)p34K*!BO~H)|~WrHk9|MQ>vk# z?RAr=LFhaDf;L(gZVm6pGw)>L8eu^L?odJNDrp><6vUa^fU6TaSceNiYjVf+x?H+q zVv6j8a2=fGw=9c~2(O6Sowt>fP^t+n>Zpl?QRv~aRaU2*ZA}8s3;$RQzc!J)vqu(h z8Pf%^{b&FV7qm?T0adHvHjO0qW)en=b=}gw*DBeU%2#UzkaKZ7OA8B&?T?sgwckG0 zi9WJpTvKS&H``afZG(lqz==S(;;_4gKl(QB&9vBlX!Q}TtdEPRGUf+}RM+5WUa9vd zg?c2Z5FlgvST{03q~sKkv) z*w&kWjMeN*@Vi2&8}Dy>njW;~S4V!!D#>Fcp=0;R^ODyywAz-{u^oi47dxZd)!}3D zLP?UaIMH&}H%0RMNN}jldA3fEVWLH|v!XTjw*d&Hs%~YioC$jxf*^(k867GS`sxYV z!E~TqLp91f=oi-$gmxe$#7k1jh0zMt(j4@sm__--*%P;z)6XjzCLNIu)V}g1SYS4% zc3D~_%p&*ps#$40rt^xL8?s*+bTvHop;7pS%CXQTz|G7cjdMuicl z`lpNMcZ|4t|#Pfn}@ET+t?}BU1sHUE=;=G3Yqm<)B zHsj=s?|Cy?R)FXqB&zIkww!6uI2YY2kcOeh;eQM8frA4Q-~$H-#K-&Bjjt^@7r=j$ z@nZO6y#5%kKgR2i@%rCwy#6m7ycz#s*B|WqgI#~H>;Hw=#q}pI5;B!t=okPpb&>+yFcQB|bgK%D zY)+_OFhXcR9)U5`Py~ZQB;dY`1nbYj*%Ss#jpxszzb8oSPk|70^PxS{qEg8Bw+kRpuksKHAEoJ zXgWSnHt_I(1ayNvtcZN7rti88V`gZwDxu(mRl+Ln13ZQJJz!@p%<(;9qB4ji00EQk z#URK_^=_}dIwaBn4@gupyo6Zq?%i+WPpmHscC$kbV*gElr9Y@rC*kf1+{T!xp+s4&#Q zg-^w!kBAj8S;ogN@3J!;Sw zvjFA4tAA{YU)FK}6jwKbYF6fYd0rMqZ9ju=IT7TUAm9?xb_M|=DHSrdCD4%T@OZ{; zAZILUIUtDT-rzN-v8yzHGunOKHzq1HJ@vway?d&!d=iZ$(JshdLt?f)xD;SJ zkw(_CN z@!-^LvX9OnBII^Kh}(VEvRHaNNj{h93~BauujVF|M#6COG1<*)kc7f_^NmaBSZR5t z6nK$nlg3a4^Lc5`o&bp3zdU6=QIhF#GW4fu`SfnSa%^oR_%wQSjMigy-ZK82`Y|Nm}PE4|paq9)fjgnUv(jog}g=qxi@jS}>spi?g z60X^&ugAjKTV&VU&6!m7fl`$2gt&N1+D5%!8Ak{^+lVFjszc>Gjzo7d@FlgLUJyP5 zPzOYT&(<>6hZePoJ8VWzr%#C^$Kyl<1i|CZ0(?oEBxvqy46FT|Uk@%KD+;0qz9~(1DWe7llh!^;V2qPmbJ!8ou^iRm+)z?aOjU|8 zR^S~7J2P#bqjHnaPq(gULeTIkst$41aeoc8e3W2&wz5h}d+OeCd6`(gBPdvldZZp&e=*Z#EN{%1dfvRkzQpnicT#J3}vf`z#EdGc+{52=da`AIt zErYXu_mEo1ev??PgWVU&-oV2>dPiznieoo%rwAvD{$`&*bU8*g+IhpL|HBF2(@ZwC zuaB}WaPqs=H_~<*Y_y{8+nFF-qjoIY)Bu(WvM0St@3JDOX#WK2_kP zp*PAwDcYuk(@eS7HYyV0D8ef!nU#$eX7z+#w>91|%B%|(;`1d z0^z4$Sj-g)t+;9GEIEh=m+`6;DW$Jmjbb5MhKcweGzD@YD?f`v3N(r;DYdQcWa?Yg zSnXSLuJaez8#;9(y~USXM9KFz_)sANV>=aaT`wYd7qyln597;%9Oo<F(yiyQb2xulL6>LPMNX1{{aB+;!9@(e&BT_Ml{#Hl|uz>!UuK++CsPZD+FN9 z7qae~Ki`r7h?d72ANbWbmM*Yw0NN`0-)WUO_;9sqe(KzYR-(++`{3La^te&0khb}m z0=uH&x^n9kR=GV{2kd)u!|=4c<6_f^0TBBj@IhpMlK~-d%iWH5ek)l~d2s+<31o~Kw8CSdT!)~mI&y2rN0 z7*)5y@HkEmVO>_~*ih7DhiTDEOj4PU5w-%V^Fo08?SLlAe|x`$=do<(Vcy!s$PR9; zIGxu2ifkf(EJfcN_2>k>V-be+!es?j%Ow|;K0JUX#j-nCHHM!$#g4iPndTOz-JoF4 z`qUU**|N#3dw6AejoBZHPfqw8>USrTniZ=p%ixb{_=XZu;oB@b&w{2i!KyV`3756*(jYvn)^>qE+q;XUAU_V32#@iEpH2u?9%Aokul=}{b zVRzEL4TvU3bv_%6kF5?AbP))Ndq}NjR-$9yX+=d-;$-LHiH07m2PW#|@Q!qvOtC=d z;ZoipRr@4u_Q`ZzT2ix0q2cR{3y*U4$QDV#WsAE5I9v-SmpiMLf%Y`pMo&U!>8gdb z?N_Q5V+XX)YVn|J+*MCBX^1QscwW*SO@a^KU~RZ-oPHr7`9AtzSn^{}lC|zpp9%`0 z90gVSp_~O>`k`DoLx^^j z+Ze94HC~oa#K6xlBFR6}qbIcANFmL4j_$>t5wz^A zNeTWVG58y@|A@iANWi}ngPgy`;NdSZ5J&$K1ITs^5m5>KQ57-Me-Q)Dzr=t!$US); zn$bNJltmHxdtTng;B?pX-F@|!80cFYhnj5pLIpXsn|awZ$R)bmgeb}qU?%^V(K2^J z1RX^t4mV_wfl(4m5y>cPU4g%EsNi+y+%>!p0e<2F!bd z&spyg*hVwYfxw#9F%>pjHM+#f7-A^8~# zXCzRGlwxS32H99;@eENMs?PO zBe?J@>nda#JsxB6O+zeEWT0(2E{&-rYmhDG_k-T+|FqqUU*sy~f2}#d->k#`hUNg| z{|{;ofHzKM$^k}~6;J~XP*2BDMVTM^?86vgT~&)Ygam1VGUJOe3`JGR*Pwzy2QbPV zjUybWh*k7(d>V8>e0Ye0^cw}Wu;8eLD3R#ol+i`mK)PeFEwp#p-SVfyM7)fz>*pp> zhMeWDi`(%6NzkuG$px#B`QxoNauOT6<@g1^3A8x89A|Zu;{c0myB#{#cjTUx@*%Ri zU$tw)Klu4nm~_PM{U=bIV6##K6NxQ(Clg-ZJ2wYtoOjP!Q}68Uslu|xGgT4XpT-yl zQ#iGX2EC-^!!o=cAhn14ui`D5W7D`mlmJ&O~n^S2|F==b3UWr zukNy2pEpl-60VW$6)jAMCd3?1e9(Gl4Xb%`FgQJSteW#&i0wwzgt)j&o!&p#{MsWl z&m8ee$7vb#hUw)ROisiWf~8Gr^w2^0a8eYUTX`-$Em?&;eW9ErqxN=-*dK*jfV%}2 z51-{>0Sj4y^nBEE?A33m?5AGrl*g!l%QvP)N$Y&Nt9yie80_@!m@TY6eMmW!-)kuU zyl1w;e$3K_OtoO}jKnD(mZrLiT;BCsAy+d@7#g#eq!sG0^M-+j|86`5+l=^5bvhQ6 z@EDi;yd>3cAcYV%SATaG{GAhC@z|=4oaoG8dY-b7T1hJOm>!F>B_Hg`p$J*ZIl7m#%9niB-Q7NMllT~|EvDMg)!1$VWpl$xUUB-UB z04MJ8S{af?-0FQ#$0h$~E~XJagcCPyF3KidJK^0~>qp!Tg0J(tCM=EZ7^flqsAv6; z6~mNM<%$d%_GM((y~(%_pAb;zLbddcXNQng!_}WzO_|3#sJs`8Pm_Ht#hcq156>1%)fd{X-Db~=^b6WXq@B?>tu&mq=T;WLXMdhq)$p2giTC6b#_FQXO^3J-ctE z)P}*lfN)UrcsdC0)D>&Qu6)f8yk9W2PSCvn-7!d%$6;^}|8a(iUs_qCaSyvf@;-Ox zG=;dDMR1eDKZ+vV5Pn|yLjU?M%@czr6=I)|^=VCY^4jpw?eCe+YRt>S^m!f^Z2r}Y zu0HdJi>O6f1 zXrHhe^@6vf`MK9|5e+7%Vr*DyRH)29pz_J8`P8EKSwH86d}EaTy>OwErECZ~tufI( z=K5Bsb^pz|bxiklu}yGdCx5tuB+gU>*80PpL2KFkc{^$~DywY%^n9{jE7{$Ndy-S@ zne!R`jNh)g&H29bZGsya@6wskB9`2~=vrv;qpmYa(G}>>^RVsw-sK}v@)kY$0~in( zc#y)_TU(w46hBZQ@Oz*EUJ9@Ug6~psmsm;Rvd55GS?5Se^mG^|1n zfW^}uT|6BT!xNnW!ydf>uu!^h1f^iM8!#w5C_3IKlu0TeTpG~5Iza!uk6t!OGN3=( z)LXQ*^czujLMKr)Nj(Re-Tr5hzlfj?(>LM&cmWUk%kcf<$ss0mW{CXDhp7E}Q-9s@ z56=I;xD)?#K;U1`lL67IV!eD{aR87_{4>v5Q!0v?{GX*V7WF1!GAJWVDMaF|oVw0# zZtjl)-F{p9SB#t9XpvIoAuva6BxxaD>A~QZ{J$FdzYbN6|vh%(VKKp1D88Ud_;Ff}65L&PwlhWDTN%RQ0> zEoZwm-56z}G+6;bne%|cQ%`$h3Pa}$8;G&nQ#%Nv@R5}CYp^_a8@VxaGsG58`wgxc zn+B!eKXnh1qTKwhR;BBOf!;rb;}Xu_YIKdw7GW2#!z%az`X zADSmvBaZ_WB-9q&yzNpry*0NRMMDBR^{RNNVXN2Fe1qTC2g8-3FM4$oDlv;bPbh`H zl?)NZQd-mIBTG{8_xE&pTZ`!@UMjW+oN~Z+g@Y=<&2KDA7@h+Zzv+n%Yh%`$>4Me@ zk0a1X>{cA@ukex-d=e=YRqPa8pGzb}aiwS$j*Q{HkD{aFdh8zNE&c#&R_&C$%q)1k z5$|05nx~p|8(mGJ+1Zt`y`{-50BpOVf$ zC7u7RC7u6uP5hf!{znu4XyPAD{BPAnB)w9_oBt9^;BTto|IJ8&vc@ykzl#*y>i#q& z1ME=SnRxPr%p$h2tC*u_$Jt43F^Zh%c+0GU;poS@CQWz`%v7e`4 z8{Z8O6lS2tTuU$`9oh?skk8vVumK_@L8KF#4Zy7^Sr~u}Bq4CCKuIzz+w2o4XREJ7 zwT}@#c2Ue&*Ufi>u-|~dRcpY|G;e;sTAtal zPIQ!t^0E%rJT0H45LX9HQrV|B@BVT-dt|C#IyUaSO3;9k9!{ieUbeUIHiyU{G=IYV zP{A8_e!ty_b`I>E;~l7_cgFQRDXF)7+-!u^ei(Bn9hdXEtH^l|G`5Egl3CO$B^ zLw*kQjNnadaA@bcX_ak>%aZNn&b(d7e0}5Wi4cf1!!B1rPq{ezym?G1yDucvcfM?G zKiIAK>L-#G90b;`WeuzRlc(mO_-ybv$NlY)Zp=R1bXoT9%FcBZjAYwdnfXU~MrTV! zOM6vC=S}#`P2r+S$CwT@J#SSX+qu4dbW!`1^Q9sym(i=*n%z6+Z`o04w+FrI=P+q$ z_f8$}x7R~XPmETpELR>OtJN26?cD|2&*%E=VUpRyqnOmUK7z|+?u){VTt%gjF|Nfs zxjo9q!zs8N8_@S?&gsdTi8mEj-jI~2a|MY5qUxWT;?hw?Rfw_)7s6=*JyIx|?RG1A z`}sw%S&G`5YoD2p+mFi=_{I_!!XH`aDVGO^o1-^&8|kzkEJ2SI_FtV3r<~Oc=UrQE zZ|gPc-APF8P(Jm>)XVV}RkbMVZeu3K#k!fBHEGXYaqehabWvh;7HCS?`j6A3lbSReBJM&? zQ)s-dcfBG$B`o4zus4=HvWOD2G`+I3=b84}rSL=J8@;W)4w3pdQzHDChDRPm+gt)d>mW?RlkOIm|*SHF`J;9}HSTpNroeU#wVZhr0|hHS^PDL+4d4&-)N zo8xjV4Z7Mt>Dh_d={D#pju_U!j*n_Zy(HqFs~=VLyI4vG<*bW z=xG#IG=1q;-tNs!kkiQUAh>UT?53shYB)!1!<~$zpVevfar}G=y-aMKU`gji zDaqPtPoMQRdpGY5U8{06Z$?Gu)vi;Y@NOK%YVaQC+@q38Ju_!Wak{%Y=p@}uXivob zXnKDdR%_q*&^Z0oY`l2ewwuryhue)qlr-wD{5g8LCJ%Vy#o9}f!VrX^?Qkyr>aLnV zYO~=yv8okyXuZso<$KHvM@MH_iDjx)m35}p@Jl!MvI|!&q_6b7Z4;^5#IQ%GlOtKv)3k`Ijc}%)sx*-5nBfeQE zpCzOs%$X~OZ>-%==zYEiK_2cqq=4mb#J)_$^WD*upCZ^?7(jXWbpP?f$M#p>jeim> zV9q{y`5Fce0QSWe_z#%^f4i*VvE5dybWnkpzz;Bf7ZE#pXllJq)#cQ1*`vDaI6g6^ z>P18t@h8OAyep<*P~CxAM4?DL@0~*@M!0RM(Q$byr+W1Z-}8Pi^miPS6-2=vTnDTfP*<{5KK7pZT#q;Tv+(+N4V8osI0M3L8hszxY0~@g0SxD6-5OwEIsl8UCrLQ=#qy=uTQup!9t3c>WoU_hUgv&opn6ji6ve^VW%64 z&Fv>-Lpf&Dx>Q`PXy7ulSZ8)3w7bwebNfXdsn<*b>hr7^-4SH!VXP(B?ab8IA4sYn z6{vj}LjulctTH+!f)v7jHGyKa;a7}Hm6`@G)huA+yb6SoH-Cie#=p1f1B^d(K-I#)~4WZ z+V0t(HUi_=`U9w*uqk5&@89<9*%mzrHLYIbnL} z;6N(+_3j=PJu_={SFfq+Rn^s9;*dy5OAnc<;Xb#(9Po+bWq_E5 z&-JRwqN!J1X9oK$NLi1Wzk_#vj$6B7+(erAmFT0L@FFE)Al5JKA$XxDUfT`eZT|OF z&ed$w;1pmm4w2B`i4gu+AumDC{wz2lk9*k8DpdI}7c)~Xi@x(b_2sOeQShQ&r$s>yd;@eMh{oXDQ71Vxtygxr* zkBz;Yu6A!~>+yH<`TRWJ9lN}&{dGV2w)wH9R=1nK>-FL3cx>$U<@6VSx9+d!F}+_m zx3jyYrQ=~kv5ac6u#B~rwSwL+4?}_*ogO~VSFb;>?=SV<-F-EhUth)+Cu28Le)+z= zjh_2BVC6Vqsu6t0M16wyhCIabERa8!OboTP?HU}`EBY$NHb%jPQDGi z%@^}jEjzqaEt4)y;52k5RZAzpcdU)-kdOZNp`7GI*Q7DH+ju6bIPov|<>QVv?|WI_ zbuPCjUWiXv8%4{8s~9WIQyd|#)KGhde6GhwGx_FM4CmS_?TyqTWOM7}`f&Kg zu)sqxRdx>1S45^QBxxo%iHbd5Zl!H1I7v$PDLCl{mO8$6Nll76H!dL^oG^WvotT`p zLqTc;aDk>&Addz-^N69u;zU%;_LmDR4KKk-Wrt!M#tgvIELZ}6Em)yBm>R4^WK3Ou z!(68GSI8rM={w zuQ9T`mmKDK36%k7HDhnlj7=nJ@PrW*D8(dWUgG&EJ19kM;0r|B4J?yKv5y|`n|==& zYX`;Ap2Iq2k1>6_!qmtvRCs-jHkxyN%^Ky=@880czU%{=9j+a{#6a#$Qrq$H!~9%H zgt8u!7?tO~lkO;q!Z?YdQ9G_ANS^qlRXi=?@OFS7P=%Sngr)(X`$u8Qu#aXcgJ#O& zq>m5m4)7Z+D-dkoCm_~L8Pd6@V$yYhmw|Xr2ja1e{1twT7WaSakqIpwttt*UDAI?upCCeSEL_J2_k%MW zqD;{pE+PsGwTAzKbbv7;20b)6#Dm3$H1-;wq2*S2;oZkM zE!HeYc-Hc98D!IX3h+mF-x^rfWgrRxNeXEr3)?SntR78Zpy|s^Xe%Xon?4z<#$Vfj zS9YORz5%gq`WxE-W1Zip02i_Vu|2~9S88T7kM-oVh{g*UfS9VA&PCyaKcvXACxGt);4;q3JFQb-qLc|NfN5nu!0P^T{=b=v;dM^>jTV%CllNEaa4{%bQM zZv)fC#=Hr@#sBE1Ys{w8Isi~y@~sFu@yoWrAB?UTlXJ6}{IOCrg11Xtt#H#!4PRK+ z*@%0!uUcHr4Ladxibjr{1H^YCf2(AF8o8eE=3t&_l84tL89D?NpBFF|tsiIB_lAAy zNSe;7+=1+t4fX7|d@0o-mUn3u@Y97u>MC0*xt4Pd{2X_n5N7o84I4;r5iuLnlLiq!=n zX3F3VY<1we`@ev+8aMlQeFrnzp+s>^D6wbl;SA#GhjgqzMA27#hqc{-iO8(V1fe(o z{nnR?4Wnn6XEN^5Z#Z^FhYGIoaxIaToOoMlf5_tNHc_GQ{X5rKoRh1L4PcF15ZVo_ zoLs($exi8W)a{MNW`P40w)#x0?;^u%nY+b;d=F4>BmL>DCM`9)AxBkY0t2gQ{tC$? z7ks?k>Y{64poXB8k@;K4%7yHwvx$aLwK{Okx&!X@)JrAT#Sx#Mc~E-#B$XA|!cm}e z#XVw!_G+D^uxbF(`k2UkR_5#c9x;o)zduZ4WcvX%uxP(|iWqQkGQ|Vgz$fDaAyyz0 zP8$X?2#Vj#CE_=8Az_8iU~aJbYds)4LW}2~MgTJ5v~WO(!e5GEfJ5SMcJm)ifqdyt zXim|LzuC>7{rqnKN7u&kjRlx3fc?&n?Q$vAV*(Dd=w&-6=uOn0f6P;RbH9Wb!E7|v*4b3$YnMpEf=QKRWtaAZ zYna(?Q>-x8R9VWLOKaxsx?}crI7D5^524+B$xO}`)T_73Wew6fhgSM#*P6l_w4^pX z)PC&~;@v55fp&8}+Nu!ia|Z7#h`I4iyhFi#=-EZ@T{-mrP;{ydn>Y$|rg%VTz(viF zsIQ&Y6ds42`AR1sU?%wQ4AMHN3HcvQfrR`M+5xs>+A{mU`T@58 zqwC=;p+GI_xOZiaq7VW z%DunVbIlb(PDkqk$~}m{-*WFS1pvQA0QjK%N7IIve?c3H`%R4h=m*&TkFLcIg1Lbc zp#UPFbQn({21!@v_y)%fhH-g zy{-Vpsz;ej@|iQj+F<~_lqrK?4sx6gSzL6+LpJf2dWVQmGATq62d&l-e@ZnpvM&52 zJ;YuU%)rjiHVO!1)kj#+^dCMyCAPkLiwNmbZmPiy10cc4R+xeEOmGD+Zuz`+jod&Kzzkxcv>$-r&{bb!S8YrSP35g}vwGm!%kG%ymU?Y|Z*PHO<*`2APY zi+@4G7ySSv(tq^xyFIY$gQ7U@!*C##*bak%tf(viSYU?&3#mSUgOwTZQNjY=#W(}- zejt(oXI-*g)Pn#AJm7`KBp~T$t5AXWC)N9VLd)djpdbwq$LQy7-w*h~U%aHoD!0Pv zm*;;IjB~S}X%?=1*HZxAo|Kkf?^puMuI((4ipq+NK`4{%1A*J!Pv5m)%D6FHI>~%O zOFwjj_SJ9DJ1uDpet_Nn7s6iK)p5ZwCHC_Oi(mYWncz@O*MU>6zH7Mv`!dLdfyM0l zVpC973L^7Qg6^;9MeGxg>m8KSAb9S(AJ@*iHUe!PTWeQCpUxr(>-eeaouzkiM?58O zX3V?>pvymddfPTp8QaW?53J?6B;Gqz%VsORIrZ-NC-NH(oXhAzYu8>su*fJr8^>bf zb<8a0f1~oLC(e1aj>T3~^t{89x^DU+#hfJ)3Eg;cQti_YZ>MxOdJ#^0>?+B2Y;QFq zKI5)4-f_F$5@I}F&OhXFub^p+*F4^RugYzeg!aZX?W8_khb}1W9f!^;9K}`>-kig0 z8y-T7j+)ySl(g=?#?RY8Sf`RrSeH$#Kvpb0c|SwxWjtweTutctFcO-!_)Rlrzcm&M>*-nt{8i3pI!!HdR7xbi%DkeyrGq@%%kk5&&qcO zGS#nm3kKIA1xLY!oV<^%+f1uQUYoYObo|BnH~R!Um)4?HiTqavbt-Y<(FOxF zLU?z@kqg{E$14^hsG0@=jH>BLKD{)on%siMCLLyaai?VjFP@PM0ku-%sdb6Ah${lJ zP0A+g8RtllDXPVU(db54`S@7S{t1#PL*5HLRo20>_`E{TM32e*spOvCwK?F2|jYy30-BME7fB@>^4v zTLxC-0<^^{l&w^+Q50KX-^$k3R}Ds~X(-|!ukp#)UlS$mz+qV18y%=yD`Z=mGa0g_ z12n~XZU-AJQYW;h={l%R%{RoEslzM64L67?7$VyO%i5`|kd6z|(B0xmB0YkDUwz}6 zBKqcV>1(?@noAmMMuVye68DRgHnh%)G_g3|>Rlz0)<6(sPV1@+R%vY^FR%Iwj&h&Q z6J)(ocjWu)3wW>GK36v|pmV(HR4?crvr|j_+9$dviYYWJz0zasO@4EtV=n33LhK7m zI-dq_N*UaAO-EOrg_Kzo@~a-%R{LCX_9-GXlJ+cTfewW|xjkRgMDBI^Gca`kF0pTc zsf?GsWO3smn6A!hWiR?_u1CR_=%2Tk!Ku}&k{g@b?1s`lO#?E0I|Pbd?As2a-rchg zFa>=Ex3(o@9-RHFW7ErYK^)<^UMX9m2KnUE-Fmr zL!G6}MyEn$nG4AJEc;cx6?)tZe%d$`)ol;muG0YrK<8Hoa#svWg<+<@|xd;*y^;M{l~!a3LoTGYD_-$J;W~34rj!^0+k(MH)0e zBT7&;#bkT!X`a-Ec~#)eTof3yIroc6=3MzLF6N?C! zPkMQ!O_y0pSKD}K70W(PqhcMMYv0&i<&A4+W9^m=)Ub-UY^0`BiGJXj#O)}U*F8Nv zdTDeP8K7JFaki}b5cuQ#(7B#RZrxe@im+Dl5of8`No(eEv|cl6v2$w_*&2$Te{hS7 z1h|=ZcBJ&W9N*&jqr)?btz4=z6t#(h`rVmXCb}C7f%-iOqUh<1N%q(T8?BOL^y76$ zz20-TcW1GdD8I)$kO+*RTZ3 zr+P)I$#`Pi+Pno4{$l6*b5f5K#b_9C>5l11W&jpDQde2}?eLiX>@Uq#qQ|L=dJguS zcB(!Q7FH|3m{(&3BNjF&JoBP|Jac$j>iibfWmju9x6IJbm*|8^BUxW!@1t`qF)lk4XQHMNNabeD!6`NhPB(AVQ;{*byjSF?Uu*po?8 zT&)@GbYE@x#xdmG*?M6cYaPKL^zPAPZL5wWZHgaU(`^e5fhN`GSrlJZ=pguPE_Pn1 z?*(nOUQ)9yJIA~@yZW$^-o`?&g+D6U%N%Ml!WDr;Ttee?P1mW)w{%E@TBI=NFm?!8 z(Y77dMtq8FDcOp2%Om>n2uJjzr6DDGu`Jnr9Zm^z5*UpirVCE)c>F&XLAzh|ey=qD z_cdH+L$b?%MK<{Nf-1BA84w;A+8|L9{Xaq*I8wu@S9})hM}dIDgiUpX>>tXOQtTx$ zi^s_;*iV2XNhc|Tal{%Ur%_f!RuqZ1SKf;TkR5#2ogx&jqZsshHLfoJCiyUvOg&fJlh0}*)LrtzlOjkiZOR)b4(Bm zb*3$aOQi0PY&*YFdo+KYH<@Z9A<935f1Q#CSrlwnu*wJVj{zT-YrSv*rca)+n-3c5 z_1U45@z-Gz5}B9Wur--o;!W3rEyS*|C9a;2Q+L;em1LfQx>`ef==Dck(;Fg<&kFhg z4ILW%j4ycMWLz5Jmc|(YVNLovDcGN~1+W=Ine=Bf6KURR5k0ek<=RLr<$OGF7}-}r zsAhGK;mdEMI(L>L$^JxoQ+d-AM}r49A>;>(!rOr%TGbc!Ww;_3(J{t?G8A=}{9##K zd1E|fQF65*Iwsc4G?*DzGYY^`p;yLw;M2m&&^#_3=FS|yYE=<7Uy}NnkpG)%9gPe&wS^yc&_`~K^VfCgLw}TioNZX8 z;C?I}xH(`Qk5|3%?;z^uUm6{}%Q_NsUBI6&+TLJ~%%Tnuqy9+}kN0I6t@RD(r=n0V zDn*&H3ODmB+4V#?CZ(f~hW-rvY!b1l@22fuC1awVJNn)6BihiRw9&Q!gaE6>5iCQd zjr(%D@^p)nlbxD^th!SI@98=A>^1axfO9|QhuWzMr`V45-n}R|0@g=%2$G$0z<2M& zpL24O3c-tESqqZB#bnsfbLQmeKh}@F?t8u#FcuGXRIVrPJ$(6^9Qb8OG>BFCvMBNL zz?pvlDVah^a$_U>Ob!O0&oE+3Zk~5T*^LLkTE3W|y z&9BfOps66~zovFF7WvgXNb;;6td$c8+EJ&!Fr>fU!xklx?{0=AxkkBuv1mzhf7V`E z$`RMVFw<1*^&o}1T@3-0i(6>$=zimORJA8%+jsdn^_d_ik^7nHa6e58Nvl`V$(wm5 zar8FX2Vj$HS_XeZBP&`kf!ijIrTg>XF3>A~gZh4wc4r1o9qf{5|NLCbXJ>L5iDFhn$*nibJjH+fHhl7fwoh8)+sK=x@toLJ(*&`CAq*7d@6RK3@@}{ zS7nE-)}j-m?0X)%^sce&)dhm#oFOM038xC%0}vEYbP#*;17$BC6d?!!A~5_=7m!a8 z!R<($NyVU$M}2#PAPb&#!~SnZF`pgn?4AC% zEMtu06s&@Tkbhi;ctbCD)cmR-FC(UaYfHiO)LCF=XyvWv4NaQ4+(^!u$qD6*_2?c_ z4(rGX!c#Aunxl&_#PpBnqH?NUe$gWAs_Tho3QC(68b_!XZSbmqY9WMxl{DWL$pi2H z?5jJ${$lx3bvAoQb~Zx-d;4WGY>4l)??$=VLYvIP>#R#-YkF{~HA7BpEXRqGa;i_f z)&Ke+TowLiMwdILFu`7;&5~(gmW!cPn_t)OD4ks^ck@&Yd%bY2qFVK>(43r}2cJ5j ztSvJ*1Tq<^+eEv7crt$y@=3Lyc|-XX$#@n?!QA(6g|J_gXnzmz3JDOQ|J};y4{ySM z*UBh*QqZbj2pDst*3fox#3GM=&^5FM7QNjW!z|k;E-@xi>2SA&;f>RE_C`Q(j?nJs zOsC>J8DHynI~`GcV;MfA3rmN`qZlK-cBSIaKxbTU^eP>kHA7V%5JY$r<=ii21*qfD zBSg$4LiUTzk8vaRBBDi5?QUCg1K@KD`Pj95#?REE>EE^Qmca<7CFO8?qM6 z-LOlUg0K5K<|cC_ZXX!;N#IqR((4)KYD>-Z)ZQu~>MxE+c(j?ynPH#lF@l zUQTPDrQ;64)#R5gBq|7g&wdJ_gydW~fdjAE&#{&y1JwYUEnzPP34=B(+)*M1#y=QG z>y^wgy#rM3A^Ni=-;c%KY*M`NFh8|fW)nXx+&w;*)_+d6#jeqM0{w0Vg^{LB%hrC8 zz2n+}*o>83Irf9#>x{D$Mxy?@*p?t>l6GWs>I9@`ql%4p-F>3M-;QlJX@~Pxpd*DI z&fksgKLYUlyJNdk!^WWm}P$`7WoDV>=ZY%ELX-B+m*ZWRO;tq>D@mLvasA zw5OE!JHISt6f4v>SzY8e_7bv)U>Smlb(9S4gzcq!AHHiwMRfPw?foCd*oD$tYA8W& zO?b7nwLy#9{@2B$Nr$huZ<)gTs!#6AuYjY9x%gnJB(3yNU(#0@kdsVG<7&?`dCs3Y zLjCibs~jYuF1y~6IGUEbF4?Y2BGNll9WfO~hh1H&xV0u?yH~r(Y}N|F@OcbDP~kWV z@#yWgAeCk?Cx|oLKWD_`k8ke)-cS z6M1}jc-PH15J1VlV-oA0`XmMMRAx`Gtx3)3UcicDPzp$}?+iG!HX+|GUn9Z_qlZFbtM(4@+m5F~xe!>tSp ziIZS@S2oHy3cyLLCV!l`HsQFh54=yNzZb~Y5L+;5G!PTd$@{uZgrw1ESZAe-@*qJd zLxa|o{y-^@l6`}|Bz;xvGK!W=wrr=19_0tCig0u{8a$m+mu1>R_K zQLh=)0G`Aoyj<@;y*`9>)N6U{8ITUO9Zsad(oGL|;STHUT>b9qwG zba>lX(B~;EElk&gr9zFGqK!gJI|I3m8ATtUyM?=}x?hB?u0RxU!>0(h)eI@YRmYwJ z+b$Ij*|9+5m=`-mtY0kv2DItH6n0m^!}ES`9Ag(HYgbIGEW@x#)uBRfqBIN)e*F-O zVQICQqw}^fEF;_Seak$@@?*ZecHP<#*yvgT$^HaYQb}82qr? zbJQcDT}^}5giCxKi%oq%0kqz#h8oSjVYPt{~Pnwk$g>Zs2n_VWUV+lR9 zZyZYxrG-`{B!d;u8TS0f29ma(&ogrK@un+ImQkHug`>s~odG7+%Kks227)WG;Q1x= zEU0fLrc~^9Gd?}0ebdP1VBq~ zar^w`MWY+u#q}*}?^*C~1p;;xGKe)$rkDS(W%~b?RA~G%EdzA-_rZD%OL*ka;nd<> z_`1!5O%*P`WR)TjNbIXI;PHk?>_h0r#FJ%n^|8~qp}emCMZ?%a|+?h{k#tUDIL zh{A|X+4}U&OUZ9984rDRcnS#(XCdw}n%vl#35bU5d2=_2K%uS^;3x=hLnf-0!9Fie z%=L-AmYk|c5qmIcF-DicL|S5;uj2xb>dbdJS{2Wshvc^a2LlRlyxtG$VD%CN`sDKV&M@e%9h+R!m{^ z%k4^v)TRqV9`v23Oq<~Gyft>oeShqfsQp_?Y6kZRi32Ig0QOt7!+;vw8T~Q&XZ+Jj z{T=*n2^OElb?}>z51383?zln5v0~tPK;uE$fSBDmZZ^C-X3}6 zW}VkP%{Hggo%Wqw@ZC0qCrqbkMBPD$6D#J|^EhxkJ!*VH`Hb-9*?FstL*-}kRDAtX z1tvTb8VHK6@kP=RY^t+Ug!Nad@$nk$zd1_R9)A0F!D9!u{wPW-yM7^AZY>0|ledmn zDe3pzn-6d2QRgS_+Rne4zIZsh=X`sI=X>)!{Xr*mV@xW^1R`F6hQS-5^@@8x0tvw% zU2M)<$A`#{2MKMj+|+qKM0LR;Hy8 z7V4}SWQ{bSBFM14(HI3Ebb7c4T%{BaUQYHeN3Upqx7(%Y?G-o!MC}#O73<&I?PB5j9a7)XaM*y#M9M@8 zY)33q8wxTM1PTj^6Uq>j6rOdJ0172#>k%xD}OQx6RM~-h=KdkXL=5Xd$ zXc2ASqOMB`Is8w=LYAGhAnXt?q3!{%L_I`I8P-!IK(zcH*#%_zBSZT?E4u&e0{*iL z_|GojKf8ec_w54CcScs+1LxyCK-a&2QADi!Y8`&9lBb+wq`lT}!}wZPM9G z0sDlRrB9UV!tn$~{NbPg<|nAEQ4eZWi0}?d&;aiavtBPJ(Z?GUsm?1bnDklJQ#_Q2 zuLJ>#6>}Z4^IufVDk|GO#Z~um=*G}J#03%%ey4y&Q&`=QDe-bWMZKzWbo&<4 zcz8^4oTDj5>fM!w8h0h2*KZO*l1L)_OhHK6JnfiQ5Qa*b<(t3ThJt=5zXmIGkpOl9|{N$@L zOOwBNw$dK&ZQO@~xCt>I1X3N)nra-q#HQfuB_{}IOQKk?r}L6Ba{5d-p2ja7jghu@ zTL_+VgcCdX&&>Y92*iU-mRzxiOo57gvGA?ovhKoqbIb&bu-S9e->Vpp8+E5EpIJ=r zFgha_?GYCpz&RC%sy1ezY+32*nrN!dnz(ggBsA`C{QFweh{g)m@)4t34rHn=xMWE+?{CMC}ZTQJZ#j1cK#gp zsUBXrl2nsmzQX>?8COA7M18f4Gu{Tbv7`x zGp*djv6NC*!{jMHsjX16)O0b9n_`-@-{(tVnv#8h4%m0f;Tx~=o}zF}zhx3>_U-#Q z=N7A{;yo6$FA0Bqj#!*kgdtVgYajB()L=`9Ep_J6fQL4->Ov*Q=2vt9pq`H}>3NaF zjWfflp3kq6xogQBf8lWCL>LD#r>``$Phy|DxkUl#pfvgpdL=iJ+%?OMJ7w=f#{^$) ztjN&3o;f#fyvPdh_2d1EYMH^uV(Xt?*oN}mqq|p0iuqxN z!%SYzGOs*@87d|Thb}6AGGM6CW%|KsI8Hyb^>*Xu;ZluaIx{A&tSO2 zSTU8Dbo+3VsjKa><%GkC$qdC}un5%%6^RWBFNVznr}KpFVbwZMcGHB$=_~VON6w?q zh6lsu%liV~=Ho3e>O1rY5K4cL4?QSLpy+G}{twR+AJc>vLN|@qIlvb_hjOEbfm;V$ z+usU6-_Eo)p{+6XAUSfL+K_-?BZJmxYx~1zwB={RPJu@XAs&ISDeIt!30Ht4lxBML`O~kcp6>S+tNg+p>+Gr}N=(S& z9t`AOX5{(}#Si{)@7aRb5Tg8tAo~y?EHGi#4KBQf-#@JOUs&N4a1#5UnaN*~f^BV` zOAbH|AcLmhVty2P9!jy{LVW`h83svHr0yLktBukLM@x2QOM}6WFd*)ovv(bkN2h^P z0wdp={Kk<80b+A_G}={5Wb9X4=7mdrCHi*juZAuY04ngK%;wXBEa=is9p+h6pj%-WqDO&UHo)~Ly@a!U zO3860I-A%a5kZY)9&jZkp^Yl*7f*pi+vpuN!x2ZFSc~V1vi2|>rg*Z5>s8#bn1w<4 zFw$u;JZY?&;NhEM2d0zNG$hi|(EjE`+Eop7EPrY}r(G@*8Uuzjr|m6<;uHN&X=EQ= zwEX5-xZWFzTdOeST8^E~gH0s1nu$SXq;--=6{y>k{-{RSL%9>X&JEx<$=Wh1x@KPS z&S`OIN@#L-wfVeesV=$OWMs4^r&(6==Cn)!&J9gsM^>)9U*^?P(?BS$^vJ%L2Y8}{ zyem%$S|F(j@zs=gw`+fX9xBEkEK13g_#{4T&%@(=FXQ{sMsZrbi|3#g%nKSDe!62! zKptp{ls9zBenB$X9pTl@;imTaHeSa{MZ(8o1It0Y%Th9AIX6@0*7Bp(WY0*DVhi3m zBQ(w#g=99Dn4&BS40p>HsvkewOeRiUOcygQR;;z;c{5->hFmjXVOD?>6p`5I%6f{w&NN$G`)W{g=yW0{ zXzN53P`e(>A`wFM<($e(kDkIdg$Dpr4Y^{Gf5P&zJ#6(lU`E5AqRW}tlz3&)aKk=* z#d}2l{=@_N4qai(2;CHjoZt4-^l{si#3^HzIXiy(`y|k$8ctQv9VjwQ5WL;FGCH z6~qh?sb)pp7fjKphfYETn{+=@O@9mXU#o$3@6ACg4jc|OgoFvhd@ZD!wmU09u6sNq zuJuVfnfDHXydMeFxlko7H)j(kDlqRNysJ*;c2v5eB{r1kKb^aaaGlnWvF$#ul6z5> zQ;erA1{{UM6f~}Vo~jrW(Px{q*$!j$bH0z}gs-Sl{dmvNxL{$e>XWV+z)p?jtIaEA zv|u<;X(~1eIkG>x^95CB?McA3ySx(UNZX86hKM zMU{+i`6k$P02Z!0q8h%q;`}DL&8aCDBpdcZ-#_$o*)G0O5IC`|idF^;e;Aw>7wc?Wc<<1G;)w=Q`K5L-a zXWVo4su>mlJsXebRuWlFp!dfr%UW*5_zMR3XZTb&hhn^wT-oqM&d0YX3=JY z641BMRDr!{><6W~w{Jm4HXw4&XUc1u^l>1qulLD~vunv9vZ6FBiDm7aU{@CI`Dhth ziDg*S5fcub_B7(`*ndMuoCbbjr;vhN#q`?DyPszc1*?WwA%@vLjLpwoGbPT%WYI`H zSjzH|1vP^61dn`9i*UvAdLdBuOf~0M)ap?&k+Iz4a*NvDskwg)kWIFIY@YR1pjTXEc2?GTrKJ*~Bi(>~gY0cKf61eQ=fh zLN>FtINZ#|KH+4W=_vDx1R@TkorDhOmKwv#?x~pl661jLgGj?hLkDAJ2jK zzF{?6tcFF9MO-qFVOqm;oBOsN%p)s&Nbfvu?43>POc-V%1AVw}W;)@Vcp`kBSjexV za6ba*8W)2|6ytEK8mtM1XY>wlsE9zDYj16Bs8ZiLKI|>0-TRX%_wQc~_dV1$73JM) zc|X5&k7h}I0KzmT5Gzg>uX$yo*YR|vs>PpM-5V}bHa z^$&CWP2?CcNW(oP^g8AI@K911bWJktQ49n^WTN6hnct1TXj7nfrf0#N!Ol66Q#`jqw{Z2Cxz`m7)w zDQ3$0ABtN%XHAyzmxPeu%@1LMgHe7&J_d%!#RS3tQ$X}iT7fx)fkH`vw}-ED9&j_LmTYM{C%zD-4<-A}WPZ~l@M26IWYohw2`HwkOm2jySaU99;zK!<+S z4$jE~%$~?7;MrpPWE1s((G_`CAB7ZZ9*hW*7wXma?cy;=;`J9v-HM-A6UL%QNFjkC z{Ty1){Nu%J#u#{>jY1*(mAug{ZtE>TfP%>#z8!9UN zC9MIbC_TvKAIS!H-qT{m9O1aoj|kDvT+Y%Kx3dp&=oC<4mx7;jyrSs`(wCEnE__Gi zgAsZeq1#ps9SV^MbygF{DN~i1*cEm?9D@g6_r3@_Ah3Mp(ugmNP*(q9|LiFnzLZ{# zZ3rn4ETT$m9p@q?Ab^ZT`fZVekA#BJ^&9(u?i3+y{@g4Jj&BkB`qh%UCQX#aVwPQo z=1=9X+?U_8J@QTDBj*nsm((JD$Zna)QJFhN7DHpzqZhZE*^wr$$Xc>~+*xA1FT})M ztkf06!&ewiQ$|NDzntZ0<8dwjAbk+5!gR9En?!0!g4GojL3r31tsI>=7}xdCBUo{f zTH`z|e8PSr3a=fTrZ}X>K}c`oXrelQ6=i1YA=`m73w^1nux78wJwW|&oyDoQJR{=+ z%O@P>;k>a(o=pkxkPs2iB

BgsYzN z?s;Z)h=nT^5j*b&`JXJU=2`)_O%3ue(~xm-ermv&#xGNmi&uP&$(7+;; zo*eK6>whO3G`jKWUIQi@jE_{(9){f+2PPX_dN%y^R7w#6ewGDHHfWYh!RIn|{%5j5 z2@&;RY1h{tQEjNjEv-rt$jgWEbpjo^szG&2ve9>G^3bO`Yqz%SyU^ zg4K)T+!D{hTzA&eT?*eisu-TT3OYk$Ck7RYY5RoY6y0%^vgHK!y{HyTgdR?|BQ&%x zX<6I%s*n}8FPU177b};gdmQt6cYL|^rn@odHTTPjyuM3HT#qVXKW}%XP$XAcps7#L z&x>YiXk$*UEl6|eMyYtGZ=5D^SeEq|isa~JMwqVPstp$e85$iczc-E~*4z5~oi z?-*)2QwNs}(|BFxv<^VKT{6lkh8Y;)-~^4NVuw5Kew0Hl@~tOY5++Mf9y&tgfXb|D zwV0MWrXf9tdF;=wVUA`DPNRc-Wd*(Gusv4j6 zN%&GMR?VV-<%gzIZagJb6G4(&TTAP=ew1(N(`I`hA-Wr(W48P*vHVV7d`dx{>;-;| z%0})tA~3Ti>sJ$0&p*j6jdWVHYTEnYyWVB9{vPeYx9Q2%u%k(Vj3NXEqGm49G>Zl* zrrsGGC>r&0fY!VhCW=iMh_aMkN^?LQ=c9{ z-=P@syvZM7388qMDFgG&b4m+ua0#-l4q_JU2569PIG}5=f4vDaGmktu8$7- z|N0luExD!kw{qkEgGT+QN&Y_?^*nZ-=RIr^C!Dz2Y&ohV!0Y_u`^I+o|QD|`KIWi4oZN6E%-H_WspQnHq#)qN z{*}L#YI010bg)sGQ=~8Ys_Wr>nqpjG>}xzzkGx1I0$V+mHRx)Vff-DoM1ad;OlAE= z+;gO$HZV}G&vim?(e@9Qkhh$);Wl;Q7(u3>aiKWi@78bIi$R{RzfjdrH+8KBo2ItR z!_?u=A?)7@Um6eKK+IQXbwW;cq3``@;cvI6xmp#n#9-^-p`^;($5v~s|InxNv4ZC5 zi`q_5;U{UgsX{eDa=iKkus;XCoVpv=f9cs4QvF=_c)hzJ>6+mc;vPTJLjkyaWwl0` z0F3>HC=ZlOTc)Oi_>&8y4pw|WXrQx(K+Gr$N#YF5{f3>qM$;8**Yyvr`kdceu9`5cy4|hk*nejMNncPgGar&v5mA$MZchf=q z@z#qC_KGanfKT+#BsqjC8$VXwqi==GjFD8zivxOq?%& z^}aXRfq(4$_+58r3Cx3xEtqLU9@{-|Y!6qvnMU=_VsmYMdLDfyZEMhjwa@iQxRP-` zFM>0}Znp)<4`36}`-4%p}QZrbCXM+OPXwNIT&U0*wk%`ZB{Mi(jL z3}d48kd)S_SELI!m2l^GXC)u#Mre4a;cq7JSe7>#N)+g&$5^f+tG62h@p`3eWuT!f zuR8Cx!!#HrwL4njHgJt(w?8&25-tzDE?AUg5S4avQSDUaTN%G6+sQMw@1N!!x1 zkjIij37SAakc;DiAWGdM;PCCR@)WHhl5g5+UR)Sqg^Gw&x=BWM+oWr7K&SJvO!MH2DH zs)OtTYSg`)rcA9fP|tPW>6Q?h)~7Nt0iHrwns@mn-%$fCfG+Zc9_)s-t)4&ag75vl ze-LQDCCp}$0U`HC6@tx!_zXq``ak=-_Xwgr5&WG!q~VQy-|_#}1~tncNng)Yy||KA zarKO}McNK93-^?VU9j8GOHD;^J`K|k5~CTJBDAq#Bx=DdJEqz@BDQ6*U8EwDV?;RG zxh8R}uoaV~zJ29+;XCB(ICRc2`{nSS=EiST?dEg2uXXz9bNTp|6~I~tD(O%E8JtTW zkuHE@?g8}vYcfWU(2CkiFCqarAV0i6E*DWBJ{oU=7Yeg^xhkyBz@JbXV{Um5R9^_2 z%iaN$!8};BGDrye4Cw9;+n9I83xaqem4~!$2AwA)=Rvv{`=QP*W^D@aW24^<%wa+D zOgHjXq1YyfyM_QORt+!>O5-qhO>DUz}7 z<`L5s$Wwq=1qvqPWA{8v&CeAHulJ`u4XGOyflSpmy6We;u@?O*3&u9f zd&+;t*~JJD(f7B5mMe&OQv|`}Fh_e>8+~CU4)o=j3EFAkGT2eD~R}Y zSAen{eRCGV&o3|xcaXkEP81wl5HFMRiej{IoR>g)uX?Bj*MhU+I=XIHGOAKLlwpA? zDYpBbxCA$BYtIEfyr?6-gr?aq8LNmY%RZK~f3OzRjUpH2>*~CMh*-IIgOJSeV6WmBP4T zR^9q!L9a7!N7CfLJhpHJJTBD_Z*T0cVgPTw<#q1jD<$c}31W85^#dhdy>dk_-_H0X zPRoD;^aHg^bBJr)S2l-XnpJxWBpnL!Qdcb_ax@R4&8j}e`4XKDaLS}lw_RDr*#fOu+L7swaq!4U?R zO8h_Vop(5u@BhFbE3!9{vdZq*g^aTI-YaqJy+X8P3rSQ;WLNf9$;w_yNQ6{YMto4_ z?{WHkzwvmE%kR2=|NVNpjykTM*LmOfd)@bap8I{5*4QxLpYXAKyP<{|5!7aC=`u4n zu~K2Z@ed<5;uEEDMQ(AiN1^WLCkCqijsf^WD;W#@mOlc%5#ZHPMl|E=DD-O#h<#_Y zd%n2rIzi2rE~L$X^ZNSr&?j~Q^rLNGyGbyLov=#uJ9$`nSqf`kV!M}Su5opLso7X( zw0Kd9!1Pu%d!a{W6LdDZzgPEOXTouZD^-;e=iKm$v^ipFrB17J(2*oq;VwOjjgXYr zNu%t(A4}62cjebLf3K$=t?G?d;9j>U4k}OTsOXK_zu|T{c{E{hY0Iu$IrZG1nJghQ zTEITAu`j+!jV&|5JGHETK`3w`t2i{GkR`~f$3Z_E%U3!pG=!nxeR=mi^8w;a>f%it z2J+)tRSbU2hR^BS%m&sjP(2u(2(no`TO`!R@9wg+@shJKPJW;^-N3v?@ov&LeZsc$ z8me4K5o3O?l~xSd0jG-liERYkwU~JvIJwMyehCZrLMpp;zxGI97MmtVjE6jCmuu}e z?N(E2TuUpRd9|i#<$1L{O{XtJ~@XU zFROec`phRQqQ#;N8M4tED@sT;?#Q*Cip35j-fXK!kot!;lAtTOew-W$4{pqL^hE`< zOk3Etm`=t$oShC%un}YwQxGd6xXh1D9^5EA`s0!K*~*AMyQQYwR~0Yoy=Py3mG-q6 zdeEI@(CI2qvxM_ldhMsXqVS)EdWevCb zOy_$=TQ%}m&or}MI^Awk(N%0L&3W$ey>~n|8VdBUrETt2c@)y=+X?1aQ&}k=)h6K+ zc)lv+;i*RPn8D+v@Nz|(T9}!ZalI02_Bm0etx27}1%)pk96p<}zRfky6L7A7o@8`3 z>{2PM#|tfQnbPGh;pwY_Rz@Gfy=TNX28_8TD9EHNd zUny8FHp8;mmbCoI5jS(5Mn}_6_DguW1xD(Z3OO}51@lPV2)0N1e|Ncee*CM!tj3HxL}>7X9TOyT$QVUK=DI zepJFKkW@>CETNJspHxxK3$!=!er-@D=b}?l^K)slM*7&-D8tU)gv%ZDmL#a`<#AJ++v4{LHDS!kMrNa{nbfX*B^wEWKFji?z)5B!%I* z*p0`KCekMjm*Ub=R1I3>0yD+hdTE>Vd%h))o%ADLD@k;I8!vZ~w1j+>5o1-J98UH-OFWzL9)O*?}9@;dQ6U{*~uAzjHZk=rqd zfgdiBH)nE76Cl#L!L}43{%E`JoF^rBC0>u>EnyPeCThcu#wX{9QQo` z!HM){ZNO*Q&|WHgq>pah65|8{=WHa-b?QfDYn_;D5fqF@$J!5{Yvp=&2y3flbNF${ z@Q*E;>s#wCeNx76%KgL^y}5D1uOF`tJR@cFO7qw?%*~H}f}z2)4{>!UFhZ{pzR7xj z#-fD8CFoL~>3od^S-tC8zUx`wSk0)9iVXQNMvfm=88xsbsC8zN>!#sewC%A?3kc8GV4OU?7jfu;LCNNaZ}tk!<>q~UeZsxHhwX3 zg7l;zi`(KPV)8v)zF3!q<5Qs9nQ1+*+1z^tJZE{U9>0vG~47H z-r?iIJn+ngEk>x<@rC{goq&j%TD62oBEJCDRJhZkl|jSc zKhNquqB8XMLzx?uzU(ZGD!(bo8Lyx@vv7*htTdeFxySNdIq$AKSK%nLCvNqt?#+6n zZM|+)Y#_VZk1J+k=O3_0p2C6{EH!%-ob^^GL5{toVj-h)VX6J|+m-v8WA2;d7vCiG zI6M=|-BdqJ_GF?~(s4}hwC`5f2 z_%da$DoY~JCq|cNXPNI%RoN*r~;emP#%-M5hZgu_u5j` zXw&a5<3^P4rp&YJT64coD2sjJP-O37pkemYwo{U|DUOW1ne*`2{o9K=xN)BKtPNL+ z9IBO!>c_Dq^%Kgd2jT}^>(n!5n&N0P(@$R5@RfgWa_RF@twL${^CC$VwM+V%YVXM$He#H+{Vx3NMcfO8L zsgk*2PRk1u&MK^4XjF+bB71#Eo}hL5w&zO;_jdcSNsn8T&AM6`+94{P!FaN3VXb|* zVO6yN)>d z&ev?|+bWMnXJ&H{rr=Sc(TVFR2Iivcp2Iq6(h>=8zPBs+4}9<;Lub49_Y_Xa%zQ=D(B1&f9Qlab96{ts#1zqq z6V!R7(aNJP%8_S0nao{#R}27-SBmKtihRaLzDAeaVB_{7iUgm`0dst z%F2|}Gx4iF8LDYY*WFgW_7hPqH*g;A96TIN8K;ETaaWw)H9BB$#N@D+EmlwxE&WDw zqL)Z2K~1y28V50*$WtRalb%MO7rd@v+M5NG_sAi>`1R4; zAVM$sh_tiB;b^ZMZSH8Zb3N@RnZ?XnYyAWesJq^`KhV(Rf5L%j-MAZ z0_F^#SnG(6n!4!N;|CxK#wnkF;mLb`RAKV2kX=TP$Xd9KUiK#<|I%(w^Gj_4OSgnp z-w=&sw`yc=Y$Q(iItViPXHa2DILRsKC`2#+vy_o2B!UQ*W0JL;>`!d(JX0n-hFy4Q zd_8?=(I_-ZR6ZiSZkCtvGdg8G%2OorHz7$C%Ubag{ksxpAsaEJ)v5|`Nmc301{B^8KuQq>(@_B&+Ch zYVeyytF1B$9mx|VpX6@|9a}S>ihfK0?(p~R@M(4NkSmNdR*_XLJv+u0d zo45~YXHHZz^`5Xs6g9RQ+^JN_o9vpUe)F-MMHZo5RG45jvDii9PdRYvy#AR$3^_xs zrfln%3RZdz$XFZN1zvm}#Ci5iUs2xZ@J)}) zurpDb2da*;xe4l%GZ$hu;xn8PxZC1@eb!Zfqn6I8oR?uMvn&9tc)C|X>aDkyw@csU zf(6sab`?x>aYz0wmj-?x@$cmyYYNusr45?H*^+J!NQe$NBmMDu%c=V77i52&Vx23^ z7v@p?R(jQCpv2?Kd6$;U9d#lhtVIEaGIJLm<*I~FTua7_d>$wKj8c4j(I=dFJV^6N z7Gc^1K-^x~8X?nbqDOtqNjGqb&V*8-!Obw!b|#>m&)c0S-8C?oceMPuBZvRb5-t;h z3No(h$e6>YY6woetR~{kRhQ{ux_g#sI)}&TS}ZL-dyP-XFA3%U+x`Yd0s=)wlUiHpM-?b8B+;)A{WXFd=?@M?kzuUkNOO+tA1q3|4z5AY?XSi z>z=B+dwbpKi#GMgVoFk8SLJ^P>%IIoQ4CBTfD$+afDg$4OaSSVZ1xb)KuwvptNKAN zV`&#>Po%S_xsI2~11QX@keHyA4}%bbUH4amfyvw*>F9wtwfz%%qb;u@ zw=;Ot(_;WYx9i45T-1s5zwf=|;_h(K#l>O!vtc>L!I4R(7eH;-x z2~Z(A-D0&G!2d>!+%7r2^NOMQ@68^zNTjC+0`-?5Tpvt2TYGHp3iSZ{fpsSYh-86M zezyw6;zL!wgl*IlK|0!6kaT_z@fG+1|2FDhxpop!;=vNT-`$8!0*!zb?4#W>)|}Xn zD1^S_dxE#NWt83{V+zN9L}9c<%YxJ^b+E*A&i#m|(GrzuU!8;}KIPhvcm^%eG2mV% zJTZ@ZKcWa)BE8bJcz9wl&pt%(VP|wM@rxu}YY^_PDm>|3xu7Mg$6?5AFlRgqp$t8MrR-?TpL~-s-uaCIG|PLK0I*w0kz$7-vg{0OXlr-d<0iq9Uf+>e%;ej*a`vB2LHR*V=RCwUL#6CduL5(u_h5EKL?hU+)lKTL` zZ{g4d46gd%wOUXkbKp#4cXIeCwI30EFJ^eD6u=YLrS~JE??#1nr&Rb>1M>S21<(gx zm-`CL@I)MieTahSLy$bLo*z6BUvWPo`Y?Gx*8>%J_v)HNX+I+RP@ZjOO$#q0rSg76 z^wtw4CVd~CctmACBKpC~k%bW#c;YeD{fOx85y8FKR0aABD;RrN{$vL5Uo2`U;(tT& z@2KBx+ruF7I5<|> zO?+&&9}&GhMm`BR4}ippJ^eU!VLu}JI5BOM<=PKwCKy~U*)1ct<$gr;aROKHa=|N5 z#`Hb?D2LpSh(1n?sC@BI1ZfO9&>@?wEsFTxII%NAK*vh#_VX3|peAO)r!IF-E9>2% za{ZnPZYvf_30$@@P@x7Vr06WKB z49GamO9lXM44@eGWOxkhC{q1%E@cNX0F=l;^WFTft0g8E14Ua)Z za%kV^(~IMif>m%y)S(!xPIwH;1ECm0?)JPy5L2ZA#V8HKV!%^1Vf0;eO$j_p1ORS< zl|puF>gYT?1{JfQ(nv;G7i5rwb2U>aW(2^846#wh_dA$EF}3dI@AN=v2GyXLR}`=q z0a)|f5C!VSiNMK+JQSnE3Xef03#c?KSOr&SLBGTohGJ~_;W4NT0mYEv5mn|!flFZo znBXGV&g+&q3gcmG;f}P@_H^H#mcc2BjGl|e6tp}Ba6+|PNltCBf(XL;L8_tycN^$V z97a$K#z%MztRLu>_Ac9j7)C=V273k`1M3Im3%tiL!5HD91jVFn!ee0lz^1E-kPX!J z;d4;T5D@{K<^3LKK+S*V|p9nk#)(18}VL0i62pHa}VySj_K5 zMraoc#MqtY2OXfn42sFT43B{|zq_+~>5L#|VNa+bje*C&nqP`S#>#Cl(K&&MZg-<> z(%><$=4VwG_OKAd+_r+|OT-IU3~Us3Ka)1Q3?}V#Pbh_^80L!Ut=5eiQ7e zF<@Td-;J=SIfYzs;norxDoqYE30&Xs!#cv2bl>@QP#W_-s5G(a@EBM}z)11cJqgyjIM)xw z#9xBPz&gUk{!W^sAjY&8idlRNi{XRy1jhEH2!@EBNMX!>}gTNKO+K6{3I+0>+Pni7OHzYFydsW(Aq__-&4)3L&1;GMxskmUpD z-^I}w04UUs>pedTLJWz?;nwn!%=0`(KtN}^># za~@&?z)djmgNbR!m7qlm{P$cg3s+aT0Zg-xF2;Y#s(@PAaoHK5KHe1^`*|s=U1Z0l?Qjq%AF9R-l$uMh5%vO{+HzAtsU)rkqN0irK&j|uC3Qa# z6}4CI;M6wn15r`CISx(@y?h`l>UrOTQ)R9lh>CjT1xiJ4SU}K0sHoFWpiuJ>^$WA$ z%0>_9*1N4WJoF$?*!FV?nBseZF5m(V`IvXuDgeBSLP3!}psPAtII7q=J9r>=zJtwE zmlrWni|Fj2t%BdX@3`D!NrB%d`58DlB7QG|+Ib?KP_q}pds)75@GO)_ zuq;nW5!APVds)}w;aRB22+O(=^^prczy;qsh$3KJ@pgE36F6W2ioh4oj&1{h$|M*? z{O-R!>VTD3N21P$1;l3UL7z%K5E^|~pf~h~DF^8a*!Y1SdNTbWP}uN6dGVRZTqt>J70k~7F6cqKy=OcZre}Am3pVkhkMgDY2N9AFHgLSUd66XsG^vl^ zYxj7dtZ=98Z+j!GSRWr*-;4(n&-q~Jcpw>^xPlLhSXww*O50l4Im3+ypxgQW7`IjP zK^g@vN`o6UpwSRL^Ey4Lb|RR zyq6iI?Cx-eJ}3n?itawBeuor*a6c4)5(Ad9`>gbxlwTj96xcPS-Dm6W1mKTA0VpwG zDZ9^g-AU;g-7%W{bIL1J)zG6k{~)x!97xr$gFo~JWdHR*RM^oU^ysrcvL;O*hzje$ z&>GHvs2}DILj8S460~2TCkp(bF8(|a6}Df|%gVKNAS$e5LTfetkyRFtY&!%&CK1s0 zzbiLFdjML@>krkB_&`+HRF2-VvS|)Ph0TiSsY470qQa&{=)So>JwV2KAS&#r68h-) yAF374fvB+AcK7qnf0zJ(gCP4eEw%jj>1PdP9B>j008!wda87Xe!v{`hf&T%}n^9^2 delta 201877 zcmZ5{b9`P+*KTY!c4OOaV>PyI+dD~P+qP||v74l^8XJwBlRnS;o$o#8&wKBCX4b5A zUDsN_HM2)rMKf=au;rz}A<#jfKwv;XK!`z{;l#_B!9YL=aO$v0z<@LzyA>w%;0ww# zL6PpP(7NSzTQJWVn-r}g*I8Sg=Pz_GkGR|d0 zvCpFo6n15xs>Vn{%6b;9JBs-Vc;o3L(3or`GHvulS`)`*Jg#!ih1mEhC(ScVN+dWv z$XLW9s>fLp^(K+R69H8tdsf=BpLeC`{IC8zgiBqpwDOJFAhP86`Uk0JX#1=u=D5ic zHj&Psop-8QiiyC8NykMfJnjC{BO&ckH-{Y?Z=x?cK_`Jp!u7NMMv%`C{)fPhT*zzpw)*bGH}Nb~^Q#M`;TynUeUxR3;B)72d-z%| zpi_8Z-i|u2YJR`{9O&!jn7@wKQ5)CXQ*AFtgdY|I`-$ix?%~02U>M^Q5mDSjtJwAq z+9x9G$Uzv)d=@$h6ZO=w+Am24c{Ke2D#1Y&2=MASnDvfy#(U=3Ds{0*M#QwkLaNb0 zmH6-)-2c1)_S8ps`h*r>G3#Z24uHHzRJIx0ed$=-%9u^!{_t%ldn^NixQpmCH77|x z`!xBymhM__PSf;*yaHbf=HXlaW!nXO)=bimk=0@mS1iJ}ymM-wHreG>y#@KKz70{L z*~@NZ(N#~BhG5}HPr7KnZG(qb!L|NNt)7yQPi}5>c=DfaVO|-7Qy$uN_~G8!9={ug z?Lh1K{M>(qQ`S3MPlOu37{f;`SfoQSm|U=y}MHUvtlW!OWL(aRB`3$f>yh|npnmg<-#x)Q@Y=r z?K+!~5RfyvoeSo2UxX=F%dfA#UH^R-_3-wx_av*#jI)?F!@C;#J!;#*>vn6ag5cX2 z5dO+EOjEOMNcxnxAEP+b+>#L1lmk?a>$wWZQ0y5jjW0Jcn%Wg9D`)?{dKlyFrq(Orc$-OXKP-7{)m~5SE?dEjahTfOD z4zxJ%X}kq6rio*>m{uMIsuCmR=El16Hf3Js0c(Vzz4q|X$HA@F8J8H0>651O)j*Yuv3F-RvB#4DIZ!7~E~F3$?VAcDOKoH_KmNBQ$=X!y31j z1lz)yyC0QPqtb@8_>3-%fitxW!9PvL@!wmFTTw2NTv+z8~2`}R^=u)s4Gk)cNlhB_oXCOIED#q(1s?>m@dHS z8Z$i!ESB-xWurhi#2PnOv7U)fL(&$yB08BLrIS_#`GY@*>P7pNAQ70D5@4LAqnu{8 ze#W?O9=R+5%Mxkeqpj!Wg)EK!Ty~1pK@d5Z%s6$RAVUMu46Wpc8^x zur+ejKYkk2-2+N?b!*ufZTP@==QHiXgViCwwhu!h4!O|JLX*wG>?kjBU`)^e4KuYs z2jbp+aLWy5eaB+TCI`S4B+!}sUj3$Q{i<##my9EVxIWXfpdkB|ZY>Mz;4)!iYQ)Jw zdg)WuwfnBjR5w7|OTU@pu;~_Zeow3UqQ89HvFno`ywLk@JjA)?PXMpFeet@km+539 zD0Wlie$NPm>E`6KP3VeE!9raWv>cD8T;<3qj3ko|!)p@>kN_LcA_ar-{&Uc^%+SnN z-oq-qj!^4gMAhsR8+I;Q&{yD|KJ^WllR@WFo{s^g{BIFOdUM?jHPm%-F zr|6pB?iq*#1-F1@99nkn?qF=OE1BomHp3I*ouHuT++k9%xlF&2bB5WLrjg3`?9$6fD|AMGu&c(&>Xr_q9}8^?uPbwNui;Vg39lFyM&rUtoX{eC<$D0GBKwg=;+*p zvF&$AT7EMnElksxi3igtV@Cl_aTX&72(&-o_->B=&^{rXe1_1}pdwia_8m)Pdtl~R1(bS2cH4t@5>=8&SSDU0JYm*{(tpaD*F zTx8@0N{N%)1o|ZXBbqnp^oENVJo?gbI&u@pcRcAp0*;-majMj;3R{>?Bt>A{LzKUo zv_X|CXh76y{?7P{pG1UqMQEgGk7U zxND^m8`zj>8RpI4%7}aLUA6UNU=Uc4*xCsx_@jWF<3`r%dTP5oe{9qNwFJ&; zEy&c1gisgqwDihQ2muZ}fA3#HUPk!Ab@>~>r|uijf!VLEcJ_U_tm!y8f<|+nKj>_G zUy?@;(v5t8{(MyKlp7G>Z#lyTJtPl%=MRnFT2^Xl<#XV5O6wm4hd^-`VGDb9kN6Vp z@ngwJx;O76yq>!=gqZbQa(3_XOjHZ|3h{2M@1emiw4;>xJp$W38H#CB(q{29M{XQ| z<;r~L87}Zu-EVV21%?%udV76BUV*mp^O_vJP6(6JLu22sv5@gDcVXne>#Ufa5+;6p3Kqv#qq0<1V8Wmu%SW_PbfI= zGon-%&arN>VK{AGMsTj07W-x#Ec-_b7*7*GZ5qM*M14}Ocy|L^N)SoxUw_`5DDFek zB&o-^3KNx-)LtBUtR#P2Vs;o+AJ3Vn<%4T^%T%bK`ug2OBO}%ZiCRfwd`~=~L5nq{ z@eT?K4D2wO@XMxFGxY|oR~&d(fB?bC;h#%_W9pluCDnj$5p%Ah0}^u0O}#r!K=L}X!60H<_bKnzwja}s zxmx~zjN2d^0)OzyfiCPv`?0eh4w~?3xth#-^nBOfXa8KUSG!^7lJ;e}7%N-nxa{;i zHSK5JBm-X?f|YG&ntkmzhR!|wW?-X-)xc=g^{U!Q-3#w$V35s$2I0wFM;L{(HLtvc zhG*0wKPh(u&W{!lu{$~*HUngqoY6NrO(ugH6By1d0|gbxn0}>JSb~T(s>8%_~Bl+!V<0K=d#CUpw!dDYofKm60aWrzBMEk{sr6oW~%!#xSyrB&=*`{~~ zcM9=gi6VXfXw5IsCVK{F8WA{L;wZ4WZUaSJ^;Nd|!ui{1HHAaw@Jd+gQUseXfqiF_ z*iY{T)@kh?%v}*C`*T6fX-q&;&ldBm`R11R57S5c>+2a#e}?$?J(|Z_z^2Zt zA5=LiRt4OVW0HrJulwi3Cy`~l*Z9`VeeYsULIiV)_ZqyKI?ld)`Q6rSqt3H>v90|= zlrY1H4%ZV8jfwjS1O!hvg>e=h2VnbKxMXH(IPJ8e4sR+YUF6R0P|#je6xCyFD*vlnGuJ zC!C$Uz8Tyk=jSaIudjn{A@a$e8y$bme|u>M1g(9&g74qfV>s?<&fbtIA5+#}4S+SlY}44a`ODmM-szfs zwbx#SvR0Qg}_DgW(*7H zpXc3&#&=ypSLF3`7kF||6Dp~Lme;okm}(*ju;;VuJKaOJ<=z;;ZgubO@zK;1i&Fl_ z`^hzGkMOw~57x6=lF>{G72iYuox}C*t@}#Pi&<}XB%cVpG1~+6 zN9m}6Ijj(0L^KQ_s034#U+Bdb)foL?WKj})V4ADgGVvl%%b450d#ZgG@P|Y4All@} zZ+n0zdiy;OmKOMj(tsZQ(=n_)rGLrjEHQ1!E)q4qB2QucC=#TG^5joJ`9bi+uc@ITh@}hM>@boB=)XQwK<(+rKKv~H z78id|nyA1irI%&JK}fwj6t$QRU2i#z-{UrnYqA1^0e^!}THaVIHb??mKHG?&JS35{ zJ|@~00f&_YSO-&M<{CzQvR2lMS9Fq;s(MZ(5R$NG-d}pn#pVa2s*8CRMumrE1U;gV znAAd2m5jalHb8kM98_G4=Ae)lYvEBevBufuu$R9g8Wo}WT_$Qu#^fwRI%J!edrsk2 zO`Q~nytX3=6n4_tMrGvFm}rntvOJ5278TY!gQfN_puJQWW|U;VIwhw02kt0|KlZyz zOL81kqq0~rW~FvwN2$HSQT~`{Qv@zn6T>lzkkF(!EO}*|{HKSXepNH+G~`wLmvi+b zT?@w~6)z+e+awi={9R?oNfDM<>jj*@;u3NgC<5D+DKiEdD^sqVe{tds|=Q>&jhCaBrc zZaOd@m)XJ_FpKK3wG(|k6__hc)%$BzSyKxRr?Mvcc}yTgg;J|(v%N4 zoL3$Gk)Xwu`2CfX$tf_gHBcHup()Nf+5JwCXOPGuC#I26Y$aukFiKYuA!0sK=dTf7 zZ37lQG~mUzQP;pA3lTM^WaYVWStVVwq54#9fI*SzU2M%2d!^|qZg5jNj$Bdy<2GtQ zdnHjvxqPHDsU(<}DTiBmb3IFiFF>25s;^$1h9d+YoD`l{UW_lP#h$`0v-V-%6sPm^ ztwVO%MQd?*=pbl?crHUX%edjf@H-dRJ6G!iSF3WLgyCM|%BPM>gY9O_23>9v_M*8l z1gpC{ngYS8KWCG5Sb5r_l{~kH$|9wyhQaugEM^>}Xr7BCf*E2C3;D{JKq-8X&AKf6DQ-KVW;FiWShe~}ppP9}~y{}f0*=sVw zfW7~(Pc#Ulrxwp#x7YzOi(RfFAF#&i$s?M8W?WU(u<`aME-tmczTY#mI?x1s7ra>Q z2f1i1$$B`dtd$1pR{WLa7+Jm$Vq0;%9_OmrWUcI8zs`^o)3iHX+1|ML1krl9&~%UO zwM>&r4A_kpnJSyESXnaMa(xY$rWj8r9gNggqwan!l{7G5AVUEtw!Drm6ntu1^)z$z z%|ao_E@{CjJU&_`kGrZ^ima~xz&|ywttwSJ>PV5Gr%DdQc^Hq``H!%MWKvnmor8UK zK+zDHYu3y!E4@^1eREX%xDrlO*bP(kzUU z;3dp44b$^R+Nr+Gv)#&fP8}gh)8=*Qf2XkomVXLJiv=IZW)Nfbv1UWqg6_O<9Ku?_ zW5Z|!O-XFgsSMatO;Dvm9`RkhvV|!!PARria?T16S?EPJGA8j`I!(w@|KsG;y^FS> zvR`Ke(AthWnY>(eBGR%R$|E~>nPK6MD)BGVMf|pV!=V+o;%FoSwmr67A$QJwJhH+xb zIPY@fOn&dZwKW_^bW<-(liN&EJ0932joZJ`*TT^}Bl27P1A=8#WBcJ8)it=u6kxm< zc%T*aAD_8H4KGsod)A8^Ja7vsk^-HT`dR%RFN+(mMwIJuI<2gWgl=eVfd=)A1cVBV z23q8P%}If3zIL|tDe}UN7n72rC-V^;MKY18Sn+7eFNipvCA!0QEu(Zu0V9eN+`-&a z0z_$lBl_#k6}H^0F`9^mS27Om;}Vt3~~jI7LFmHbQ8YHnd-=wsa6 ztm;%@1)cdP-zWG}%^foRN)*O|H-#8ka@6G_y3Jw3rh4I`N>zNBHPzKTR~o1<&&H0F zlS={O5g3=l!&)MF4PjL<4DLCyn~lrzmm3IB-i&bkRApQe^>ltfIEYQ-#hO91ZN#Am zbD7vr=~WlMqjllK^&rHXfxesMQ5zQz+sEfN#H0JUzy@S~K9n09;lUyuAHDL;-wM;6 zUS-)(^TcJ)<-(TqL%&kQ21WUUI!xyzd7FRax};oV3~9K*lGn-ENknBlRxhfrEwN-# z>v&I!F{Lo6iZrK(cjob#vtCHQz3@vCqGc*b#KnaEH0@mCW{4kRqMbpH^Pfyb4)oLf zP0eHtWA#ZRF_lqb6vw!%mBgCxI7NBd>$NO;!Qc(-+W!i8ya7hPWiUH}70v>)brjAg zIw4w6BZw0txR}Lq=lDFS;aZG-$6yQuS{&7XvvsmZOmv-=QLw0p>=hO2JhR0~gA_Jk zKCbh>^8x=gAtpjwSph`ChLR;j$9L+exp`*m!P-m%$bP9{6@&_$1*Xa*gj<)$bzD|D z5|>8?LJiVA)1_}}^=&v3DYH|Ab~^uWwKQ?<7Qd`B{qb)?7k~jv?g^!I6EBtg7mMT1 z{}g`=<=TL9N2!AXEo!xUe}mx}O8-ifQ$(*v!Q^$cf%NFhh)jwq!av$;tUmZ}Ei_qq z1bar4_44TU zuPipWKa|7Hklxgjr*NJB7CYqsA_#kdrP65W!`U4>1h0jsmUxrNS#+}NgWpk)q(6B! z&a=!lWf^ey!v!ZHRAB#;$Z2uXizERKy4E{!%mo;O83N=JN>Q~A&E`Xq$qsiWl63Qy26OFcV zd#R(sS^kh{RRj-K73vR7UWPR}%PM@H!lt=82>>apM)J@<1yI+*sUk@1Pz{QZ!ct)< z*ZI|2>Y_l2s_j)=BKr~Lm0w3nDb-P#s6&=SW2#=VrlfAO;WC;mPe)lMrZQ=fd^V%+H|w?=yO9oT)fl zdq<|BmO!AJM&AJa|7FbIt;L6F;PSCz`euH|aYCZNmmd=6Ixp1t%<#apnaIQWtZpi% z*EVlr!@L)%(^vcdkdhv!g3*Op@W$ob&;ukHMm$Sod;-QSKRx{DzfGj?=LxPNHwwbr zBVzz|`V7$6r>IzJe`=mi7G+KTSAfQAqYbPkcV$Xy z`Amh@oZ(deJe_M#3wCmbir?^PZJclp`(JKCf`SP+@%h>S(?vk0x#R=rYP!QxPRm4$USwNwl@1w&@-KR!uCoJCN>K~}r$wnol* zmX3+BKe$qJU}yH;^zy3ubBQy+a)kvLdSMV|1@=On2w9i56W2bsq3}j(sy85XaLDsP)dy9RFFUK=ldv>9&C z(-}JuZ|?lB9`zpXOJR7eoYM*GC*W(2K1+Qy_MA`qE^dO4-Q3yDC`{b^Hk2`|XW(lA zKJSp{U2k0g;WN$#M^4MhB+u6M`7M{nhJcXHohcJLKf=BJeNWDv9Y18tNy{tj`J5`i z-$#C`^*{!7PM9G}c>kR6B;489z3_UMl8cFgm2l3Ckg!Nbn1IfVmO#VOm9WYPmvGEP zlYq>GmO#looUq481Im(s!nBewPDYa=BMpm_fJEL0mz%`n@Z;lj^&B=~hJgr-nJtC+ zE36>o^`18tQHsk~*eJk<91X)faT^Q~g1IYAJ1cxHz;{AZn=|d}{MQn^S^riC#c4C$ z6?tBwHiW(7vZtcCo2>*D2)iQ5fmImj4q+H7kFE2dF%unV|E4L+i}Np{%vqUoRl)Oq z6`ed`rNbcwjP>O`i#@^d!AGvYk=#HSQ1({ds4b~+`;#hG7Vv@aNwA1$6GYs}&{5RX zaSb|uNg|D45f>PJb(_K{1bVG}8fK|xm{sESRUJI`KsZAR#5z{bWzeB;V~l~@M@Zgl z*`%nD-b2RIhz80?HoPm%gVildytf+2hhJX@a(O{9K}CBd{MdHunH6@k&>OrNQY>{r zxWjeqkoWb)^&5eHB=MC43qgJqx6IUi($e^riQOZ@3*_cR#V0jh1+T_k=@t}Hk5|^k zVc3K1`Hhpu(B37%wq<)xmQWTtDAEmwKwdPD1ZoyP#BZ9#@NlU|yNRf;eF2OM)?#K$ z`UBPaI0#!%)5XMWKdW`dTq=@@$KxuWz-jV+uc^p_LWTo2;28y{_)*_&1L>T}3FE?( zh_?#q2n3$-mc3=Glk@so_ZxdmB+f1*xF8}=2F0E;MhkB2Mmv~Aw5`8PX&s&gz+K01 zuO15K9e=qAF%;X-&vJm|XFy>6+(oX_?ElMjK4$7tlfiB~yuO|I0vHAxj8I$o^KsG& z^8OAEA}^it^aU0H&SH4$sptbH692#iU}pc@tz>XCv38nJ{U(RUjMAlc420hO%s8VX zF0_D!5h=X`5n|&PZ@4?H4qMb+){TF8o?`IFgoTAHQ?PrBHGAQ^==yW?Sj_QV{N^h! zue73o43v41(n@l}?&5a3&o?OI02TerL5=#s*vuTCH)qcnC=vp=B-s+eNfifLosdi=8FNb~h?f82P%0YjX7?fr)I7w7Fyk~C!;!P07OMQNey zA28pm;s{4gAZ1ajRVM}~(x?tQ#{OA57 z_nXK2(^}fds&;%M;0k%jMK;pj@CZq2m?x@dyBsi8JCnG+&4V4e>qZBkH)wkX)l7gq zT=~;Dfao_-Q=za62w6q54(%?kXU*?YP0*t9K{UlWW|7gvq8+S*&*1bUjE*+WYmO_M zb8j)oB9dT3^Ohy$>${T5f}9~THnQ@$#|;-|E8pu#nPQ|N$#QZ^V+%7UeMaG|24zze|Qq)-aNqNT9$ z!w$ohwb#mle%w94<4N%4!2y{6GT~Hf)fSHvw_7jw;>(0exQ+&EeW8TV?vD_vGuw3B zI`~t1_Wn4E{aB@Vo+7H+=~?lUgi~=xF=(P~swnW~WJHNyu`iNu!!d%~HNL3_nKEg! zY3Q$?d0@bQh|nd-L_YP^q?A2iP&j!a|KLrc6l#F8Jk zpa>x4WMxe#iM%#KjVZc{Q6zWL3nv%k@m6V}trcAa4bq#vq0$y;?$M5lZzvcMY#uyL zs{)pz+t*E!PPR&`fnXL#cH>`5wi9<}-^CQJndlC}V5`KchGrp0Eh>!#VL}a@`dJ-< z>T^Obv;eDAXnWclVKTt(?RF~O`UI1we0LF(>w8mvZmQ?gq2eC5s*rTH|0~&`WsK(NjLCJDc*Lo_Mm`?{r zQ$ET*dcoI%XMp86F#9cBF|X01-&oc0&e z3?of(1G%*<)UI(mVB+a(i^&1b0VG+~;7F7M5i{pdD#gT{oknxAwhq#ndxsbd{s9;= zJv9HK_9z`!!)~klv?2`Z1neumAv^90d9RC~f<4y*KCmL!Z{**=kRd?YcGod&x_KCb^fKxrAop5 z0xnG=)eo5R7y2;Q#0_S0t>$08)W=6#F`+=aS?RM9>~-2V4BRxEbivG^G)j7U%7;U`VeO6dp%-~IhV z#|a4`L~@2^ORy$lX7|{zuuSvr&k11jbj0Y5>U@~-;|fD;21=tPr+Q@4VP)n6s$->d z%MyUG{gg7cd@KwBwSko6-cgAoNj$jFSRIbDI5&wp*<3Mxym9)ajFI(89MWF%my}{Ys z`}oyhZ^=?6!fa<_!TU$u7!|U_*Pveuy0}}COGp_H)o&T4lQMjSKlyer`+kE?Xj|+D z2pxTq`!m3Q4h_6s$X$3hU!}?X^6gT;PSgGBy5i)jnR6%I!gz%0QNpRrOKEGs9Y+n| zn10G&KkH;4Bm0W2j~}Pg@5amq%9mC)ft_fUhV$HN*uvFYWt~o(txiCVpj5aj@L4{+ zzB4~h9f<`7$?eabWxQG2i{BY!PT=a(W+NWL~1Oe>I@4GIw z-8k2jcA~JN6v^%yzEotFKg2y*^o0Yul<%JrQ9nO;Cbq(2+@Ie!H4u^YFMj+1QWAv~7C$H?+5How!EfFI;7F%R zIrxlP7RQFRluQiar6!qReDP#0@cqtp^p;q~i2zlQu(dwDef5jaSjc8jqz(@FOev*Ca(B90$rG@8v*?gU}vQKAQvIcUz%#x3Z=8@c>(-q$&t2zv8lYsmEM z@IId^^;dZzA!T0>_O)A;O+*oEK)`~6^G~SnRr2vqjAguXxvY13`B(Yi74AwGp6MB7 zPDOeS$O$gl{PL)NrI>U?%NTV?v?_57D5Hc4WvZdo@%(h$YgY)dchnCB~HG1L&ZwfFd4^=^mFZ!%t z9Xz;xCa4pQw?j@PB-Z!j3mMAdaJA=}(kTLkkA9X46GW+&1$b=&NcV2}r_eUHW3hZ= z8iJnN-Z7W&qK7w}bqGz?058H?Hw-T|1G}A-h)iVrYbLmiT{BaAli0X<;-l*km$g0U zJG?Nnmbj(PY`gsy-RXA@H~)fKQHE3UUtQd)Zc!Iqa?k9xo@f16^jJ?s-#E6KqjoY9 ztnS|z5#1TjDap@IzWBJ+Fl-LIog-Er>l9qMR9;1KW)tst1XmE;A<0&Fky~7Ulf0kk zUi7$0sAIr{s~B+;Bt-`S=`;QJXrJ|;qx~!mCsJ<5;Z1_Ai!bAhcLPW&_kD*8L$Q?| z;dONXrxDKX=#tm1 z+v_M^H(S$=#pnM1x7+c94B$=e&B~FLH>;%vdG(iOq#h8bH*T6S!of6{jGZF)wd zt#@1B*Ki8MMeML!;1d$v-*?<@y`7Ao-|~?;uJPMVE5FUny`7OMdbRaXw56Q=iK(&c z*&x#0pbFc(pMJiM5tsoomOsw;pRPQ)YyqIy^Zf{F)ho{RJtXO6{O!%1i-2(2N$T8{ zs#NFThNG(}@m%26^EiYLS@O}x)sx4YG5R^g^}W3yIhVt@>iT)>5*n?F5S!$2{TevWUbbj1BHDDVSiinL z$S@hve0YEIUb;vet(p*h)!9wGr6w&=e|$t-c8Jp{8$xy&e^<2J}8;y+*m`*3=K59*ONQwAAd(!G7*ip zBvdQN(Vmn$kOZ)y6g~l!M^4|KM%feEQUYz=smJ|jXXUC>ebq&1#PnF7xakW*KOU4} zyBlP-Vnu#(5`7xQ&^f?0QXIc0FUn!*udtScI>b0CVH$O5b{^#nF*TFrVY6rHDUYwd z!G01g*WF^NzQnnMS3{_wtG35=yTM)TnA+6d;ylHg0qEZNT(f=+S9|h0$93OVwH%zS zm+WjkM+S@1+#lJDLut76Nd-J(-+rQa!AmfG4R^tVO2+4kucWJQmN1Q5BMB0fN?KF= zV?t26gm&Cp*u-Q1J9hPFs$>4v>1x)2cl)cD@Gt(FLrau!ZAWS9-KRK)rhUZ?^Oy;- zwkSBfB!HvbT6wj!PN9N$(slO>n)PrY`>F#<3`5=ah}kt5Yat%47z?C~mRYf%9h;af zTww4QW*8AdmxDUVD96NtSo;IGV@S_OE3FzF_(FH_@{=Zcs+k}jhF`p~3-WBca^_SN zRqW`{=?NM14Y)ypq6-{j)`_d7emFy(Hquna&OrHbdg8H_qUEV!GsiJkc$aTqJ`x+7 zm#jHBMO70h^e>HH%mcNfma*Y{H5Y=_GadtTzVwSReQ8mSco=+6>ExoT$^UKvXGT44 z;Br?LCQ4X%IPPq%u{~8^ouUdS8QcXOSAKV>zTL|IDd1v>8w^ zDp(N9DwW?HTVd)|{k1r~D5Kec4$X|n>ZmUhiPW+!B;~XCuhF#%76oHsO;NabO&_M# zXGIpD!xkIOrXO+X`-j$pF?IS57MWuVnF_jP7yF-(NoLN@_C*LAF=%9L!%B+Uq69l& zb2}Ky5HGX+@lJOq9w=}KMFEls6-)|N#3n-put@@Ac|NDRoVUiVXIu9P=6&^Ys1k+D z`zmCk*ndb%j5+L+0o6@3IX3{?H3FOO_r@A*F1#VvZ%)XIE+!V15ZG;naI`G)=$-FP zTv66YtB;}2u8*i+W&B#Wj9i_ipSxGu*OY98+Kn|;X61tq)PDJPkpu)BuCp+uTnN$0 zK5^U}RAX^fA9#cvh$|chE!Si(NAfXN{}5sw&f7Q=2ff`NiK0uI7})oV_m@JXdTDwsdvQn2AE{G9REIH|34F>DAfc;x==aUCX0b)MC5NP{1JMylSVo}f z!0DhXK`J3C!78CDQxW2|R5r~;%Wy1#CLk_!$2KZP1GY(fzl0tI(Cq>=mX3w0xj)FmF3l zml#8tOSS0xFh+eeZg8jhjhrm$KgEA4BaYKa1V$L8(Cb@|GiilJC zWV3=N;ao|WnJ#5k4fM@mhujhGvB8`GF)B+^WVLxQ!i>EyEhsW45TCE0KYSeZBk|15 zh*KL=gkWwn>h?&)WR@EPZ4tSgE6+kWa-l*%AztweMjc8WNu4;=Qv6@f_G+fp0EQfW z)-lG=pOvETD=*vSdbKZ0_L0I8!=D`bVY(NI1g8d!>_R6e`w1VpM8mM8wjGV|YT^Dt z9A>R7lm1PZS@~UFISgh~mDupwTrS$j#S#Ja^`?opKi4vcP8}IfZQcUd8{WE9k1@&6 zb&RnUpjIGOFCKzn3Br69uH))?d8g+Wgsz{PSf3F{*ShBB#Sd6IxRFXAG?H;`n|WN=jwRWMah zRqzFn1vs&gRm0E6WDQ6TT^3sgjMa?fBJQPxcX3$wg0C>xd_LD zuf{pjr&D&JSWxC?zAP>!B|TwPX@gwvhE!uaoZ3wY6bGl~0!f-%wi#CT0ai9ved_TD z5>lDJHllg~6Z=XdE=;Blyb9BjTm(HoZ8Lx_a$ytQ)QrkZY85%$k#zAQ1f82>OZ420 z^(@I&Vx_`BU^yiFJFVk^B%!-T;I0W+A#_9L>^IqIN@2LtHQn6A(^Wb?VZQx*x7~K} zGfi8hWyp~A_Vo3aoR244tWO6#Kh4tGA8pFq=UCfQToe2&GX*_8;igDS8ihnpCqckq zFPC*=sgp)U!l_)A)X>z0TmLT$;gm9mI+qsUnDuz;T_c$r&I*R>?qSul zc-WBl1J!$*;|VX`{!E_>s&;p%KfVEuX8B$Nr`5vvC1FH!Y3&|}L77JCwFr_+Q@gwo zohf-kCEDtkR%3=$##`~ckW!dp0MW$8bikuf4_&@A{@YrKRpbSxGZjSGDx``MELD<- zN%GPR0KNC8yl+H!bML#*!h;WZIQD>DPh_rHcN7)4 z6Tgmq%AfsY3iCOEU_V~^>OXm5w@GZzMNu7c_e0qF68Ai4fxTatyB>a+na#XgS{-Ns z*z{&o$BNde5+phMs22-Gml>d);q`w|eGWIEc5FmipnB7UB9VZ0U18nz5@-Piyt}PI$8yi$qxP{OF;@5q%K* zV1?HA1t3!z*QxRwevtKKglesmV#Q5DbZ7x7i%i6Ew?n2Q4OeKwxrNoWWC(O0_yh} zLgVq;b$XXG$${JsI59^I33t=!#l@os`H3XY@JCpRy4q44sv1Sau~RxWy0TFy^!e=_#+8#G>m`Sq}(Ku8I@g{L?>*|L{fP2d*c;QO%XS_V?R993BQGRW?P< zmq-dEK=~93r-<0?aIZ!m9n?~#1C(E5+buFhWTkST*^!-sJaaeV?1fqDlMRK}-F$T4 z-|p$&TlCDMchhcxld06Mnul&hq$H}cdlk4+A=s`OMX4kQs%nr5NF}J)k0OADzL@D^ z&5Z^A)-whVH-(s^UgvrCh=}W#>rg75&Y8eI#d3I6%2G35+ca0tG99=hz^xCdkJs0` zR$xQ>tvsx)zwwGY?~QFCu)%rlWg;;1hhr~Xuhf)zaYD{=!;F~u$}M8!Sq$~<8N1-7 z$dr0Qk?~IO8(b~BK92t1naKYtwAqonLg&^9;*e!yt|fs!ULO2JxedGw3oWv8(p9Co zu91!q`>iI+-YG=wM->EC`{{oYN@5$hb^mhh$bw*41>}B$^+-Xx`x>_<6u6R2YrM>( zJpO;LqK|0SZntuK_+_0#25z0R>C;qscsC@4Av7Lt>TAEF16-G5wPKRQ%@s*fWp1Efx#F zT~=Xq^wn5zIu@$Ozd(o;*l12EZ=QmDJeAM307YlF>~WpJb<-cqY}hu0(}bT?eq^eq zPhKtkzXhxOTQciG-2zHWgbpgMyCw=6HnSbHKU^Ghd1veH*3abo{#6ChTgCm^f#`^c<`8|bFS*LBw+ zB$*2Iw$?-pKwB*LT51TMkc^9S?>|`kpV~wNac~B7)gG$KYLHLx=#UR=R?K6^+8qZ; zD0rFlTC<6SgXgJ~ho^ngF<0w<61RPEl?b=eG@fULEztjC+#ZDm z??#$=%J{6r1@Ep`Glz1 zn*)Pbv}jrs3<_q&lAT0#@?4g$U0XIn78#zsv!6 zlV)Yxf*)c*L*ZDhg&2G^+(-@HNIJgHU zzAORq|CG?6m5?9H6|kB4>Xlqr4z;KI+pd~*mQ$g|0~V^0%a2C;`lWp9k*BW zFU)x6PVv$dPKWc97&kU|O>fuM+A`nD%C-O$|UQX=)dMU zSIELkkUCr^uSaq2H|p86o=-*`C}Yt18wFg}#G zVvJW>%E*qJyMGMw?nx!#&~#Bwih%yC_CLS?S&%AzDyP~U;b_maRbegf)K?+oL#mNw z1KhslZ%1iOcW-|nb#{#10V7A4yp{Ebv12FYt%E@JX8x1jGAGkdExvOBNj~qfi0Ge~>-J>ke2?^@Sf^AGJb6WE z2}qt-TEFR*_Am=~Vv#(BI3+Molc8oEB%%59@X+90X+e+N3%_Sqg5_Kt)!=B}{`vc2 z&Tgz^lc~iSY_?BM$a9wH6^Ez7{VQNc*F4^Ng>^IQmVwn5u;FEU9gYE4ghqd8GD`;V zHovZyln~i<>|DRyB0nu4K0g0^I2C=I4tai)Rub4$&TzTw;cN(bJv#Gv{@%@~4}7%A zCJ$p4uk}n zhT;A#x;OpXL_Gng`+x3vz>yWpBST_?fGD~A+gxP%+gvQnTD9Gka16dcd?0`@U_A9N z8Myv>xL~L<$m(X`-qmbpRjBA@K$fIhl%4J2^)6`|j}u3%;$Z5xe*T8-q0hv^%EB`8 zbaSAWL&)g6+(mdFaxk6pHrCO(#J@>!em|`zp!c@ZGfvbn9@d^z;OZ2x*}R-y zWKV-2sBJsQY*VoCp46QE*X}`RmUtV4t?^aO%p3KL-@#1u3YBzk@Ytw~MM#k>m5VYLsD+rv`~{pBmFtcQi&()0b|_T>5V zb8BrbZD2C48*C8MWA{4=tLzKEp$;|Yd!@`qB93AhCcULeOpEVMVxvpvxxyR} zU;#X7#mg@9WN!{}|KP-tUEph=nPaQ%YNl*$=ovQJOV!bLqY`_#PrYRV0&GeNFbGgu zoU}|9rgp3vVB&#jbRQoj4iWtkrixHu=Nxja@C=ki@@xn(WI4Wc%jM=$iR0{oR#BEfgIC;`xgcVTWb&alld7DNZD3-jr|)j1sV_ zdyuCZ%62=CIy*#NeEj5Zx-df;rNj9cWj$d>8xkqv#6b}un12ZZ5Nt@%SGX>E z{&UxnUbuJ{YY6tOrdYa|7jVdJHAe}iTskWcEK zDk^b&N|}Q$(ro{TnaCB1Hdq0s(QKcN5VYaKf;Vk;g7F|kTmMlJdk|w9l|QZW_vl4r8~+0x>9*km`hZM z;Ta6OTv!~T&31d0!EWNRz6mu$v)=xHbDVUSQN_?ortJetA)E?nM1ARen;1thLRwNI zja#bTjwob}=S-#mug7p1`*0cea2e-t8Eh<)Ps(;e8NZ{+A}_DhW(h7glb1q+t~lvNVHfA)0-4}D_Bmw*^p2QQ zFS+0oxuA>Kj1em}sSFsB>%u>V;Ni|7x0hBn$6^G^r5QxfB)t@c(O#X>yHZV`My(I| z;6yJkp4w^K>0U8RX+MCMUZ| zG1$=wTAd?dJW9XBQQ`Q0@3z3>c& z;Fw)(JIxMz;effiE2l6)@H%T+oFe~pbyI81S9<4EE#pOO%Yp+9*Uy2+AyX&EZO0|> z#OkPc{FSXXZTlcO#7%BMSKX&eWq|DE!7$)9OT&1(k%3#w@Gu*F6bH z;*#yzjyqtB;j{SFbhDm85sDlqgzK|9^ZtqB!!j+!XU_ce=NI)^PAkvSDpmrayZ7gC zC_KVrT&lQ1GUhOy3~Dp8U2e20k3tk~06GXQxH|Unobb4|;mq){yH0=`$OUx~k2VIA zk^t0F0!6^p+VOPjYA0THAGZ{Fy|FRi!Mz1d)9lTNUcRLtC!hu70&Eo*BUm15)c~Uw zd${7H=J`FKr)<)zUm`7P-*R1rSbj)^tqd$u1>}efX-ZC2mMBiciU3R)?}&I`D51+R z#sg!dQ)E}?C)*syxAI=`bISWzJ1KWqmrNXj1C1OPfE(%lvf$w@O4=D?9V!7H6oaV4 z411k_^I397HIhMhBk>?KCUcA6wh3K=>nEFG>mCs)ye8|=(JM00D|UeU9%ULmV0yp6 zez0Lkxx<(OZ?jY@tvi7e7{|=2%Un3GE{@SR%jlfS0vj_Vm@pn^YtPBCp+nH0eXw8Z1l?_w+tpnIWY`|CLrgz4U<-x>uLzpfq z$;~G!%26mqoyvvmn5!RsjZ;^_)S;@;G|B6=4P*MX1Kd!XT8%=bzm<#%lbs$-gDEXYmPSuLO>!-Z5Jo!%x2_sPleAvlFsJ{m0v2$+Nl3?+<$-v@ zPK@Ke`t&#-%d)C8B4F^YpvySzR%5E)n_YVWA6sO;G_!GQT_soaCSh39&lB*NoS=o; z+GAPIdly^)(lS!-QOP&iz@e-?^#SMOvhQtFYeWBVf8_denWax(?s3in?tjKtMWUtK z_Mv85jiV$JAV<2u61SP|JevCIT0on?h*{d)V5;4j&0r&1npRa|r!!PKkij0POIt5* z$Zw`PG{sRsQxjpej^{oHySynCgH3Xv%vdjCSkg}uumWNOwhB{?s;Pjzvd}0;)$LkK z>QXPyQ9$Qf9wk0r%9OMwVHnc?BR~zL3Vao+8eP)@U{9MJ)5r-oAgI}X`oZ<(m@lW{;8Id;c|5E_y%@@6?s z${Phtile`DED99^nI7Lu%s**ZWg>Q+d4y)i%py8&%uXtVKF20+T zaIc&SAjzgoju#9q$Y726RK|Kw_Ot(a9c@ctW%IYoZdQx1V5CdQNd zDS5}~bx}vVu|sz&)dxMcNQH0J&hY zlwIekN(E9HL9Pm8rYe`kdUuNBT2pT$+7`;$vu0a7PBJ1|vwXh^krVJWX7FW)53zQ^ z^yXo=`(wap?+6xd%;p|wC= zesN3=0Jus*BS&-DAR2m4LJ-3OK%flEs0zb?msxvK~8tClf81R1<%rb5;X6 zjlg9|i(}yfq_7F=!~VrAw)IS{7W@q}!BQDA9rp8`006Z@CMXdBa+EU!!HQ^wfQA0y zXG0O!K;V-);C1PTTlNgY@@ybNG9Yzxr(7~SJK01LlAt(xNIi{Nbz03di zK@{#F`-B^_8d54k1iW{1=nN)aHxW`Zw^326Vk{0zMjhC>SQWh2NvvKrRA3sKdvzV0 z_>ZX{B*pD%wlxr~>M!11cgJT%F#^Mw(1Xn^@QL=`l<=5>`(0wL`A#;lGw z-_=pEn3HlLAGK0Wa=F3}HcIl%B$S*4B7w|>gxmDgk^6kJzv;4cbKY~4QU#1Enm_&@ zkAt<4&>N>XztE^jpo>%sAeAF&BzfU0wuO;Umx$`CObwr+(gT^06Hm=LhZxl$D2l$eGJioOrlcwp(;VbQd3So zwxh8c3#O3jAiuhhTV2G8a=s0i#hjX8&4{6BczQ=Hx)|C}Dm_DewU8@pw(IKej|3d28`cl-}Jz{won z?S2EqW@=MmadnwlP@Lp=R{N z^4C~Nl(K(Ur~9V^Xy<>_llUqgtZw*g*w!tKUE6_awSi zN6wkHV^kdXzu6!t!gtng+=ExD6s&g!n=*QVi?sqBw5DZ_sVtgehyWV@CzSXG5mK0; zuH!zJW1Jr>Ay%oLO-6O#t;m}H6Q7g<9+EdY%UzTdkknESZgP2N4odLHI@yXQagJ6ZmXODe2-XnoT)}E}V4E-uy1|uejR3aS&jurA~1K>i*Lv;9s?&W~F8S zW9QzJ<%4)PkG3IJCri0qNWr+rRxD_G|GU+U^ctq6v<$aET?K5l^~QKXePEZdz43dm z0eu^0SUX+S_HtLHe>o)1()nLp4Xy@G@^jIOE447p$Fj_etS_5{-5I=ip|xOp`Z+*o z!2s$o)hL?u^`lHWX2*tx+Eu(7m6YL?(@sB-r{NMDn_iY28=Rzn({w+#6zb3?@7di> zv>~nkKT*U#fLgg=2K>4nyldCeF#lGAA)+5r(%O(e^Iu~AD`n|WEAqKd{a8(qw{m=? zt(LM?^$=kFu;-^chfh@q3T=K9#{X~29Aj5w?NPpuA)22HYfXI@SXn>)?LsackJVw7 zXxVUsHdr|Sqs;&A1^v61nt5SIiFdF z`wb94vzKIajyHM|*2Mn9Mu4i>usQj^gc>MfkF9jT$dJl(s^(Bjm6g&VDF|;e+KiEbWMC&xT9ja&o_d;12oxW<& zcz+u~^DZdKi>q!bRWC7%c^{Bal175r{*pj%JfeE28*;wYfPS7ox@U1f@#1f0Fut_}K@2i8U5m&E|J@Lfa_}0+vCP%!14;#spgf{e}OEw&hO7d_T z>y2a3FdUNm|4=aGGk_FF0kCUOPa;s@sM#2XW)b5D|Q!%p<*x7zKO(3 zY_fOo5Z!~ryD=u)aZB;Qg1{uSek61xreLEudt^$nj%aL*u_*;pGOwTK#8xiclp z0_<#31a?EX_ZfgBoe&5ihx|E#Zu&Adey(n{TtxA@U3O##&r{Bv(-KxmFV5a>dlHaD zXco{4(XupqEby1YpW(ERQ`L?BO_bsC@z$7zpN1w{T`SfDoTZ4t0+8V7j?z*ws85Dh zkt(GmPQT@_hZjye**z=~M)SoH#bAjRq6*lr^DHp*>NKy>NioMi;7>qH!rloSZj%F> zVilJNfq3~K-ieaBJxfOGXsTDY_tM^J<%47|y=gt#P*yGQrF0&&S+MVTu%Rf~CnLWb-DRF!dRqAZ zqUpagugz@M-P&0?d}sZ(b47W1M|OH=lN{Fh{|5Tka7Hy}Njb?%J@hV(DyZdckD+Ox zr`-V8s*&=2+3s!i>?xQ6Tk85BhX1urnXW+|Iora=R@-K=;8|g)h|KQEGV!h|xqVy1 z!$bRjCo1Q!j1*@{?3Jt}tHQ!%Pf1Ise3=oK<$yLAP%U9hi+kLWTamO9l{7n7x7L3h z-@kJe#0K!a+G{hvSl+&VQBi$j9Ngngj#|}5-D$I1z#r0vStz9L6=W-BNwE0eKKLIU zVTVdx@V#O?=+AGlF!HibP|*|)^PTDZM9xE}5X2o6EVhr3bMS_$M$-HrnUWWjI;U&o zn$IkLg&v~qt=YzVzp~v(A zS?ap)7!Q=f^}1P!V(UL1Q^JtmOpNsNQq0z_P^Y_+_o;`84yI7`slOU1V^oe@#d(9kb!S#xAI>fu7`xWSJ|E^@evY5r z6meG&w)yaF!wcR->{fnkmA>>%MZJIC9XY+@`h7V3bGo3vM>yy3<#f07)ZQ0lCm?v) z=j($XSsrV!vC?PTclo#T=Vv28K%eiLz;KxL<%7RUC#};OG_A)VniMbl}Fos0J zhb7!Qvc(vWS@GtXN=D9dGaLo)*EIy2T2^TX=Mg7pC%DR0P)H*puHu+WZPu50S#KOc zUgB4J!r>?kY9#N<6wP7^@JQfl8jeArx`r83o89JD^8|UKA$Pu1%6`a-+MMoDjbGFs zQY#F=X>ZazBYILMDO?&DKQultN7D!?1Tai>+h;c8clMV$+&_7*X*6ueuz+C=xwtJ3 zq#npq0Fx^vwYOaz>M$-Fp`0@n4p~+c6N)5D7urPP^5%8jjiP&?ZM_glz9K@XoFdNs zOcv+E$HzzmXOs_|5^onR8DkXq<|wsYm)_m$6Jjep26Mna*^GKlgPPs#uU8Wfah602 zGEQ|rbrsQYJw^n`zhuML0hbM7<2jNtyfv`=WZI$fo|f17q78IYF;KgsRQ3eJy4@OG zB;6XWf3GH%CIn-zHq|*_HrYkvIQX4|*HwxQn|q4#k$7ZJ>JzSgx$xRsp|gJWvODN9 zTAy5#^b`eN%*R^JRgG@QOs3mt!E~~gK?JE|VUIXg!-l6~f6nEj18gAK?xq3&JmQ)= zc&HGtrATo>sT!>L6!W=U-?YR=P+uZ(E$(hajV6V<${5wikaJM>lhF9xPWdF{>iSXl z-XFCBJ)fUukCP+GDtF3V$n?*ZIia2i{RWl<*@Uk@@ivvmOI|+KAfFge3F}uP8 zlY3XO7V33qP@jOy0qLcrJ-K0%NXP@`^S^OA$+dos7>IEYPY)r1Bfpi{zyg>q7>}7OX{SrJyr^UV|$|E2sw;66SMg z<_xI&&^*ySoUzS9qw?R*{xT3k5w*5-zUkSU_BK7zE|)op0xWCtt`@}dgO$d6!?RM? zKe*6R)RhjUur|UJ9M53it;+>lX`l1dSA%;BI#1BmgN?R>!U{AfPp0U~Nw#Dlqo1>q znf=!Hlzmls&96FDK{qRT5qLyx;h>}yhoaD-Z?xn&68Vr%lw&!KkFOdVP4*spOTn`=|7_7$JyqsPGRfLqtF zz35P~VT0o25+}0JuS*OaE+`<_Vhj~!6X0jib@Ab2caxE7nxC*|7UwRA|I)BY$z`kGS+^&wwQ0c%eJ?E7_iFWhi~h> z1XCx>yq>FgfS>Gl_1vtfa<{Z@3`IhILD>HV{Wq(!P92&$X`2SN?LZxx4J2*$dmgos zXhAoEr17#NBPGqyVS})6CtcBRg7GnyU?vUFk*9s?K*J_I(IbMOOC&)u^rry}K~saU zGN&0RL1U$f2|*8nu^!~k{!+|pW#g=_^8UnKc}0LP#&ZV6Ce8Qg_>$B5tF`n z^M5*4idqm8cH%6bv6%}PNV4m)c~{*GHjZ<3^XFHJ4TSylD%pF)v2$LtihJyJIeh|_}?C_ zO1Snk10iTE^uDp1ICv@y$(}6If)HF5*DLRpkG-@$C1@i4ykFtRO_jZ}ey&3AhpO*8 zB0JCQa03SnZ++m>e>0e z=%_(hxW0!6E0KOMsh#$_#PLrl%~u(^ASs)UI8B`GKckq&DEvKYCo~Ib%R121X+-Sb z;|!$>JqrTD!rZp54^0FDBkk4Dxcr?XE(ZJUQfUC)>UuU?OlUs|F9pGd2+X8sHFz^q zTWll=I|nxTan*WTSH=?)4$1yLcl{7tt#AB2Alt7Q>FXAI-Ene$XuEbg0g|A3`Tnb80x-d>@zW{meyU^Kwy=k!1qJhq< zxx``m9Yb#!laQ@$9wQu5MZ_2S7~WBDjTqmQ%-WleSOFT;$7bT2+h{h45p_~$ZyVsx z-~pVC%v0b%da{I^PwGs)-NTMx%9x;?LZbjEvFn#6XS-9j%pdZP3*aSqb?=fZnF&W5 zxSkW}jUTj+X)VlW&6Q)0@SQm3n|ih7$x(QSMvkR1JLC|ej(%Q^Z|z$9QEI1zaL|D# ztzAx{@n~hnxm*R5+d7NUtcqhmDi~R!C~wi6Ja8Oynm}f7?3Q|yl;*J3YyYrm-)#v< zVH)zfx5XnK^(D~|CfgJ#6GbDXNwDAILN%6ix0AifeF|ieXYAAWBf(^xn$UwUZgH|g ztD|?S2bWaDK!2OqgNqa9qrv6@iP=pGfe)Nh3!=b8g(nD$laQXfbA)L@AY^%x>EZJ1 zIVWu7m3QVB6O87GrDm^(EsjL>v1bOTzz1t%RY`9IP@ptZ;FhO|rJy3dK&9){RPqe3 zgq%WlD!cA}{esGsJ{y8G(H?iv-WOzN)j13BK70cGGaZP)+w_Ow_B$Sxy*7 z|N2agf+mkpgrQ*EOhVPbT{f@Otmh4SG}1;VC>iN?LS$jvt|E>c3-ousV#i*`I zA86Xnp?1FB_d36Y;jm%rqX8Z|kQKf`)CgH-Sd{wtluYfEn~M z2mlo$mX*&J2mN#b7fT~&GgB2;XDfRPmw(g5f9g5lN~a#Z13eIeXnRUX zux5}wUeQzu|I}`MWKPw+#u-9NG)6dR+A&m6xqsxc!uUSFF4o}EfBL=Od|hu*MWSCn7M;ipapm$gU6u2? zj>)ScQq;!v{Rwis9Dcz;xU@v+lxM{0wC5w(sF5)FMZlZeSKK+U9GAz~(y9(vOIu!k z{>$a&@u)B(;o@fXzBRt}mt#lZWi_^~ujN(ztKQ(lsP1LR{w^$MAMt7*ky7|lVh*P7 zo;*(+wJa*_o1e_y^NPWaRtEg18|$A=(W6(a{Dtud=3vC$jn9MStY|$!{nJ^{IggLp zlW5hs2z<9)fO#IaGnslTA>x?dFT$Aek1dy;3;9- z3ppRuhbF)w>=X=e!E55+S_QDZgVf2zcK9k-p0yCPnMI>RTposB`7N`O*I86XW5>iu z`L_iV!fyn~;RYhT&2jUnxndo+%ldWIZSd4ei7u9Z7gu4-8jXv;#*7x(M=m!qT2*cp8GqVbjkrRT_gTwPGseVoI#UkV>4An7l7k)fl` z$CN$Oxl=`01A9(7FgC>@WDteA1-(A&66rqOb#%_%cxr&Nd`NDo7L^ko8CAH zny7D8s!mMH=ueI2Nexo~V|ii3*5jML28PU?8?(MWl$wVA-In^@riVVC>gU3;8YpGp z?7dGdp<2!J6{saI<$VGF3Zvj(4Yxh9TI-dSxvwjl+n@#wl{JFv$B!K(8GQy=2pZ>6 z`E@73r|r&7-fcBVd&+E{0&Din8t(>1%Yutl)oXTfbfGPpG7osbmH+Q+&j8v*a$3^L zJ89Yx$d)2Yp3xDfd>)46^vE!VuKmge*4rM>O&9c?)q!`B%y<288_Hxp_JL}Q#})Ut z_5#$YqJ1E3rJTP(thv4}(P3gv!PwYdFM@2V%^LY^`QkjJ-Ey$IZ#$IDL~AR{=0yvN zqFKtymu)4n9}~@h<=ztcGN+N7t^v=yge~ocSA0fGe38$#7L@S%Wj%C?!D7OGOujxR=B3C77U-bd1y)PK8m$w` zF!mM$L4KvFF~P6hg>m@2NxT&E_xOkKnIrX1dQig8B4ZI~NNJgr!SS9;BM zF;9AFEiI>rDf32BB);{#@%h(>VDfaLH#7c-J*2fXnR&~0*1lmk)!+KvG4F@^YCg;y zXuTu9L6Yc}bT5zLQwT8Qq<*oU zjDPh{Vl+VgC=xl#-c>F#fsAN)dk=_%CwB+b8b1y`ir)O_fhuo^d}g>tadb#oG|%A+X9+wG>TKAcF=ic-vx3Ou--e+b1+oP+)=s;9jQK#OCx%BNhI6MvPtI*}j za4&n+OIvxx@MNu`#@&-|Uzr3WRUjj(vyH#F;WUIFs!!m1-Uj;!H1%{q^j^mLh&PK7 zxc6;fIQe+e89kOs4{o&4A0xr=We25YoAbJo_})X1nu=d4e;;s{=}(^=9AVc1tNN4h z)s6MF?!axKfqJJa%@FTadiZ_K3Zu_+P;~8#0ejfPdr_x8S8igrO{@mo%2PKQ0?W(q zD~JjsPqN$E2X3#wbl8LQ7My-dDv(}@4q{!&2eiPT1px;>N&RF?U&9jf?pGDPUD5>r z5!UPt*RU2E{ z_tqDcG=k~!hs~W3J>_UY@XSZ;oRT`~UOQ>DVgq02e_W`CwcyDxQ3D3{b?9I}v=|n`lqR-{`m|F*afMrbk<9lAUY79R%Xf8oM!_U0G)$fhmXfNR^{QoPQ(c|y z3h_ANs=CTst$qEyp+Vvi*gSJDGueO#lCvPPiL~1GR2-+?fpoQMDaaKn8VeV-bk)eT zVb|`5@)k9P7dVYd4rv{Ohq#>dG>tSvkMnqUGCmsS3inb0Pqjacu{Dhs_fHYW`2vyoh2;d|O4k7?`v- zwcfMyU-J?c&1Z@~`N^<5QE6$H{=hb~_^jEoq92qL0Swf>IVQAgw?U5>!x(Q)0anZU z7;?Z7lIF-e&b%X7j&mJ7q+q(xpm9AyR>`ip-OVeoYNo!^z$+YAECd3mm28UgC9X4G zrJYoQM%*bdpT&)~<@|1{c(ai^N97a}$ZJUI7bINll~IfH&LhB`Z8O_V_rhXcM?MaI zYL~Xx04u~(Q3ltXS$Fj3-|NGsdZ>MBQcWe}>%I#xx!uVN7LVP${fs@y#9 zp;k;lF+>qvK`z}{I#CMIx5`OGWE8SeQ!ZDQ6xI#AO#HYH2amRQRHh3cu|)P8w?BiB z0fq{GQ@hY;N#-omT&OEv6r~HSE%Jge?i2!ccS|q=0sEtIHXrNTdsRe8@xYK~DXmW> zZ9O(OKMH^5mjG!v)fwMxf}Y3$p$oe*0|Z(0USNf_+=`#@2*p3cmm$hQEa7*kc7EMS3Vtboi7vIZ0+zu( zB4~S=-#`w`g)YpI7*|wrovbBlY|g<>=dp%ih`rFVgyUj+7RK_v@(3JtL)O5E#WOn# zl_oImXQp^h%M8@2>V}Vh=n>O+*fGsCsG>A6xD{E~&*^WTP-6>Y=%u)1HbLY>rvl|1 zY-0(H#7Di=Zbj|q`;?6ClG_WlWbXLZVq5o|J?0u1EUtg|PnQ)B>;<7} zEh6EtXg2qB5hkX)vlyGv65}qy@ZSIRm}$|oQ#z)o92BEovTS+nvz;F8y7oH|c?I&8 z;>`8h+EijVta~)?pnMNI%AqHPxn;N>?YN%4LqPa3S5f~9!+TlxT}PAJ_Tak4!sl{3 zF@fAj0!q zEI3&$9|XkGip`LY{$ZnAL&3I@K>D5zEc+J7oh8@_RM|>bI}VM36d+KaYTW2{`{dtK zsnIQj;F}+;ay!1D+Mh5F{5+RAw}~sC$S8_LOM)R~N362!Y0Iq3WmwzC{qe z0`3n8S`rvYFKqrfk}{UPM<1 zh}3Mm%Or;6d6!Fl=3K-lh*Y$#*t>9>80A8T@viz&i0 zZH<qw8%k>1LZK0IY3sD|E!TXoebHe#j@AW3zY{* z9^yd0sqU_QdD%o`k&D9WLMzX4<6aPM-+=>(&}T9oY2$CBMQ2`o6v&?-2qgEgL%VrN zINwVVGf;2r<4n>gR+wVZdCF-k{|T*4ariDFT42;iPb-WuWdQa9gqTNKK52^r#3Irny%?Ts@ zz3<%p12RS-rN0_Au23LfVmYi>ST84;_DOm)N{W@6HM9G49skaH5GkAPor7=sNdl=G zAHf=AN8$h4ND$#V&JFI0w3MOe^kTzHTAL)9;Q{gZ?chU|BE#`Q?e@dypbi7~P|$J290Se{&ZNQ4 zlL2%PEfA>WRH(uEP5YBn|2)<>|HGAlYI(<}6xP&|cBtZnF3JtcxuBJBLWF{(aU_0R zrbh`UO)<@%01!{C-=H`La+RA!Q-^XyhkwWmOpXWY@MaC*~jfFFa?B^F~F6_6I~Id{fQAi$N+w;ZV9mE{HR0~ zkzpXbvk&aZn0AT2v4a9tSxNk`)~1of`5|}I#lX03^4EZ<{;L*1Q$FvuQi7TiZdpJp{A|f>guHX(yzVDS;3%@mHJHf4_>bT zHkq^y2q3x0t`;wAkkn#l-KzDG7Y;y34Fnu%qFudvB;t0I9WwKlt$%v=s5JK2D9@SjIM@bFayy}>BiIdIl2J4_ zb8rjYFesybD2#f}dOMTv05ggN4(V#W`NKxLzpM^?6?klo{H|x5>45U_;V!_o`p>SQ zrgw5Cl_MV0lFEGFNGWOsN)!04i?oDGVeyz=yoNgUydyS+`v}vghUvtwn%kv0O-84XNwiP^dghFl4<^9TZ7>n|e%o-R&rY!w)e#ZfTh znXqp^qh`nt`?k$9TQN%1kDT`Z8lE(msloU)1>%edV zNy5zHl|99WaZp?V#?1)vG~-voToEQip?h;DS>NfbW&0&rs$6X ziEFfWBn|Q*OW2Xv=5zoVMCT~m+j(>lF!xipbX}V!fbGrrPLDob;5j=-9q2QTnK8$< zNovY%>d5;okqx|)uymrqx^~iRUdK985fno{gZv$WFMtYUQ$Vd$m)oB?DC=}2ZBf1o zpO~6Xxs+3yJa}YKKx&C(56o&Nr1;0|+;*n&@s6)}1)gx1sT38M4+5tSFDDR70W( z8HKc;LOglxuBRa-n9jB4^MALT$qIk5sjAqOWLZT$RqjnEi4Qa~RPGH&>d9itrqz_*dmoV(s>$D3ufwELU@gfia84^w&lG z2p21K}>8-ej(7%im+P6Rx&BOAqN(R=J_UVuM&M6jeQ}YZiBaFl|$4(u*h5G z?&SZ7gA2Sq45XMRSj2h=nSRk#r^?S86iE$CC9?(KNOt>0A`9JGj~cH zR}Tbe)R*9|gPl`71T}vgRcRZAERHO+$cP?F4k@nn>YQhi^QHU=OUl6?$98_1Ts}>6 z6RL+(hI$ONhq+yDqu=zgAQ0H^N z@X*PVFpcSBE!3l#R`1k9VXkU2z8FE}9#C+bkNvJNLyp{QcVg{epjY z9fh2GLV)LGUDpv}wNZo4ZMnQp3{BB5iF~^mD4o&!ua%2`Ui?xjC!yn&rO_w#2vBfX3&TsPpQ0l#Gcn4;)^)Z%3`YW1jBrzv|275onq}56QqVDT(#^HmyP{%DJ~B`^=yag} zG5;#2cW4jPOHxZ>O!O@QSPWm83GR(PQ^-m2jHybSI!L_sGyK8NfSxjsVH^`cA_ojZ z*yc!@<`LWNE+-zo*RI>%vDh_Siw!Bj_KG&$0Ut|o`A>uN3IxQP*eZp$H@u=jNJRSn za61VOv_4e7QD?oUi+oX32+BG!)(eiw0Gr3UwlY<=0j){28Sfbog73#k~xaLZE;ePxux zvl=K;Y~U3NGUr4F60+a$E^jaa40C)@C`8E7cqd=8&VVmFKZ7?rzjLbsyu3?eA!%mB z+xg}<)Pr;@0J?W%g;}OJhu-nYMo81~TKR84KP}=wo$0W+ibK55;GdM#LHAHNCa0Jw9Xb=nEqcWtPc4DU*a#-K&A!nLJwpwCr8pqiT#B*4giNm7Nk%plQ6gmD_0kP^^9 zilF%BK(p^H^8~k&2~Y_ed_UbM={{xUW*dP)LSy$DJF>(agiD(}tX{OCYgel-*3kNJ zXCc8g=L!bQjN+?mXP)FgOhkOj`5qRI;8S0u1Rx@ZGBS_k0FP zhCfcV3Ob5uN;{NRkMmWrK?{Rx``xJq3(axlh$|g?M%3#p;VC&hiMBryKAS=GLJVq< z-x5!huFwZT>?cKq(V~uA1&&QrHJ&Ued3>?4LeqZ;s-LgxP>)EQ+tHJI)W*gp^4@R);jD1Y1O*!{yVL2^o9oS$g`7`d|-Pq-T(pA??IA6h&b#ZrmEh) zKHo!sTm~6Lg~eu=0X^TjwkK}Pe=bqH@G_djmr?VwS0Bdau!=MheGc~`7pwkTjT4~^ zO}gseAeI6i4vM1VEVjVf32vQ#`xmT;17>{ry#V1(_hVrFGky(`XX;3_?f|z;P>>7D z$&IGC9w)cq@_+jmP$+(|UI(`UBaO`#B8{?tm~)ABSQ{58tFH;IWM`pjd!V$Ed5t5J zkuQBf&JEV53G@gD1mSK((~$UhiwNv1lu8=^{J+%ley@&lrAI#10)jiIN326xU)$I~ zLht4VKC1S$gTmlUoFFmk*)0DC%%Cm~xpRGyN}lQ$*`m`BUXoVzx2*RPXU_K?(u+uc zv~UBgk@Vh@Wn5y8=OW4%P5^o;Rf{)bc1aK6St^}>CKI5hzSnw2a~a+xQAHiF%~Sy4 zzLY1R3qO)1*4H}OxKwbp$|^?mLoU;gE?7#O;ckH;eAZeABcO^w(A-?NqvlFueG}Us zHkPf`HLG|U>zswbfHYni=YwK0@xHHraL6A%>aB4#iAm>PQEG}M1&wCr1^ZhF#h8D+ z@&+YLI9LGS66!o490!Y}3os3iaH46B`DF+?SxlT~17LiSZG?m&(PSzAVqI6)OxPFA z#+ub^A}dDN7p+!v1sm-q*ckKK7dV2zA@gFj-e5xO<^$r+d!BJsaJOF#Aj(f*YW5S0!_9EWtWEKEB&mN;25Dfz_|;WfXf z;eNzIVuJX+=`{QS5{P)dEPB)qMWrvl?vLh}LmPHuLpU#&=ZEc`OVSRhe$sX;USgY3 zvzIU>s6mS=2m$0$IhIzfxOTU9Ye<=B!qr_0eU>&!H-FkqS}JOHLGny4LZ{H$&z z4th1uoeS1|4c5WO)4@6%U!l(@$wl;F_T(mkC9h@lB}r8uAb6WholZt&cIyJe{;1%E z?T7KoE8zHep1G3Q$n8;o-1gv}Yl0WOy*-xe)aUxLR*O_(d8XdcapwMvot0;Kr`)IL z83@=?lSNw=r;@+I1RAMrk}-j$k~t~Lnb)85_qikVSJv#E{fko)fH&S<>|4oE&6hjj zt>d3#*>;>R5DL@j#rL`#XTA-q7W`|RWDYYeF)74G&ls@q!PDS>G{&H8Xg*^l*3?tg z#a+@mWhe+sI3@=W^dc}|-TKJG_88vQr&Df?9WRE@>^ftcoA=1Io0}V}_R8wU`uduE zeBOQ1YG67dFT#gc_3!cTtm{u&{4*%W_%{Y?9sl>Fwb^{q+9G!F`v?Rkk{F-2BrNVl zsB(&~UUJ^xpF>PG zS^MQ_$!!OBxdId~I0EZ1%op(kHo)%QSa9HSfXuzVkS;@1=?wky<9|sJkzdChsz2Nn zdU$#O?V&Cz-%}pWyk39`QvCSR#aUoJaHkV|*&RBQDWN%keBOb>9^x}ys2wDW^sqc` z6Z$$V|19@`OHQ2V%pF9g6K>W%yp$tscRd{3wftiLp#2p2-lr3k+VFnRSs1t-50iSK z-;*Pc%pc?$GU@fa>!lpxI&MP-KV0*JGjkAu)cKvF4hHrz9QCM~>lZOP$NV7#x}!61rh46imCi%MB83xXx`V^;mlfK5OH!t>u1o_|iY z@%8r2AuVPNL6fHCZxZV|BPQRtojSsrn!)Ra0SLWeU~_xGt^iP$nTnCkJd@UD@-s~* zd?h&Bup00K7uV7`c#l;OR-!!M8kK9m1#x>2GCA7P0WyIf@FF7%*^wCjcLJA`(t=tItX zT;MTZ*|;teK$revk21+|oX^OWk$zkbpN{$@r@$bM0~P8eMVsdbn0ziNawMl?BJ`(K zPjXm)W@V08?rdWiqsYcL4mW*oeVPnSYSfTQcWA?!VG?>(Nn;vDEGZ0UzR*KcgeZ;G zePu&#f2$A9*5`6@ku}7zoh6Ry$r=Q^`RZJbleP#OZ2m7nxuZ1 z5O@(AKt8$T;Avr|4I!7Y{salVV-%CaA*@K`mvd))R0v08@MgM*nvbG89&6J1_Jk3NY=$QaS*KpBffR}uh2*JqY&Xc(c#`p7-2s$j#s$RkQjBpd!quok(0%oWaNU^qhP zM+gR~H&}YUi<1V;x?`;ysRief1H&VfQ5{8K160G)g`Um9L5XUT0xUjCf2dO*rJ!ft z7JK+d(=rL0qzu`7JX^H%nzKxcR##fobk8J z$LU(2+jc>uayP8aM!#c!IUAeJRd-``wc~7PPSK*IBJg!eBZJ!hILIlUV(+0Wr7xPi zkba*#n91v8Cgaw%%d@lN%bUynPeYt$i7cfm4$c7r0P5^E3~+2S=oZjp44W)mT_Y*X zY3{2;r4c__U-W^fy!Nhmt$FrC%1`)p$GC(U_+4FoVg{BqEmhTj=qz!JK&{(+5ac}X z;iw5wdiZ@X^t@+@w}QIoI1uM}p*LHkR;Y!VonL8Ag-QV$M8k?1c~>rw&m>t8c?Pq2 z$Bw4-@^p)&v|%a5=1~=5D8l>cNG1gXW?)KD&#cSJQNbF%O}ROzt=4j|>M=YYCo`T#${ z_fV4#=Q3dI(-}(K`K*HOSCF0{{VWwu6?c)aAtAEeA<~Hl0n&@FU171U zBFmUg;f&*djM}gnTrTKl`UD%Fc)hJ(;1bm+hfdhDn7;#;T|jgzy;`39S>)ZFi$i*y zIvou@uYMK2A1fWt=G1iJfz^peSymI3f1f89EuT|`n?I2iTQ!A52QVtj6H zZ2=xdWmKL9l^kT*Ck&92Fewkr5df4E4seiW7ir(9rp-daaR>sZp-J+HF{zh~QjBSq z+3LoBmepL{TA80$b`Eajy0yNt*;wA%dJ0M*j>CgwE(Y7@l6fIKC=Z>8xTFJSg`DTh zj_kBlP$TQBuuw|0ig*Rqfu#D&jp+Y*%)b=T^-MoG}PG) zW@ODtPCkSVnaa1#CX%u|dv$$nbN%xuoG+$2IDwN@k^1>hh&a5V5a~#SyphgAPlh2$ zIsfU;yTYv3G!(6I^2wpu>pDro8uXZ?rUDxDwA}I73_XgHT&Yp@+=&`EV?gWDSy4`Z zGTQ1t{W(cStNrxnjb}~#du_v72Rg|W3^=#< zFD^0;Mut*E@;C|@@o>51P(8*zkzAaAoVBhBOP^wjM-%kP4$wn_HR4?9s&B4hZF5MH zCBL%Xv{p8t0p=%?ayE4$X%mU08>n2q*lN$g^E>-iE)iD73tc_}(TiW^ALS+Ng8>_Fqo#se!$i~7yLV`G;qd=|q;hy<<34Qn z=C-0(Y`*LC_QJrI^y*!ItO5oA^hUNb^%)u66$vGFT~}<+jk{Ktm8!e-fgA#W zpn^lMsnDDaqs0a({<0&_x$It2P%qJ?ssbdt*qf&~mj#Q;#9$tZl+Pz`&nt(`Bey<- zj$OP3D7;imE}W0{HDUF^hglWq#dA16j|(I`!I4Wq15-**%DmAhG9jOT1-7{yKm$EI zc0Ms}2S??a;GRAL=^Jd{m<-Z|G-N?L+pvMNI-dEupUgrvC;6I#wTLR=Xooc0w~$S2 zo@R~&o8ci6;>5GQLY9VCtZN|R&}|T|OwnV>n`DHYhltHkya?mbk4+DJGbh2(n3#El z0rKS}COob`C77R-&YrV>k{%bvcNgK%jGh75&52fDfj!y7$_H`JV5E;7au*sUmKwoh zA19dUTHGlZD0E1!U~{-09fYLfd6Gthh}#e>><$a8B{$;0XcKC~8Gm?m79=uh2#IF! z0Y4=Vk`t%LsBQ-ecOWU8JP`{)JSir?Ucg5|?HeeDT-LUsktU3P<3KguVl51lL2 zBS^#)*v8qL)0g|Z7wYxV&i=p`{*etSo-y!QI6i94~tj2`4>EwO5U|Dz1q9NJ$V{d7?*BnIrM@jgi1 z8y5>4>_k+1K)MbFDd#vF6z=X?kj>^ZwY9opZLQ9!=ztntx(wvz%AzUuIb!V&s+whm zya;mR5L`X`kN*k@1;HB719n^-Zox9**TFA8{;7aDAsI6{jx9=p8$xzv;WODDA|W-h zP$~)p+AFPxV~~5(Gn~iEzG400gy6DzPS3mTFfRfZn#EsKV#!_-y4b8j-C;wKw5O2; zW_NEoL0c(D-h2fr#-{TM&g=}?*>`MOPRlcYn$PRKJ%6=x(%fscF4i87819akpTi^) zJ-Nwugg>~U0#kyVwsF292}CFg$|&4x&|HvKrrIo3qU-sw0H3cBy`TP1UY3)+K0Eqw z7Jus|?VCEH*sFCNQJY~39eHSM*-5uhqpoL}Zn0jSbPK0XqFVqIrCXMhbju2SD@wY5 zRW+!&M3}{(R-%q`M-1|?BgZ5jjGRF<^d|R>$yst_qMQkZilwthB`z>B04LLtNl#Gh zo96F+_w+DD)A$3*7J|+%xd2inDLaI;4E-s2!z@LF1T$meV&!P)m9=~r4}1V2__d1~ zgX;AytEv3KbAsC`L{c9W%E}}EpS^Q`*^MLH((}B5euqH81+dUcW-@tKyVRg4Qj|)R zWKmV>?!p0)WG2ZhCNtT25sL*64s1U_4?MJig3&hMnMaKtcvLm_L!2k^_ph~gL}W$; znUqwQbEI>rlE}F3*n91D`PctH<>A_GDsW8UA%wB;07-0nuQdRL-Gy}JOgZR(WEVy! zS!A>%TXeJR&>M0Ap`;jsDODXL&q#%;a1(y-lr=PQ4l#Wk{RUUllh0DhEZB8_imCi9BV{23_5# zEv>C>-c(dL9$Yfit_(`Q$sPEADOdhre6XMBmC2RAH@))GDh&%J7#hkIPtqwN)HV%D z=Tw|yX)o~R#%kQuUYN;_J_=0Xk3ypmlFpgh=%{Wwq=(sk4#Ry8<82Q8HtNi=LZTSR z?o#$#TKipdX_l8sh`#V?cVPf`fls;zR5_AU|Mg{w6NVrDqz$ubC@bxMq*|#n&TDoN z6p5iOy`oF)1(EAeg>CBZiAsSsz<2H(*d;bGD&kRT^S~Ua{h2G2=|?^*sfGaH$Misc zyLl%V|7~}>4Z45Z`6+~d2El*pc{Gi5Psk30PVPWipDaLr3YpXw2^Vm}+D};i87zNg z1&E^LV1(2E4P4{L*P{r3Ud4A*7+@KoPkF^+)_(lpx7WLzUelH#{ zykiB2-gGwrj5w^{%5oDFAk1+eQK0+O01-)cvijptO2R`63`zeDU^Em7#I-XFK%XK0 zJO$4oPi>Y0;Q&rC!UMHmD*^|a1MNi8n1jget>yi%Bdw$ehNx(K^FBTMNx zC7D9dVIrBr{79=Mg=3_X64P^bLCxr@$vj_qk;`0kzWmIjjEB3*q*$ZIud94q@esF) z9;@Z*_fyZEj~MCCd%!s238*K&;w127{6+i}k6Nd_piT6WB&xKK z5Yq4~04WC!>&G3m&bnT=5Zy&6(^+~U6B-FQym_Fcd3qUHUmB}qMMQQs#Pk{zuyfLK zt=P!!EMo$$dyMLbq<*|H(RGegor~zcsOB;F{@RpRtcW6i?W7Ls6l2mSlgra#OWo|Z z=eSpvpvqXAQNSpT$Duc#Gl`U=S@}vi+8>;W_gQO5;m50+&$>WRA2ZNzcvmDftolg+ z*8rBe+Z|CG9oAms{qiT*w{ghm_5ky$p(UtxaCmc7;$^0+F;ftFNxpn^G#Q?r0mtFA ztU#0o{8SEq;lQ9^c-$dEF-qEUtu4bT`n!-+u2K4VxxEd|LxT)aqlT`_#=F(?VE^bI zX|78;YlndlF)>)z-eA&hF(%uZ%9CM>!Fs5{0z!XErd#bCn%f$QuX+Ow@PTERDYhcr z)V?DAjzgq51xYXc4Skk@2Vj0?L$Y_v_x%l9JnnJl4!kwADH-IXnKy%z8$;Wg{ zVbN4F(4p!;LmufB93|?Ia8}K7(p*m#HV_|LStiN0vfRv7RfLwDnsLpgdgp}W8ja-> z6t?D^b-60!LHE2hyiytR8%BxsOOin2wavJmqI@JS=zq`;HQ4`1(*rf%zvqwp>d<8@ z&srRRq!ZvK=eJlARpd3=yPbaD%JzD-Vjyu&odBa*++q7t_nuwN~&he!QT6 z$Fxu+uOT}Tj}btAD8)3=EvF(vAm>0(()pI+TftsY*t=AjmC}c z=qy@^Ew-;?PZUb)(PxQ>d7QCEGa|Hqi&=HPKU!>`2dM`tWcrIYHN{iTL)+7#iUWQP zWnEX_iHql1H~D)E^W^B~|8<@`-eZ~k{C}m!RXZ5}{I3cZ9vyhGgKo6s^-C7k85!sk zh~LN5NMtMye*QOpqF=kU5E{Zl+n};$lnnZ6FVCP{K>?9^2E~e9b$j_|berLS*d2CH z_C_%16ca-i0)LmKKe!%=?B;%Ry26$FNXyF`oAr~?tufT`dP?CTmWs7_r{LG(u+1oYdkLU)*^M|(-A`5 zXrhLy>RLTm1uHI(jN3=p;dn#6Zg#sGw+mHh-A+f_?e3@$_PYDsg|+g~n;?=aVa%wp zwduZN?~k4(GbZfvZpeddfu?iEr)c;i`k0JPR$&xysnz$Uu9w>f_15u!NbV^Okf7+lTQh~N zlv;^KZe+J{KtX-b8R=|F>bdjs*3bVkyf7p5slxT;XQm%$Iut${^8?L)`>NNh_x};< zTpSD_pAYRvsunnZ%-kwm-C?3=EtD4|HPOPeR5ye*NK>&<@#a$pn2KJGZS(Gqsv*20 zdFW$ktZCkfCrN}PtKEc@DsAX=kKCY^@NqSHq19~mxRo?l>+7q~qC;&byL{69ULfN^ zMlAoS*~=?!O%b8hhcC^fy*FU?%XP7+Mxf1O1hwrCd__Qz!xjM(boByMm!%^Uvj36(BUJ~SR-shO1LXvzkKPiF z7@Ie-ImMS;2aRR?V$v`q=p6@?NrA6SYk@ac*J{l*;7M{paC;9XS{J#_Q zz`zRB?2 zPu5m~{#+1yr(*;R>#cOStM#QN2oC64i}yimTbBNiq&Zy0#X#}Fw>f5b5XkftGaIOf zk<8-TKgqrb={>@=P)5?{>3nYuDm|8P?l=0%TT0V^lC*DM_gfdr(nOM%*dcd}Z{}GL zKhVf_h^jSlVoVsbbm>=JPtmgwmDJW6fz3qm&{QmhDB*XDVW{japh$15Gz%oT-{#Wz z6+mduQ1eTPdk1pmKzd%w$aiX%SFWuzYg?oydgA2HsEo(0(K&f`V@FyX^u~*mBjafB z;GaW(oAt(0{he-6_BHb@Kbfn`5|*}Jvh{E}KL#h0`NBjM`u*alQ-5(m=7cQGcb)Tb zXDo{6LXtI~$1cBzk3hWZ$?)g@*-u92gHr@4Vg84=rS~0)&7c2;MuXFFLhs32Ja(mr zL*tn0G$2h157!=?vzPS8_1!^_(j-s%%|8Es7|~x9q-0B{crM*7AX{9JzE~@45i`-s zq4#5t)4e3dUT!HVwOFOg%Z2&Ei)Oa!V%O^JM{Y_|oB4!Ep)s*(jftzxwPj0F-IUe- z{Yu`?J~if*)WFgV2gmqW!j=L!*GN0{cYj+M;}vv zmuC&D0_~{)d;8Us7>Q_4c9Htj?w4>HR}dh4T)@Tc7wItI>zTt>V8=cB1-WsXh1-8< z`rYy=6@w-(OJ&UBpKzLnw7V7LRz9jPEwsmji!eb;?YBFZQt45|l_{W|01_Z?kCKf6 z4vjqxS%e?d;~1){1?KjT3#OTFFrov0H<||czn#42{m_-e)1xmx+ufxs%6}B-{bmr$ zo1Wx$oaGzwsal>xKxIGfdtg%Rpz~Oq350qb_;8Ih zLg+g6Ujw^MD{4^~4)hpI0*tkh1H{8Tr6;nf$Ueab>BCZWIaIi&xJq?xCT}=@&%t}d z*MlJt7&8IJGbsrGW$&Cyb#oZ@tgd75{s=tEVwP#>3Q<%dm=JtwJ=XAfnmrE_25pm7Pn znE~UpnukXnQ6QLF2VA&XnC(`73Ni|@>~!9y&kbrBJ*kix@dh<3iHoeD7HW?Zk~Dqso(RYpa82$R$T8o3(M&{aJR-uf-i>(oEJW>0YMqO~ z%^(_w!!G2Y04%In6exT~^@pTG+TC---PtYqOa7?a@=e8ORR=ath=F;36Zzk+NPoTl4eI*Hqt)K z*>>Ql9buXR3y^)jxS6Dl@;N4(BnQ?^!~THBLsM~S4diYGNwFpNy5Dhi=0?C@HsRM@ znG^LmMdK3a7;{rK9l<2%80DK6JhpETq2sjeU>TOX$>x$4H+S`n^)nj?Jv^DQ6owTL(-K%UudVt%!jdd?+3s*SN+qr!f; z1S}JRrk6ke?_uYM+OB9keaB!4z5apyZ1lHUv6*2&ksl%UlB6JrHx2g!#cYjM6=oK9cYt7AM=lS1e(`kyIy}7>G zsBdnFA*A@KFh(=aTAn)XiFY<4>kVR=O2Z2LYY77H(uh?2fJv37HomVZgAc+~98T(j zfyQh!QZivGL9e@tmrRN~x@$E{-I_`qJI^VjSbo=k4zKZa2vvrA$g{C9MvIs)I{)@6 z1SiSIl=Wx;^~>;Bk8NnlS>hW1iu6TYAB!qtu{)~s+6z4r{#&cqn~tqX9yBE0UVqqBtljYr+a2Eprmg3DE9@yj(GseUojr_!`lq54Oa zu`f@&{(iu4g{1ArMa}L#FQRi0vceb{jg|{0--rgK<-xR<#rkX7m%0BuE zgszROnE#zM;1Pa~VUFw?S0^<71fR=WwrNREAM zB8oxJG-aBI2%Iq6JKrDoCMHI%ES9V2cpd0d3V%9<@1FiIm%EqG^~ z9>v)WRo#vUJ)*YvD}fpQnpnbY*AbbVtErk;j@3oGjaFFf=>3$s2X~z-eB{eSp_9WK zH>PSvx9WL5$*fkyQ$#?+`g|Y#gOS|)^kY^>pM91OHUS-5Ee9otYX)BiL$bE|c_>|! zQCp3x8U!<>@Tc_Nd#3j)hB#lVxuOt%1JMIeMp0kL^YLtOXiwi&%2%0NIBT5C#Zd`q zPRf%7)5)~f5X|jpQ7qp5#pAR3BPthUXckG}fB$!pY4pjXFIQIAR@bcG|Jk6`{*qqd z&YXGl9AfzN>O{m1$=?Jj#)un!#LqfP0?xoRTwtR81PT zkzr3j={!oZ-K7jRRWNLsTgZ|{MwZ}X9*C8p!!&S;P;b(`9Ri(OD4tF0O zeg&Di@<@O8ee0yT*7|aNV`b@hb7Q4*0*|_w9#&T7edAmW=T&Q>w6$1N_Mr4R7j)i` z^LvAnqt-+mKYMW$B1(M<94ZfgECT~*@N&3%W#IC9ak0gi6O;Gjf3`vNO6lm$^?6B7a&;r|JAfaLz3cgGyEop4q?LtVi^(@2i~6nP z>ppe4A>|2hGbbV4s%+y-?ssyf2IAK7Vry,b%hu%Gse`pIBCp!V2*0^=Pjb)s3Q z@9o>ac6-;I;h{ayA(alEqox|b;m-3r)HHH+p}p={;uOh0(kv)6s#BONhSZmt{_PV{ zK`UMiT;ay3{&WB|!xOEw*H(}43?wVKa~#%kuF!P$13C{}Cdw|tDp7~jy7PCJU#^iA zE>sM7LFxX@X8JM_uu&3!GI#SN?rvzj?IEhtNT^Zz4GW39nbcgb`oP<=b9=9!m1XBX zE+A-Cc5ZxqX(g<{G!SUIO!Kn@Q|s}vgx|obiROQZghD?#WgP}!kJ>GWyaf-+NufZF z2^*2oVQ8wS;s`1JNb&clh&lv>;478vNHaK_`2{9t_cTY;T@J*B}*G4`9o8wY>_j(3>S83n-%e1XX@S#2z? zCHu+3qx17*d3`{M?Xk64 zBbjT>qIKX}A;evlL4 z$E7ah;P8MwgO8>RY2+ zq+M}>-Evn^77_pjbm$#CQMr!cX#-IBXQ!p6Z3&9IX>5H z4I`HEQxZ#m0cWF@z1ulT(DC*FE9aCk*w*^h_TyC7KJq^Yz9m}rn)Q=#gH#E-FwNVB z+`F6%N0Y8$_fqAfT29t|Zql}#L;gM!@;8}5IT!o&Kop!QP1(#!kasHt&%pqBKsh4{ zmvEh1!y}+;CfW8362;mXF|Cuysl9bNq~QA*z|WC?QEiWZ130R&vE10&uf1g9UV~QD z!`vZK$TbrF;~7ku|G=UT5;fv*%+bW|z$iA5PMDF+9-m!w+x#U}RGbyQ&x_p$>Gl~w zNr^Q`)P-#`Np79!pml26qq`u_+Txa!q}52JB%3BAfdEYHv)2qvKF5MikOgjy-+>RfV4c4b>fHc9hoGmT`IqK~?+?TKRs5dH0kY z-b;H)64&ulxEImn%k~rYk8Cq}jAmPJa3V~9uk(*B0_=UF*jl~XaOKuqCNtYlGzxlP zT>7jD)hK`A!6D)V@YC;H!G}lnjFDz4{yGsox+K2p&`RO!;oK=A>YH@G2;n zHr8lT&ren8J$-r+Ty!C?6d1LfG1*tnImaTx#o2)G?0V%$`Og1(Fb3+z?rny$` zBP};pR^Sd8wL4dUZriJicuMmsE-rz?d#OyWEy~xhBP&D5+R_j{_rE$G5ji19HTdmz z>!|aCxR>F=CDE&~$rg$@7<{|nVRP4E{ztmVHFO;f(Q7+9aEerHu8<{82VuAc_MFzITl|Ae#3_T&4PBO*X zGL4o+gyDb=><47n2g5v93vLBQnvIx@>BXd<5;6Ofd!5?*9qH3`-X>f1gNjPvoTK>X z(M)*Lct)C=g#)WaybifQmCUL-qTeS^FwdjBcUSZrH>v204)|CkJVqFQ)MK*7Eof^a zTgvfx!rbz7LQXEcDl_*jHtBtH9`9WbeeWvhJYOs(IYMtqMyuT&wv+!b5s&?l&Y~P8 zF5sclF2v5}b0jMb*jp-xapkuk#h-rk|NdH|2@4aY$Zu4>!RcISrwybA6H>x6S#EqD z;S371!yYUjbTF(O%Jsj0=)ED@vbgPwRBLb0BQbC^90XO7=<>?}c!hIZn>x57?IbiG zQYI!G2`AGzc(JpMvn`+91Q%2|{5loixWh8vXz0H)jpy%fvEE~^pJ!z+HAz>J3sM zsMPw&6Lyt8G7RTN$@ZwzqkLhCQ%ecgAR|^rogb?ACK62ChjmZ^wq)?f51u@KwDb3~ zCCbV!iTyWv#y08&okCr+yg->)H^BazLQ!&-@;4r6%@_0bBGB+qUhS++E|UdoH%{or zC>|3FopdK!(K}gxI6tlTzDNl87SMdDUo02Sp=;ym>_C0J{lY?ltv-E9y=0dR$L`kt z&O41~S=ULq=fMu@pCH%xv1d&uvp0U+yQZ)xA-%$(H}t1GZ(W|DLw}d95^FBR%H83d zXD{#6xFVW*W9w8Ts`XNSt8Sl8nAu^l0{AU60@2uU?hx;P2O1}P-@K@vJzeX^HRhIV zvgs6phw+_G3l;o|Q!5OIWl?IO*2K z8;&nuyOhIPs1Mv>YFLipPG{VJj=*MB0V7Ij$M@gZYgC?8(H5niud4f4$8eX~D}2qn zH*4+Zhq>~9+f+VZ*r$QAxSen6smWv;?Q0po{LSWuEEWzwve54XL^)?&yd+^r=vlLgL;EEiaH zAKrF<_1_<)E&FKO@!_{2>QJxsG0d#ac>;S^REz-p1<9WE@e>5CHq2e8H;t<5Fq|QP z*lf2#cAH1JF?vTdS$46Vc(Lc{6V5=5vSW8CB_tq)SXcFP>VYT>3Jge!n`(7G0gr<~ z051`ykbYkvSD0N0u2CoN*;hh=@b#Adco!&th3&*J7o~mjz9Bmj=?<Un}(4t&@4QM$R_NRB@aY@*?cu? zKm5?obU*zz2$n|o6G#Dy=gGILf50A?)=$>zTCc@ef1W-y={rW_5Q&*W@hc-t+NW3eC z{Ffd78-V4%=#48fc(+{m6E5~3l}c9KYNYJZFcW}rppAAlo{Tc z#<*LaqI4|G5uoyOOG2>hrSoUan}@scoI;=94MTcsVqr=#;=n=Ct~w=#K9jGGo7H?G z5>D|(rbrCrG{Ttnqp62f=Ox6zn$KY9+(3dgzx+VyWaGFgILxFB;y_xv%Tfl-YFPd-)N`O)Ft6#A;t2zq%2%+;`V}P zUyM9%FlV8@QLqm=C$=mlM#oXW12NUv)>${{g5EHy!%V*qviTv6?ZlziB5l%YHsp{u zu7|J}9J&~v^1)b2bRTcUO#ovfT1N~R=vLgDooc}x^ucJZ*faQlopD)ndbI1BVXC>g32s*77|ZUEz=a>x*Eu6_=LSL%lfRa1%% zB?^)1M0bnKqOs(QWk0ZsX6#osW-+u*#4wYLA;B%!wKVhct=U1S7; zXlHwoMT2$%>4zYQV%2s&DPxu~GXx!BuF;cr!s%J^9l0ET>&gMCVyxpTy-IgAT;_(a zv=@`KFA!xV(QrJWU06hEh41+^90`Ant0{;y%{5#iRT{`)=#v@5boir^LtJMkL(2Fj z@4``Efxc^MJydF*2Rec9acm%xvg4T;B+9(_J`@ga@d4D^FDM zfD20?78#GJTYr%pA&b$cXIpn=M)<jKqWZ z&$4lr(w}{S!m(RzS!Y0@SMweEVtAUo5mi><@Md_5dnB*Gpei#smoK!jEVAh?g*e|Q zA9heM^@b7*XW=$0@#yVc;#}$kH43Qn-DowQx+6N|T`jKN*W?hp|AcKQ-f0sM?J4St zYPC{-Pj4BNYqOCE^kw*W%)Y_CPAXtun@e7Qgh9u3Qah)*?(7?GHVrZqEmq;z%ZZ>o znGQu1IV>EwlDteSo!qD3s%)+%+w{{-dIKeIgG@}}Dzv0W1sUsB0r01GW>E+6%?gKa z%p7jBxNy{_c$K~T#p(IU5=Xq_?7(?=?9dPK*&(MJrWU-sk`L&bPsKj)T5eVXkg3T4ZE1J(4r7ZTna}B=LL*g#^Ig=P#P1Z{wBpM|P0@N90xxjdwKqr;#rEZ~=Vg9!6Ovv<1dL;IL zDMxf@K5Tb^q*9nc<gz*{?$3xSEGz{N&i+{I~bEb+bbyNai5f8G5gWO=k}eA-Xg=?dTN##;Tt z)&*3M@Ctc2SF90~pzgydvvF*ilPkdVOHUBUqe5OKJkl(T({ES>0LsaKDu37#l6y8c z-`v^dD?kD7Tt>?&Kjjffv=XQxv#oC?JzpBP$e;D)TcFVi{BSZBdG74@c|ii$`?%O{ zTk0d4Jwo!AjmGD*KPKpYGW)ZvPCN~#51+a?j~2HI6SJ%st~OOQUV2|SMIAYBAR4z0 zzMg)B>gjVkxNZ51Tl(sMKfqjiFg59?KVLisf>6W4!LNx$$|v{v#!6b_G)dRRYWMc)@>f zg@u|HQD$e!cDQO<1`=1TC7f`%RYjX}<1_t)5QLmeRBF2yVpOGnl1RTA=01&1ealsb z%s3#S9d~mUytX)6SR~9R8;pLJoliR0Ia2N{Hi&_)AhmYq5G|{K zL@nx={4vmH^feoIHi`e&^e$m+Sib3d>u zy=`@SmUQNY=eCo7w_~A}Ve1U&n|A_U-hKy-hrEz5vXn^05~W0heILqE_HWNVhJa8d zp!6kkAjn+?yrdUZ6mcR5P4a7JK~gwSNkt)6D=zxam>WWWvIlzby#G>etLS-M7_!|k?hVfKj0Xq8n>Yg=S0_jJ8;bY|bOHX7UNSRLDTI_cQ9 zI<~!%?$|auwmP;twr$(i&Hn9kzHgs%@BQN)V~uxIjWugl)ia;9#;Ph7cA(`NHZOpZmnmei4_w36_2ZTLGl9e5S3nWEe-L*HQsHFMbCeu2^%!Z3&q ztgREMgy2Gj5eF^@_SLJUU0}QT&~6>MFY}8U^-^Pt>q*AN;Lr%i=886B_$av7L;O$w z%x5iXE%q_tUn0lCenuAsLm|JxbojEGCQE4>HEpwohh{`@noRi)31KYCR$_4`4qhFiuHrzXc zR&0)418u;SsG|jdXJ$lXW65NB>q4DqRHKAEEY{;Dh5Q!|<9^vHFyy3C8XQCS0MVFl ze`iS<40jtV5lu(ZZ)56Li{AEC_SRCM&B$i6J&d&=#dR?!RXh)&WSQ3Fw=f7WC+XV) zBdxN}nO9A|=Psv+rK zV~F#>Tht{!{z!In6R{ui*jLMZXA&Skg}W)WE$QSFgK7BppjGu=8P72U{fIC3@|2ub z-m;P-%bdCigrh2)jZHKA@uJ&fRW_4~$?Me(O|4=}DC#dCEr3jhreo;x4vTZmGNS^e z#_`Wq!LKbiF$>Mlw?bNhy(6tZvezF7$R`o2-t;hF%IHlS-$G zam>fjH)SQ=Z(z{&(&n(p-LWO@`7a83vmeA7@J_a6@B@z?K34bN4WvuT;?`4PZ_Cm1 z(8gQ3bk=CGe~T1NPB9K%f2^`LJ7?jHCMyS(9HWmMRzy5wL+>Ype z9^|iWDWZHi6I~mBQ$(bG8y?3kT}3c+Ultcz*=+6V5M&4dz2eOv8g}t} zekX83bPE`z13wvRq3)of0P*%2M-t9L+G9vgYnMxFp%p;K&`?FjH28z;kU3$tz8h4# zI?I>s0|AXdotj7#i&uFw?1FtI6rt{ZesgL*M}2WS7zLl*7s3B{G+?&?cBX?ANs8dH zbX|2CFjZKkJ8W5;O?UhY&}Y<8vG+oH_t4U~+yS5=cplK&9+xERTX?Kwtwm{j=i#^B zkI-fM6|xiA+M|fvA0(H`D+f)(2(}(ra`(L4Z`zks?d0v&PARHA_-U8gNEb3Z%H_gt zEIfVhHz^jjiimcgM9k6CC8e;>ydP36pxE+aJo`FrgPUIiSQxt((gz`|PZ(=G@vqA_ z&44JPzwWtHRN@$~;~_t!ed0Nx>V%0*y0u*03&nJF0GUM}1V1ivrZlWfaggxt zeot-N>iNDLCSo?T{781Qy5HS6Hu%}aa}}VW9#?-zr#NVStF)A{2&7ecPl_^4XFbL=`I_uN_^nP{pi}-G zJY)B^jY(1c2brj`Itl+}yB;))3k4K+ z!;usfdd2hS{&7}x6(Y`2GWr{jxSpH8n#T#`2qw6m);(i{(sS#&kJ1+t1trNKX%a5@ zNvq$2!kmpmR$lM4|6&Xq1XJcp4slpkF_R?n+PS91yrC)wYlk|9HAbr|q6ac2uu~@_ zri%$>=c4K4ieUzP@tG1DOyUDM3jv1`tB6yJ3hqVAHGC2Jp_Sdu`>;?`pN4&@I9DXx z&1x4}%s?`=r0IJiX~b=l>60baM`}w@uNAP<$^( zO~GrdBJ0EHQ^#in8gJv+xAt;yWb~J$znRQOm$Go`6LV69v?`kIf2|oUNC0sXos{dN zQ$F)~4Gg`>NgcOg{LhY7@~hlO#!CnDB8-{D{)ZB@pc2e?>WB!=U)csUin8W9ChL{9 zBaQ{>-qM;%(vGm-3^tMQTSs#xDBH}wScu`l_hj6Q*Ii#IatMgHXw6aGhdPiz^}vK} z4)?dogXXTKR`>KtJL1kxmWuB)o5gyY!>0_dC;%=*F|V5X8MGJF z$Qs$FFCwa-CZk!?e5!ttRl^$QWw!Yq|#$uPA2(gtZY z%73Ksrt;>C9%e%JVzWnl;cZJ$Gw&y*Y`fuyn%jHZ$H#A6F2iT_Hr(P_Bd!ZhS60sE zu*7330X{8s;eX#e%mC!SG(z87z9HEqR^l&d)w5C0_2qf#c}~btzNi8Xcm2cS z#Yx(2UyA}>9{KCEG~&D^#||cgaic;u=;&m-YZ6tajrXvFrh(v)I|aco`QM@O9KI~2 zluy$t-E>cB(taQio*WcL%bsJ|3xU(WZ;rIIucW#I7wvpD+CgYj8w3L0UF$n*ZA!4Q z)4Fb2W$wvq>BZYIc=m!a*}W+af^PyxTu+m_EE{urIWZiBe`XqbvJrm&$(NrlbVPrD z-{J6!C`Ugp>*Y0)Xco!0Z*}B>na=>9B{sg7lku zSlTwnvVtpOk%{rV;74( zcgVTb9u0@|@0zM|4<5$TW?AouZFSvA`O7%^530DY(L-}{bK65#OSyvrjM}eOij3GU zcW|8*4*>L;oKGgy3Z%?eCVD6WemQXx1d%C3?}JBqe^U>L!%L*GpjP+Y^8&89p4OI@ zz?)Svu@-SzrTa%DBM$-z!ZDBTVpK2jU&WI5-Upf>?A#uK9ulb=oo;9Pp-cux$gZ35 z>bw*DH1e6d2m`6grFAHMAFkFdN;>2-+PjBAt*KiQ3QefWdS z7`JXT-{@wMVTf-LE z(Q4;d*|J)!hKBU6B27v7OS^p!b`aYp6Co{8z8_60>d$yI1qje4JIKlECRAh8Rn??9 zv?kaNl~OMSA}HxOvaW>Abo3n!pg2z`tEVV$jtunsZPwpp8BmjYM z_Bzl}HBeK??ta-V^}Q>9Yu()?e}7EQQ0BZ8lCT`HP931JH$65V;xN+3a1!5AfcLM?u8k%WkWX42TI z$Kho96RbP>)6{L-6b16-gNECA*T6Ac9nB-bcTFQzX56c-S&LW~MIyy+S!{E_Ps9%8 zF<3K841A%U7h_6Ke%(RpL2GVUeJFJ3oT-;WaX=!&N9a$6&~i?CO#&D>Hc%MG!h||$ zZ`&_n^H2uXE-r=(3K8NHyl`naO zZM-D?@qgJc#OdHtl1+XVnPEAJ#3U|fe9moq z1LtmDob=jIx_dZr`2ievQ`}+6L))F4bzc?xI<9Ht2+db8R@qis)9E#Y&xXxOl-?-A zwYXqr?}F;rbyOW&won_TKH#dtoITV|L+<#t*0)b-sHZ%pPbfAzVy3kn-~GXpwd3uR z`s(xt(BdWSBif3bHIk7Tf?dQqgrvzR@M9n!XZMaB_E%oJ`vJ_AUuOz^VRd7r=&Ean zF9&7lr*2lULdJ-`4XJT7xPI=Ywa$@oUpl)2@dx8g@T?fpM4g$+Uy;@%Znd9O)KGIP ziM>*S{Iao_+NV9LB>k|vK1N+#u0ZP^!WnKl9=!bV9eg> zY8nNls}}u`pf@}OZRNPf2D|n|cn&y+@=_Wlz6+uJndqA)M$r*3J2&KXL$nx|hREz9 zizOR#2q;=x;f}iDD#+Z5R1?d+4^Mr{!hD3!o*GiGO~v*$%7C$~unqNrotqIqYH7|F z6QEGnmk$JXu2nX0(GCV>;fq0sOcqh0v--dvsamcqjcY7lBT1K2p#C74cUBpJK=OSj z%|&MOx@z%Q@8nYw=FcCWWn;A~MN}BysY}HEO{fbLzWJMd#`Q=gE z4mn76QlX^4VlGwHNIAIL70atY)e*KbS~6DGlnoV#0ilK%P4bKPW9A7rpVK7z_#N!o zy=nB9EE+V3e7(X5!9>F3;YWC1vd0*nn*)iK!g|VLIT)sN*q(ToLhu@qNhS6>Ul~3A z3l}k;ErX4tFn6aJU3)Tr&g{1XF#kLiFj3zT3TdWQQ!2#fr0+(D6IZb`GEi#z1TW1x zZb)1JT3kpuI!*L581ze3p#)xJKi^kwzj;5{p@=^M+&`wg8;&HwtDc(f-i)rr?=zVP zV+3QMA&&cY{0F1Rm1xA&GmlOe+IMMGixo~TP7fYivMUm};+rA6&Q6RGiRBsdN@W?} zJ!en!l8{C!IGEZ-V_hc2co$cTbwVuCZH32xLy~OYjJ5!NSe^jT*I}+wJ1qL6W(H4` zIX|dRZX$Sb>1ypVFr=1Y6ybbJ&vI-xI{ogaLi+J@v<-R?y0f>*#bewIW@c=W z9t#cGudTzAV02hRc*biuS$fiF{1g%Z`@n-{VNt(v&&ga;S|F#_`$q}y$_7Ogal{Ah z18V-_Ur7W>8dWLq+rXeNMUW+`f;u6fv=rhgWGS5;oo1hv?LH^0lHUTC84K8!R$4RH zGCfSQJf7$D-;P5fU3gma!E|fWJ%}*+7`%BRc5D0uFA9l}@Ae?8Kj8XlBPD47L7Vn5 zIPpS331|Y#VnTsw`{0#_r-k+Pi3zB5UQvwp_tV-2YJ5BbqjE(}S z*5^s z+!gjERrZ_S&8mRjfjYs!fi0jWFj%*%t|lx5lb5q0+5Ex$8SM{GiLCMva;$)8-dyDg zYZ-d?r~;{dN#)Rign&G(wg&m`v${<;eo^*?9u~#3JfO>eZ$_7`9bd= zSy9Y#4yW4Ca1Va{hd5v7t*S-WAE^Oj5s*nw$mMhyAO$hMnq$lKrwka<9-vSi5HXZ zQpFs95u%oN(J;XVj?$|Ge0FQx{*dN(i~?I8nG_K`RjYRC700;SW)ijyJRDvV z=w9HD>_r$1U7zpYZi3`ibRURdBFsIcX+8sk9&PmlY z$qtBE;P{cMMG zElAzrhbd(vOZYp95G;>h8j#dLd&r--Ygd;Np*UlR((WIA1fy497D%rS`pDY6Ca{Fhy_gXRkPkp38!bExiuRsl+Lt;i&T_bAF6UDKu=2fiBHbKM;%3OGcgo#){!QMy? zCag}e+`vo874%g8?F!sQe-!1yOqpkQLy?YD466_G240~IlN)Hmm$BV*TJUFanvT)_QYv+*l+Op_4`6kU#C$8t2yTFFvZ>0obHIC*M2F zu)Cb8@yDbYoTd``Uo)L`hFjN}4;W6I#VLRUIc)?S#ZM%PDy;aQ9T=(H(`tM;DI&9e z%Q%JZC#JO>M{HUR?5u+A*!x4*!CD-2vU0y=m!Gz%d2kY=!;6$XHKLfI$YZzTX20gD zCyFWnlJf;~O-g2xE$1vG91SgA>^iyjUuwiNo1cbulD>oxsB31=N3$|9r6f{d980D; zz?#3ETfx5*XO%Di=$A{ZdScz>NAA9Xhi}3w<~Q7l#U1d-vgLlURg7l7mbb+5BN9DY zwC4T!{ms&3I*M7p1}>Lt)`m3vi;ap~u5p4XAU&)dVt$;KwulYw4;R1qMXhkMKa3x0 z6l>$$e}2s#ns!hoGVp9@HO2qiWEiznoXvY>@TsYy>=XW~tl7u#$5ZYGj5kPYW9JwQ zU4;kZN{3wcykTe72R_bQPm?^7EuB+Uu#Kk(ivQ*DXYE zKwbTbbH_sx1>A40^72Z=e2Yb9)9szB9qq(V>yjeFHZ3DEs{tv6FF9bz? zk`t6>E-nEl_j{%1Z!B5B6Pti2PR+zOfZT?6QQ6ET#2NJnP8cCs6A_B)#5J3@eg|;? zE{all>l>FtVa?08WQj>!GApm`-d0HaUb8RmE>->*rJe{kE1jU?rEUTMfUy=UnzPuE zt%pO>CX9ecx8AC4gLqGLx_)t%MDXyw{#1lJw^@;bqSx4&?WxN5CnC3glic4FuoCdV zLlcoBWl+Fg(U<*3_NT2V)CLph`qlB;!IiLoGtRTqXC3j!1wTHNU0K3W>VgqCoN zsJZv$xcwFkb+)&W#~_|{s85KY6K;eSAQ>`vS5FZ{;?3uK*2^0>*qI()M1Q<5x~sWx zf?ZkUPT;d^6tjX8+D8@;pJEk^PMS}B*jcV9_(Bx6(pE%TfQQ3ZR@8 zc5QT|UHmPha=X_|mt{6kg;2uLT zF4^^d_Ck%s5lw(c=d$r};_0g>GLZu#W-81sjJ@fWIWW%ZWD0h4Od8#*EJX|~evSh* zh#(J|;TSE0&+a|7my{U(DZR6t#kk7cG59&Ny*9c0iZj-^-h||a?8Xog@uyWS+BOcN zVDDG>PRsj_*1-iRol8xj#+)|HE&1~iM5gj7XBM1n*$GPVr~5MZr@xP$U$@x##*CRB z+}!AH49E>)Vp+Q#_)vd3T{4COT!k3l;ySQwG3^iVl`Vr6Gd0YhG;3rSxQr0DZCI&u zr^ERxLAc2eM>9VQrQqZrRLtTAhUxf*ihRD4x3@_2!TZzwa`+QqG`{Ra-2H(LKi!7i z3L|BkAn(GVBtIWWejDQ&$tAQ{DQtj-!}sCCo+`&Mx`E)4%t1y0kZM-AkQBGkTg16q%a2L8FT?V52kz)t#ymj~dzay${xj-PS;o&#>3h*o4AiB=PXkBXj%Rb;H& z7LAryp^|51F@H_Py-hehA*9}z^c{9ujb?hTFP~cSalcE8hW+Sx{txxAVS`d)B?EN& zAAHj?XODABnzEVMJ!0O*b5-=l%8Dm(k4Dbkv*z^}>yb+1qKD{Yz_>_&Ee^l+fva*naS5_9eHu0sbtYlnHd8XI8pl|?JR#aMjA@}o6GcC{m z7PZt;Ke#5WT}239l9D|+u60T%bUMl6=*N}i{cge2cwS?cR_`1={b}*WfXmvBVvDnC zONLfjO4E1Xh^6uT8Bt7J`E{+3sk_3zL!Dg4&&rjat9I@fCum`~d|2<3z{oMC>-J2? z3{2R!mA%eq&@Bd(jxZ%ZN)3pyS?z1d;t#nmAzueb(aUs2wWG%noA@r(U)0 zqMyTkQ*N1$7Vy;0!@oWn`1! zkijtcrk)WP6@(bSX-=_jP&cdHx?eJX;iVJveQSgPtLX?oCAiMq)e%%w&=#0=YX3Ly zf$>VP4q53s+gw#g6mjxEHyHJ;r~;m|yEBxyM3bqS=2F@=gk(O4(`DC5sN z!fEd4B#-%xEXaGfPfK2M#-1X$CP*v|h?VM5OVanbtZMU%pm6PYSaJ`Um(w=i0$&)lexq2neY4Kj#|2&fsoiU7o4!w89fNu+eDQ`D^6jI~H|loQ^|b zKiY-!_HyRZntGp_(OeCE)gBq;hA%FJP;TqTJURQp*0=W@JdjogD-bln*R!gkfm))I zg*DR`Zx=$upaZj$gVwXR{il_=C&7={H)dYJmG+9P3-#!ggS)w>s=M=7JE9NZMo{2& zwd1|nOQULIoGSQWZSJXeWo2ZqukZZa@U3ncv4Qc#OzNq{$49GuD!Xcf!IiPT#YB6-OGQ~TE_#vU7rlxW!B6r zg}p!3=#>)@RgEXdUR{1P?xjqq42r2sJuW4u)DsqjZB%tub_jO7E!>;ctb2R8=k2qS zz~hMOu77A%y1DI=(0HOWPB=IE6=_@4X4WjsEYr2}91?vX#+ivJwAGU4HU+`V<5 zm%QyRk%JzXOHwXz=?!2sRq_Yh9j7#3Tm<}EFD(L zb)=7$iL8CUTE4hZWOt@VRF2zNv28B@q_Rj)A%U0f?`>$T*OHF57G+Z^5lcE>30owIy&=VU(Y$N*6K+WoB|jka{sN;QqL^4UOq^P=}>P zg)@CP1uIsIlMHBimUx(LspQGz>EwyzDdkD!Y323j6uYq261c>nTbt#lp3#K_`50@u zWAKWKqZ^V@6We4;`N!IeQ$SLP5I2H_;tYExhk0V?QJrU~inKFV0R?x*9U{UfDNgNB zaCh_}&4EzA(N{lLqfHkwb~x3jcJ&I+$ab6slqi-e0)>j}dB3};IfXz2(HK++0fnf_|>=c|b$rEzee z>n$T24SOkDsTYPT=oB+v;h@&*Eg3Yn#Xbmp0Qi0^c3*{x3_K_6;7knTaU&mDOpD{7 z30LrG3?Q@)pAwjrst+G26-g6$On4`r9Ivz!*wf9FHjrtNf;W21rQ>~?Egi|`^b3-i zp1DVj3C;FWX&y1Y8QU-!dU^)@XvzO}weY)P>q7Bt@pSR|6yX;pe$$I5$$O6J(RHl9 zQ+4{&7Im{!b5t`_3&oTF2+bE8hNK4SI7tD#)_tjl_@OdPQ?mZ7%u94UB?fQs8gLp= z8b}(T8n7CW8i*RbIE}b2SLmKqnuJ&TyCL}EVjntO%xP_>R8&~*y4S17aXQ5OWHAJ2 zgFa%t3<&>6i<2#4%G|#ZXkt5IHnjf|cNN&H!!Va&guh~8#`l}bS0HT+$Ti{1iteu^ zd&?u5u)%g~k)lyC|78>x5&z`Q6~5!ZLJ+M&y>vv=tnLtL#uoB@=g1yk?8=;tKq*+Y z07I8rapiZE`>T=)9WL3FGh1kIJeia!`e&WL5^UmE8Z}-_*7$&%Ol;FMxd{30x91ej z%9(9V)}B!DAE6n6eNs+a0ESOq?%3p(Iadbq&QVN*RDT|~xe9~X0#dYsq&y=zuP*rm zP4_nq5H&D0P&GGI1JqfaAZIzcZGY41(%mS2`o$=fx-%FzYrcds9mf4OvW2FX_?fq% zrT5*oGNVpXY7kn`GLW*??PscXhf|HRY%J+?S>35jI_CIX{Tjv$Km{MVo7I5Y0LQ>% zV0my>9MUf_Do}a>t{S&Gh;^Ms9v&FG)>|BecHMH6t~~i7$LPwtOL4CWmIRgrn#9|W zb?ukvr|LK7$FAFaR!QBsY{5($DLZY+u$qtPZ-1gFvj<;c5Rjz8#Nz9gA4wn0Qx z|BZ(1Z%pi&{J1U)z{wV(<*x&&K~Qb59?=)1I1{?$@sSx*&p*X2U~1FnQNG#3+5i(C z%wp*hRyd*kb;N%mi+;+~$NEc0uYZDs58>BFAm*J!Y6wYcSMDb-_}?m_O0aUIMLn}e z(pxBRXDy7CFel_iiI@R`D}_D+1_NgTLza+(SHWr{2b%Fs;Cpd?rDu(DjtlV_I^>6# z0nVs2w+OjgfjuJ+D}@H20Wmj61Me@}0W`aTu=7E_c1-RwO*8Hz{M>Do_uA!mG zo*S|;mMXl#y(nfp(0}{{KL6-w%-=Ck6gX4C)fkId{i8N%DpQ#)ddZe1%-$1lY!T#M z$>Eqgk%p` z=kT}X5RU&6M>MmJ6{($*B+wO$w}EoT8f&E5ojfgQgWb#7@V~tk@^mHUN1pbgT`_|V zjz$~&$3+F(fG^mg_99vQTz&2)j8YNe=sx(= zKY~oDX*gyAW%%Y;QWJ1a{y0*{kE&<}mdoe=kRn0%e^&WZzNC_<%8S#{h>QFq;;?Tp z!VuwYyd5qKziY3wS56H&(?;A;Eh4xyx+zcMVAuScdd049#>g;d0M-1#bV)*vjaI5W zg~|RhC(t}BzS6ERH^uUU(pYrs+d?54sbYS*&ROJO!^B>qztCWL)C*4Z!}^SfLfGVw zsx#3^+vEw!DNr${o+pJWGwPTTkP(8ND}<0Izt1TC7gp7xA_h?ECe$iw*#p&MLhR2H zYl$~onXRUV;;87#0I!e{MUc0MYeDhu&b1xfUT&lSz5cVJy7(Qz=s%FQyzFA-ON* z#;L<}Akbnh3=i(I*oXn=Ook`FJ;jFu$Q7|AO_|l`s6dXII?wXTn5SZq_g=~9EsP0) zUh$>6&=~2adp%uJVO675!&NV{)(%Xq?M~_4QqG(`4j1ubr4zYkhK*S~+coltJ;ZAh z>z%qUG<#?E7%n(GZEgNOaRz4Xw-@+UN6F_$$*hWI7wC2Ni);#Dt?Fqd(2k2K9` zyaJ1sH0PA^k4cys^njA-O>oD~Llmm6xbx95L11bq={N;?M}#u`0CATQ;0U%dRXcRV3>?60()e z?%@-9|M1)M!~8F+YxYl%59S#zbf~^6XPd}i;x*zN0!{MPeRORpE8bZXv-i%#TY0}R zsu8O3tHJ)+Z`^8eKH*LkldpX#eN(esL>vzfRxjieZzDZw@qqs@RL{*jo-sV-w`8c+ z&%#xuNR~*)NVtEPgk>adP*bGFtY=*0Y{hO3`Kb80342|vNQp86U8+Tbm5R9v55~+_ zz^hTkZ%(V;Fho04EQC^15;D|SIwf(H+1Q*sP^oCJJU`!&UiIIy4{DBv8eNtZ%S?YO z$c(FYUee)u``>M?A0x%al7tu_>A>lr%R$N^%E8K^%C{oYPwL#w%C`x=_gLY>cP051 z`2ELb__1d=;0-Zt1CJCx7S?9fUlMClV5%(Ymn*YNB;CA*qQ+jN^QHf{MUl3z=u39` zjhtQrp!Yb{+T%@lCi&Zd8i{@In@hmkhDTAY!pGftO*ri@a5P}O(?Ku^{yZ1sfSnq&VOg=oQ!S2R3Rx!d3M*}KI+aZ~#fFLg5HxeN^= z9Y#z^%pv>z>yd+IB{~dh%o2-=?I0pX#-3FXdz?I(K*S>dd0r2KeYgSBB?(OW;d3Bui zxej>k7L3zr)+nMed1@wY^w^!#O>rj2KxzNYC_t?~AN(R($1?Z-tQRiPFZ{4gFE*ci zW1GB~Ftka+u+wfFnhTUpw2k+|%hcH9=u+xp>2mCX>yqmF*MW-LWs7fY3x3K97&K-$ zG!B8d0J{PXQ$ISZJkAub?f>6&aq6(2#MZ)X8pjod*lh%-u@1ozS!1~`YZkth-EUE} zJ?l_of#f+(xzQ^3lT{ZgRx0KwmM9h|Rw(98MT)N8GT53HE}SNvIL?#}E=9^xGL%ws zh!jfH08XJz9-e34(42G@s@9A=B<4dQ)h$7!K|f*rKTSQ-*jWE>pZA)ao-cqD@r**< z<@E06+8BxD_s&*9c+^Z9rWNSAw(I;ScLiUJG;RxSzEPa-WozAQ`K&Piy2a_0vc>{K zKtXYP0)(!3pzzCNF}fJ#^tM^rTObbpk0|w9&1L@c!GUZ(O`=t(9g~v|DCu{)#*`zqPbO06aV&Y@2qLB-8~bYMle!*t0+1x zDFFq*l>_|$>muE_AQAk_wR=cjb}w7Agr=g$lZM;g_nzBs$d9?Aw%CwHZ`;-CXHlg7 z|I1`VgKUr&gvHN@G`z6k%Q$AjR{UqW06!Rh{YrfX|t>VK@4$1gsn(xZzz=4=M! zhweqm5znVD?%S!f8Y2A9J+o?8KLq<`>JJa zjar1m{r?8ee_;iDwyOpA)WPOLR%-36KsnJ66>2d9=>G~6uALxOVS|Tw(tSPg6*lO7 z=*fo*J#rrJwtKp!zfB;H(*HXP#+!g{4Q!eA9lylYJyoZWyLV>K+^?;W2LB(DYZ`2x zi?$pYEX>T01tBMYziXem_DGzgKp4GIEtK8oW&F?VX5SlJF&@m1@B=HjV`C@X+XrCd4231R-}Er>b6f zmj5HRK53jNmN-F!Auu}Fxp2Ik6YZLUXzan2{^?gl_J8^HKivAsh)CM+_Y$g#8@Bhq zhn%`o$xG=v8g;;;WJnGIE-u9LODO*f8G~4@L|;hpUKnDF?oJx-6FGT3cgEdrjMDC- z+=I{3UCsNO*hFdh8>CW|q`a0(luQ$*^^BFNoun-6SVj_#E~iy+64B%3yyWGMBd9rf z+@N{Tha;n06^9R}@vD9(Fdx;WJN?NR3Q$@G&KMHo6l^Cyr}-5KoyeFbfK{-jD#Lka z1!M&qDVk)4C@q6~{~)*q)1{c=37;ZwzYx9g_Li(_n{30^pQfc3S~9l8bB2vjVtAgv zz3T0)O1?YU*?*GvY*&0(;-I`qN*FlPeQ_-*)0M(oOwhThATb++N;MVW(EL!7A9q zFF{A!X`2Vlccb(T8RG){F-lodZVtuzS7u2?W_vr!Ur8PC6v+L!n-lqwB)XD0jYmF{ zIQeWXC232S#&V~Rfr~fW+giTNvgb=CSBl!JVm|AWSgJ&x9A z1%U{`;hV?kfzFS!cXgjB|KKuAA+Q*}*PDF0c*2(`pd!uYe zQ)0!=4z+P3qvM0icX|HhYsjP8S?S34ug-kSb{A@P!OwM14Zj>dTwj4PwL#l=roR_u zXC(p)Rmrd+=?w(z1Nibg)DoU;cDI+&GcXCdzDuV$kyW3=HuYk-~VaEzRDqUpnnhP&gD~Km8=%oN)i2i4XD*dmW z%UdR_PJ4A2as6tdb|El61@-=<$uLYXnT_9o^1g8!^oFFH>guBie0h^f3k|+%PpC>K zY8??g(bv>$Z`c2Q1cEVi>+x`XrIOXi6gzqQ*9NMo!i^ZrH|ic!JC+GGePgV%vov|+ zrFSut>zxkb+Wck5yX4`+#xU5Wq-_7%@{+M?zc1bc<#CJexC%JBO8fldNZy+>WFN`u zTHB+83=>b(?ndAX8nuYY2`3zAV54YogS&dJA_!r;qGky{mlSb`u5*WJcqeGOzMdr0T&kB}Zg1b1?lfwUH72 zMhRWI&TznL{0qpy-t9ikG|c?)b~byM$*y*7Y^xEIh67LOh{AZz8u#2Tuhw-aPnJfP zlA&VH84XaQsN=|44S+-UoF|s`V)_fZYWo;BsOB|W0@Z#pY3BNv(f$co4doX~%_^<}%Xw<&WDw*a+W|P*n zi;zOmA7o)U=ENEo2+N;3IURt8E+tEau27D|H4WWHDw!jvwLwbVDW*gsX(W*S*;3k` zOQJgh5zci>DDftIekPZ^*-T+lCa!&} z1}{0uyqg2R3nC%Eg~Y6oVI-ujV&h?jVLne=ThtD%Hm65#O+>6|VYy^o4u7GW!*yrQ zk{$nm?0jo^!2}!R2<{?boKf%`U+jeXo@~4BV{!7B%5Z zx>X|Qwq_2tj(7oc62-v3bIW}b4+x}53o}wCfngcYL8b@%oV`MDxlJ|F)rDiy1y2Gq zHpYW_$8juxkk(3~MAu4FASIcD7Ts2^HR{iiXlP=|sfXR8P^pW-qjgmjD%1s>H`%a% zcLv#N^rLuu36Gk$!^PBUC96@@(838#jMc(PHE>o#!zscf>lLEMcwN z%bwEM9iAS|13#FLk^JFoO|0vkK!;lrF>gnLsl{934lq_k{2i94h>&68@d_TBgJXsX zH%pAw{(+Id9N~efJef7Kug?2nt3_F@3VKU;^)u zJ1wz0Z@Um?+oN?KF6Q`T`g@!$0Ngk4k2$O{WBRwL&_kvt8OQ%F~`8_ zXEM4*H}hLlYu2d&bsLG7zm%JSy7v^!kIK%yI?*SjHcZcO^a50)qWrhMR4QBab6F{K zF#{{G5!iBtw39y$JcX@mz0+u81uE$&Y7LNbEU-yQN#t}fFll+fy(>tWE~9uPnbcR= zIH{`4T%%p+A8SIp4BDuRXh>xqz#hNg(JMeJ&baCY^*EhFerA_0(6j{mh8^0Q9~%XUBb3 z*tR>@_%1jPuA&(@5ys2wpOD#2C4Xm`6MC5s^moI#E`&Qr0O&Q|LsCtd$l%F-HURjkZ_r3KSQ*N`&^oX%pi z)-nDK!0qtiV6C-Ym+H>(3mia>6?%CU!-ZmZgFg)SHlt|Pz8^Tt!U&w$+Xjoo5QWpNVhHcM!+_E`0NU!*3{c{sv!+ZyVW1=17a#ama+VMqrsnmAFCOJeBng#{a*v6M^%t34e z*-J+-TCT#EmkPc|h(2e!pgm+A)N9KPSnfdwJ?FalSk8{2x&%i0z0d-_`UJCF{8#6i z7Bz?lit3CmxB~uWtpcF*((*3o2Q)5^0P9a|Xw9EcK@mh%=2}_h5e12{8aO41v9LkM zlmFxb7;OR;?;Wia>#QIh`{q@;tg!f(;I7#vykmP^3Qgd zU+_C6)Ve}t|GH6-T>3mh5&YmnB=in04e85fGWiL-HHjl^15FLXgB2`r-IFr`;^tm~ zuHhS}F{1T0!OYch(psm>(V^yO)* zS3XFpSc>a_pV6{?xv`$V&YRf?mw%G88EcZ12FI^=2{JrG*1$qAIRM?kewzGwywYyLcZ{n7tg5nRlPhOI1bg3NH9Un zWx4hlwQt3Yz#m(p$@7sJ?Hl|Tgy?>t`uhwW-gM5H@>QT4^n^gS05RXq#b!ZXXw@69 z`_SNND8`5T$GZcaeCzQg!8%~%))@}fpQqbyqqiy;p{}2m^nn+xS9;^n_~hr7b2;nw z;84<#ce=BuLiGQT^^W0{bxpT$Y;^3TW7|$Twr$(y?$~C>wr$(!*tR>?$=%QWyyyMS z_jB)S%{6OQjk)%&Rb!6gm%YE-)2_uQ&?V1*@KsOpUGGSmPM_Cu;fQfPu)0IWt(Y(M zp+fjTC@JQvd)zr+xNCj^k?R`NySna1q1f@+um+ib*IdH5frJYgeb?0W#T6T-f{#3~ zx+mue3c=IJrgFEN@&Z)IrOX$#33$1obpZG)bE0_5}vCEujhX}+24=s{F+i_ z$D|xr$wS@}H)Xo#9AD<&^*$ZFCL!@3Caorup?SB}zd~oOI3(*w|LiR!S z=(p;eBnt7|wvgPU!yjYno5o|zzST}5tQ?dhb7kVXvCCB#cZfGZralq`XP%dw15Pmn z-x$}>Jbra+n|`;|MO4nH=YKrY*H1qPmYDgGfxCm8k3qTh6>55sW2r`FWQ1p4rl0oY1uoZj118?Hp=8+js zU0ws9tVK>QKBoVG;F(pjeyJHY5{gde4{{SAm{dux=DSPGdY z?oHtxF!_+ej`=)M#++_@4Va(2HG>_l-3Ve|2cVE?>eZZ` z!fQL|#xyGq8aYZ_+C{u^`8C3Aj640{>F;0^DDm!NQ2G%Kg_9~<=+7Bye(-G&pfv?* z5P(at?}Wy-w*TG#gQ1>h|{^$|%|?S_tMja(H2~wzL;!cPQ(j@4Kb~!NV0aptKccloqov zN9T}TT!!~3Y)lDIyx}vFfgngQA{3V2ef#jMOUNll47EsStLR!6Q5eG)c}qX1y+HOd1or1uLEa7SS(%@M_ub%;((rlsBes%I6Oy8xg8fXqXA^0HD$b)G-h#qB{?^d`pDepR|xNnO~@UFDwR6 zU=%7bQhqd)BL5x~RW?i0Ujv*E6tatz=$M(rfLOdIm$3-W7uN6XCm~YQJs1mUd?BMK zsk5~*3S@){DVjM|KHJ<+RU8$J$TCB)iNbxRAEd;2k&7i9Y`l$dmMS~0L6|Snp#VEc zEJhQ!wMGT#*x++6sub^^GlbAKY~hvT!9#;=&`t6BeqgYq>cWg{J&l+sJ0#1Z{)4DS z?AAO(VyzCN%o6jYkM0dhdWvadgxD69LNwBwz6Oyvw*V zwKMm9j|d^@#H;Ie2ZyKdy{V-Y6L+Ml_~Z;l#JEk4YPgs%p?hN>1)HH~AgD%euE^G; zy&%x&k~N`*+JCHu`t+@!?Y>%@hdazx^Ea{&9Xz1n*+JR|Hx|$&QL|V$*8@^#MI8pk zhbwRhrJ$DK9ZxQNGuZc5h2fksz~j6e}5n1%~G&M)>fkCeKh=6V1U5_dG_?6TTP zgGU?U3>VPyi9z>{LHCV8Zv>#2$cVz?;x#2-vmw(IVIC3cTq3m6cGKddl;X%>OJ%7y zBC^6Y{L)lZMRAb7+q1v3Y~jST{c=gZD@aA#NrAdc#Iooddl6>w<%jkbZpxXOvo@BX z$3-2X!)O4QmPCz!e-JWF9wv@D$yaN28xnPCMpYZ0p-M$3Z8n`*2f(#`B^}d3OcaHT z!>6@{%P88{0kNzT&LUf_=qpe3)r9JATdA#0N8DAFT197G2vrOaAX^m&r$ra3$vZ^P zxjjqo;9$&Z?C{fi>U81L3gz(4r4UdW9ERfIk&;+Ag^{UDPw8Ru?8$T1MF>;Xkq*x- z8b^Ekeo%K5Jw46tk^rU3NKs9cqZ(bcNK8kwfeXJpUgZX{3+q&Uvff2x>%XznU74sI za^HxNIvH(8G?b)YpQn^5^x`WVcF9L0F7l*^q|*QIF!hajEGBm3e}mq3b!+Xt#Wqa3 zgr*Z2+E=;nHOiXQR6-oi&CEN^?$hr;1L&{A?bo(w>0(+Re8BjTqVJtz@10VzAPsOX z2ntIhjELqDQp^`tLoyji>=hBy67%#nH8<99yJy&B9wt552gmPa&J3#I!cH4wrmUPz z;hl#cZ?K+bSr6KwnXz#fsotz01HDt2q{kdZRPkoXDp?Ty49|Hv)kESDY9dl*0vK{3 zEQBAIAqY_$Y6JJ3j8L1^ zE2-b8ODToo^0s4$&KzD5{bPM2DD>c6*FY?8Q$iL{wGboEM!MNLX9|Id@g zl6;`7JKgv-nt<6M{4eUJLSD+@7h5caL@?OG`uZg$mB8MUMFI1sDW3rZ5=MN0a%lPb z>oDD;KO6C$3x975nLsVRW}g(=d%Tz>>GC-~FczKJu)w1BUzh>@ z0>+{?usKejagbxbUfix^UdZ{x?&qqr!P4cmUL_rMI?hw1n*6Yt!5NXk1<-VO8 z^pG3$uv?hs|3L(Z^Jm1j z#TM_Dyo8wA?}-i5I9}npi!G70c__2zket`7>2G@&R@!7rv*0^Eb^xihy@!*pb~Yi9 z(zkJIdrkgmI?7VhNcX-PO z@i7#s+H%kjYq|Ju9q5dgSkX6wCPW^i!RWm+P*z-cfyxWzIL?G?9E0_s8qNmL$1h*G zqV5R`twU-=Fitf>5dddDELU7!0){SJROCL&xfTO{*PT_;CvT{TyRTG$mYPVt51-ju zcUUh1e%BRV?zw1D>av~jS+3k~K%5nj<8oOOYSXq?og1$3G7cK>D$%BMk$HhSc4Wow z)JzTPKHd>eJc`nnRP0yTN)x=obX!>;O_5s)*2=-B&U|o%AH31r1 zz7x^cBVB%1h6aFu>qZ~YtV z8)gU3vEDAjklJ&op2g&tmufD~KTB~o*BOq2nd#3&D{U9z=b=sOq@-xyDOkjov@c37 zwzgQu@3xDLKLNi4&UDvIpU1^KXQo6xxVrgwTO2{U?jNf4g?)SF zDUSv)INy%dveWN4R9;yzNWgEhY4kv&AeWM;HYpN{>H{ius+Tl8S1j74xTM_bmo}_Z zCLXWf-`ObV9ka|JQ@Km-<9qFn-pAk4YysB%vR4*2Mvno~SCICmGen(S%cY%M!bmF% zICv?q=d846%mhvM)Am2XFy+}tw^E2!I#J$%@uCMQSbOulE^d=8k7DxPM(8v@^5P2Z zNsDF8?EreOL|deT=u=Ixr&-p-YYsnzU-(b(|7=JGsgsD4j)gq`4)HX`n6Y;n>VG5U z?y-C6oBMpIc#lUPT-tAbQ-3(ca$eJgCYrx~f_M9PrSWqTp^^h8?HAI5J-uEqKy}yX zlYq%Iw-@{cJ$lNAi@fVxzi)(KNq+=ibP{vtj zK&1GN-od^Ht<$f9I$eH30s(z~f&$4)fhMfd!@|G`+{C!U0|71l_*+o}VPa0%iG@Z7 z#KQk7`$@0Q>|!~+xv7ZH5atF{FA)6e?yT8FtL`_ls&?bAQthsf-^rTIm&t?kDcK?K z+hV?5s0R*g4RB5zBQfcYTDV)L{eU-K?^HO*6f4(t)7RV7>EQ0$@$2!s?9V^W)YDt^ zS0282KZEy7*u1-SLL`f0Jp^Au3vjgXJ`6u?bwm)Xr+nDc{#><{*PEl z1qXr^e9Y1GF@;;ZVFLZwt`+H#ceYOMN6O=_bM7ia`g94m@zE7QafpluhhMne zU{}jWSt0^t$mHJbg?d)KotOEe-1sD$vfEb=x(|8lse{6G9e8>6GHR-353aOmfWZ8n zl1a$c6exr12P=0EvoHB!!^O_=vxSzxop?6f)Uz#{cP+tEmK>N$DFFTXqVJurr6Z;J zSlfDjH&sYYfIR;4Sv7eJ+NG8B+x4AK7hy2A@%5e<-}K|_ioHP`-G|*h?kzWu@jzDJ zr))N+stye6)?xd(5#U|RBjRosaPbbaHw=n`B*kkBpuHW3XoJGHS;n7jqkPN(=|V&R z$FkDjJvY0*Q?;(Xs?W7iuQ~zssCjPD9`EnAT(*Q+8ayw;e6tScR5IH2sN%&|r{gH2)?P7;)2TlycJjdKp$NK7Q4$^McsKV`b&1F=4a7wOurYLwK@iLL z{t-|RL~PXG@HADL1l0}2cJD#O2V3kC5c_m*nk=40JnoQDitv!Rh$gN>haaz& zku4(_k*5%fgBxUONX$)wBV|e)o6-CUR{sO#lfabJ(o|@;VwkRWup`J4M+?7>fNa|q zilJBV9o5i30t$)DJ@nfW0Bj2*7_{uTjx;Vz0=ro;*=Z1h%(1nhG?w*HG?^7`yfUc( zni%>Wvi|9A{w$~_H~loI+;UVq7@Z0A-?>rKZsGAG;B~1ay2LeoM3ru_WGtle-doYX z_xAYGgQBouE(gm5(bBtbPg}+F;;C7&V#&c`!5C9~{oe=%7-DIT%}53#V@XmfUpO!P z)KD_lwDEmIh7V{PRwuEpGwxX&l0M)xN0`(?*AN*p|DY4DH6il&K4!!7DWq_@bBpB5 zqsw2iUd4tykGa<Rt@(RTdcOGZg z-{w?`@NFL83zuKOv+v|8!)JFMZe^zs_BWJ2W+CB%r@TP%-MGj5UDFuu;wJyI3_rlX z=0+0A7w@*gGPwqIO#Zu2E}RGx>iCReuqspHh`b~rz?QNgwgXkO2KWzysz?fkPy_fB zC$3}(|v@f;HfE%9$AB3j}ixKO#%w5Cg`#t0fD;6ory3>R$V%;3a@cs)#B$Vzal zXjRTKOa5_xn=-i&WY3FlckMWJeI0X}^Onr5CF2;HqB$mknxX|J1CflaOSuh$tb((- zM7=Dr07m3LP!d9t(Eg9-+~)fgoSJGO4=~bt6i#qo~hV9zNdZR|uj-StIOM2sp=D7ae36lnr7A!tS4q)pTBqdt__Y z)U5w7`jj1qYKW8{4{eA{Wh{Y>p=uKb8~;fW@cF~Yl$2T+g*=WWEi{e^qT6NXd??Mx zh1U695sZYI(<~A@VShEq6SmVT#rB5(y+TSY9mD`AZ%4vf4q06vy8%3I%%GAr}|X z6A)NHX!5YX#L-H<1}3bg_8=vy&Vr*r+JELO7Z66BM)aDq{U5Wv=(_V}+ZvW7d!%^&B#4e%cCm6akRad>B`Nm?OhI)9T?qG=lhM&9EwZRR*dAI?ZUtWSoqF6==D zPiBhL^OjFq!VSytySB(V4c)(62>^sg>zLqxvpEg*=?bt`oEc%|2~#4pNri0emT2KR z!JA)f2`_5@@GjgYg`p|LOieu?7m;Rh>uy=M1aT_CO353rU>~wP4|96N_Q;6~!S*PK z8`h@QOmC(&^6&(wSJ0;%1WRXsv6Qai9KCu_H>Bd4iq#nTVv;BGR^jS&PU7-+>VR!1; z+cY07Tx`M}kx*F3TEy~|`h$-iA1?!NMnNwb%WiW;@h$cl6YfNdT`X&p{8K1u5*t&T zLWQMSJiC9Ubo?MLwDdXo9zQp9Uw4EZedM{B=o1wH*+55Yjx^Hsjhj2zPA@mg+F}btGD|ZDjv?tHwFzuEaTD_spNRp9>I=k5_r%=5YEEqQBLM$hw~?QtR|dr6 z#L0fx8c)16SGG^imA}_OF(3$N<~T^JUVj&F}xkcb(aF6^~6wpZ&YPcY1K&kL1my zj^^M))^W6!RriWhOkkhiI(WIsNETR(R`U0Kc0Pd>Jpff0nlF&{uX@y=Gu|A```&a3 z9di^O?0qwunzj7==|mo?mupWck2K!{>-iJ237DQ0dN$!)a71!89Gx)Oq@{9C>79%l zu>xv?&HgPA%JHq>KaYNa_@wg%3h$BTLv_5Hgn4>Mh1r{Lv3umvMUmMow*th7theIC zF~0yAP6ueql74@87Xg1*D#z7}2?K6g@3vFA<1V>u6crx~%dI?d49jims7L;M zk;6^GzX-XD`HK)~;1>9BHJxkdrHr|4m-H9mWqCLJ8j$-#V{8rs>=8Hx5eg*f zKT{GU%r&p$X>QZ+B4CxT(F7 zmV^=qiWgl3kV_}>tRX?=Q@_WZ};gMm@ylPufJ0Qq7)eT~`CPIA84wP-m9k4p?8 zP8s=~8#Qenx?tp_#|Y+(LwNOqw<)ayTYmbsJe2%U)@~#8=4^oKtjU4R8*%F3S05u~ zXN~7fY98C}_olq@v9&?T3XkqD@hmkIW2ej2z>x9l}XX*Ji+V$ZDwY0}s3(lcSj$(Lq(?!luq2&t8p zuGr_HyvxqlkNRP)uHHxU@@od@ zK^n7Y%*-|d@(Ie{=fTw4iDABJWc%{|Mw0HSd&3n`LBO{|bmd^dt8pE|i?vhDyyg|V ztAmW-sN7-ovg>WawJCdY2xVzin%uSvkj`Px#1DQXpu=4QQjQ1r$5tu*;aGG+d&@CV z6QDP1F_dBAnM7A7t6X8E?UVwyGmJWtK94uM6){U;T*zWE^Mk z>{P7fGbvjSKy7#ZuG#gKr}Tr?N?s?i=vw%iqn4viK;e(N)AV|mA0J{28C&pUTArJQ!@C(it*;|v?ORw5h8`O8;#HceDb)y3!D<%!z$MxFsLDIsr)Og6k`sd#LRqF=dqWdMrCUaHPQJ%XyiSD+z=L~44< zUr1A(@T-4lgUFB_g_nCWW}0FI!IwZqNO>n5Rmxjwz3{KafA@f*Uw^N0gvNV&Sg6Gx zvYWA3YeOFoXUTL2u{fPDSu8V^p;k&beWgMzkuUiX2UDqHp8um3hLq|LiD0}&ZrCSc zJu<7_r8b}(yZ-BC9z>b7wOs5w1F%~_3^d(oF%SxmFchPKKa_$OE(%V1SzjMAIim#nIvV#b({ zkQG^+1oQm=S`U{;jf=-12d6nBBIi8IPy#%EQ@|0j6fsWw2EP#(T~CqIDi9Bn`bxev>HtThDlx`ujJ(ksKqgCP=C=Vo4-x^y z{%64QFo$J*wCQku{GQlA?L+uj2vX+Cq@T$22XDs@MUn@T8`NJMv4ieUfpzLwzzVc( z>&f^P2ezbYUh>K1yvs^_r3X&4dOe8(upm}J%hM?3CL%!bf{4g$uIdQ7U(M~LZq@(C zDO3%rxlsU^L8?Rs@oRNBMc!n1S9S*ULZfU}mzh8<7#61Oi?|5WfwGh@MSOo<(dF?_ z%=`y^^YzMFcQ6$3H^DcV=C);doxZcH+n`&Co_%n^TSGP)DzbOU3oOy7hoH;HS#9K3;4Sm0y`_J#Z^n@BE3&T>Ve#}hGdI|On7dACjTd`+f zIZc&>`GxOXLPv5X3D1l=c z_>ttdio__ohOMR*5GF?FIZ&h}7&#d3AGoBj?w3#bQb5{T=`=`lNlqzhlFv7IGozTJ zq7zM=r$XOJbt-O){(NjlC7r+ zn4E)Cy0lAXC41$R(G=|eYdH~o)1p2OJi1j)piy47)iix<#jjD2+;N8OV|R%pRWDDb zLj?r81=@!=OmfV&L4#%v!`&B>pCsXn*w*>IhVaSP!(p!{WZVK%3uQztk)$W^RQieKI%izf z%}RC|18B^O@OC#0yR~qgBl>L}NLYTRYX#V_s8{qNN6*SwBoQPtuB@9HaAv%hjZ)$! zGRH6B@>a5>R`-Iyqg&RL3=K58RQ9rA(=6&k4+px$7@dA>GQzr3>P#x`yz}OJC~--5 z&JMWpF8yjxXf>L|Krud6At1Q;={?{khCa*X0Kj$QYbJ}JgdqSKaN7p*=Bh8w;?-JC zKFXb6`Zi0*3R|#ZZMg5d-BuU6Lq<7VhAI8%UnQV_4hf3N#|GTDz?pp6rtsIDq?A#d263w#fslFDrP(o`R zVyQ)JKiPCvA7&bC{)lRa8M_|GM*bRAwo1MT{~=`XTTMvJ8G%E60|K^bbNCFuxp5ck z5A^6+lvh-;4iVmfU>D&=9lJ#zkD1g1eEq9xvUM^xSy|@Qzzz!ll-;)+bM=`#q}Pqz z94%be2x79}{3|l$5-rj%jMIOG^@|oy#XxQG&|ykX#Bu&zk4M~%$Hb-5Trs|aj>_=g z-AtsKk7}0AV$u5c`Kmc2{ju!2CI^m=l_S7 zAMO?ZUL2)+Hosr5Q=b7=xCeYSIs03ONfUsF-yUn3;H%Bb!$!ZGjsZOp5qKy+AxzbDcUXJ@n1XB6n=e+i>~$Q0{-mEiw); zsbohczoHI>&fw7AiQY#NE>dRB*8Lr7@>wQ49;wO=z@>%Nbe?r=25@{EpxK0Pj}T5H zvigFyel3KQ`>U|omNB_K-EUUdILb_KEpmK*7B6Lw8#Y*?jTiW{Fn4_hBm~g|xv2?% zoN5?bT#43Z^B-Ostt*QgX?M7c8edmnyn8!>l%3D{0N6TG-TMj3ibgEic zhI-1GuGKxp&HeHLY6%5Ag$aHX>4gWOu+ijEiA&Xpga@=+lJ2G&ypn2Gn-wl~lYBIRb_jJh+}PVU@59DLnTct~Tl>Dg1= zkU}rS?6Q6UALLG)8zO;0`O{E)NKD0OSBb*s{m!++Xw~rB8w#E5cJ~s7*f%-%&gmW7 zkTXw6^woodgH&IZ6gA_eb2ydvoD|iJdcEcySm5Iz?0!Rj9+PGvPrB&-cPm$1+a0FR z9WB?9=HUw5WUMzQZsUI9)@8pMx0B)2-*Tl8JZWkGP-%LV{6H(Ax+McwDhtv&_LgtE zocx9K8l1t@LXuDQZCgffP%3K&{B{9X>@6z0+R64(K_i$tu3i^=J8^F}+mK1a-QC^& z^_e?tooIimkZ;HB)jG0cMA~q?n)dn{zdua)%WT$Pv|bMQxK`xCV-%_P7cupZpT!t; z*;GORzH9*1CcA`Fj8JL{36HE>Vr(#ZOT0({xMUGj4?bLbPG-@TtFRyMwe^}9ZnW#= z>%`4Bt?V=OXGMSVj(z$(E&Iuc%`}aUxQZ@DBG4DU3J|Ix@G0rtSmw-##R~R{$@*^g z%HS;}#{r+VSla(O9VrPulDc7|yTidl9<&8?Od9~r(P8zoGI=fGTs1fEJ}3GLbT8K* z1>9-JpUGuy?Ifp--{rbf&r4-xX-z`L94-J|l_?9c;{W29a9*@Fma%A)V#K4^3-4`o zmFsbH#F%^*t!nbvbCd z)zJT;sy#-O&wK^aPeU!ma4w~ZzO7Ja@az!WMdO6W(s9r;Kgqs(lumBcEOgk;gPXb1 zhfRO@;4C@)SOXtsW%t|Q5qNcEz^_X@>_)Q18p4)74}LD)iL2?n_H*)c+{|y=L+xarv5q-_Di{w|**aYpfO=%r^uFxRsVAy0)`CmXZaXS; z47AWH;rg5)Eo@*!C0rqrS2yt1h&)gfNMuC+2rW~Wpq zyb?~TKxpBWSuGbpBAx>rC#qs<={8i1h%K-;w*kcH#{cfYCCgWr$FqO*TAKSsrFGpr zZ0~Q8@mR#Z*Dvvr!7UU~mRO83avvGCFop&%jZR6&)K{&F=-)VY^j`r^6x2`wo z^5Hi*DpOE29+m;Wpw~l8iMQmo>CV4wpxoS~XJ31B21c6>*~@(?OOhoozPLC&$iPTH zBL4F#*S~39dieq=_zpO!p}l3=Qo}AuXN5<5J)eHVGWTpLzqqzy1U543ww9G2wj0PO z;>+Y+zd)GbW%}aMu5HN?Os^3QNU>DDBl{+}irYIOKf7wcf-X_>4>YYkf?r@6Pkyv;AVY;F=%<<}e1T;;$l zj!|Ssuqj^EN z<(r&P4F&R@?Thd5!W5{v;(@#Pr%UNOH+Z@d5_EE!05PRoysug&(_7WJ9PR)XrfIOh zA2bde04_T0gf2}ER0N$%+YFku^z&o3eck$)Pq3OuHF!ZN9 z6Hb!47kB$wa!ho{j^%IbK=DTRNb#>FFR5c2)J7xYH<;0hvhJ!t-;2K+ z>EH>;7cv9~MzPaE_0C8Z(3md$%ccEaF=_B?(TVu6TV>LtTd7}>20&P>Ti%{=jJwj4 zPupX~!3g&W9{keX#YGqE-)%veUVDyiia;a6bXU@fu@DD?H=ixYMC;syWLEE78VAJ( zeG3}1M`~kewP|QWZ&dv%<~4)ClBiSk5`8f{Cr6y z%@r9p`MDuvlPD@(05jV_yxFfoeJzESegYKRdA+bA5aC2baeh8PCM{7BKU6Ae)a&KZ z&J4guOZ*$Gh;hERn+i(c(K3l*ImtDtV{Iox7__Xc5&gbHdWI5BWiQGz z1|^EMLqUvfGJuyq%Ii`omvw6I6$F*1q#IKzE~-+17XUjI3(&d}xB2O1GT(3UvQ0Ub zKWiGx<~6pn%i|VE2e&xzd~ z11Kfk5>4-Mq$HIMMo(Puq(N<=4f&_$=F>8-P;JBVXZzeENk{j zk*Ke#3_~5+mH^S<7iS#jDD&tQ2WIy`em~abm=`sd0}= z9d=IqgCaC>i89=gjhwX9wXK?_aAJYGH^F{QZ{Q{#75Q#524)sX@bmsx7O>r75nW;t zl<>0VF9sHC<6l%_`Z#?HGmgW^q~VrAfhj38kj1p<1g^wEIxggdxxZ9f05VOye(gWJ z+eWZ|Of=M%Trx0}6a#TZt8Z*&I3n0VK*Ia;TeG)K7p0fO{*+^hc6>&szm9f#04tM- zU%*@GPNtv1N37X;kEkuBogceTvv_Rj{j;DKNfqUi4OHrWLX0(1a zH@eiUGV^MZC&4ZsL=7L%L26^&%{LTgU}?!U0ziA2q~rAmnm=e3FeoUeD)NPOzT!da z?eQ`;0Q~ArZaJgE`EBYQZFk!G4%8}>p5_m!dVaHNHPdc5@nC#pXpM+UiTM6}3NCDI z<9vjBvhi~hdllvo74!0C84`O{UcafH`n70%fs2{V%%isy$eCZnP)NIf7-CAxe{K~=$@`3#27nMeNJw0C$%svd>}Hs9Q(~i*fv+Xy z9tI}G&CKu&9CIV8%KeLBtswmsuD=01M$*DM_`9KCan;cmOFRCHg4)q_F8RgfR43}4 zL*HW#ESfB$AN}@w3Um8K>Q*5*21QrWDrQDsY_HkJKrG*FTSk;|2od!@B>YW0j=;^E z4Ukpfb6VRNm?B=&z|8DKH*EBFuEyQKu-1|3Bo*Be`)IMPa1IcFqu?2(> zjyN+-WBso*x+y~MO$mz&T##&Q^)8Du1mnOWIbQ)a`Z913<(_%{1!k?D_4tYG2klau z-|XSSr;P(TapiX*Z25$d(*#-cMYttHj6swKF$K7AHs&8Cne-ZUccfaOkQ7m#UOZaI zvr;&8*Sq>(LdSofPsEo~cYuFb_W$e#1~Q;+M!Ju>-_hWfTpj~`I*_CM=QY3UhSOw~ z>yN5yAgU?U#?va;q6EgOy~(UgP0(3&%sKBUG3*=~LzgVOFNJBZ_TXh(E77MHoM#Vx zc!sIfA`s6HB_R-xlZ1S3d1LyXm1Qurd=E&&DqVkS&fn047?D2%lp7Y3<-fk)^kUdN zw2TE3hu_LH?e}c z+~41WK2m&_#$C{|fNy;2FNSSG|U4e1@Lv58E>Cx;zLoNs48cj*VTjf#EQE$E`LDa_TGkQhGPY-)q?Ft$;-XF?W`?P<2aTyKY z+j)ba7isTqw$mR4p|VB1PHj}b==squ!8f=k{QC@f@4I z-7U@R(!b~|70?p*o3bSMV7?Rr)S+xN|FB|YNpZNE zuea|MwVyBaRoP~Y-JMGdzYH$RjDY&$-J{%wz5abCbpembtc_6%oPUeQAN*`{>kYxg zmge&i!yN$do+zWDwpBHG&e~W$oSaVCweRo~ZB=WB8LzcMf+Mq?Jvu6WsHKz@bGOya zVsih=R~wnq-!E968%I7fJ5@9aJ5|Xw>_#2Wo%_vw)gI{pR=V*a&kiYQ3H(`PCa$Gq zLhs)rTFYUBL)U8Tz{UO}I^PNP9 zr*2nQgMgh;4(W>{f6Q|KrNb2sZUVF0){{x+m)1-%3 z_WogSt?tV1>?&Ukh)=^+upn|djeAMaQr+S6)lO^Ox?-6dM~;*Pqo!&-zl5+&9+VIz z_7+OY5&C@_4v&WS47Ka^^p8IbsEl}=RN(ODK`SpXfVH{ z9i#(bfPiY4|C7UgP{2X}GPM4;mJ4JJFiJ_R5?TQL&(ca}Gx}U?BRgTdQZb&q_zB{j zesj*Mw=ok@Pr)tvj^Ju(3t{CMhN`Q$_|Jm|)y3mfh{%)Y=njfhhQos=j5cep`ZU2ACr4!*vx&1-Bi|Vj)0FBUkMZcPJ&)e zH~HPntCoOUTE6K;EzKJ>YRhX->tW~U#34l&*&duDuJy<(`Cb3_^~m>a^5Xp-xP^$F z;pqVx*nL#$JC)-@<>O5}rn%W<3tv4U4s?HWr?bW62%uJ@ z!d{iO;==r-!HzQxi8y~U;E}pv$9agD5n43gJApkp?A&j#urr5V{)EoYd$=Non1>3$ z*U>gYzkBEdG5Hf}P!fsDz{XHq2p^pD@(z6A;d=@qx8~=LZH_dCpNyiqb6~^{) zw%o(9!xKt|TZz}sS1}Mm6@$c#OGSfvs!l4Q{<7L-WS&qj1OyMp#XMg~3vcyAzCg$e zA!;1cRuem;Kx4HDl1R79+Nuc3`XUk#=(mmya;FyDT%*7U{AwBnZM4sWh(Z>+ZPbT~ zR_R6_ju@{7~gdE^BESG2x# zuH!VKf1QF`B#v{w{$o!XrlnsfWQBL@JhGH45b^_W^>{`##FY#6WJcEy^=y($Bc@iP zN1G726H-+T-BMxE(8Z)B1%w7Ga1j|df<#63fX17PE=?Xm8 zd-rJ3eaA%~H7RtbdsLA=O*Ad^v330TX_|%0E~;jmUm4{WvZQv8jft>&PDzzrs?dSe zGT20OUmcR0cn2--S!oLKk_m=_m5&8DMrE)!0j=?*j=2bx{{{*0|BVv3Vo^AF#1F{V zBxjp&4hl~l!FGNzY!)_&?|IiOj7&Vl{p?KsX@q95V|)ey--{yT$B$rTqe2<5zgKe0 zfKF8**@!i02<;`*OSrI9=;`229xu<%GfFa74O&2mNogLKdsQG9ZpaHW|MyM+yr`7& zn%>x~!%n-&$lX!20P(2M-0A`(8_9F4g;<-eOJ^3}rm}j*v2c{cOE}&KVyn#cQG=p7x8`n;=erEd(d1V>g ziR(zXtq~}&0LYeP!ZRg6XKMohVp04##NR@R+L$>Ga(?koEFMuRKJu*Skdh>;!&+ir zBdieWHB6AF<;)y;G1ga;aVi2W%@-C%9#ukW6s{POiZ73V^qNP3=-QV=V;)k(dSiii z-QJAS*?mev;SV5Y^Q=5TP=xGeo{z954{qo#8f<3_=0A%K?gD%`PVK)xPO%+e69tl_9}QyB$*qu+)v>S1@#>W!=HwwCHrpnCNP{-+yM% zZsl>LF>=C_-Djq0KW|25I+sC%+jZk7W=2HGQI)VT_n2YHnP)7fv;Af!;6;vxHRnaN z9O?{!QRqeT%xrSRGn9u!LIJUi1i)R(M>)N@T_xFCw?zJkWtFSN-}IVoN!1JI z!Vz0jQmx$Zs%yEM9>KCUP4Br8sTIODFwN9A=>Yrk6|Xk}%DUR{bmB~P%kRu!VN};6 zE)XSKYd#HB=N}0W9*{d|n(sBSJ#1i2q&0YcB4ABwj0>q7V($FkhStu%Vpan$aDhZ^k8tU(u5VXh9ZOK z`>?T^{N4al&C%GR1;*~h%?warzaX$CLeKv-W5Y)DovRO_fu=4bZL=VqU*$hSN%(%x zVCdh}0pj{NAZ!13j#k@Zw{|{#S+mu5f%Y}Rnu7XqV@vnuil#kVa%@pMR1D2j#5<+mwQm!aaJW;mU%_Jjo0f)b<z=b$J^o_j~@PzA5e0RA*D@9yg_`2^B+m)!< zhS;q0KFMU%hvnsk<>;2jUtbuGj5SXdXoCSuY3?q9p>>C2+cUe`9ot|e8_%S@j8dOd zFTxbeS#JgvdlSZZ0!}n6tYQGSNXaQR>LwN!A)>MYFM+Z2m2t^F059sk8m_GEN-OOf z>`1y5aBDk(Qx1}{N@Lg}uZVP@Mr@{$z3NGhXUxig)?=D~zQF55`Qit?Qh}irtx{T9~s3}PU{}b1q!q1E*@9FsZ{5Ey3 z=R0y$7)?emAK1=hzTt*gD z-2ys#h8W@XQb~}rRhhNjcY*Go$r}zM=Wi=*gDlAo$A(uOunfG~nY~;XZjV*kzGJ%> zcQ8}B`9tPHs8Q;u15KQY|0^yMEw<7B1rZF)nD@WFD!|6|A9P2&uD;7oJ4&Yz`=Joa znuFALsqDFj3~j0Jf{6g-Azj?yld=81vH3862J2KzV1F6 z3q7f)Pqy7Wakw&gbJIkoIk)k33L<~pPaUnga&sGkhR(eVNy3Y^HJwP_uU{9t_^mUy6i6((kLvh&xf$66Y|yMPkczz-H}NDK-t3#eyXCd!-DOzj zElXK>`IetuHO&d*wLQ7~LYsOD;V9z6kIW=(;=A^mr4CfRzTtSi5G<#v#8Rtx@1Pf) z+IsAHu6T`5Y_sd+!|BED{WB{dG|_H!j*|2AfPKuX4Zt!l&wgEJ&6%k^ zH`0Gw1itF5Ce-9rFz~O|*Oxyb3zBsS_#J%vqJyIU*n@9)+WfPglKHDH3w46G#P=W& zMe0V?VVju{a)51F2-!?-H(wzJqTgs6N67wu@$rSoFn6l-~F%G`UK0 zIbVY?5DKtHY2xXN31k!QH70al>TG_BoO*VYQ!meY-6uy^@oPpCZO_IpB_qn=0Te$% zlDEh{|1@BVh5iU29nV&!E^JE-n@{~}yy|Ju7T-9wg3=H;oRV_xoXGJ_x-7V#TSBgo zq)(@|z_j#>`m;}Eb`41;B0^BTv6!~g7z8uX7sxuwP0Fv2Rx+0}@iX=ZSUTU(OpRDu zyz#VZ3;cunT-O|@(bDKuu=DAd82}or|8KvC7xPRPgd<7<3<_gyt?8~+)99*)Xa?y( z^^t@$jj1ZI-%#Xh4wEY==2s+r!xDTn1Xddzi&^$j5~+#L=OQ1pSB0#|uzos6?kg&v z>3(Av{J~b$?Ct-?wA}kcwVCCgs@Zaj2~WcQAWkf^9MB>wN0Vd2`0v;+cG1Gl~`rIX}eqMZX4BN zAgWuwmPF?N!E8j*NC0ukyn*3G>+`g12g_qB&T5yb#JT^dq2 zcyPwQ=w#WF{i#Yrj2w@NTDClnJ4>89)J+Qo0t@EZFD#`wP2>I@3(dN;5x0fKs{ekf z&h9Vao_3PFm=XqoTJo%XF*z;R_pZdbzMd6|t;cJr1{5-b8$_b@p+ggomh!sgXYjI3 zs~-u)@9+D8{#CJ3A9fj-Z+HMjmAB*OG}X#0{EPKo#Hm^bQcW3Ggeh4vx9jq~?}~r^ zas6?_Z1}DGQC7K#H2Fc**H|5iB@lEnEW9WZ79K_*Y}2vHpMLAxwWDVb8O^XdaJ;TJ z*F8I6L>4HHgu}iR+k*iki_Hm5kJmT$4F<##Dda7c;sDk_OS`{ENX%w7d1NFtbSg?XXP&38gc8M`maR z(>kdsz05_|y>@x(&b(InD=oZxSRoEQ(L3&f%YJDQeqqP=?~c)i6r*1ZRM(YGv9434 zjoLvuWD6O^q#_(<*+~@upQF$4w{UwL-nY{CFoPmYy0wXKpvgVxz#t?XR;_U(Sr}P7 z2J?SOtnF)iDW;8vPL~|_g{&5qG>aKOG}yl=y8*gH8#t0p1FUHDS&aA$#?@Hu88&I) zBwD!ovA7MvF}hEVQ4K5GU0oPeN8BN9*YAHU7O1F>Bk6cnzp+69VGFCD?+J3D0y?47 zeV!VL+5FBNiCJ>pW5viMwbF3^wAc%y@B?M!9lMN^7`dnd=l-2+dTk~0#$@8hdA(Wn z?;e!{eEhyK`AlQxCc|spnd{1^K#kQFi-i()L0E8^`W8F}lWM$Tkm%q4j0FC#|F*TR z^j#=eo#z<@m{=lzr9#!J!XV;*woC3wL`r1Q8a2WX+$VrsF6m7^n;#I*;P-LWmmTMQ zf2vtF`e*R1KaEk42T-lIuH%tw#7FO`QQE-4=soXD@IUv<9e&7BN~+ch6WhY;Tsi;~du zaChsmY4sYFfb@xTH3$pwf07I%6PXX`50(?%<$SxlXV-YH5RLMx$ldK{=-$YrUnv*F@bLM; z%l;1J*y7#lBjT=yvVIMr3PsZzey+J_rQ1;I*CG#?Yw%nvU^y>gne%y?3EIsgXNTo@ z?f@SqJY^=1Pfyc$vk_|ILH$;!zO{wPD*mHgfD9HgbZdJe0u6mI8I3I9Nnwacq~_v8 z{j$_UImm5jMmXs+_HPZAEqtDCdq>KO1J?oWzrpK(G-W0|n+%ChOPwdUFDZk{3l~b5 z5zfL_cdi<_KWn}Hn_#w@b-&PSH_;OO^;y0j9-W`I zIG1HqQ}z2lW^Q#vkMrLK!?kj(L41_O8V}3yle4*{<&5nNea)GZ2*6V=FIpO{g?EKq zjDV;ePW-np2=6}hl(u%nNM(-+yW~RL1x9AFmu*_{XQa5w9_WjaWm4hrB5LZ;o6UKc zLL`-RSh=;P%HIDD0&DbXai0-b zD2dy!=@$pPO@Kt5p27GhZJ;?)BKwkzaeB^6#%AP#2<4jJttCxP2E9%k$8usI#7Y30 zQY9J&jNsQuG>Yz`evv0+Kq3DHV2u0zdy>CJ)_6tLxbV5@)=b#+*6iz{-bU3OsY^kZ zP+yT&SfRfCE;ADiBVQH|?h z;B}M~8Z~j=+Ze%`@W5w_kI4Jf-NYz^Twu_}AU&&F@P&^p;X(IZKm=B1wc3R49B7*N z3_yu*oEcYJVNUi6ethHnnIiKtVTkHmPvTbqQd@Cg9}lGW0qdk@NqAUwxi%U`eEku5 z!d1tw#S6WtK+xgKE;H-@xO&p-^NTyL|7XiD-W_~Qg!C{xUTVkhZYS|)jae57(!Bn+ zCAvkd8Ef=`YI?~(9uZpI2VT3?49!haKCGg}lbbbdy^WV>&9%XuG3mb`&4+_s zSSNIuewW`v8-dO6V%PoNXk5Rb1Z@_CggSq9;1<1IJgKgw&vli-BEh~mtFHU_5KsY3 zy&ovBtLx9dy52D!7djh@ZW_2znD)P5CvoIOnHXA!5Ns}14cPqhS|^?g{Ka{#vc7<6 zdaq`9fJu4{znE}&1C!OR^O)BjD(iVt#pRSxhqh_Eniz`5Z0@NH3~Np&iDrGE{#U1u zYsQdGFAERT`vg=)-mdY?%&Ts!^oy4- zJC55j3Iq0T{?}QXjYDs|jZ=6S%uhNSQ-y zdn*c=z#)lx&Uc|RAZhDri8J3~5m`9dT-~`Xf7{^cO2`_qZqv3!g>HsOf0ER`=&ICg z+d*{cM$tP38%=+xVCZ6pJ`P3~k*%Qzjeq7NU!Q0S2LP0#Iq;`9K>cv8$BfnJ*W>Br z{pP;#&gk5gaN3UfeP`Qi-fKGU>L&v4j@WNM8Js#Tt8S+qW=dpJfZ0grQ%FIr`y=Bm zQC_6_^+fXi)}^hbUBJB~^OTP)n(y@SwqWfeq_5IyJk2u~{}pQjW_N=I?$wclQuo2L zYk^`y14vq!>nnLZ>n8dQo*qTdnYaE2Q6n1`g~DQQ6Yr&lkb8GjI6D^vNzr0Bm0q*0 z95_n(OCQyxe|^`}!ghMMuNImxtEY=pG4po%11zaxAe(+u(7g{m`iBZPQA#~JeUb8UxnjCxXQ>SmyG`8TU z23#!JHhqz{a%Kz?fsg8`t53d+m^f_nX{HTvHJq@esU;lbq~BKB>b@yQK0}G|msYWg z1!lcD%pa{r&yAUEt!TgWc9S(wele)m!;nMP4Mqb`u%2E^ql?f!}gCuPEz@{APWbc%fwoG6Y1s(wxq+b z$POOI=#rvxo=YMY9*}HQ;J!|A%1cD2PSjQxtk@%C$ zi%tt{WuD>#>e9)np+Rqig=@7TTF_2d$e*(7CFh2p)`2PD)jbEw@x`**V zOhOj;0ySm2bp~efCLq2JaNfJA-{dV!=_Ck&G2+6i)Q#}|_(9Qw`SxEFt!YY9DFRkS z+w52J$$rd6{|M9=15EI8pW41yD}|MCY2@{9?=ZYsOzgMhuD+nv4ysKd zGpLznt2PusScftOgeZanawbg^=gjOxpmA8C=E5vGWk+Vb08BmlQ`x((tr1M%st(uI`9o%BGF~kZUR;%Ijt8VLva) z6c37KO`S)q)12$2dwEEet)F5_@b$L(st8R_RFnEN6o*aMj6szs5n4}$5f0CQo-EjN z_^pso$zlX(1?RCKP`a59(6;(jz1=pNUU;mA;FEM*OtjR1@|yltK16hDT;186k1!nG zfSjdeVu$>cXvFF7w}rjhOF1Kd)pZ*+5gO{Bh?wl>#Wz!JXTvTmE-`IZ9+|Cdp1Z1O ze=JkAQk1_bt4F;G?i?mqYrI$7cqr_KmxOUrUHefqgiEYIC~Rkv+y*p&wRR4vpIjQwUS+fE{c z^r1>w@ajK@WzrE3-P$1%YJ@w2%bbVuTp`}cr8HS8D3`!aDS&{jO0Q2o&CT5n;5@?v z7OB4el|mLsAlSfEq2s-!w1sg~_VhdLol6}=?O6)0gYlgI5=FT8CmI%|tJ3`WI=x#3 zVhoO9@!wn}@pm7uX)Cv5F_ZXnbqvp>^AbvDqx1006fvC_lR$o(=pp1Av0?euTh?PO znJYGkv4;12Wn75c?4=^4UvIo1)szi=AQ;Ev&)|eK_u#iD8G2pBofFFbZL45Bd!q#+ z*1qHITnZDY=E{_LDEt~Ft&GpvtLAR2lH8z{yyzoSxdoS3MB+z_jl z`!gv}U9k9E($t6Bk{M8Yyz~*KSnZO*xuh~IA^ab-72+nnm z>qSCOEtEC5mH(_!`uBZ0-$Q_7DoF)-Uq4}WIBvSV=RVz4!3Hs~J;X zkGkpqJvywT!{@WQQI>&9eDj77*G{oiRt(U}MJ5UOi}=tz|DAU+%4q+yfW=4=A#_I@ z<3B;l&SSL^Z3+Wwsf3YE%1i7HCNmtFWUQ626s(n$=7bO+&b4qVnr&G0Xo*|hsFfPiHjwq)JzwT6r;t#>%q!s-YmexWwY_jnwgcaf{ z7_Z+%Hq5z%GH>pOFcO*+3kIQ|K*v>zUvEKs#@XK!OX~IY9`13WLj1$x3uoPPx?x)% zp6IAjWL6W#eX@VZsLyjHH0mmLc4h|qhedw2pdaPZP;)dFe?Hd$u=0LH0p{X0Q>Oi= zNRRWZ5mnZ~Jqg$YjmbK+<4LQMJf@-q!F1h(ROUfbFKz_pv&O}AT6)wUzTv=GJ+ng9 zLeZxzC)jz$uPA5-96^D3mXC`wPkw(c88RzV{`Bsb8%~4I!uh8^LjF@qw!SBdTkM$M zqxdrW9WSNs&Ui2ZcU_4F{O@TeOqlnAZjxW{l~?o}dJVWC?S7fZ6ooWp4eivgl63YZ zS>Io-QJ(FV=(kh~a{p$w?i|nkaOX=qe{R-&^ErDr@Wm;bEI2c}GB$fPIHOx=ZQVU- z(5h6ZTJ3A8qc`ZjQb0X8`vcHwzWLHdVIzcJ=z97yZ|oULI9xrOfpgJZ@#-|)swCn* z!$xEszv<|0L}lzEzO zc>21G+ST^<($%(MX$Tr&&WfWXtp3{glD2)w;O)gnaE_Z5H{tU^_e-YnjCstpDaG<^ zaede7qh9s^)%(3*!i$4A$}(@lr-2xUzI~m6CfxR*%@9@5GTil+V@l((?4Ir=w(1*^ zEr8!HTekP|5q($Q{hGF5l5{a={t(8OW`yD2p{&Wyx9}(Wk5i%ddm!3kGZXv6=aJa^Xl|KQFaudKc7eJsJZ>M> z=((pUYpDw0DcjKWar_7IeoQKe9F40N#{4P9j5?_#C71!G@@@|^^ux^4$*HVhnblvn zU+EPVYN#xZTIenAwP*2+CX<0@@|cs(^WecN#r_A#bE1*;@Up4Per~hL$J#{dwRh+=3Pf-b63L`-OsW;Ow0ed^XAjhx>@mL`biyccvtb^-zVKG zYV)zLGqL;&aMNvk={%&9EYrD*YFqGO)W`U62j8=KiRPz1BWkbFxy}^T-?4|C121P8 zY1)FSmR3kj^%K+EZsjqvPYi;?1-1x82eH0C4BekN>7Kp5J9ZhKX((z>f>&5+I~kKf z$SsR@+ZCFc?Fhn!uh^LfX}r6AgwW5EO-7|75R?BQM7r;nLs?|l7msMb<#nfrBOmKQ zailVA!4AR@cXlpaw~EDt@YSH8%nAR?-TJc_;w#sbH6muy*4g@}u{N zdgSVBYjb+fN|5)_!}2TBn*S77ZuAI4A27N9{(U7kvq|4g0;=H1*>adUp}M+dC;sGt z>UuNc`C})C1?Em||D9GF_!vx@U%^c%RPQKdGzkcy(0^WwHCstgjNoD; zQ<(Ttq2XRhjfGLO-WGwHGsQAt_IjdHRKJo#Umg0`G!uGC`h#nmQ)CB^6khjG599nA z2d>&vQ_HtLl)M2$GbfVAe2w7T`Sh+NCil zbVn+Sg-{e=k8o569&G_r2qrMG<*E$F7&_eK(Tt?#`(o6=(YV4E0aZ-aB=JtaEHK{W zGRgNhU)j_47I-+jEW6hk{&|CHU!~2AN=3 zC0E$OkB1#)(^;(uESAA$QhEEJ#+kHK{4(^_NZZ2Yp#;;oz){-b{Uz_V_ms069_+ce zo^j}*p5Hp0he!dNUz#+&j#VV9;G!tsYSvj5VR$*W4k@ci__Bo$RR!GBSp`aS%0mX@Z_+o1YqmGA|o<&vG`SEqlJ zC~}^|!l^5)wA;`s$%i2fjIve|yvJ}^6$35q+8JL0#u{TE;Fu5sdL5p?RB1OU$f-pN zU#JqOFVtjl0YXsSk}4pK)lQ5X8!0{mANF~sFvb`rSFf!+1FPX{Pl@zJH-SC!X#Lfn z;q3USA8?w+I)Vy~L1Tx+JjB7x6JduX%?VL+=dUK7boNjgjjp zWrW`W^IVY*Y{QgLr%Db3^g(^wGSaK=Kd?o8{U>x-fD`qBFVsUx&@yg^<=%+k4AZF+ zwA)T%GkZP}@v+KUjnyT&b``L_y(GkZ8hyz#*EJr5Nmv4SCk+*xZr(=zmG6BS#*=%-6+D|| z&^7}+T{e@qyLr7ynqJX2Zj&l-+Q~wfiTJ->sR{6E6@?pm_Q}uK-?j6LP+S_(Ia+2g z+wlJ+jAegPJl1Zk8~{Vug55xn*bU*{&e}mbkKs!5MqIMxWz8;Gf9!6$LT0#n9Gw%d zJ6xO#LQv3iF72;aZ}MWu_ZJS^6^8U<`Y8%H(vmMnHH?~#XeETs&^4=~gx;~}AJunh z!b5TeaOoux_W1s847VYTKt?^Jj;l1Sz+$IFcOYPv?)QaiA8ozCE=*;u>h+i{P-n2A z$Kn2h%}SNRb`$&eOyebVl;;7~us!gGo^Pvj!G3d&xC&O0U=eL zk3#682iP@OwNW#C>7|q+`o>Mu8nn<3L_TCzy>i=P*4+Au1CsKE(cy8Z@!T%SH~t?U zTeKWZ+;p6w^cpZb3Y|B!h*r`o5hkI48BQKv;HJlIQPc=~I5*bY7AMp}U%=>X{^m#C z*Zlnu96ty``E0ruekNgTCrI?^R2u{f2;PBrpWr1@>VV%!G*}FXIK#5;MX}-lLVq*n z#U4(Zd%X){kr-9eEx1ank=00f>w@2B99A4Q7cO&zLmiujR#3D3J-`{prc?vCAGKMq z$uA{{*(x+(^H;jS!I$+lFV}%5OR?*nMT0S0xsDPV9Aw}VDjf`>iPM!kQ>_&_6cv7I zV1$PSQE1n5ChBPwH}${Lz^ErfIZIgn#rO7ME11Df@SmV(LAhn2Q;nT!mJ>XS-9O=Z zl!iX6#b#ragJi&f0FQ!DiVy&_`l*5%W~C$KbKTg2AYqruMj^R+$bnAi zo0;d?Q&AbcGH^S9gIruglI(^>_)Q8!_3MscH$mKY2kXByJ7S6Sh!$Nh`{6Q-S;ivb zC@o5ivq^K1r3F5w`O1SOBO*fcQ*7`nCX&fhofm>ui2PYfB5=@$?$`hq6}`mwMhb$j zC`JQ6StPXjU|eky7Gq(dFzds&;*ejlI^m4JuXabaR9xfD{JV4Er@E7MLmvK#Zo5o! zk!XxHy{WAUOIvQ{kQJ|^r6qu-o8)93QRtQ|oj@%{xZ%*+>m)Vdpuv5U9uLKz5qQum zG)R|bi-@*UQ`j(n+EERF-)DDllu;YMX+7=;+WP%7@0;?*{#*LWV%L*z^17T?sX{oY zHs~tnqdj#*tRG+#!6UvZPTOF&>;UGr6dEdhj$BTnsxUr>Fj^@?{2hk}-;ULSrTQ(B zOgeh=yN=qJiVwauUXIYRaWv`dFicL(&OWw%6AfMMSdDlbfwKb;8!WILX$qkqv=ULl zi!{A~#azStHf*!ZFrg@Eo}B0j&o+%!fklA*J(lOUz7bjh;`Dibl2vF1-Q~3Fdg)H} z30@E6l93KOs557PizK?KMzjvHQD z)9#<9QG@7%IBq)NbWfQTT}7xz0vPOq>&Wt}4{3BUaNLZ7@f1vFSuwyde$2ZqX2}~y z&3=!)*uf8{1d}?3wYCX0Xp{=h?n1n1@ne^dxi}MafX5NB-4RQjVC|v$0(UyF%p8nm zIA9rTOrk$On78%*Ghn`^6;93)PN1t^l&AA+SAw6S5@-rwujScEmByI=By3*ISAUPX z!;g07R=JjH8;Ov-_|~^_QiuPAbDQk(YYd}46ggA+eTw%9W z(!SGQ!?qmYUa-$=9hK*uPVW@C+}w_~2-&x~d*vP$fFLT#)FjTeBq^*jxmkh(g}Xm! z1N=7SHDs~26xJA?W?lxGMp#QrfbejSQGGB4p^jyr%9S1RMR~TT!EjVt7&rc2yvX* zl%OuLYAT=3U}510uNv|LEPQdeRKv;Ob?s8Rx*YTPa}Z}UAa403CC?JQ(qY;#0{*2< zVbJ|n3e9>h8D`;9Zes25apiyuS)6SVwPXq1cp;N9WO0O>X)6jJebxN~4<9~RwO9y* z7Xj>3+U;%U=KskOyi*$R>!87vm~%0P*=}1xWJu1X-MBFK73nUSh3!FPa6Q3k)1i+Y zWsB{Rn{TYJ{QzBp-DDc_(sgjq&3@viQ<*Rw_XQ3Gj zri)92Et-uSt?-|ZXu}_1r1N4?N6@e5jymx38zm!^^d#{zlaFxIUW39y_-@Aa9vpIR@ySQE6_%eS)v=ZFnT9>BnGhvw+12QoI7YGV#q{+i`)qF2CBWB8?@h?dOs z_h8b_h3xkX*%w__=$9TWt`0z9u@+3GB4UKg798m*2w`Y4x(e^irjtsK*i`h=rMz}k z{N|zy^~JW~6(WRJ^%AX@?%8J#>kms$-#~XUs%8iaxO5?mv=M2LE!1D_8|Wx!4XtXl z4pMjPM21@RRz_L7%%s3`W0$6ppD(=Rg}A-)|IFD+5fXo(w&t0k)qawd|YvD_Jf zADTfepzEt-PDv`-)nTibuyn8OP#(doqRvcXb5{*BDup)9uyGi$WBnEMkEKXXNATsHa9&R%Ech!CAXEHU5iC3osZGhu`9=>zxa`-q+keFr=POywxkU#4fZn$I5_Z>I&-nE z6mX9ce_oXImkLm_m6IcXFX%qyzSCN7N9+ixEB^7DMm+k{MH#y0`DI|jRX@!Dir#$d(48bHhU~BJ z*;;Tegz!vYVskKmwjBa(Z-xp#s+cmkyPd1Xf?+9x-n#EYZ!d1ngjx6z`hI<5X=8OP zXsJfk0HRl(VtKBEM2vkm@;!1KdcIM+4<_eF(_iPp^Khh@mBlEFkp z=Rut<5fi3u{THQ|@194&BInunXD4r)j+(BLieCP}p#xACw$h!~QX8e9F5Gr%GC_M7l4 z-}ao>*vq=Kr`+iuno4AR6=kt81`*-iXg%RQt4+XIz;SP%IRo41>4uX&hajp+8&;60 zH~-|}ViejQQMIB@p8n0s_KdquGA1_C@VM9EM-BtbeLlg0K}c~4JI;dG5}&L_8T6-Q z7yB*^xs#aCzl#nf-(s_M_P(^)?upK9xVf+Zr!xnIf=1TGn|qZBXoZV z(w2cG3iQpD8>@7;x-g8#?<3FAJX&Vi9nuOXo{+nJ6~#3~8)mS-zx&-ZpDAOq^e8_n z6NvXJGa7R|fv2I_qlRft7<2ZbbvTXyqubm?=1;6KMu7~5cjW9)@xCe5WQ_@_jEb0bLQpXx(36x7+W!IZLCzQ@QPbP&_d3FiIsBBpUqzC}!f`nD)aEQjBSsExTBDIAF1 zQSBC&PnzCX6Oy8uL^S8E&I<4#MPbZ&o;Wv7doRZa#-$`uNaILihj`r~02Y*O8!UoQXvudr0C z_hjRnt9?i?ZUsYvg+&^YipIrnT-9y+rZ=6ST(LYM)oZ#6IW+0Zy8G+$rkIDbg5c2D!R9uw3Qe!IJ1SOJ0R z(67Q&UX5+B8ftSKW7K=u35df8_5J5#nNI#d9!X;I#0p7`=fi4{(OrJKj zyOY@v#TEL!zV%M|`yp!0)bCPcz9^9LZ*KjWvNcwoIq*llF>gGl*q{YyKT~DdCU-pQ z>qs;56RDb)ILfd-v^VhkEg}@?cj!M=;r$hs88LFx2$_+3ea;)?of+cY9i0<$u}-D^ z<~mOA>Z;g4!UAi_gdl~5m1<2dqLnT(Tga#ufQ9O_RG?iuta1Ec!Hr+KG2$J$%K1(Q z%7TDrc5M6m$y1$})W-tkttdo9{ByA>rXsXOVjGof*osx|hHMV^RPdmStq@+Jtj2W^FBHhNDt)>9U!Yyl!1xJfdkk#LxT!AeJ^ zIlu7*4pU4tb2wz6D{a)u753+oY&!=7XvLlZL-bL80uqh00xMuY#Ad+nF{p9t3p(z2 z(giG&Fv+s@dQ$dPZZ(%z<@i4ncDbWN_4wx;KIWbgC>Jg$@i9>ql6kdo1wGsEQk2mF ztMDv8^w3s8i}r51?sRlCduHzL;)QvYoNPKZsrFJxol%m&0Hp%%P73&4u9ds`%UE2x7CAA(He>p8$F}V+R%OAB?Zdb57 zg>%nyDO%K5*sA!sVuCFJYxsyqpiXvISZZOT?T(!v4Kop}rjKzW^;d+Y$q2VbAAt|H zQPXL(ZrQ}KCWZYLU5|t0^)HNQS^J`y|7Mi-MmgTRZ(zxYirH7BH2!Yg0uUdr@1}F9qkd7qXry8>{>nGqtVb_1xj)xAbw0 z?c=aJ>Jjf67G7d3>Vw9xUU2jtH>wavOKTE9Lh)rz^(h*n zvBOEQJKs|E`z$XzKlJ6u_HfTkC2((dU%{kO5KOeAfv#kR%Mux}&e|(=7oe#f@Vg9} zfatvsAXBP|U5kziyurJAtH#lfs0t_v!a-&%7BgaO<y0O>=z zg-Byil&vYlCe_VH4(1;t=tY3!FVHRq!w+sktJ_WJbZ_4KOcM~vO0hLRVSMeEQuT`c`^2C7{G^Dy=DvG8#&-oMRN>K2LVM|3NhWuyM=6_DK8pOS0nLq)8cOpA+G=_0ij7dQ4~e>_g!okh~39iR0y zTdO&1REnXh(&q3SoC+9D#Kvex^u(c+dpf z5Bk^h?_8xESQ8{>t6q_7)Ol8V!<*y6n0=)$a{e~xukZF#3#h1DNK67r*NkMrUi$uJ z;w`R;?tG?}z)*q*H;524=+X?knHnKmomd2GrN?&_Dr%eXK|aU|(3D*+dg{$aQIl?} z@+sYcp*4?0^|w>*s3p&dr`$JDdY5r;_9-3hsYCR@QUveLPye_Kkuwt1xM$Elf5Os| zZ^b5!C3e9b1zgk~F{F-l`4OKCYD_fPN#ndQz_i&}A5|mey2t8m29royZwSFC_D$U| z1LD<%3h~Y6OX9UhLryf=?t9of8^Ag`d_OsaCLA9>IJ*p~bAOs^+=$kulY*9qPNKN_ z{v86cBpM;ec_N?kTni4?iOf#y<-oi3{S%Mr?IO=NV9u@8G}fn%ubmkf7a}+#xpWBj z@bI{#-X%rQ>Y>QnUDOh|RD3ymNPXkuKGWdp`*_}7KP|fin$t2n@VmTS+?_J@GWGR4 zU*6AdcHY`9ySmy46o)Q9lI%bh9qV1cGWFJwge;fmR%fibp3-d(UNryjzp6Gd_7cZ{ zbBhjT-rF2giqM%5wREF)RN?OR!jVmVN>!uWYPI;r#o}3szH}MJqv6SveehNi#7p`s zk}cfJf-C3y?!K9iyN6(Ay8ifq!{o;JB=gh-6ZPDsCGMqfb9)<9wc$#SAbu289Kq9A z)3Qw*ONH~=$u3Nv;xb8{A+}URBp)lnip#H8#G?805BUGV9Hh;P{Vu=)0~@jbAIw4a z_y3^kGIU*b2c3sDKhMi`voMc1C6WtY73v(vi|?S+stoZ+8(9C*sbToTOSyPDQKUF! z1e1LHF8ihFth6D2)0NBbqU8apX9{@R-EVn(d2n1iH+1;dW3+T>XL$LD+P28d_15*F zd1DQ_BvwpY44Jrnck`b6=oEPP@Oqj0xO)ax->+7$t=k0dhkH-23qM?WJM<0pi7&Gn znbUTSJ{o@e}o4e!+p&C|3I)t1bh|qWN8wT}l@12;}d7m%hRH7a(EeQ!;Tr`cn zy)7o4pO$bsF9|v*xPA;3t*_4Lc((`*t&JUAeU^+WKE5Pzv0a~DczXP+{QKa|{J01_ zCoR4i-=4AyJd%pkw=^~0llH!jUA$KdU63k5vU#X)7W*7LFT92^to!;d&0x|rJ)*1* zrM*vW-+Qs08?O6;Q2t%6KdjC?cX;@$0J5lUAvTY#UmaA_)u4RWF9Fru=fLljUB5Oq z=nd~U?{**0OzL->1$sl1o}7*K-kW4UNmkDYJn0P4DHBe`5A)uQ`D4sz7?C{XbXg zN5iP1x3Q0T09K+b5%n+s8^_J=_7{YqIc?zwp;^kde=>J-R+BK>wnP!s#9=^;a(*kJw+ ztV_pQ3d{4Yal%I~>~R$AeeVED2}A5X#wM&?UY@HzKzRmH7cWnZ%D=1}E6TS);uA9P zALaS#;VKpK{(O+Z$l7qVSd=)F=#2crN~-@RWLfLu3`uRAdc@ocX3g`P%em zWiBZ9Da`e3C=1xbh*)lExKJ|E-u`UeWqaVa!@1bCB-%1q zvhh;!ASrdop|7eq5HtYCb5^aX8Y$HN{vXGu}P?eI0u8!&UN{Q2(+%cv4@;0}VF zVjSr%f7ZGrSd4KHy7*J;Zf4`lVmhn`>d4AS5?WBhvUe9k7wUn8ny;(a6ShpDC9w}C zHh#Es%hCG3jPqZUQI>C+bZO6TqZ5WcgR$^(y}K~CmcPf8SY-Fm0n2K?=aZ6eLjMhr z0RgjXWZ^Vrs|hu;=*p(D5^5C$Q&}i9*37vu)uA^UHu=2dD>5aalLw+3D5i!cf|wY8 zn9-pqdk9=k!o>hnvKUs1c~VD;7G}0Y2?Pr>^1tyC{iu#;wK3I+Dj64&@}Q+yaHwC83kC($TN&VG*N%g<|ts1fyzw}KdU#x2*} zomaHNcF>Idz1xCOF(!#KY6YPp!dif`&}gz^slf$Q?XETsP7g*;co3-t62Az&x9=6+ zA7%biAcb!QNtbxx<%Ux&Xly*t+RACV>1u~=xW;V}A40)u!uktjnXe~gR03l#Np<&W zHlUgwkPwyfHk$Z|J-PmG>L<1F6`MhvI2uA$BOE-HGC6f|B<<>*{k$yWGscgVn>4qU#Jt#3n% z7IRY(*0AL!2j%JCq5`n%&^zk~^noAg|48^?VQ*>Jmg+~2#xHrjAsH_&*XbbLgwNyM zj0=WqCUDSxQd@_l??kkvhFfXeJ;{qB1g5e|slwfo4g z_BFuTODl zWMG{;Rg1fuByE_DTcXuDSO9<}n?oMzLoZ#*d+}%F1vi8|)opam$#hjB?HmZ76 zucvDCx3U=1khRom;6QCsV8{AG=y=+U&2!hlW$0bsi{+|u&aYbeMKV2_xYHC(u9Mc@ zQh#)hl>8I)aOtlH8U50EqkHvC@IMU74oAfQX|?Ss5bQJtJHAWp`O;0mlCUBvvyo`T zkDCc~;zG;{wL^&?25;0r3PcKY7-aajm4TLlXsSbS|G31r(9S!s95ffHgK~|g+Vq0r ztNhp)hH$$L%~z%0XBB{lU_x~I?ThUiRM39kqwP@ezA*XSMH~f|!{;}RbY5wE^y+I( zTIw@l@}@2_@3Tlqz8yeGooW@s7h}Ay!iw1B!7DN85{_;-*vuYy4yYy2@2ewFsj)QE z-y^%r5gm-wIlHhD7jqvPa)068dMK~m#d#13@i8B6BZad@=yhSFDucmfl~Z$KHj9mi zQcxt^c5e(qISeNl<_tym(aK~`5@3*3Z;2$Rqciw^f%$ZY@(th}7h1TeL~kq!V+}st zB@pFC)c-2WS4})s*v@JZmgTgG1@UG=A9cl~j~Qr%67F!KUvkHlN@#d8%nM z8@|=3N0aTwEi<Up?J?_rBeh10pxy8VlH$wkFumP15((niEF zsXNQz?eg6fL~*}U?3Bujc#Bo0-pPBd6)67%TPj6L(ZW{!0FG|%}LIhg!=IjIW6CY8H=+>*1n zs;(F_rXV9^uUtU3lowsv4O98xY5Pz(AcfbU*dpg82H^NskNOlo5Yw+BT3(mik>-SX zoN^@*F9*D6d0XaE?lqXvB<-1 zbr?hC3P(lAmv3EK*AvUjC`Ja{R22q<-Vj~4>oa1Eih;&<6@Q46KN1Z1yv*d%*O}a3G+tK32ucjnRm{ zK&?7`a{aew(AWrf<)-tnn@hH_r-7Q68aa4u-cq37-ERD6CQQ-4Y$V-As;D4!)1jNm z$yDta&*n|rcz51oh)L;P$h*L0m34to{a#P%pG$V{fZ>YNf#XntzTag|I?S(15KTZ+ zd;c;Nc-oOWZ)q$w*z@xJPS1ug9NZx0X86ywzKhasoT_W~#@!FN4>5SbeqAhZ^&Hre zh375Lq{G}zAB3capa!LWPYq5DSq@UpJW@8b&Y|L4Q9*mg@!B_(wdGh>cy-`3`ow9S zqFF>DMfl^78v(re5nZLh9Aev`npi4y-cM+RX9eq7Te@|@4o{wFGb7ihx%xJ5v5G3k zNu+#jVALSg5Y#}`%#(GCb{xyQ>fQ<{p7O#e@#4iCG3R{l723*3oh_BwYq^Am>D5ZA z0@2jewku1bnV$Y3<@`x!*>X1;fF;_iEttt@%32BY1GK=@{*x(mW**~+tI4w!?OURC z>3VWT$6Q!4!EHSr{$lM76N^z5Zr5me$IVH4+Y=}?IJN(#G*4dJ9O>n(>rC)w4f)+> zZe202_M80i(b<{g!n7#Yh1#7lC=sDj@MHV;ods>x2C|Fh(7&?){-^W>Zc(nOxB7xM z+9c!pJlO|TxpH#bpmM|>+Baslf4&Dl&`ut_SFZ{}x#YG{!a)UZ`LA)+y2H(F-ArmU zf;k)p@9V7IvTNBZ?6lWgGH7P$kgFwb%cA(ppUEvU8;qr5{mU!?q-vOI6g|tgp>e;N zer|k9FtKSd?L@`5#MjCs*nYuOQ-I<~#rcormqbtb5?xjV(#jhBidHLFTW506WMii# zV`iO;sBdMAO%$i*Mq9DLyTC#nZu`IM&d{#l<)Cpt_8q z>7~y4hRedFcyPm$ELsgKRHXqv&R}5PAp%o|<=#KJ-@l zU-O;M(JLaz9BX8mio%{Dx|k8bRwzt=}SJfVTd} z0sCum?waMj^k-yV zn|V@yBkC$fA@;Hn@D={D!#t^776I=&iEn|gvG0yAif@9ivTp^5=HtjMsqU4F+f=3X z%8#&Q8QCL?dT+W*uxgTjEEYlfCY7pL`XK*l2tdb`##v+f`I<|4-lz|`HidxCwuRZ? z${XJLZA189n?b5B)t4Ou;Hn$Oy{dFvoSY3}D*eabucZi{D8JYX5bb(4G#=Kz`~G*G z;2jZaKvh5+!K{v%*2=s_7bek?3krM|NXCn&hC#b2gTJBKnD=>A&6akml1Ta4{F$eq z)n@3MDi=M?7Z#H)JBCzaaC90VMU=I7G_yZ7vu;;O0lJtBYh?|kr^-JRv(rEme{ToD zR9Hr?OFPi!%5X0`JSI_p;dCf}Ru*d-)CKw9-S@lE$q&5bd+wIwGiysq05CFqb0z}x zPt~}7doAq@3DePXd2H#vrea5%Jk!A8&67Z)%GolVJ7`X!Ht!@22h8&)S-ed{;>YtW zA7l}J0Jx)7GoZqD)|3ij(39FCPO9HAaa^;JIvl%C4)@F)Dxy*GEkFGfAaTl$veB?* zhWhp{KR^;yLA-N1LGxGO+vi_jK5C2M)gyBf{VYK&ZK`R1e!6>9~)`$V^nJ;-w?r!rXr(jFmQ>x84 ztZN=^b4^ub55VbF{V|VC6XKPK*6p`RRomwrY}Xx~8|zEswngmDBb}Izy<;NfiVa_j zt(+GG`sYXU*Fp;C{BI|6R|z^dZ#g73(RBEDv1g}wFQ3YZ-5|Dx);-*Q>Q#ONF@Zr^rg#mFWxadYXxNKVi ztMr(a4r8lj(g9YT?4qLEIa`$y$W`Gzk8^_+$;-J>S)@WO_{Z9-cS;Mw}~J z|3aLJ|Nn@SXBm5J-|+RWxowU1_EuN-O}er*uJ^{>G53;>_jonBu_@`%vDI?{+voM+ zX5Z)aLR9;y(Q`GU6F8K8>_~b{dm27`slGo>seByAUtC`5yvEbHrE7caeQ5@`;fveK z9)zDQGqp!6i;LRE5xH8yjBi%;AKjK-S=!a*Dj!u{vl{$fESsKPoP17kvToLX_MYS{ zcG&z_+$P)cTf2E&OE7!M{_w*#tLb(KwFCb7&aiEsmv8L`4IpyZd_Cx;7G;|e$Jr_6 zhym?H;l;D-il ztBSf-@_v3;z_#PW6^q-y9&98AH+%cHj6)_3c=*ub8YQddf(be<-rP3@js>c3Wq z<>6-Bo?GV)OstDu2cOcmR>YrGNouSp9N2u;v+1fPfQ_N%LGmO%7e9y{AyIXD7-cE` zxcg)&|MLhF4qb71!ptE*_9&+9H|0dce50H}2MR}xe9+{ySUKwKJBq`tWfJp?L^le+ zX5O?|N{j;@3NNL%a9(AriKEVl%k~AVRZ)J*Fe@~8|gwFp@%4)It!Wdp6z-A*OcVMgl5KYrQo3);lZP@ z*ai71d2o6HxKI()8U&WH1u+JAB)pPd5l2OM(a5F zgX@P1ecH3kuO_QZzV5c1$Vm%XTMALcxz-_wY7kfrwj?qf%82#;a&6UMfd6>w>eHOf7Tb&L zY74{HhO)*1NotB=j#8LCkV*X1L}(A}`ST2|>;@i%Xj^8~i$x9o#=pzI0WLn#$O|8;E5O^};eFj|~-}K+T{IRF#_Hib6J|sk&e-F!q&f zFXoTOeozrWy%1mAaSu()k*<~r!FB(AQloaWGWBo3xj*ab2q^QkY};Jd0xR9tSu$^c z)8zjE&eV#`-+(ja4R986@|f=DmtJcbu+d%4;Y^(M??$AseNV|xl0i#s;83;lz>?E= zqq?l+89sji=@1ayG8M$b=i2JVMyE=$F9o-6yxR(HEY3!gK7{4*h9?J5roLgQ64qEn zWY|nMBZWP(#vU8I$ca3Pn_MaCMsBrCqe-0z9z?uIEsYH(}Z>$vCQm;-681Btq#9xA%rS->2?P)M8?At^DE;#s)|~9@ioyNqVdE$2}0vI+V~! zfhg+sX_zmyR2lQsFdAfZ`ZUphs2&0t{eXwo-N3GU-o40AepFK(u5Gh}(R!wFbd}pq zNyztcv}d=(yz=sKu+7-+Iqc=xxcKLj7!RRa0j};2S|yU(b)MF*3H9G-QlC4aNA*6a zY$A^ABj8uip@vFOC;m>+xa~w-$l6x#{QD66%E!$aEHE`YsQzDXJ0b0lgkRli*x#N& zyp(YU+uH+}l~r$p`AYHr$Mkt7RO^Up_6K_uL0j*Aot`b645as=WgGCQnP5SXT!H2C z^Kl0n{+X(I)g6B8dde^`2+#SPn8M60)8lDrgTP#dP=soaJYu>MZjWi?gw$}9n(BJJ z0VREV^L;f(&7Q$5svsB2=&IF*OQpYsCZvkDTy*6HI0q?aNf8ZN z^%0En1mikNj@C?VpN!xKpzKdEK7pUs_)Bq7H+mY3;i3uwYoL?^Zh5&ghZodU{o>>O zvTPnfebz~#ChB^hMs7R8iA3+mfBQctowVT+26S3iJAK9ujaT8B+*bw^c?D+H05eZRPIqdt~-OrVUFnA2TJvi zmB`P-kk~j6LEN2tLQ_Bz;!>*cVXrIf2O@P}dXiGS@BL1yM=Ec+C&i+*57zyhz|&#q zigzKSLUHLp?-`u{4{92vGr#TGcW2(Y>ALQz-D>Y&b960zc^fisXD$!k33nNpGky?b zU36JrI)LQ7ljLOqP0FgB{Q~J23)|KAMuLQAu6{d$#HsFWO-5udsMSBi&pyPpeV`&D z{RG1SJHPrAYe;;^c1^_{aDx(52T;A;?7(%lOBxkN6|FE(olaSmZX_UmoZlCL+#%1- zCKmcdMoQF@EFQ>S!ep-wC-;29N7E4PO-^J$e~IF=0poz!AfL_jB>bAbX-S{_eI~H# z5_T>O;xkJBF>nEzc`WcQm6{j5W{lsnX`1~bI3{xzC}x(c4CWpwbP<%PyS`Pv)GqU=&h1eMbHogs<}K>e|d zxW#)S+!>z1D{WlK2Fb2QQ8lENuJr%pEXHNVL%GgP=K6RZ?1ZemT6j*CfBg{aPfD;LhsM5K-*`9*VDeofU&m%>l- zJakN37nxlaM!7ieR=HNRU}Y}}Tt!XvQT({;^V=pg5_@ra&%XwJP-T?BOxU@vk5g~u zPB{w)KuehU_T7FjB!=3LMzpaJr9sXO^v{N0QxigzTcxMvm*nj!=mzm6$M+Gj6S(ZUpCe3h6UzZ|c7dP3n%eLEzg;3^{sJ`8>P#y!-{P#we-imuR zFMm}>3lo+7^rsTP>l@`bcwmj$)}-R=-)&Xh;o9rK>(%0;#+tQxiTW>j0DhlcbaA{v zwWT*H+=SEGC+x??>9&;x2GzKj&`Xitbn7eMe&2s^hv1rIh`AatD{E)J(VYlVzQJA6 zA|nQECfupS7KY7V2eNlVNaoz2AC`Zu%Gla5DDVVMkqC19-1 z#GkGM)=kW57&BXlrjHz%BP($J?xequb>O#L(_7R`XPRo~c7GR`nB?9!*h1EEq7lMC z!-jPjUTX z)~ND>^4AuNca>k{D6rlFy+ZsOS^WV$)#vlCMrr59czD_UGv)gb-`sqd*#sHyg64mQ zxA-Ca1!sZ(fiPOZpMLpPzz56*na}U|@v?@YF|~!Rw|x9+l7#phSoUTfyd+rEp}_wW zLX9>whP@HX^5^=RgqSyyDAu)n1c|L*$H4X?66G!1gn?+*!D6k+aA2{{l+@ zt`)4%o^Kr{t+~d1{!)ZSBzCLZt9`Fc=}ZyVano`?Z(b}cMiI}LcgS1muJ}q}C-1L< z9`oX5J086@wz*i#r zh?VvNwhkPf7Z$$@Abyvg@##4(0C1}*$~__9<+$Ops%G`6LN|v8P4E6MNldpl z)k;K(QBc8_ZpZ36;x~yoGreHKM=NYHn@62b{I`kzL4%G1)-Q1vn+!t{WK48&OqyZ$ z@c2b%LHjcB8prSxrHyR9<4D;++V3kC|M3UFtVS^$2exZR)FOsQ+z9#5%x(Gv?ZLl~ z2hbZFL4f>!46;-v8^;tnKr1}0-n=HNr$v9LONL~D-bNe`7$XKzg`Km2J=aK#a-FxWkX3K8rLH>e?Z%Iy#JwKDV*p|MSp>~p3+FqH@)_&dGP7jaP|~|7^d^gys$nGj zq(5zD9$Dyn8~=a0Wx14b?+6`M+McfdHq^)p7f3iK5nU0D7PqkCxWf~IoSKnQ7e^? zTbfmjBQ>vc#j+hA=%rDjPeQ+e09Jo*1pnR#{xwSIuY+X9u4fa=zNwYG_$MVDZ$!Kx z6dIoTyefMuAbEE#tn5L|+4j@qZbU75iAE4l3NDS?OuI0BE4arc%ZU|byDGr!^uk@4 zNHV#5nwvZlwdQ{}Scuw?@F7E4*fhu^?-*e^H%lw@@__|NT`sP8U)%(}pN+aWAxc(( z$L!_;Ee_d0o%_YABw%R@S^~0Rf|Q6edev-yKT^DCwRrX6;^cDbw&{4o{q}*&dqMfK z&7PEoCiC|80rrQ@(^>!TZ8)j((+eju>|wBRX}qeb)7MUN*;a{pPOIxsOKY8IrcrYyBHo;<+w)NiDCu z!u|y;q093gQ!)@hKmwBViD594XocQxWTtDaIBu~b0N+v`@wk1giW-FvnBwx8EZ@S7 z8tv`g@Md;Ie|57EdwYRs>86VAjwBY}TD=MJnD&lH91I`IxBdip_WqXUWgA^&{di7) zZMy38)5~fx>3DFd_iF8R2#_d@n{t0XuU&1x8|}S{*=2sdK0gK8UMFz@t`4?Qz#R;m zR~B*V_VV72Eh~%lbkxT?wIO5|TtjDR%f~wyz+Kxd>a9`#b|(9{lJ2I%yjInO_qluH z#0@s)=GwWy4mUPghiMRJj?sTbF!hXrtM!!iH4|sIBGoCs@?AknZY2tb9 zPLU;h9M!(RnZ%vbb*(;Gd)Dg!6x#3ksBa#Rcjq$~=Pu#qNBf13S&A;55Yll^bsMX} zNN;}BxO*r25W4E-8gT;cdteXajraCHUwAn>n)t%EZg$KcCw=P$daiebYSwwuXpQbs_1UOYE=2F_9)?A z>eHb8#n1N2Z^vV=RzP{`@zNs(1cCsgG`}kyK%F)P!3+*QF8;mQW)Y{__f_^r)5HLO z;rjIHm9LR*?>2-Y<=zhs)UEd3g|q4L6{ePsE5b(DCE#_~hB<>oA6;0&tAk7#yyttZ zGx#nNDVQ5)cBJn|MwX5S1$C?+Y%qio`Rtgu+}G_(luWvj?Nn=LLOpiGT8&i_1*ciZRU8 z?3=PuG)V->Xe{LaBvocDX_Sy--B+*V3~fF>Ffb0TusnK2rZT()=nHhJBs+}*^MfL5 z;*)X_KL>%x=Lf@qgT4FCfG_MT2$BnR)H3H{c3?jf5RWTm`mO6ob>Z1U0LI&ncE!!d z;>Od#|0{x#8qd+(65BLcFa*urGMht$)_i_}%#f9$O&p8>A;r@-UG2#H{dXdy#qB|# zonebKWSDknzdU{j0F1;x-CRPMGhX#F8{xL;(lTZSft_dci*(jYq{s|eE9%Fou$I(I zB*>JaP@L@KiZ64*wfM&25ugQ|cxtaH*&h($QOXmfgL%1rs)tSFNg8~d8_YsGm)rJv z8LAeTw}seH`RKA>_!%!n#l}#;IGv7w;sy~34w4cJokqVv4SI}-yJPFA`3>9&B3FJu6`3A7gvM3dj81u(|9}(cBr><(JI7krapMt z3enz^U=5myqGDz}d$}dGb+UK7WLC zhqa_yf+|gE5y&4Roe9ssM--`jhU7XG6%X#EK}5>QXqTrC)kvOnuL~qCd4a^?8Lq*p zt--md!GW0(@IbdsBwTA0gc7IfMm(4_GsoAtC-u?AOG_&G9-RGLd7-}EzC$rGPG5ZG zc4IeVY?8|r$iEI%Au*jXh97^Vg&H23nU0Ty-_I+R3}l5XNg|37oZ%Tuz#*hXqMIrN z!WnkAFeaaEua1ams38#63JCLtk`w!Tgw>lZVfOhW_ZY)-_Eba2_|f*S{TwfFn>j7r z)W#3ld_Pihr%&P9+s#G)uk zWbZGW>VDD;K+Sn+Exp~9Nk}@p$At#$bb4DD$9oa!V$V6uQUVgW%tXWvrO2otE1V`M zAuCjvbt9HJQ;D3gRQ2_KRA)Si{9@M@R}*iYfd5MO9JAy4el3m5$WZM2pbPo5VpX7x zB08nFQ=kneSgn?x2MM##x-z7TyIKL%31|xjuk%ogwP$2m@LjGKKZR8sEr>M0ZRz=) z5U)Y+2-mEopSEKy%{iCSnP)SH4I-}8G;HdsjZ>-yy$}wNH5`Gc=pg)^s@`^}&0$s$pu%D1EH*`}h*LlQ6}8pKYI~`dcOU_<-3mafwZhGi|9QMw5Rk}W z))JsXj@dWUp(_7r-@E`^^{-^PanUAXWJf!)fC3{mp=o1=#-nx*e)*@FNBS`Fufz-z z-kXq#+6L?rTfW2;@PuG?;Z9%9B?3}hk2=2J<}u6W;Y-K83lZe#>FtP;+c^J-JhN^l z4kcr!1Q2lr9{AXbPQa)_37Fuf8ijpWrDlfhXdX~j$Dz+vIiz=}dRHVSCyNd(KYvZF zFJEy$eOi|qV9A8Ba9>^U-3SSH-RwNpxd7rC{o_%DN3-)N*F+|K{T}#nkQLtd z*3M@ujh$bbu3KSfcAL;C2c8u4o99z?M+e;TgFwOL`pe8#kh%aaCdE@M@uQbf+_0CatIIjm7bMP{$!3Em7F_gqk-Dohq8-YWN2d z0^G21#Qv`O64H6T!YX}~3zFP2CKLn`@ovZ-?~%p8FgE49o68V7kWb1e9OKHr6zT5o zLIHCA7~F^Nn9qyxAZlWMCiZmIQ6fVF7bdvRVJN%CVPOMIYvd!@T#*Ss`dY<;Z`#5Q z*KskBinF>8H3EcxT0Ln!ZoK5J~7j+SuymQ64?Xj^wI>d*93 zSP*ZdceSD{e09s4H&-;#?(>KwS{g0(JTrP zpBi~u;Pc_bwvR(u0N$Xy(RmJioNx7+fGW8cz7@ESBdVwTZI1qCzr=Pd6q2aLG7AdX^+dgtu zP6Is~ca)T}_V#Ms`OV(8qMzyVp`T#rpz{LPVTA)tTV%jALgM4xe839zDj9_Cpmglr zzu1s|jL!paF7Epl!GC85u?zJHObSj2hJr?xqvHPV-BJ6LT=*GPyAEf>I{ySUM2Cf_ zo0~GfdHw>dkAO+VTrvVOx6DgJUz*KU<4@qr(Sb*y;Z-tr3zc54(XIftLHb!TJl< z)laNyIo%J``B}ENLSm4WZ_~5{({-+n{yg6-{J_pI_LvWJ`QzcLAI6?1JuU3E-2kxI zp4(|BgBv*<&%SK3+GgRnyR~`7-?u@)l37UX?W4zthb9L>m?>-^;qlGz?aSx)gg4zI zp04_gc&<-9&tczXWooX{ri^&UbRla+$Kh%{b5Y2=jf@!a_EfTyf0#t~|HN}5b?hjH zGI4*Vz!S!xT}8W*FSZ>QSjDy;C_u}&T@ZnSFr=eCIzzK|X zHY;qiH{6H04Er8`RyAKgGmU6kWqmmBB)0W_gu6^^gLK;>Lz*N9wX3IxiI^;&5$&j} zMvv0aAWj@;OzIcE1q)yd-#(6yi0#}8!MMiiOpCp<3%xTN=;Y`;M~qA-O#^PQ9zQ^N zsxB(@k3XVbA$0x%dH&b|b+SJEp0xw+?aw=__RQz4XZ`0{?y4BurI;zBx%La&=q|>X z%{<~&xECKA#3L!omM@3EDV?QJoST@_8mNOWT*VEbwR-^7a&d2@!mo2JBuAxdz#ce zhR$tZbqzTZ=?JTT@n&5neI)*X2J?Cc&#waq0@B3)w=mtGyEj@(He2jS-nx3P-Di*U zNX|7V#2EOEw2krI2B%dvViJ*!G*!n=t*<`e@#3)}8gPCYArcM;)#NAZa#0i zpI=ok;0#s-w_U0_F;`W!S$9}9;)Oi8Stq0)KJUVe1MX`Xv|3C0k0{O|qxX-4`%Tu4 z?0(_4ZOR=%{0 ze~Y0#9X0h??NDkngckx05D(eYoboD~o`DVW)jd6=VVO1q=kuA4@c0Ix)8!0K?f^hJ z-UF8tBTC2jZ1V1m7^PcG)JycOD6f25PWSW0*onQ z3h3jey)@vf`fEY$=O7Ko!_{H>2U?Z<$#5PytfUaNGZAEJJ`Rp(x zNbT)I8ZPC{4IJK2N+FCmL(at$ISFryy~Wcxk|CKW;tW*no3Fj)N~68(XMo0DL8IE0 zyrm)D65^*b`uyY%+4e*91j2#Xp9qD?H3Z?#1sx!-vdc1sO-a358fvtQImJtw%32{W zOcep2+(u8=_FGDs(z$r^ zgXTeUFSjGPepwcFZg&ZeS8T2Mci#q?WJ+SQX*8Y)(OC4+wVi5q<$m7G7mTmt6C>lw z97jD$S=7zx)y{os>)&&Rys33H7n2fiP?ChaPF3sP4FYkQBG&U#D11d&X>?Una`7t= zNbYA7?K)S~i}rzNzWVm1;odY4L>wwvMEBT;I%J6cSOG;t*KaZ*bTr3QFJ2C2f&0Fw z0huiHZrMHhXXIFr6!Q)_GV;TUx$y`Eobmhel|n%X6;5UqLInuQ*k5yzL$1hogsfcX zQS$;CzyNn9^ggo+T_}ydcIc>02eovBh&p|HUTWGv_7iNJ{ty(xUzs*j@{7z${`j_D zVA}^sVGka*LL~C{Z?Qik@d_+gadSa6=qs2RzMvX|Ct_BQ`0hZI|El&4G}zF^sBQqI zf>$GX`0}Kq2Qla>*`N8uiUtc7%KsB=z@WGGA!{+!l+*MMS-v~?wW-t zXVy#T+6EcSTKKTO{8eAWcZ%^tySt7!^}%Fn@2w=PZE|;l(;0IBJZXNrGix)+nw0E>7GK_QO3k3I~j;t$KCLqDT2G{JM2D9 zbCe2%m35aSxQe}Wjk{?8>SybdM3lNI&~((t?;&XEA|}??7zqg>{rlDISg3own}QyI z-|DhAF3nIDgpPR^rC*KS%5031G)t2v?qM2|di|xQo#K2_VG;y2i(U%oFudBN{>5VJ zf7+vW(dx>TS1=|!)hH#YQIU=C&$ef={3K-l`s*TMaY{XT!ZM& zf-Tptus*8bpJ?ucGzLz0P6Vu_y(gBOK%k$y^Z5|WWDDV(PfrXwMgXIaqBHy!U=GFL zmwBzSi1}v)Xn(Cq*!u9ySk$jr1w5OH3``!L$x~I>ele;Rvan0^!J`fJ-#U>LaDN2 z-&1VniKn?KJYdOU*OS(P$X@RXe2B%*6cV3K-9G6+?%~aK2t{Q706r&N4l|_xKEchb z#RlD@ILkDQRh}cTHEjyuT*$(`wWq&1henx_v?NApcm(Eu8q6X$xRUdUB+WK zakw5vG&dd82Blbji|FnA$|VS2a-6!Lp1O>eKjOSYnuiwome*;coLyT3+$fn+4V%Q5 z&k4n_`PrKWtx2b_ajkM!gTI7$H&mFilXU9?s`P@J?$S}6X8_^){-pY9-`wyieS6X{ z_sG$ZG~{4Xs=uGzJBYNOFX>nbjl@VDWF%S0Li$7Iq^Z#}62&yp!2!;*aT;@S@M^hjvaiKdC&*c1{Px^IeFBEdPYSmqB=$g zDj;tiu9;=xlO0P#78{u^*3) zpdj7F)o}(E-%iZrKG`S6w2*4CO9|{z09qi9q1S0f-GTUq?9zxARuEt%`U2aF_bWV{ z9!$6Dx;-(i#2EcTBVk>pIvmM4x1_l5Gu7TV51nC|GV0@|i^Z;rlkQ(P?TJ%1I}NDr z7O|$N?l!S#KP^K!%>GOlD1+O`QvK7O%{Kjk*<3!Vd)Y3v-_4sYG$P(i7x>$DSv>M? zt4P7J{xSO6S?#Du>05XA8EB&%G_vL{lBeI3D_y9!vWhDNKn2aRPcUhAgn49ieOYL| zRfK|F88P?(ZpxtYey7@BlKaXIm1q*87QMN5x0c4pX_U`ok>&2hO5+aF&p>Q_@QcfU zg!C)FI{-iTI0I2K%U>RDf;e&oVdm~MqXwn9d=oeZr#(>S?oY|OT~`d7J{~UC=mv%t z)wt@h<$~N%xNC>n^{bU^-79fwJvf{|Ut3Z``u^xY(+bjUY)jShRjm4;q|lONdnq^O zonoPIPl@$<;vysG^QH*x-7N{J^S-kb@Z!%(M;Pl>LKa^+Svs_$h~+^Q>0LrZ72xqEtYyr1BzfCi@)`Ek*yJ!)r>ZpTM%aRMEjq$z-bbt>pg-Om_1vV*F-l5!T z)z4CgCKdv#URYKsT|iw)(t9Elv#8gf_L3*8+t?Wn{lIL-POx&e{C;*?jq^$qufo@&FV`(O5XQAX zqVi-88Gj2-ecJ zsC?LVi8)}y%akBbHDj%u_MHiss$61c=*9ZP^p&hoyUAWhQWvpg{Fs@JXlfBPm~GeV zh?x#UGc9Q&iUSd^lJgGQ@UYc(#Qi~FXKoMS?elrMEnkDpH(K85J+>Q#oAm#h(Y~HgLS^C0w049tIz8b&DR_*KmMuy=V)YuB+W{ z^|p<_F_72&Amj6?+f{8_`c0bd88o#Q(@TvlZQC(k79I(_fR zAaP&cfq=Zef`iCQfyXV-B0U zulb2wx9*4&0D&*Mu)p)@$i#!oTkbR&tj9*%J9_suY12Wv>TJ*0Hhxbk@x&}=tGile ziYeOM2U7(Tm-hA-xsJ|-bt847?ckA9MZ8w6kVnu%Qq_Hn(PH$H=QPgLa7@#snI`sl zwm}@;#UYt8CpLByV%c*^bAB3l{bSKip=M#)OHMH#u)8FsfJ!&VP|Q>sUTU3*J4bj?Vw&xe46H5*?DOuA_(5d)sGbF`e9iIm%A^4WqpFd~%oia8B1{gm}BcdQe1|nt41nGrQo|dKnnJ5)9LP z`a~#Ny)S4GU32(l2etgzOv&*5XW`H`X5vWvR%Fj;@9^lI5v&-JDEHd_7SGWa(Rm=B zsGs6w-Xtt>RHXyt)JOXXJP`QywQ&OCIZXVzFsO4=mvqIz$lX|<|M#WD3hz?1Pb_H8hklu zr?y+*f#4|!Xb@+gXr@E721NynLhuCY-?!4-*hU2WrH*T0uv9Y0?SMfgTwVQkYs5Sh z1%CdSq&<3qVbnitpq-yk)XH81m73U_^UFlS#!2pdW46YRLf!-mxzajoh zIwg$nSt603eoo4A#+cK`70|QER^WkvSzmb@@<8ZB0sV&c7k>zDF|{hCx)$r`b@B%j z=9j3x!=axiDc=QQ{ZvvWg5l5LKhZp*o;{*MJ)lB8qK3NpsV_C_50pWzY>Dos85-@P z^VE1Q(+6!vgPoE!|D>=MT>_fB&Hbb8KZ{gfZ2sEdS?jSdbF#p#Oqa?!W18hI!J7CkzI>(s9F`h#m zhS}Xx*w7g-%>K?(^S27NfAX8$5~fu}_ghN4a*1NzAIZr1f(PH`d}2hp43aIjoWPYe z-q&Gz(%MEmFKwp0|H2}Kh26pmssYl(2*B88L--) zZmP4Bn=*&A7X{tA8g6qXhU!I~4|D12t5x!(NvFLUi=pFpa%8qRI&QibGG%anx&s%> zlmxZ4;o6OVwauISPy<#?SDZ_pE~rHiObWYDLUb}6YxgFa$0;eOF69{Xu7%tCVF%p` zbySkW7=W#sjfD6CZ@_3(Z5*_!~W~|LWHT+${L@127s8zbf5aDdn*sAhj zFqx(kTCQ!M5bpI0O6G2g-s(Ir;_vr@Io-3E)U$ffgTi@iIV|@e!d^KD674#$A~>NE zwsPFY`h^-2tt}pt?{p1D3V=^64kmyIKT`(wiip=sJZ0E+cM_q$Sh`!{MZ7PHeJRDS zs3OOujCm$;#4(dqr%F`lgre`!lL|{nIgQDNGiM{XMcj%HB6HhPcq|x24}GaBkHVgjLZXF5QR}WB{b>c~MMB*)=N|#qhPM}o zse)}P;xG=9Lnl8wJ^yfWx-u1No5^~<0CCBH{Nl1*8Pexq@I4$hUpVtQI{rtig6zqTV}(fV$$TqiZKXah zcvQ1$`2dmjx2ph>0TnE2<=p_%3!J^!*kaB?Y@FTIi`t6GWZ7Lxu;pe`4_H*I?o(}% z(248!fWP#x-?=ksq!ph3Qs|9fQR`tKP$efa z`pU4lmZj?eAp{Q|+}+(JXmAZK2?T<>1lW?=X-yKrJ{2gdfE{;CUp~93pEZT&sd>g?8stVJIDr0hY;0Q9W zXR>$CWS^eN(CD&*Y0<=X@bP8$A1#)CkgtU;vIdDXq51MWR-wj5cxGFy3*hJc?1gr+ zEycw<2)F0&Z4*uVQ(89C#iQ|kh=!BL_f#5ZVUXZH}!4h^Ls2j~j8e_BM?=+vd>zzVFOnsT^l_i)L zV zZu8{N+emIQ8N4?Kt&T)beApU3`cUTDM)-X&qFI`d&V!zk{uqQ|TYM>fq@?jRg9`H7 z*ZNCd$_6q2soIj}RZRPRBdQ6^sxMYKd8-umwK4Bs!)_*Dr-)m}skd|4+*XZXQKKRG zEE3Ns*Ri4d$2h5UQ?C>30aNnxMMv19Y-j~aprbt_3(J`J6$+S;g2G0peQKpeS6(}4 zr~R4HjQAvBv>io|_2Gq?L!B*IU8MY8`81@>;D)DgO$}15Zd$Q4kwF=>wpXmOwli_w zpHYxoqi56t@vt^IS?uJ6?-)BJH}Q3N3^BR89X0tm?AUBNa?LLR_BDJ~t+qtJJQxq& zz9DKrwY694o;`v|MWW;nlYE?IF3;FGu?|Yx$WlRLAuWIXR=4Oq{48!%vSr!*__kYS?_D)UDq`Ruv_eMD zt;z$+4p^3)KV6vFUtRD&W=#!8_-{%8J4|N&`9{C{zj7i&nkYrb>NTA+W(c zY2OmPGc?pTv;%O;4{}Le-0;;A*(K?+%Z(}Qr=1-f<}B%+9S|bH6S8wEbh|q*iRe_v zjC}jtdM?#2FfFwHl3OI~x|_dJ&8*o&TU}Y-q4Sc8y?mN(j8K;qNlM_Qi*WCEJ(K)T z^3>-)4u^Xk0dcK(&Xf^3tGu5By4+zE3Zc(JUar1W-uf<eXq*kB;`dVK}#ciGj(qG{%K00xM0{rDBpal>3HO!jYk>s{D9N-LTDO*z<8_n&0{!RN zLsR$R9v1)W#ZxX$XItqmD#lM8GN>%=mv4#Zw_VSj@1ph6L8H0l89tK}qV`&yS%q}> zJi3pK7i!Psi5xFLJU1h5#wU!-uYf_+srwM3>(ry_f{UtA#jRgaEn^luL2E_sd?cJN zeeCS05*(s**txo~jut-xEgg)ExVm3IMr2VjOV}9$Z*WGBJ#Q1BenF1FP#d4rk|6D7 zjPxJvCNwKg!detO1`u$}6_qyhBkdRBTx#-y!_`^5eLIB^q{SSeI6nqa8flsLJL}e- zv-p$?*XCOP$iuE{eK@n@Q}Fsc%f>u%t*XkNA9K)5e|39%>vdPY>N{`9M_YW+tQgtN z+m!J%GyrBcc)m+uKJLD(_2{oMhsGP(dc4RhVsdHJKhm#K1+>k(DfxXjm2?%&U=7Mg z-CP??!0Fh0gieDj0*|rVJ7%S8M|Ze{-D^?DRUazd`Hgpq)a{2O%wP|h4bEieP5BRn za*ks44OW?|_3RqGLkb=eHH3dmfH!NJbc8cPE$$rsynsZ7MhnMD=I?i^txed*c7+^D z1+&O;_svrY0H5jIo&Unxy%TiLh?l&gQZJ;z%;%nN^P1lo6I_q!=j2~fY}0bl86}0* z-dlCO(znl`-jY2f(m(h7p22Pl%M)F{^Mgho-l>K9%}KRU9eF@Cja>3YOy=#k|(WZDXpgmK;`F+-B0l@6_@*r;*uqw&`k4T z``{TpyO&re&zrF^m9MB2gm+i3Jq%iw6d8vdkx=_$mUXnS3ZADbT+JF!Ifo_**m*I_)`y{$N!%i-UBSj4RYEa_`=`O7~}ij^vbzkJv8a zem9svzHE4=FG4F7WA3r_*e$yTa}6O*-^M=HGYt z2>RItqH7x~n-{ioZ(EUI*)Ru`D8wvq7y6VK#DbBmVBfRQJDxs&Qiohnp~r3R!bW9O zTby%@eq@1af^?Vox3ujq;m}0oY|%)I;E8U4D14N{to`^YN9!Dhogl)nEqm!n65H4K zUfU`Rpby`%!zgZ0^G|mQX1P14th3iDonw$nKldeMi3Et^hTy$^sv}GfCDf;vHf^*L z%AtJ<%g?3cd|ET{Q#&jL8RB<1sss$1K*W)F!U%$nMjfQGq9w3AXd_&O-MTWV> z#6-+#A6iBc5MUHY!_7I>hRhTx=@~W<+MJR)f z{p^ju06pwIP12cwTNp25LQ?MU8y3Wh4a#Z-EV(f`%F5ATCUn#WO_Zb<_C-#aJ|TIH zk>^ZriMb8 zOAhjbUuyx8GE1_lI&K#YA$f)p8sMlL|C{~B~q`K~z zo0A=C+=O^;-oUU{EG2MeZZiI1Kk(j=A+K=8InmmXlOT)Rm(Q@v8%seuEm_-dEfSQb zlmDI-s)urO^Nmtvq@=#vFVkA$(r%TTKcGcVXhclS z!gey)I`xnEu-Nn!exH`|Q$B_0aZ3vdXQ(C1=MQ{|;~{nXrRkWMh2i5>xyp=k*ZrxD zXT2*tWfs9Qr`-@Xo+Zpc9FLs#+h{#O`copQRfHYNXr(E7$Ei{6?5p_5vXvS?J9zZXReZcI##?_hY%?IZ2<`N;>vHl=(($pv z)GTR753t+DX8ojN9xe-_B_w9c+UN_!m)5+-Oe}AQhQ+1>D&G5)V$DhVbR#f)dJ8&Y zmD9g2v72Yi+fd%aH66Sf8zU(#yVh`U7cy8lDLz9)f` zIeSYMwmHv;nQ*Y?&>!5$v=Rnu4>g+3zchn+jD`g(XY=W;?4WG|qPq`Q6&ky|gE+nM ztDvm+VQ@}efG;G<-i(wAOf4}=<(SF1k5MQT+nH5OZ?_#vS6Z#dCFel69`D-lqV8eN zy!-d_;Pz4B2BcD(!;S6D+muiK@O`9lxKQ^5D^qt}ENxwlK6j1DVbpeJV*Pq2PeyS- znP8zu`{v%I5CILb-Pz2pRmvQZ^v_T%%?_58UBGG~?407vZy@nfI}X+TRk8`H8vRQ- z9wk!Aa}J{;rnJ1n;qY!~=z@*W6R4vbvZouepEqP{H)P7HUArhD;e-|ebTlDI?{mic zLX{aqCPjOG`I0I0f(Sx+iZ|Z9vd|Tk2Y>B%#F^0Fh<90iH6U7zY-IgiVwhd9w>nRm zEdn^^9=^$a`smGE8vi)_vzLB|=HM%=psCO6e3L68E1Lk!9&#+IFlL4vhZ@v*`yXCD|3Cj3Bpg=i6t6cTP)fLdZgYE2R0WNo2q1TNVyQYV%D+bf zqR^1oI^IckITbF)(I}u{Hf#D&B3RNJu6O2cD4;(lyKpR~^Xt67jI&vb9duGkEFc9-r+0}PM33(1M5 zqFE#X(V_7>bVK(gANV}k$es7_tWv5}T`=~52oX|WCzNYf|DxF(AOvo=Xa93O)-TC* zb(!%TVRoozi2j;x%5tLYO2zxou@6C%pQW8_}Ukw<>)1rGAJ_ zFvd(Rz=FN({k+JhVsbsYEr%G%<1dIeMu;zs5dDl0#fP}`Tv^GGw!6g;Hlh(QdX7g! zd9_#ja9v^zS5a`gzBJ@DC+7S(TmNrPGBjj@q?W(ZSc@xbZ-;B8AQN-GhFh}72FCXjTCFsB8P7F|t|P=W!UN(C zR2t+T@lCS}bdO~MH7`>KGZJ$Pr!BsVn6p2!!dB)L7W?FJDcldH0jPJgjS`z42=E}S zCr_DXD2mJXmC6kB0H;~k5FXzprj)2YE>Vy@G~4jH^Z~nvdKR-JZwTfNarU!9U$a%q0vdc(A!wt zzybYqR;?>(BG--vaDs$|U(xE!ETfe)E1!R_qFf$~fJ6J^$4YAuz4}i|BqPi0)PyBm z3qj`nee6B_R|@l&N%})d9o=tiHt$}ZIk1TB?~@Q6@PBFR{P^Uyf&5}{s z*g8xecNd>1ST9XBo|biEinv>2~T(-TeeU9w4akZ;nJXSI>VJ4m}7_7a4!l@ECn%Gyh^YUBNB(g~@xJXQQ(JGLK z$cvb~Bk3J>1Ay78=A+%CD1D~9bb~8JrBz~ERp52ams+9YYE+#?LWMRp7J}`;w!DJD zRp!H9OreQIG73O+&dAAkx#`h$;L5eAlk`%T+K4g*D^Tn5`|#O05#*x8Q>tFItX-+e zN2-G20*ac-g?3!uTGxCioR&m=9a(+_etMszb~>m@y5U>pX>O3ItBiY&@jbVo=Sqh4 zIq>e8C;o0FHL1tyrEe{&Yurr2s42;#QaB4bjMnl;?GMXM7iUtZ&XgMoy6+qUbPO-( zky0J%+|#DXO`M^iMXL2AnZ}X?TehU^=SL4-jGGu3H^6!b&72+ir$aPZh~d0eG4s;%5SM@F|c6A5<@xjygB&aSqX8=WjT*pa%dM3D}f zriUPuRhqT7v~Nk_>V|zZ9s4e(tTv2;o;dF$WAF?YGtP{OFmjRi@Pz&1#Y^`;4@<4z z|2`~Dvw~bk{NB52FzpGKb|lZ%(C2{-PCivc406QAVvlo=2Z4sV4h-7PK;7F6=v_2di>E+2W_pWRO0v^}Rk z5=2Vb1YQn4-kDuj-Eus&y5c`?ZLdBbZUCU=r)yB}@HR^}y8en#I5BGA?0#`EsHu1O z{LZS%eYsg_pws%fS!hi7I-`6=|2pN;GX{JM9&kwA-E(d6#06369*@!*U7u96EDpK2 z7^HJE2i8SBZku^#-n9u@8?36Cjk@e$UN^5iKW$y^G%cUgW1TKunYrJrVDb?O0;_rn z83xYxmo|!y%aD_kJB7IAhfcaDS9j2A%OMd82HjCnX`$zE{|9>s%4Lt{)d{TEwUJjT zfr=Xj&HK|+_y)@!mY5g9i^Cx9!{hPAjU%1b)fMJCX8Z}Rd2j~gapf-i1;aACH^C)4 zZ?K$itw8sBm`W>%@92!rYZ@>BJiJoy?Ch}Rx%fJJhTMJR_9pwY+ghlDffM!YvpQBk zp3#$&aO0{#Nt*!SQ{BC~WnBg_s^d{qEV-kj=d)+4YZLj#SOc{_jZDj;pfcKp!$mVz zX;^I2Q_d}f6cG6Oz>%N4C!r;OrMSBf~_4i{ab0%Yq9}g;E_J>_G4MND&33~({PCgg3VXPk)7B&XajERb7_r_Ad)dSXE6Il} zyy2wj58*wBI^p~BBNNd;@k02GSWC3Q{K6Njem@?@gkY$ov(`3h$OVgHRwuYHucb zINy`Faqh{j6q4V&ZSWG8x2miVQF9Am!1E$*LQ(oixd|}fX%RQZ zNi!aeaNBXR&i5(ka1!!4!QBQNu;K z&@ba~!uF}C!b3|ZAw#ztaLo1g649s~?LVi8BqOj_v8COzJnYbUF$$g|mvz9r{(jc& zy%h%~9#CnsmI=37aVXMQC8#|69uXN7F}cs9Up%|qF(>B2@O-U4$RDo7TAHOd$5Z2A zjConV0a)A_v}tqD2E&}mu~$xR+3`rNIM%Tt?VIADB?m~^JZDI5FO!zk%2ehXEpk%}_-iDCf1#dZXZD}|{ChgJ$yy35qsRMlW0(8H z-CIOl!t1jHB!)&NKAop0q4V~ONbnFf*Xbyc(wC0z(k5@^`k_L{ zht|+T;q4|3zwe$qtvw*nwz$Ilp)2th>47@ENnvSe^$#vrLJ_M3-iD5ZFXk~_mb*;X zXdilvCZT7W%J6WL-_~!WB<(z1z(8=3XPO=8BaS4$aSkxbHX$$+neh%uIUGY$wP!9v z{33^6z@b@Yl%DdGS|Rpk`Dah{L5Ye$Z;IbVj__Q`T63cu?e?ZZ+R?{Oz%F0^d+(>ts(u!HzIAo$o@iLqpf?Vkmzp)#%F!znrP0l9;u8qU8wg3Mvs%$h z=vLCD56XURfoU0*BF*~4Yf-|594}O2jl(PKVO|a#xA0cbl+)4HtW;8gRc@HQxjp;`JSk%A4|l& zZ}`!zYhHcK$33`ZwCYC8ojqf`E`8wS#joEpkrL*q-2^4y{#}IsrhX}~;EvzhzCyFS zsESBKjS)vqi5XG5L48UF%~`bqFyV_aEKwk+ES~Cm6s~aK(6j8{C%gf z(~l1h?AxzMTJttVLfaTRwzNr^Bs5u;Lj-GZ7qOo&d-gzzR0U@gQubd8V$LV~yTO}h zj`mJ`4eEQ4JH1?6nuTm(3Nq$+iD7{Y$&YV;`Yjzft4e^Rj7+h#7_!;mbh_8V^3YmK zxMOfXJWD*{Ug~j#aCs)+1E`mJY&<5{48z;84Jk^il%ER&U-xiNB`CK|#}Of4>PX4j z463Sn`*`iAs_cq}TMrsx1TRftWW0abv6e|`y_S@502*n`{#dx`7OA4$L~sb2!a}~% z@$6F5iQTkI^;gNTGax|DnJ|2o(18dlqQzPum@X4w8Kl$Zy9avb0skOGo(=(%dw&ja zDcn3b5-%Axs56;e-xomV9u zZGkNFJt5O$7RPBeV)x*BMDCsL8 z%jfUjiC3WuGp!=&QLR(laI|;h;|2KBQZp2o6sQvlVu~mGYbPScujU!sqC~epW;!o$ z>Udv%&^@k7v>>;R$YMh<(;QmhXII7DQpq)D(?U>CP}~_&px!Bn37zcU0&ng)+LwM; zOhFQN`58V9HrbZlKywC8R5N%xf(Y-yy#XX;lF`zY??Wzf{?fOozdOOEalwND0T$ zFD3z_h^2W-g4*l*RX``W|0n4>R1Po3>w1xammaMkW+UiLx=LiE2h3)_Z}45ZnV+GV zge5o~L$u*5^!=D+-m^L=P;nA+hdyi@VF3xSTpsilS+5u624`*J<|?h&TOIT`*)|_1 zDp=3I7ZaOInq(cBV>`Kjd9anS;8u9sU8922E0j_;8kr$kKRqn7HJjqs@uFss0wEuT zG19ellrAOxgUnm^7_;}3U(cuw(s_zwNzSOGH!q*hw}Pu>f{k3z?|pUxtT~W6rGE%XkfRMr=J{Fk$ZNb{HSFPd99Dx?S|<;ED4fBpSlC#x z=o8qMmuSadSmK&^ITo<|XHY;)P1@%84XoJj-;-;chUIQO~u9USk=UrkuV zc`Z1S#OAPlYZ`gI73J&ZMzyAsMIbRZzyq8~2NS|0r9z^S`hSyCe@XFYeim$%u%-md zH=0Eg-h|;VMk@$Q<(-5OPP#~SZh>T4)?}$`Rohk}E@4?ZL0LL}S-RO=HIlkN_eJ%g z3Z2jXu(^rzibTs5JNTq&pUAaH)AC=mQeXrM*cNrY3Zn=Wrj1Mgpza*6RwjKZxo0sh zNQtmX*KXeJC?&%-Nw(J@PR~SF)?z?`Ul)WGXNHg|kyALoFfLFn2xAGL{70VvLf)f^ zJO^Eo_qo(rezg0wH&XF1g7?k$x9QC|C$$oklAPdlB?o2Kg z#_4p9j$14@+Tzcl-u>Zlo)JIzA!A;1`iQOgq}yfq$n&!Yk2dR(m!{D(C5E5iPXMcs z8Cp%kqAb2C8LjOivZfh-x}LDhvmLsGqKYmrQ-w{A#yAuDQAe`)&iiMk)w#)7i;+}i z5^B5ou1{3#0ce8Qf)IS7-&E9L7U9F*U}WqOxdw>2inXGk{#SamSaE8X-12e z_zErgML2M#y)@szv}%j=^TK87f;HSW?;Ns$8~J76W4>B*Q1-mVtC5&a2DPzM28o0`PtWMDIWq8?dB9si%-o(N zyb6ilzRYAgEycP6g)HIB^?;J$GQK9RTJ}{u!?0ikPC!PY;BCs6Edb-1y#(z!Q zoD8eGH)7aayM#uEi_TDTm1&g(V?zqc`)#U6OwvDf1ELtfI-+JdaRU%WKK?0toPw{4 zfhJvuE{?CxVA%l$AP(d`{37L_Ri(7#eQIrrOb_a}Cq8VFWAuu+&mZ~d+_>E9^GLSa z@*TjvW=?6GU$Q^enFPA_<}W+t|8p1fW)w+F@GhkgyW8^GzppW?70zl1UYON`4-Lkl zHM>i5Dw#bd_**sxsQ9ghpv^XGI(g;9@Uym5O@A!XcJ#v2k%>?KcYHSMg%5QsN2|rh4bag&UdhPOxgDH(bY-1>+*=it{<=c$jb%`*dw7i8qpo0(!`_sW$wT(Y(6 zvATaV0sfi8C_mEoXVPZkUsKCv5pXYKKD6|KKG91Ii)Y-Pc)K%C>tqiWDw)d~a{>Qo zybW96smsahMFN$SMw3YRxp1_$4x6qt;`uw+ygEo7Jxl?3t{swi9G<~*u4ldJJa?*g1IgzGsnGwG1=Y}d8{5Ey>8o$K2HG67EH+cWLT6$ zHFGKTZ#Q`}zR-cLV@tYava^5>cf6o>qta%xS(n|m3~rnJr5<8uWLvI@u^&F3{_gXk zB-}sa7pCra3;_e5^I4hBL&!I=nxdUx`bx{Tw+ColdOn-^Ov24=|KCshaqe;!YG#q* z38Se)YLoZ24eEx-TE3(WYJokG+k2QTiu<=j(BEwxBz^SD8R>50PLdzL-w|M;=-$mk z>3Q9r#zAYc0=yWwp2{8(Vfve$?$1{6k1=U&F>M5-K$1}P=Of>SIKzim6+*(}@%h|W z4e_(%&ozW)Dx=B|f0kVd{1hv46g_G-gvRO(-proS?Kacs4}# zvZB+V2lAR2y3~rbfq=sgX;2OSHB6${v9{>$($aVU*F4Q0bbgVnO3vh*$W$gtUy{<_@t$pztPQ1;G^Dm~99nSkQa4A5h!st-N110pjplIHnExU#ai!`1 zs6Qd50c@)MIIaPpi*c4LIXzkS_Wx_jse~wt^=yh8t~SaJHK;PU??;DSKCVi-G%>Fm zm0l>!r9={13nxn88du43&}hfX+8-NDbR3Mr%m?EzKU^Z`Lr9fKT!L z&O6#_l16OzW~KBX;4Bk!K~-YMtb=mqQjQi?CJUlamQF=vwgpdvDg$mU7_{H~$?3T~ zR%VB*RQuwY@}#_*NXs!?D6Pr!TP|p8xVQJXJmqonYRl#Bm-RL1;SSfeN3p4CTeZI? z!;@3-*+!sowY5d4v~3bc4AeBb4?=?|37;6`Ts}Ukd$4>39>ooSmGZXmI_7c%lnV#P zuS;P>Tq*8%+Q-Ys7oID^$=$k-HRb!GDO+yOuJ>nLZVLiRllD{`z!HcU!TL$)Kp$VG zY`~@o#`9X^aX(tFy^Ge<2X{O1z=X8pS|gs@$Tn&j9qCd(1ZJ4O+AT zTXddP>AR4-7ad=*U=!C0S%S~|&S$qBY;qniubw8q8mxc};&)pOJkJv{u_6EaRgs0` zN{92}#cPiQ<_SdHgpW;#uK);mzR2?zcwTxmJhUlEMXQpn8w~0}&!C*1ITCD{p0h8( zTRa<(VQWwXkl&E_^cdvEo==TAL(p>(?ibl95cIqp5E4diwMK;y4Gb1!37-Y{9u6)) zd0j)$^Aq7`@<&c0l$D5-g!|#iC*ymw8_#>LhyCHUr@>yp=Dw5ICUWu6PK2_#*%MEQ zD6)K3L&L@;a&c#P(e$~|Gb=Xman02s7a$TcXlWs;OL0$vpyzZa&HdBoCf95wvh_l# zsy$C@pIktC2gj`fHU<$+q=AQ%+wU&{_obFr@I?CY2Jo7~^Z~Dpk?UD^K zmqB_2unG)9;w@5Yj||Q19nHqw)4k!nvy^(KYUH=~v2GwBn{0RImn(H6hMC=Y!Na4K z3*hmyfz$27QlgR(>l!IahGjWUtb2CU>E;6(;qL;C4J0 zpf)OGo3M$CR-0CqC<+ijdu%-r$B2ve;>H~{Ur;m7U8T!84u2Tix4=c#)l$7%PGyP6 zwnbNLa*{@ff`H}f5U~8>hw97~c1tzaZ?OC!zj%yTeuiBeye~xlG?unKw6~|Q0cz<% zmHYzkn|*`;=)-J8@}4$aJ$o%hy+8ngbLg<0!})2&Ggl^WyEq_}55cGs)=2HqsPF z@4gC<$#=GJpy80Rxva3lwu!BJV0qB+T&bmQplOimZ!d_YshP+3!WdUEy*ikDq?HYQ{$=JDX;XanU=74 zBVpInXFuK{5e)p#goLUW`Pa6Y>23Pud~MD5tI4B<&38nzlJDKopcHS(Zs=>Eu~Xj5 z9+GGXMZk$;D#B#j`H82MCMVsHCU-H5=t$koxMgOj=uf26Jye_6D&%T;Si6hy{_f?3 zkWYys$uS1a-OB+X9~s2NE0rO(M2NUDc8*g!B{s%-T{kAH#%f0#mWs*sKXnRUmP`z( z=;(dXu`2ovkT;ZcuzxXE?K;{Oy1sGjxjVCCM}0sQ9*;Cw&zO!|${3Lx|IBBB;-v+W zwT(wc6s~8=Lt-R&SQ{2i_3?W9B?t_?*SoR(`e6E_{T?Rl0dB!yXa=Y^|j0YzcCh3VvePCuVOYN)y=OETR6z5)2EW8;&#dVmJgo zl~Rd29-z1Ijw5TmaQcmwGtih=+VRb*Y)Cg{zxan><8Mdoc{}MGqI_k$BFR2VpqU63 z>VtkCZ8=~(!pJLUUxq?6;Cz0%wq4MF(>Zm28)6~|=98x)C$e?07bnhdjrNuAhfgrL z84sL_Tp&=*fWYO4fVO-KYNc{9ZLz9JKhToIqnfId_o;TbY zztEmBOK5z9;E`yJf+_{BGMon;jyq{_bh&hpCRZr@EVFZ<%;)pp_qfMs3<>D~hu|RD zY;w8@;75-hM&mFMoEZEt0$VtXBoH&FbHK5WtY6IUo#inD3U+sP1a8BuPK`++AEyZC zORBXH^x|QJ!!FjU*P_xjaJ0$9?UslR_R`ZdLWB_tHY#`x)e|0cTjV-lVLQTP*p7Q zpC;eAQ_Sq}lzT&Swu6$|lG4ix-pVv$np^GOAO5_EOZy=6W*or&%ZmZUM#Kh z=+wX_)nDX`eYS!>fZyf=i64FiSLEXiZ0XOMO&wYe{EFR5AW^H7@hCR2>R za8AE0&^LyO_Wg@|9`nLPXKV2OXRwp&C7${A@Yc`!P#W;f_`p{W#a(GgkEXiyro8q@Ygq17QTcY<C@*XDP zAG!qIACk3H5raI{rrs z9jOzR`+>Nbi0SM3C<8jud&5kZVcwL_-v+bGRF+x;igN^lJ!-+= z2k=O%NcxCe`k5n9qA?h1_03$2{>4=J0WXj@30P@Z_as-U85-8(W@)w3Xo4rad6`3p zUMYN5$8djn)?N~y?Npk`E~xEyYNi_Jp+W{`BtMMnbE7=d56;%eK8P!<@iSiGu^&Qo z27yc3;}c*pVW=|;gK9lrLt3=|N`n7Zq=bMojkS;*E|CXKO_wJvhhSv`Jf6PenKg{J zDL`P?gx>rIS}|M#n}`sX^plJc0+{Nh&{8kf`46m}~Xobs& ztE$qY>lvy5R%bH&>S&6vIx zZ55v|G*?OC9Yw5dy6i#^DWDd-olL(dp%y%rW_FtxOuvvR(COJA)u#NMa$=I_@Ym#Z(_{HuE>^Dlj$0(5Ed~vAyXW$Ngzq zZOF5k|&o6GmqI{<}6Fu z^C;tNrUwZu!qPs4Ho~+=Mhk1QSUALu!IuH#FtKhcMY zp{m8MU^p69cQ1hk4I9gD`@8VXF8j|=M{a3SaX>#&D& z(nZRC@01srnAMEgBTxb1SP@`Q5Jm*rK+abkj_4-7O|cLM2oUz?(gps;xgfY0t-8gm zSJ7gK$3^jQutykHrS6TlFiLJ7l8xuTckjHU>F0J7LPof|3@k*jMlJ>-?mk@I(C(3( z<;!Z~Xb|Yv*N6Ewe>y3fj!#db9Whb@t^2QegfPpY9FiT>zo~X-m!lXP5Ym-0+ymBR z7W*nVM!jFDEzO!I{D(LDK!Jf+38cjX@&c35^~ftvQrJzlQjvvd?!wRuHe)9Z7AmkVt<&%#y+xp=@8Q<|)r z7@2<~KvZLWKxgr#?Y1+-C&=2-`Fic%WjiavsP9n6-oNUvO31P_$=wIBG^$;Kajl7A zyNW^ELRrz82vvP3qZak%FFmS|;e~Xidec&eZ&&uf!d#o#+tZF2eLbk-R0vwKVlWYVG89$j$hqYz>GuXZt{ z#NDoH9I0c|gM6)?v1A`@wg&NIJ3C_)O`}NAqx~>Ks;dAfK&cvEgVo~j^}j0KyhP4* zNB*$s9*A7f8Q=PoLS#=|jFDODZ49VN&P_AKEOm8k#xTBT|4hu6@}D-FCx0^6ogTHA zN9ZfXr~2Z0zZE*R(fDB3@cy34WakUul5P|Ch8wo+-Et6aI^F-jVR@Hgh4#Va&rfr~ zx^%hmwOv)ng;(o);!i^WbIUM>n#Aex59+>o|A0R&=Q%nLb{owYb?A8u^>zauMWi$$ z5;%7%!1r85{`CvDR-R%do{VNGAF5yW0sqib4w+AwZuF|YYN@BEG|8+L9eXpzeGesO zYBO~3%y8lbdF0X?fdPx4+5pq)x&T`(gfo->NHIgw*Y5~ShHkVI{)li`pOpWLd8Rqs zoOX|DdmwPt(kxF~mIGHujEBaF-Q*t)I1sANq)q?wGE$fC)G!$lCiMbZ9^5^@Px3{j zC@=Bp78~nBJZmD(pY5}Q@={T* zD&{=4wt??O!$0M^A?FG0GhEf-c1aon@ANB$?Ou5=fX$DA(p394%{Xi~D{rfRC;8tk z8szm-=J^2XwnXQ;h6Ix@)SIQ~8!+DPJpr2hFZS4jN)BKAAJb5mWED0jVB|JM2u_6y zh<)2K^s^EAB;g|+tNRPn)yW_}nEzS^K(Oq;OmlitcshG|J9zPf!ku{N_k-GR{lxW> z=jU-GXPjTu+tWtr{2MBVNMNxqzD=;INvkQVoarky%m#6P^6Wk+E7jAjwrFC2 zb!Bh2Z%6n;@eFb_0a4f*n%OqKx1nBW;?xKknb4Q^Pd^2y4F9ti{;?H?{O|`Yu_!^+ zz5FdyZc^vPyco|vzG%O7FI_)dq;lKUPMo4u(wDfs+#+yl(B7%7tet_;0PtxSG64J?lw zRWxBH*wo_KOs-iV#0|L9YZRkbL-6u{Am(#bpCoNyA@8qKny@T@h1%XfJa3QwtK~zU zeQi~Hzi9Bhc`0HY71TdYOX@5Wf2ivTZ*T=Leks0WGl&wpq{JG40hGJ^8*fi`qG>2i z^f~^n3jR?PK-JYHm2QR-?KkI*KK2zP?zy{Ns>(sm68=X#9Wozs9tyLjHl+=BO`uCS zo(xdn=ow;zjc?N<&MBdeTmR8;@2lBW>>Ml8S;IwKy)rEXtGh-38^3r7b3xRNvCb@8 z0BtMU{il|h17GCatDS8v$(7nU^!5A)Nm@g4q&|$1!WsMUof_(V%m#C3mHb%fMfTQw zX3fSg{T&u}K{~ z$t$16c_ zQ-g0O$Hp$!NQ90jJng-nI35mDgp*O=T+!05$5{n?GXjq7gdT2>AaXgLven18vIICV zQGo4;FtS0&x;;D5PE*1S=9acw@Mt@4?mR8suh9e7RD&v>g$>Dqjkzf&7mtwd=M}NG zF`nX*ZafrCU!#x83T|{`MXPS!VvRjNP&RCeFPL4U*%i>-d$oi)gTc^b>EDf1nvJqL zf10^ey9pI&T{!yLJsZ!BNA&douh$j(nE=`I3nfz$Yh7nGf^$m&eBazAosz)v`4_Q- zK(N9|m{jfvZ3WY~!^2ygHa&08_aQc54U+Z)q+S=$M$z)}p%4^SrYrvEQwZw5((GzW z`0{7aGsUTn!lO{1!34-S{-AS{pwscE`1AY8$qgpH9)mFo!Zj#9rSUGIJg^JJN1#?p zBnq8)gHYv^NBwIQPD;VN`!ypY?{|kAVvd5?ZTU9uQU%&D zPfX!rLmfS;0fVkv6e=8|(xk5wjO{U;hvov|?-3*> zV8jfk5X2sULabmP*GbuXvBpI1T$SE{PH-gL$>guo7ojQC8E|v|kFB$e%4^r!Hd0D) zhvM#5+}+*X-Q9IT3zXvS?o!;HmQvi^-L1I8_jK=b&X)K41!F)~GBYJvYb4i=XE*?f zhlrd2Hs@sJvd-OVEx3L*FF!Zw&d$>vInO{R)d=pcpPtQRvcxAT6nV{b32p!6blWOn zY5I&Art3-O5?hZfl_hy0HmOVo6(rgg$7BRRx5s_d#jJk`Ef|p?3q}aF+z2FQf_*!r zsQ5vc6zWsExj&ar8d{9b*mq$vuYZmmG;|m%WsmE?n8BH7#0fNVHDXrfnF!^?llQt* z_KH+tzh2t*&3))_F@4lq$Ij*Ki<0mR-VtJ~iSmTZ@l>ACMwL4OlXG+id-v&CH^dt( zHVYBa6wC>1HpUnxAVkCE#>@jj?vUf8W}BV!DxZU*q!gMz_U|VytrvIi-Ld$?7~WF| z^a}NI$Q__N>l(pob#eytorp~GaPw+&TSy`)t1h8`6rh$R7QO@@+Mb)>5>i5u`G*+* z$Opge_!6cWL?%uL>HZ2k_}y_l3FfhsyIqH&>2%B{g}$y-jAQA@{Bh;jjDx3S0r51g z(kXor1A3j#X=ToTYK8yn!d1x7=8XV)C_=exiLj1mVvC65#N_?;TN$wrgVW@!3c{D< z^@Ty0$Y~4n`_jTXGM2b7^k1`u764zl`1c)?vBv}_YQe#aspm>r-LkG3K*tnYPnx4n zb1(D<{m9h7j2`^@`{c?66TP}_Ris4ArL4uGT%IBu>`~L7a(QC|chK*iZzn&za&E>wMn$>l@(K zV&sRoutwHCK)Oq1RKh&_Y{m?8$B`8nr4KU-7O1%T3w|V*?rmz;I7ZhVb$8eK!~qx| zRLGkmt3WI5NGqH)o27>WCV3IS^WD14R{gdJ_{&HfJQUH4;`=SOdYDUeJvYQZHF8@R86Jx(+lg8OmwW)IXrcL6Hb!V7mL+E;c>`CmR!^$Chr0BTT@kNbLrnD{$*}DtQSM!mj z4*s`|q@{U$5nyO_93@YW8+7*bj(lPp(c==j1y}$`BQ+qXczxSh618*&QTt3zgvA{WO zuGm(kpLhUu$t%YJID!@SFn090c4YO{MGKK%{^*elH&n%VG-N4k6sF(4-Ih4l3pI@~ zm!7;n=TtHtLtDzy2F8vwH<&GQaDJNAY30*)eO%%oGkc}uP-Njprlp$Q!o2Wfk8^kH|;0dMfPmjwzrTUt4^(5BfCO1 zo!*IT;d!jk8c$J@d~+6`w}kt;Gx@eKA0w&~WXn|2H^ylU_&5~LT+CBD?>l{@ zwX+RIpF4222#N$YsY36an01iPB(o%{@aQ5D%&hMr>Uc@=ILJ!MA&pv!3_U%57$jW- zzd8sy*Ln#?~Xy;&>D1t&-HRsvlTOSYCN2q?oYYX8=&7QaF-& z98P5s>b_KD(7n!qXLjqQ{NIvUsa#gv^kYsYm9JsItqhaBAhmeEifa**oyS0hlCUp} zyg?xbuV(!5t4fW9yl5S8?vuy{}Q?VG_`oskH=1K6!| z+$|2?%g^xc<3ol-B-BXs40y8zf@@@$r89HJwgvEB`|qw(*%Y$j^^pa3np69-SU~cT zXO7@6Fn5S)W*EoMRBh!uV~uPPt>ua1yf7ol<4LI6f|gf$75~WqO@U9V_wgIj?l0C{ z;LQ~Y9jd)+(#R=#=JIy@dow+^-go{;z(NnwyX;Y){{~2q_+E!5&SP1PwlbJE^(iyn zi?X-=H_0NXk0e-%0A|O#Dy)rLlBAB%9C1aj5B~|nnDKo%0vVH;swA=i9TuhM#vaBk zjNwMgJI*cZn_*|yrk8C$L6kEmPl@!!UpOTq{PgyO%CZ~Qw*}^$RJF0*4==i$@%%> zB(;D?U9ICS1I{YLY49c(S+khUo60f--kGngjx@Cj#lAmtk;XcQRb_0hLU1~py z6htM#_$aYpXPpWfrcnvrkMiV>>}l^|eC5hZt2+?oI8->_1aen@sDRF&r46S5o8fN` z6<{Re5qS<|{I0_09p5os3xWB$3$GIH^KNKcmmA+{yxJl z;22DSwyIkS`W@5joeJ{?y^mSHIJKN*BFP>_{en<6p9UNY5MvN?-QGKD$A)K3CNl!lRiCzUAcR z164J3f6@a|qPE2@svo0{P~)^81$`9K8m~qy{dJa9_*%XLHtm(pA#XfplgB=~$E$9V zmjOeBibnfapwp`FI9bn}#cP3H{*3CLTpX@bgnTl^zfIcz%S7HWW|wQ?6KcNL0=@qM z&F{a~7XRdP zOl%ELasA7!f!eUuw_E#xevoPqq7RFmKp+j6Wz~FWSDT+#*N+7zF5ojN;q{rC6k7d- zDF=)y@qoHdb&X$~LDYngmN)rlYZeCwhedulM=xy172c!WyMqH5{l}21k#F&yftD?$ zP#=w$AcXYm!%a@&$oKSg3oPhY4f-5Pc!ygAXUr>;O<nHG zuxGVp6(7Z%cO<(bbE}0zP90!Er`?G>l8UPVtmEPN*ovZ(eQJVlc0|^!zafu#?c@*m zMn)f;@-fQn>())E#0mRhQ)$JM15W%&?pUpwGQpCo3wkn5@T`7GZ@c7b&S5)(vSu!b zyx}f#_M;kK`A6d+yj7o_B%^-ynShH0U69-(nmXp((yPjU57O)GZM9;7*>``I{BX}7 zU%lR2b57hv;9PJ4vk!VDF2mgiwge0x{b-_d`xN@f0HK*g@dG3D$P1EiAncB7AuyIO z{vEH$RT4U5K8eis<+r=9!&Va+aZ-`>#U>9K2FfLA=((w>5xI1#W>BP#H!l1iag_U^ za!ECGgWg@kNz(}-FOaW$-mVG5(}@>fv5D_DQ7zdp_8w48!DuhwWJ(%$>pT^R?d9KO zbVhZJ5)xBvf41?(6S<~A2e8A05>E7U-c8Q;#oLcG-rU@dMSnXSx>#Z~cpH9?`LTO= z6({7R5emHi4SVK#z97bY-t#SqOjYkC+d|(wsWb}<5lsE_L+zTs&zDQGwWvm1#~2cD zS|2(%whm$Ja(eWW#mx)(xgmBw+h>QRzFU{T^m_O3D6;(_eq|ZiO~B5`;Z%=o0ieTNASVqA{*GEigfR#C{r-`!t(Ii>D&_oXQ}oc-?UGlTNf&8{ zbtX0UVXgzcudkKs&_@p4Wf8M1qAO!PKb*==y7pIP;bf&Oyg1HBD=^4U7xwoGkOD%5 ztF_;n=sLO`K9Q>LfyuErMx)pgz2z!n2+{EMPL$XgAqdFMxHS33#J?_VKn0PM*u75k zULRJLvE&J>Z0I@xQ*k2v=^6rK+nB24%~}8fBBGUcjDTTH)nJhx<0qLnMfWLB0eM!I z5|Q5EJnvH)(UW3XU$yvnqa*7!9S41e#mxM8cbjYHrWS)P-%d*fhb;s7 zrHU2*d*?3S#rCfZi)$KfH(d;`XN1{6r(Gj(N}y5hCo}V_w#`!D^tNiRudl7GZ|2h3 zquxuegKD71{IPwxT%ajC+M{Y|=Ax74>dAGPj|-bXfN_q|PNnDmhR@BGfMC|6d|>x< z=UKf5Iejar;J^!-fU)gpt*gn@w z7h3pR;^{60qE$m<<>@p24`n})j-F3;1z@Sp>Z2J2@Ksud6mD(IAWoWQ-LD-dUOaAn znQ*KVrA-?3{g%ACbU^%pCR3oT6J!MK4#Up=s~!6ohsRJc=+vB)!XX%Cn04Pv&B9YD zZU1RQUYXf-ed`p3J^hS;fyUNMymGdytK(A>ck7E@lRQ=f{q+)x#9+A&M7gdg#vz5B;$?6PCni8^53>J#NOzbJkchB4#jS|m{ugh}x zSCKlZu5{6qP@7aOKxEr1j@>IN%A4iT+rz~&l7p%cXg!p`PeY*ew5_ZvTS}q39U4*q z@e+~_qtwzps$^DLJVxEjHsDnCQnl~bv>)^A7&H+o$==I+0Ah*ah?0n6i4uw8iIQ_- za>yLj-Pl`C=0d2>4o@ZGafzA)i$WrF`B=tNA+_$dHB&nqyPSFJx=yGfFOMoO>HGGr zQ%vCZk(TIZ22NF9U#@F?E)MR>59`kMUHil>`V-#jRkGGd=P$~lo`Z$a)v1*$*w8_5R*5hg%FwD-WeqrFKpolWuM=a;!#Isi_aY(&cA(B5|fl zrHh^GbbzkGiR$3BImi-0bHQCfOn#%lygvV~rswq;pt9V^$XL)IvZg`7)G)#Z-zESi z=A9%w8Ix&$6x-%cc@b`r%J`1_tS9_y^zrX;!&|L^Hf0v;UW60$dDMB>d0cr=B6M$6 zlYP5G%NtV55fsb8_6}qB>-tnB6^^>}Z%m^{3o-+n-;z?CX7|73YGq6tB z&0fQAB;Sy|jRTVkG!=9vf{K|$-r>eYp9{H*BH0|>ObTr?FaEEU43jcT+2goJ)+yod zN-#w6OZl7z0D);#QNf?PqyiW(huK{*Z-Yz zINaLHQxGU?NUek4F9)nGB7Zot7YP>$@EwI>W5t&}!D2~_Y&L_e+H4hoiUS`AL>H76 z@%6yjY>N-wlPAgI2^4y5z_zFexY1btVhY=KDrosY)+lZj4*E)DM>P&kF2H>H&92tC z_6Pb?t;}stfM1a^IT#YbsN<~kJyTy}%7GuWu^H#aCh=95tD=hc{8pyNuuQb+i!h!J zJbWo<?jGY$HEesl?m;Qccc9!;NdK>gEuFxEP#=l5V0P*a;sIhXj*Kfnqt51}>^JGm^4 zyVE>nCB1<5QBC47E{5*$?0FQtCDkE^bl*s-qBMhv)DZMC z(XU+`BFuq8s;`aM?o`L=WV~k}YnZG4r&TY#1sGOLuQ>F(27)YfoD%hhp^qAXg%IK| zMsg?KSDf$9v}bQ!50@2ox=FqIej#{Wh4A`|WO24!GEvkh(n_cj(ZDbfnoxw-r$k3$ zUNYriV`h+QfB511wJ8U0eM>sip=KOIwQkGX+%&O06(#STQUsMy0?8oqPAIG>Iq@1# z&{HZ3=tt;(tDVzX{~KT$_tAi8tl$>L>a1imca$)EY09KnMZpwBEcCCi1oeziE*CO` z8D=9qthZZ`+6E?9np4as!us2awj)aNtkxJ$lJBSGh}(4im@K4)?r+Q5{9OslEWJ)ZSc42*oS03VB zdy}_FD><{j>tw2!y&RuJJ&|cE$*Fy6`$KaZaaG~1%3wQ?)ZQS;?aPDFj2kBxOKU+& z^v`T=vZ8U}$ib!Aw^|`dBT3WRZc8uouoTiJ_8?3uE@PLxT+qxczBt9|;WSDZy%K+| zN-m~^^iuH@#)ubx73HHQw#RjeJVj!*ALyX88z*S#>LW=?i`QMFFeh%GR4dYNX~i z4{E$yNg^o?a^j6|yWPj2`9-uzz_F=dhte5&1bGC7{{3cD!a!>@H)^ftiXdhcZJlR< zsFt?ZP`eTioAe*a?RJCsXPw+WiAb=KG=X>LGU1N4Hcn;>XWi zo_^F|3vXN3YjOFQU|R{=qvmQ;Co=v}aybC48Jte|FhD4?C|BP1TtW$mgS%M4{xhU^ z_pt&0i@fNd?0Sz1Xf8357f;*7_6Wv*XVotIa+|pJuw9Cyamv5E2nZrWpq|(TRfAj|`P5om~XvTAd0N>)ioi!0Xz$?!BXEyOLr(w0E%SA}+)t|lzi!s7@>qjcwUTEPov{YBr2dpcu7n* z&+;$X=UZmsOyBHe%`j0fga%|FB!>%;S||L>v-dv%J<|B&=(nXd%Z6oUravBP{9W}$ z+#oQ0tHd4?yV}4$Oq)d%_+8gMP5TQ#uL>{zW~)Mzz8uXGTI9ep{pDl9lm{*?WhjX# zQ{Ee;Fe;G*Qkr*>%e)2k#VWy2923#X3R$Iy_-@qq#>(3y>s8+3+`LMd?qlNv%ONv| zK3Zj9;Sh9))nwh1U_%geNYy0W(xc6ZKmzpxu6mK_mzr8lM1A0zD)2`IJQ{ww`9(zp zU2TKcYA7TfOf_qFE!Ys`*LT%%EcQEug-$OaiPV>l)>%!v_`lSmQE`R`{k(?yt!p%k z;t0YayqyBb!IR!P9i#`{OFCAddxz#c!Coz(+Pz3g`t-dZUSBs1>jSuKq?7+ptSpN7c&vG@g*0?j>Zy zYQP?zk^QS~sgT0jtNNut6|5cntGDyphsDH`Y8g#Ax0>&d$)e>9L))z2-vTB>1m!|s;X42r)9%W0{ z9uaEcQKkQFP6n{MUW^Kh)@bf?``KtY*1j7HyBDs76}@Gg=oxHtRu9)ok!FS?4Tm&~ z2buPlWtfQcS6B2gkQyF`!Dcg~9Do^}Psli`0~z5pP!#6*Mn%fpz|<+n7S+%yzzjSI zS`)>P++w*imweUmE?53L-M1&?q;g9?O5xAdS;ccb%cZ(rn)I081F!W28UGPqgJ6$| zDcEAoGtcDNX&nvxDUVZ2wO9V~V`;`UzG5`X+k79m7>+3#$-=Ft!y&z;KyVuHBq&V+ zL$QFw45r7!k@9O&hS|=QiHU^`5d*cv_YVb;QlFQa8GX#lcRsrXh=F55YyNYTKVLR0 z8lAedISJ>v%A3{)KAa9!esT?p+=>6B9=pI`6;9Lc{QNIY~0m*=7R^Q%yb8N4w7+I%vDp%aIpkcTS&vHu3` zxzKAPx}vL;3&HL5f`7V=^KRlakH0rLon$|Ycq zD;;qq@^gII$8h%?^EtcDa`Qvdm7>yEvRDPpcl#FHR^AU$CVFazvo1v>mqLh_t516~ zH!jys5t$EP`>>v2;I4gNcZzY+8Qn_WoV3WBm8Ay8MEL9-uI%(Xc<&t|Z1u;#w0LK- zUwj2B^^+r?yd5j``SD5sz_W5yJzRIiMh&5i8_Nr^LxsFF#5g8{TI#wPEaUbI_n9?S ze4Nmpu0kgS{XUXvs$#kts<_n0iqmrS^tn6{IMwoz8}67A^>n$!arPN&wtICu9`~1y zr>nbXw+27$uBTFdIptSϒMU~yTEu&~9_qDwAMtj(=!wS%7?=rX8}-?0bXdb4|7 zcrfWu${t)$6Yy`jr@yy2@^b5XxmbQEyslS`onAbss#BG?i7paAx-5^YGH|abo)Nju zMW69=7)e%@k8Zhk}Dt0&vUuc zaNVl9=U(@c{SX&Ma~kYMI~`o+Z{KKhZHCERGdJSirB``-IKFrE7=FXv#(}-_uq2rL z$_V!7_cQbNM8lN`U|?pVe||q>|NZ@}AVUjuNf$L>t;zcJlk^yxRzk^;nb%;Fr%O>I zbITg~mqx8v(JHFFyW1rqL5P*e532426jyU26yuh72r;eqmybqkk7=2M?VJpcqlWWm zW_@-wL($PgFH0ORmE^T8rNxV!E>;uZ2VmFM4s$E<>lW%k2q$y>C!niCP0(_ylUiw z&qokGwR=f$_`Kr8u>>r-UqiD1{Y}MrbOfW2A3Vt629MgCwRHmvm(mB3Ub(Kj7Z%pi zA$hk5H%6^q4{ywqMNUNHujChcYJojnz?oLaZK{p;QJn^IvsHs1W9_3#r_80vTY7Li zD(yWNC0~?HOG@N@i$`19r|G3`0fRcV#x=&r3H0fqSM@QJIpEh-`7ZUY+p}nwwG!1G zgU@{X@mRU>EB{(%cG7cix6|jTi2{RgeXO~afWv8KU*SV!FKpjkM#=iEh)Jd1jp8bz0$yK^&0Z0 zHc#Ed!%mL$Hv)rO24lax}?+-BnpN4?F$oEMZHcCRxDe&Jid~4x1 zq=yLNkt4njW`0nCN`I#;bc(ITRBQgjz=;lCzJ9@%J#ZEL%BeSKm{Q|AxR-oAz2||A)0TVN(c_-!D6;4fs^`1*izyCNDtmH zB8PKJ6TfzW!}52c7(}$C%ovcW`K)f$ldbA;`ALqMeX(Oo-AesRKa_@*zAI_xqg^;O-p}kkQdUy5O^-4*x(We>#v2tqaZYUM9U@vO>x3rxYcS zyq^vpJTfN_erH48MD1bPG1eO#eeWlwLh#IK5$GTT&~r~I<$r4Zn!?p8Q9Z7I)2EVO zIlVz!$};t>H>3+o(UBWrZ0ij;g&(i1CG^HRCJ;;c@(A>=l{?_XxJ3Uyy+ z`|$vHRc2$vw};}9zWyeE#akFMV)M`ighXYi#qObkfW&xxb`Dj z=^E(do-)2YFWb8I@3|@!|Hdpme0zUzj+te}@(*9V5g2_^C z8GCHHw7(tHpngyJ=|}&tyZ_0BG`@lm8*>p+aJR}xBlz3}zy-?*%N52M#wE=ujq;u6 z%Di*(8v?UIYWk5W3ArJAKK2F7Er ztReTESmwKwr7JY<&k+Ta!uE1JkgbZv&fL+8TnFd;i98}#gj{UzsvjH$7nurnCG80( z9;J4XU-MeO0CD+7!K&11+#a zSm4kn)H1EwAhBl4v9f@OZQ`N%2;Nq>eAnGw^^wq1Gb?gFcc~>ugGk>>3`cZlbSHF| zgz1I}NXxRA8p3<++~9@v+LE{4Jq@eQS5f)5czz{HfLolJ84;+10%X(I%@5f4L20Es zuM6wUUqle(J?JHrExWC z9-82ZT6MX~6*vD>PHBB5Wwn5_JnYCbOi1G)*4NJ3P`-K?aBEz2F)jgrW-5|s8M*-w z+IVXAq_QAnTgqq5lI=KRO^b`#M&vMWm&DHoCz2}RoS;e8L5{NrN)`s| zV?U_~=;d?Zb?ofpOPp~%bWcb`@e>F2p}Fkkh+=R1f7PQRaigbg?B) ztw7Rze#`P|QjYP&iDM#p2){4H=syp53eHNSB-J&j%fiVVQ%bKA=roGRqW-Kpf=(4l zE=w18Xr9%HT6Mb0%16TU+ulbL=4@nG;>RxSnL5-HXyMWz?N~OTeS=a#iQ5pJ8#~tU z5$C{`vZM`29E>HCvP2l`ti0*WmUR>Qpv0zp{_wjq;6xh!Tz>i878tjZzK* zs(Y;bUu8aX$j58(9%syMI5XZUHQVn(b3gc_kTBrlcA&Q zg?|js(s92{9v=Q7@51t-)zq*Z%b|b@2}k?tP4lcUznTY0w)3veDZ)P+C1i29-G+u=KG__SkGhw31j)O-+NGy$Hvh+VJ-=U7c;9yKlElpdaFTsUCijhTHxZZiKpohia4s9AV+4su;<9>q-uWD#L zueI?@db;Xr(0T4o{sTqcS6Wbzqx=z}1gYjA80RzZDTZ48l#sLf1uaVVa zj-#vGaY6rY$~q>H1nH7@+U&oKZs-*veror^5#%jY74^mD;om+sQL{-!u`tRCzQ@G; zM^ElsVh;GLEr*}*T~Y;CsMM-)i(UEELKOQNK8$_;w+GwK^O`WverN+CbX>#9n5DQ! z7+qef0);ZnW|lN##N~Vm4Z&WRyE>YNM!CUan3y`6#zxfU^O39?$np?BJCo3g^;tB0 z8@x73=Q2M~y6cRCLtp!4LZx(OPtB1fkRLxj$Y*YOVS=P>A>iQX>1wOzzoWv*&>u7Q zu8V%m;`o=icD3%qKZnT_kC?Q!JLHgwv~W=K5Y`n$ zh~kMtINh^&aZ~i|q7Txrd{^7nx|>RbjF!0iS9eFq8GeiZwtmlTL`IK0&igX;)~f{u zUWm8cLwuERsO4-P5OLOG!(Ziulsi<058t6m;@Fv`2NtAZ&hr5-F{&`|KBLH4D)`YK zzCgy&a2cci0++2Zrkgu)_PM;;;^H~E+`_sG{IuI@|9*eC_{g{EI6F_zEWt7~`pa!^ zogXuAJBQ z=5e)rm3V1~@w2`}%gS+GS%7(N7Dx1gLHd-5Kb_CxG5AMI&VbHdayPBLnW>z~y|;alKvO{Ms(UD^{u>|Y|UqKZcW^r7`-<8JYG3HoxMu>r$$Qj zP3@jIUDg6i{&=q~d{Mxw^X=H{)yC1wug7z*HonM`pr)<9^UH%Pe;*eYU(eM}`>6Qm z$D2syteeksBVS&4eOtLY2^-VEYk7cYEi7(=4*uoc>{Sqf z$${|?{eoSgM7>udjMr8l&g1CE;;EppHY*xygUcs#e-ZK(KhNcf-}(iJOU2P!1|3V+ z)3|HPekB-Jgl#8t`8SXIckQof1n$u@r*<-n6g)6+PmOD@45F73fs+1@wSLI0@9p;c zl242uFD{$_-?Nc{uve9Ai6?o=7OSzm*UHh9Y4yh=qpN1n9VCCQXS-LnrBi;s?2<1* z1yH#WOML>#OIwgyf%1Ik!b*odFTr6suM$-}6B&}>=>mt@1|HGHd(kEUulJoV?}@={ z-ThKx3yzn<;FJP2A$NQ?Tro@X;MtJW&a6dVHuD}}yE!7v5%HG!Ei>tJ0=ASIpIU+S zG-Y1)Tqac<_JKwEd7e!AV8oS*xohSZTuu=Uar~xA>StR8PPiVTG`U9*f~kaMQlT(z z$n`)u-}abZ+rngh!R*FmsYtl1UW>6=TB8B`JlvWUOI?Evr^$w`lA}dZqSBgU6Uz(} zV0HsCTcT%trmiAem*_c)M^--fyc~u8<(cj&Skh zt*snwMN2&+`xzd0eB}}r_nlSGTU14hiJvh6dZ)tDBfUX~LzzS3DXY`X9Bc=2ay}|` ztJCcq4f}HRW;83EYWd|jrtih17oI;-P-x7HO5(D|c2^H9<2)Ct+QkRWhg!c#9tNWE_KFEH?LD`+N23M2zD3f8`J%o>SUw0!_4R7JE0Uaq+evTb zHSksHT*%myVHm*TR_B`vAKml$8gGz5>r7!wHQaT6Xsr?xX=h@!2#?QRmV9ArjJdF~ z4#{q)7MU=?Y$o1j2D^5BQJNUTu5Awa-EnrL!nVF1Q2L)M{`5rcgtY#~bQPbV9|Yx7 z&k!4V0fL;=he96<3vT|e(!|ynCmkc=HIb;eh3td22}>o_O4PCZPi*~`rpkl%rgdxSV=7v3!7d88$g2{iXfOmbku0wbl1v?_A_BJlBh# zR(@WdR7l;HVh4y|N(1B_VMc(KPC1KZM|q>Z!hT z_>DRZ2mjYCO{v{cYoGT~X`$hu{W(Bese~nnU?`4bw}-OjgbI3`P^2@)n~E$)F-D*LLn(m1l}rib^V0fIQJTKwCo zJRCIzZt#hF8_G(U*oN!c)lZLWyZLN|{w4SRSIo*=#_8&5yVPNfiM$AI;aS0?y|LK@ z1D}mbo>ZSYs~i9^n=AC(tk4q;z~nq(YDmk92w+_i>T>R2aHYN4>#Ra7>b$Bg<8&2L zDdw4%qia*8S9%|E!er()&=szYV-jESd72r)T;Jn^LbYne*giQ5;WDk786Rs&?Z<-y zHz%q&SW)Wl4{uodgu_Y$<8WFmw_L~7WM!3DdgI#IJ~oIx+le8wVI ze<%9v2e#$c0+GybmlPWbNuo0-HQYbV@x6{JR)Dk(Wz9i^y^{?sm#MmIbU(pFVV9Hs zFN>et3a;|XJXxdDy)RGKjSh#TVJQ5O-<)imd(L_&$(W?o`3aVqNy}`q%Go0koG4d} zq+kcEC&dAf2rsR_l5BdL(2X`6X@8BI+TuJV^OUpQQuJMrSvXTZ4_E=tv)LK9lvvLL zh04)P(lzB(s@Ol@ld~bn{@k*?jtVm*nYB!lgFayo&kZ)LK^$DR!3bti=eQeO7B*Mi z!iuzDbyrd-?PFlX!D%zKJU*UhE3T30AAg4uab^k7_$a#&x6TQc2 zVxS5Bc;B%#OCId`ZM@k{No`kTYxY)A#w4k3OPvUhs+HPPWJ?{3VI~Q~3%OXiVt60R z!la~L7nq@VM{F;;eF%X=DFKy?6?V``{I5`cz!zlh;ZSwHaU@Znt6BhfjG>s1AZ*uS zd=`|Czv8a9{LbXeEOz`*Gmf?FyUt%=cpGq3NQT@ncpi)Rwm)ll0g{Q=BYN|Zc5>G} zC7phGs9wL~zL-Qx5ER$7K;Y@p@SE7>_9n84`B!lY5VqZf8l#gJixlnu+C;Ueig%mx9;T&0|w+Cqgv}h?}*k=MM26wsLryRDqSSfAfy17tubFMf=w})e2Aj^ zX{ght!W5+xGIw1CiFv-hY5XAmU_RN8Jy(xErdN0WB#I5G0!3x zm7J*&5p+|Z?w`Co2;0I+%#xGVfCLMu0`$~a;Wjn_`{7_z7CauUl%K{#$^V&407SW^ zF_-N&O_06)oQOA07LA6$i*DHa@eta-*@Oemi|)5H0dRW0PJkBb31a<1fMZEEgRM0t zFb7g&^{0UKb}aCbS)lSW<{3f|V^Jl7;fmi4W}>rDnknDc?Y7Wt)r1~>$LYkFRSdF= z+OcVpK3ONc=T^lqh{M{(KNYpp-W9Js=6oyt9u6&p>rB1Ct6*d;6D&13_~=;b#Rt1{yQ& zbot%DGckh14QQ24^*DWZv3fi6O)eJgqxjeP)zon5bIWhyqWHerxUj(PRkY7ORwAkr z@x*YpmogKJd!3D}pF2pbV8T}(t`vnnUs<&ACEKb=)y+unBXoCR$^^Npx{u*yRk-HN zW=M8k=mcqdfI@si3eNmpGkXjHQUN98!GWMRdrTHm0T$#zp)^NCU&x3wY-$lt+w)i# zLy~fMdXdP|YkR<2yec4W#XaP#S0E-E(9$-U&2yk2{}^BQvfVDwvai6P=G-+Ph$mt8 zreh>@E5>6{Ao5oQXB3I8R0c=^{71pS{N_pR|0mEBheISAS90Tw%>{UH2hSrFN2@2k zX1ch6-z-N*p23levzVWt@Ev(cYxx3Is=i8E17gah6otZ-*oIt&P=~N0d^`V3*Q%`DLK>V+16I9Wcb3 z7Kv?hb!%GuFbJVH?llOypz6jHzebFD5c&ZHLOlFqQvsr81L|>Xi)`7;?85jx)^)=8 zon#?nr{@+x0=im(-yL-I`|3CUh0IqgGvz-Au5d~t)(eo{F@2S!z1t`+uDfzP)jhsv zCj7+Fv^4I_S5agA>M5y@S$?y2H`}Ny)9qY0%)*?_X?FjaCP9xnTj#oNIdko2 zh1tD_xvt)Uu24B_=0%lPyC}x<`-nXj@(*YjZu~N^b&5iJb*6SnyLuv<*OXj_!Nylt z(X9&!0c!N5pRCJFA(zYef?vqOhCHgOblPScSPagMMEOKnfY#>wU-UfTf_xU54)bL? zzfk`(vf@$c%tm)L04CTRKHEg@f6Jej6T4}-mf%TzSXt#lBiJYaOY}P*& zvcY9%Bh}~XhrY1;An%cQ`v+?KZ$(=Yb8@UwMT(MrzcL@fOCz9y98yJ@38-CYnl+C< zeihl9OrAPyEg2J4vKc`fN|I~9oZpVji24V}2jVwlDG9__daPV4mMdR*w~~3SZ)-!5 zEIoIYXO_v39MJn8rq>_zj<^=_^u{U^s7kwvi;qr0KE-Pidy`+-7F~OW*(*|3i|mpV z0j|gn?!Qnh)n#TYoV5_P^w`!@%aPCg4~d->MQe{aM&{}2vJO-1;Y;lgoW?`{Bc3FH zlnrj&zIHcMsOgUvwe-=to+^OA@SR>MomlZl4{WfRVKf7-iB(`a-Oy>_BiUBjRaEsLl;3Oz2+BSPn<=$^V0K_E!Q2X()8yt%0DxNIlr&;XxtnZ#JQni9Ou0yeMonr(t|P@RBy9A+0}=I zLIklxSNMFx15u~)s6gom{B4szc*ES9>JK#!TkSS<3|%2|dIoQ)%gq(?GgZLLAX!R5 zf+_Nn+?L$jvYlFBToZm9wfn!YDNsw-$e{-=d>!x>x1mF&Ro@|!tL73X{R5NWL5>Mr z0UevpWZ`9WU#V7%DPFa|RRQ2nHVugULJl_oT{JPn3PLQs#p$}Jc8#o4_akH%mfd3M z9FhEjji6^f^A9>;*$wkmNF_ssi48S$1KdirgXR9@IrC3EcHgznk;oc6Yjl-g8i=v~ z))}a;f#D@<7pu!tsAgK~qTB{i;19sk+dm}q|}++_)zbB36R+XLPzd(Rncr7A^)*Y{7q^E#SjIH!4v4Rc5GCq zk!jw}Id`Y&Xwuyg+-c!^mY)f0xU4m!??C2VU<0z5zgbI-O$+!$n`0uYGEA%B zUnfea=xydedI4|x|HjMu%`{3MX8q}w#l*KByf=BrndPQjmNHXH2 zx96X4qh#@DXWjs*3P`aBlyV@$pPifB1-mAF?AVo^tJvavBu2a*5(KVDdW9EdW>%om zzjDh2=>A1Onqj8@O-xUX^xH zx!Q~Z9DKTSh<5Sv$+1I41JFEgr0oC#q7^eImM8Wt6{h5>|E(lQcb6quSwq>{fy58y z=(8qC9U6qaeu(nIN(54<a(W{oPR-*o^_ib+Pg^h-gBkj%GNx$I2 z@zZXd8r*UD+z!ts<1XAmG-ZN>3!DAruoWyKq{7e+IQK!4&=Pw$ywNfpQIJeQeR0^K z`e&K1yefmARLm2U6<{iOU8GAX`E(s#0D8aA6O}GF%ag_L?6RO$>AL}hC!HDz%!A2d z7Y>DR*T(k8Ur&3FH@|9q9y2?mmR=YlrLxY4UUFXonEoGM=Nw*FxAyDCwi?@PlE$_g zCykxPHdol#cG5VFZQHgQ+vZvAe!soncc1T^|JF6HH8`K4-+1P8pPJ}0ZolJ15x5N8 zCyiy@xJ|49xgZ=r_}69M*_L_u&Uy#D*corW?Dgy&o8I5OJ&L?X$xf_H%{V_xWX*d$ zWbhRLp2gdee`eizU7NKm(cc0Up zxLMkxKdmopK!^~Rdw!LC6~sZ_ee?2odf{{5m=t~Uy6?EDGiv^Iip2fITG?89|LS|x z!X439SRmIDG&XY8_NKaWVB6yH!ojx_HAYDWwOk>!@tXCQ=M$G94+}PsPO$YaaXe{L z{14k#(`LI7h$p~WJm0)+AH6x@Xx4;nc3`SF=3R0b44vQltJC+I6F(ZK5U?h zK~;ZQsrH!h;Tnn(4J{#|R*i|}d)tlLFPvH!d$Vfscw}{^9CxjCYg$>e(d7f+yzg(+ zWNlv_oK|`_>GGfIux0fFtk?SiO^*uzz~h5e!~5&0T@7b=Q9x3I-1b1vuiK}iqti3H z>sIfy6CHNO_^Zkl{tBd<{kQA6m1FOkb{l41er>l%G;Q9B2FC6BfMXzp?1X@z-X-nv z4EX)v-tHu3^#)HFlJa}Q!0B-s&FSM=`c~$`^F~MOn`eWEcRq>t3ZE4cfGsc*AU@%; zu)CkM=KZ>YrhQLnUD>W=%nnfNPf33F*nb>IG(78T+5X3_F^SMbW`?y>4Ma=-H2cV{dNRL5T(8a&=^tzT=^Vet85 zZt;F}GjyCfcZ7isdk{gD=ok2wm&I&oeY2stZ6QpYV`VP*EXaM;Ida~LFu5Xd59}MCgW2*S6N|CwPx2PoM$JzZ?Pf8fh}IQ zsj&D|*}U+BqR~O20=2sX+H5LE!~|_q6||6)C2W*FR)efY!a7EX@~iUe8BXs9hquqr zX4^Pq$hkNO6gI5UUTv4@QD1e1Wy!LKQR{oxi&W`NJMOO9%wf6q|{atqSo9%L4%v7nO$`XPiUq8mVC#MheG%}jBA z9t0{oFzEAr+xa)#ckdBXo{B9nQ8DKW7&E+R?jLT!_Z%`NoTd?0=HtM4fY=_JlvVr^ zl}(H(WU5rbD7ZWobKo$L>^n|fT>rDlG-jW24Z1#F@sw_;5@d~+vC=o1&5{Vj3DXK5 zW^s2sPnqPKvaXG3bzgt7?~Nl7FRsJ{)O48djXhBtjzonq*V?!WsaEYEQ*3tfiQ;~M7!rHUfj=SVco5+?YgbXo=SzPqttOHgeSZkLBsTPq}zRmx=?A?YDA?}iyH+=bDTRps>j z$2)wF#+FPRw7NUJbh?iOSSv+oI6@W*YecF2LIZNKlGE?kW3)v8<1f83wOM4~G8JK} z!=_`*xofF`nx1d7ViLGzO%VDY@2^>K$E@O)scICgbGyazBWQ5v*fbVRsVi)k-D94} zqA9*%nMz6ErpD??-EXWrdYUE*%}O*s=l*@4Wt^));x+icFn$#PGx})RK*+DV1@1rO z^C0jNVqXoIgS*&KrsP;4!hpK>H^QKxk8FzatQ!tf(fu0ozc739nn2Q+)fE>o%=xu* zpwh%FMaa^m_8DDCxViUc6aOpI^(xY3l)aQdOpc_;yAxE}b_&EI;2P{-_+Mfm{ZMAp-f3%5qLzEE+ZKDw}I&&4^P%1h^VpLauQ2U?{iD@MT?&l?o zUpA#hA+hrZOv%MuZ(~G!jex_fW&*&uDUMC94~f6YDXfl&{|e|6Q_S=aeV}#_rbpt2 zBCmFk0i;5cZ&!4z)>#&{JTw+}>S>=N!(tB?nmX@z@u`=i3UN~%<4b49b zVso0cK)6_>84EOz%+OECdFtZJL_E5w*d6#4$O0$}LPYYzj(Y72_$ z>1d4t!IN94Ye);g9Bjlo>ZPD}PDyFdM-^2j(Kb5oT@4UAQMC=dy=2KxbL>Sd!R-Q2 z+QuwKPiJHoh1M?Ms(@%ac+HS8jq}xfB2@>>BcwMqaArWkog5JUyZ@z|n!c=r)WAt* zjO%KCCE!ERErkI^hGUS)m_pRN(hZpk?AQP)~ab##^%9hJgE=ckAQ}sPv2_@)TNTC>`mavsxBF+^*mO6e#h4gX#5!Au)exVh;@n(QWa-Slx z(f-W^R^7gN0EF}kOrN-+X{r=8XXfJ5Nw@&b zr5Ay>fg9BMeRP7RFTzZ4D&pC{xLl8oDC(}roN8JeuHs0~rSwW$c}C;#K<@{-%!&$r z)Uvosr7{29TR6icRDqn^5Do1C2G-eVb;GyYsv~cv7#XBX54OLZ7C!vMU}1$J0c1)c z7M)fH7n+FjV0?O|bdZ<7(o{(4sy4SR=`n zq$5G>@bIq}D`qqc{L{Z`rsflB+qN9p}%WQWWw8#QbRMyR8&2`XOP1~3!5(?1AB_~ z;!2rL{i!D{F3^k)!u~%~W}QJlxQy7iBc<99$d{|l$xbu~)enO`AVdV6ss{EKay$fC z-#}52i1THLHbJqmHn}k!D46O1^{mVwu+GGG!c`_wj z)~feoCNvCT#t*7=!YK7|iHxhjD8t+No(7{$K%TU{D^O;ypJE+x;eR`yI7`6tOm+jR z?Ec;aqFx5o0bAkmzY)UQqxQ4j|4TK$RR% zW9dSe5k_nIeWZ}UB!M}iFplh^Z7`SlMQ<2O;_A9Q_-<5&hq3^I?=i|Mo%1Jpl&YCX zdRJkmIgxXxeb7s(A_)yy=<8x!Xvor7`RCiI2$pFvNui&GC}kPb(+b!8GuCBC-Ob=p z?$V!frHe}MI)PN+0&_qw0>3CquDB~m76tXE&y|0qG9{`~ewWbe23r-g%q&npBw{BMk~TpD7pgROU+yMR<>o4j_+HI^KKav+df#wCM{g`Q*r zq@Rlvk;M{)7Lhbw+_#>|yxxXY&UE6R2-x5B!Vi|z>OZw-R6Yq2{8rcrfC~Hh*<}zQ zK7OxY;-55Y43=fW#n9XxfoB#!qMp!NKcaSb9)L8`F@-@-(j#446UG4PdG7=8U|PLs zZ4+6?zJOY}N`D=Ga+X>1B8)-95YJflq;5Si^fdQdUVknMf9u6bqheH<@AWp2?G1Z& za$$C20ED{t1QVEnoa-ec{q0o&@{+&~=LFo> z@@L?iHoV6`k;7z54m-z)I+SUkR1w1kB5UmhBL0H@#yPml{)YZ40inO%e5>*@N1=Bz zMXw4dyzc1W=%6Y6F>#Y&27jsRE*aK?U%|MloLQGx_n+=N@|QY7@Nt=sW?q2m`r&2x z0E;nDT?aVvNFxH}^?@36?Zmr4(Jg!$a=iqD8|diNU?5MDOAK;Oc?h!6*ai004j8lA zPS?rV%G{)#vNzZ}_?x5i^{;2AZ@y%+p3VEFfAzK|^|y^(P|}aKQwbNmm^B4-m#*=5 zAEJzED+*hh{}r!Xs5;LECO<+ID6Ip2YwInaf!aC;P+L!6{$EkQnBQM-8WTqmo{rUg zTL18GCplewe#_lJQJo9Tu*kJ8>JQ~t15VkVcf>~vQ4K`xFI4ob8_c2cf@J2 zbPL$y`&7YPdBEGa`%3!I>^Y#+u#I8=pGzGO#M|7))|T-X>bIcD<%!QqgR4p`%{pbN z0ApsQc8r;(@D!=-Z{_?jeC4PHwo&0G2FD;__G-IxOB%{p*Ma5b7WhVx|!P&&{%v3-+rF00bCKUS;5<@Sn>1O1xy0SPD+m zgJL}@3+s9!q3J&s4JUvLc5}b+YkDTV?`nzR7?n+X35vT`5Km#S=hFGD7@esCrw|HkT= zqGE_0{dX*LQVzSLlNm1%gj)mv;tRaQg_9zarY4szylB_Sq-JQ!o!iZ{(2jKtmQ7Ut zQQbPDJ*&Dh-RTZd7wSG%Acq$R^y%A%KJ;$H;b|5<^{Qee+((jMj9t^c?!q_f9>R-s zU~Ue71*rcYG%@5CkhR8hra=2uN2LpP05Pzt=%3N7_ImF3#@vh7QMLQmkuir)!kZ#s zaTC}|ER|PG^>cxP1y%5sG)cBKe6RZhWgE*(`y=Fh_HXL1=5@Ag$wEhZ@syzbOi<4cfeIZQbk*HoQ-gdfp4yy z&oWSk{ku`EeWFK3_>FQi8vKZI#l5SJo8G& z6>nV;%ik^M1CSX2B;~f9@8F6LvKK^AUHTScY=cGJ+J)$p+8nb<@2cPO#r%iA{kMj! zsN>#RS58lt85uAg3O&T8jHxx%xU&H2|2{4Jxm5(Bl8eVi*jB}c;5AR_My z^#4h{jUD22t~o7-wER8nfb8N|d#pRhN#@v0^A@vMk0Ry-B>2&=ROwGoLYf^W;Fa)| zf2a4>ngWMST#9*{B?RDe?3u|=)nh)WHrY4O`KCX>U;F=+_iHAor!+2q9Pg1_sA&P@ z{l>9rdOivj%j}jV49x#g*8k!~18+!x#*RNT3kx)X0u4q@s{DZ!oWQGtVAqqe(8$Sk zt$K3Z(8JsnAT%8CkE;E?LkAL%6Fg(kT&1(XEix<2uu_-zE&jK4A13)hzSOy`Y;Rev zp?)LUbNz&$UDwSEckQ%2SgvZ?L&t{Cx$!j><5Zy)^ZA3>a<8H({j7a=$aiUX*<^P)P# zp3>(@v1^u{qFUtUfC6=AdI zD{e2@hG%V@IK1t`HSKF+qve+N)WUZbf;Ah!hECQzVESI*FYfQ9{X^6gFpvW+A5^RN z4;$|Dg$=QlqydoEb-K>@Ie8oo0QMa)Dksst=e&>MOq#_NV-+8*tUw-E-fBeq1 z|7h#px_a;a3(wO@R_gcC(c@jc^J{FFCUP%VL{juYo zy~m5@XP(z4?l14o_kf9a$LDR^7kBsN({Z%T3->1;FRrW&>u)tPcV_q1oa#XhYqWVh z1d)tsEH54}%-n7GE@@Dihr4cj%g!7gODDR82tjGv$OJ(H1Fy~v9F`qzCpr@daoa%1 z@As#y%sU&(p;Ke-fVGjmhuf8v!qZ>72x>3&fb}eZeZkDo2;i>Z<;tDI+S}v1^ZVID zTG`In`=`Z@lZJtw!wc7XpS9BBqNP2f#8ID_wbLE~jm};^&NBjjIe?wbd=7uc+L}Gc z>w@?FcHT>7dL|;8aw<7@S3jogQL(UFMua230$3D^mzXGcsYIvF|$3%{UeruYiy zXMW+g>7gZA@N<+`kiP`=FUl@B}}6@}_v2lK?Hg8Ouo!YpO3W`slW!>UQHi5jN+v^&(O+=0qqS z_oeCOI3TsXt7Xl=VSROt0EwT1300^~&IXsQoQu7b!g1eEr!N?wKU*qXHQw*z0kTNX z%pM)+n+F+-En!U*7&@B$WQCi(OuF1zRL2JGgJ8~-oUVuW?7hF-P;<`2W+f`TkDzei zqh2p!hkB$8C%Ef;CGmxdC1*7N7LDdh5p&LR03Z=3ZwL|IG~nc89R)XtNQUGnE)_H= zu>{>P1jR*ksglelsUJKVcrcL-v=COaL*cZ*SJf#LNe6}@&-Tm;=Ic4_z~-xTk%oAKgpRAv0m`9C;bIl};Sh!(bX-MOHi$0UX2q-BU z$Uymp(jLYvJexVJ^2*>6dJwEBhZ{_+ZMgv+y5Ovyds>>%#yefS-@9&25Dgy(S@FP4 z;nlQ^)|mp@VVZvQ3gMIE$1{RtsWuc_O0-Wp)2T^10VG5pv%7g0LQ!{-kcRw|d)Mbu z`F-(B0tFnha>rlR5%i* zFlR;9oY??owBavBOgYm5G-xFd;Hs3zb(Tb9gWw5fMxz?ygOPC--EqNuip#ECXhsaK zevdgI*{s9D1f;U}lOIS#-JB5P zWt6{)ej}TOlkNX_%WSXR1}ca~Z2pu^pFwPxyFS33yv{d<&so>>od%1m4Y(V5`qF2n zcjj1-PWUl6nFhbdb$aAwv1lxbd{d-PHCvV&CKKcxmEnUEa-(8K%-Du$%y}eFIpgYD zb$FZWq!T3qhgF|Ei^+w&cRZ9iI-+t3>d+hacm`k$YU9H@^%XEZ_#!)`tnEzc*fQ*5 z$Ysl0W*seILM$1WVP}~9r4dDvI1onj*KZ<46L==BT9I@N0FRqqJ?6nH(c7Al+uZsd zIf4MYCL*@{t2wrZaiYsfL_9YLiONHHhLHWhHDkIZ5udy&>ywn>W^m+3U;N%Xq51e@ zrzWstWl^wqsVP^ct{?@Ez#^``NiosNp%opzqn%xOhWca9wZKN!=JtbHmmim>&?Jsq z%znz#cy-oWfNiFP(yG0AU3g{AZ4#Aqt#cIS+T8EGXjnmdBK;%0B;N_T)O?qo#(tnQ zgE&G|s;pxejD-0&wvgbdc4!Ip#CasOV|avY=(Gnl=J_|eCgOkBaly8j5~C0?Oehgx zV!KQ~lM2sd3J$Y?DBrJ7G6`SD!D`0|LU~1VL?Tw(0NB4S+EjdqD%>TC=~YDyWHK6| z?bNjPZ}bdR(^9+hWrD_Me>Dow2TxLQ?%kGb(b85IJnaBQsFYdf9&b*u*nOa(M z3>B1L7vd~ZJhhEQ;AOv&^_SRv;#dgok`zfR#%~=>P`=8BTaL@T&D-bQ z#o|3AmmL_X&%Clo@z!>Tu&p~N9+fb))gSjcV!WNO`2RUm_0#hOz$9+!|tCJu!M9QF6%Ym=T)A)hWn`O^P)ul#4q zOHQX1!X5_s=G%L**4GA>ciA+0a9K&j|J+Jc8Q;kaIs#Mr*OWkB(4^6uLMkaPVXs9O zv@w$-H>*rXDGRR)kd6*%>vuU{U99Jav=uf3@UdB39A^W6-(nV7lb@zJ@d&C_<-^(m#A$yU<}4Lmy$1{E@eFCbM%PC z9U@|7Q96%l90p|7u~-!$HyfXwPf5QK<3|jxT%vm7J&dlx2LV6EPlbsncp(ZF;K#bO zGI*2tnmye}h8YD75inB9#X_lIkck-q$Rlu`3%+_xT+*aJ^CHFw*n0Ab4AGA3PCpFM z@2!L^C#G>T01$hJZV_kteB*PVvXD|n!jr~Rn_+s1Khi>D2F!5R+f9hrbi8lKjgQ{) zk7_fGQNWr%=Rgbxc(`IExGslBXOuLPFseD!Z}W=LISQ;IhO<%td(xX?h$$j6+gFA!6C6-fC||NFNkdzH3_|}* zFXtWglBWy|G;&U$!52wD_%Vz@gZ;wr*U}$irj0n^iS4F$W&sfp&2*=D71zQr!C*en&u`UdOzduIBdCP@IWlHg&qw@9rudtD@_4pQ#> zrYIK&Br&aI+n!)LSQ8M~>DIrF?%<8t!;PD(to*JFvlw~~ALgGjuYSLVAVA=>-Rm)1 z2BFk`?iHZAZ`NyM(XrAfIz+w(a}>q=&iBpi{i4!>fMRCb5qsZL%`^ld00vL8#jDl- z!zNwzA_z4>I1Dj5nB5o3knA5Ya6_Bk^wrPuX>81=;19@!bbU7Umd-%V#;Zr_>qyX9 zCEPpVshiF?mAQn`@SqHJOHc-T=wNJ|y3f=uohTqJ->nqMV_HH|FQIo65$8~E7QEi_ zlY9}06uO3booJECCO)2$MuYoq-AqJ@VQ%jsw8q z8;U9(dF5SGjd)s~a1YK#Sqb5r51#n%y%-D~G*?3d=Es1~Eol)Ut+b$;Bdr0Wm(__A zWdMymgNTAzr!)5Ck|5DAr~B%>za{*$iTg1QOaK>dySp@+bFY5~UdKZ4x`*V&SU83pClU|4{L)( zKaX4cl+zL&OGdxYkzVbAt0JpO0`xF^=RjwymMsTDO;d;j8-V1G0vrSj$3x&!*bg&nVo@EjeRuz4 z`#V<=ZeYs5rP?o81<@eHGUf_odr?)9@-@jYOG|b0VB)ly9*sa6(LD!|`2+`?%sqZz z1WG7>%0Dv!o$*LF4PwSEH(Eirq`yv$MY`bHYQ}c3|JHw`4~hP<5lf^UVXdC~&}chD zS+XEN0TVnCRZUEf(-#9=6;(}C&uInT_*G61_!b(H-5gAO7Pxs)vBL0xjyt?=6K>rA zd^3qHS1{#RGgO<0XV}DlmTtwO91`}lgkMi`Fi+nv?)K{YeJ2zy++k-DHF!<>3x-7h zy`RKaQM_%IA^Mc+J&ONYbzv+ee-{i#=VS9x+esySMK>U&D&_OsFUSbedp~Ggem+_N z-4Ls=&BM?BEELCo*ZH$A{mQqZ?+izUAKx`5W2VWI^Z}idecjS5j_9KuNH`>P&Myxj zfu$a^CP^v=|2#O*Gg)b1s7q~7X<z2B;edHil3h9a!$l>9e%W>djKXKZ z{_I(Kv#Y4fTp?imVCEo%+LV8_sQV(^Pk2t;0MZdI5{=jN(#(AR%TyW z?RM#a*Z*@P1v5t{M3oOz0X7sj=kzQ73uoV zA&s_J-G|Pf(K*jm5Qf1hQGo=S!}A$1(igh$MuHKBk(G~b)U1ZvPm}mhOVE_T_*tqO zROZB`UAm2#WVgdTUkP$DrAHU6|2?;%r~&>QG*Lc!^d(HMi`kE97N#z2w4OxjK0Fu8#-0Ac^$0`f zc{)0)5A5@Q@jCx*HSQ-Is;K92_uXnBmD=GPa=pP|s|f&Bf%oZhy2JNtXz~MNyGIY( zL2T?MN@12w%l7r#Ep01I=_`FaOvd43)p^W=cYlGy zI#t@xgL2fuFSj&uH}2tTwXzk_@!i0_b&20IlVBuh?=a^S(&P5*P4_RiZ)dDnkSfFv zAD|TeXwyl6b0jE$7EqaH!~CO6>t{b#3OFXw8B;3B;AvY@pBiujLvmn5mXR$lC(?4p z?QNXrkSVqfvHFgGU>S00cM!oRSVyGxetL`Q@xCjwTrS~TAG7L7ofzJ(UsoAOYI*GF zpkV*yIsdPqmxLoNkK#+?9q%s-9iHwLX&cK6)jWWS&h9GUw=bC!g_<*#4HdikGdQ=! zJbpV()`&n!dbu_Ew3wQ`MfR|g9e)INw5Nb;+yky*>@(ZZ{=T^;-|R|*up7_4SgL&o zr|{#-!qKdOMbPQzJ;b!VhK8B3dcO3|UZuKocfJyX#^)dlvua+h+j$ z5A>Ur8OXj?2Md3dM_l0)6i#7Fy{8N$879FK9~wg_k4k{YmQo)Oh>Pti0FDG|(;z>! z!N)yMd5x>Q?o8EJO$pI19-}p3qK*Vcd!QW|N*E?jB2)}*Oj3)QQwP0Eq8vO)3iio5 z@aqf9YUt>Vwdk)P&nmo}^#QhX{!BpUSK(1Kt@2FN%uTz1c*+Mn;$s+)Sz-)CEy1s( zFdeHJCHqw%v0?5I49LpRF#OyGw*>il(b36I{;Hl{*UjRV%3rk47r(|q^9IY)357uC zlf>&ozY*%XcC}wfNx`a3KjBC}eohRH2{^uv@%;z|rGY4R($aL?na$kJfF%bQ$=neM zE3XiX*cA*gK#>xm!pM;cP$j9w%+U&fg?A#=#$t;47~0$wb@l^Gqg=?+HldHT%@qEc zk4GHyNR%hcq7w<$ZFCq+hhKjePA9YaDmuwT?aYxh#Q4Gsiq@quS=DsEboE;u99=#) z8s(NpTudMZt)o{?@#viJHLn36_vwdb^~kd!XSKZ7BeAaT@67ZQyW1VQhpoa0SrsGo zpwa{3(fmSi40k;vsB0Zm#}_^(3S~r}foObKc#ooM?h+@hiq)UpiEmu^|(x zf+i=450$47qD9dNlV=cu_+GRQEo@+8BurR}vW~AEZd3l2gpL5wXbhmkj1hgeYf}GF zE>!w6`hX^{85UasI*6_3_7iQS9xmH98ejJUjek=?m)}K7;;x-T@Bqv*2ciCxIPQ0f z3}_+8PkxQ+zp87NXXL>}A#wQ=2{&v7@3SjVkAIRq(G<5!i78VU!n9OT78!=@YC>YA zbKZ+20P|W>+xkWkg$AfCR-4v<+E{rNN+z^wa@A2}MVBt`V&fi(v)Eg$v*i5OacVCEMPx(w?UUZt#F07JV^jMs2 z1(9?QiN89+xk546DeHe)mK;v>61yOVJdz|5o!R9V50FO@Ts(0?=`Hj^N0~JtTQn}) zw!5Csk3hqk?N;^cL#2z+D+V7STa@xEBUfYSg7s5ykn)qHNN|6|jNigY%N&T1mkyn8 z$n!ZqAdC-J8^H!0WdJs)4OS(EdFijDq zWPXu20O;767fqmpf1enSF`nVGN=QcEJ1YEF&wW=Z9qPo^aV9D%^rF*6<#30DQxp>2 z)T_~^94N<y)B z260co;ZfgGrNz&rUFnjq6MBMDMMdj}r5R;O^~VREx3DS4Q z(HjN$g-2|)^gTLsZ;0Fd~K-4jUqEBJRFxtF%i4cBx-+34A!$$J;|Q*PV66?pL!l;SwbXWqL`rT zGJr{xs8sedMztjGnn$He(u3$K>I3QO?E}FXbZR9V!Ma*u9~nPLX4tt`VhGzF+1jb* zXrmja`c%G`0In%rspW?Op1VB@aBfVwAr;*&JY$MAoAaR?*|Wv2F*ZS;6PV4y{54IK z)OTrYXRn^FgJ~kNnuRT-IYbLnpQzUaP7BRezDcMao^rwE9#RxJPC01B$1khq-|}ck z3hP!HO$qB(5^XZ88Lq%z&^?HP0>k*bil$jnOL)Y+w~FlJ(arkxR#pJ-uVIxGLU_0_ zq1z+NL&kRQ>gfuMOwAsi#Zzk}iPDa6ep6@t&9O0ZjKBO52VgwPUqY>ks)UL8e3>z6 z6E9F<5~V6-{L07{HT-r_ONl=6qHi%ve-~=Q3-!mEyZPnUiR!-P3#rNIl}UFcywH$4 z2%~NDYlUzB5X$miBTx+>4{bGqko)2N*se{5go;j2(P~LSk6vh^ZY|ovytqiOB@+uG zb2l&tjgG@xOpC=y$Cq^R1tq?2Sg5>O9vPIycL!;P7kFK?FfARy;aWC|$5s{S`q8v< z#Ba-&pYBQ^C1%JlkVj!qDUc_3$8h6w`|_eoh#JEbJ+#=p_KX<-LY%Q|aw_oE!p@Tb zv)O+JU*Gea+~&nqvb#)!`;OcL)lRWcroz?Kp<#+xVc5SCa(lT~ogdKOadVwJ^6xls zCPTIezLu9Ec?E8B!VRd45WJu)oITN06`^v}pD&ifK{a6}QtlO@g@hsvOs_HBkb0nq z=Ezqn|ERVFv`$vxO$bNXgC~T$n$dWSqQoy5CUj}d=m|c^V3}P*$y4EMh&H=hoJ2A} zBJwYE))Lza^)%3J*lDd?ld@Mn3V2NJ45Yq@#ATUZv1}z4OZs^VneOL-n7->{IN`;_tN+@0CgJ?z|mG3E2*rCYDwQ^52K14el(yS z{<<#0n6Qah48FI+?r8dwMBW3%aIdC1-btwK1s2UyM zyZF!9(F3q%d3I)dZQiGzx1#%XL(7YLZsr zLA?l`*E>8+@MMMfIw?(>jO2ZbdP8}WMcOP0sUf`4*t~cIr8mF)U*^)io6jJMCT7w$ z8$>JTby0Zp31DSjES(a=;Dm7{LM(@I6&@RfVC(t0`Y85yxya#X?;kxZ!DdGo8?Rpc zCO<5__*Ks4j}9hQR|#eQ+caWd`~s4sEB*9pXRtj=XKt_H&Kfrh+P#1A!)Y5VR~lR* za9;_*ReSby#QG}&?V?@kM@8(>PorMxH~`$oF)$Pwe@=1v%qU9FKG5$&6_viZNu+j{ z{j6ySJ93Nq%g7wIv%dH?LVVn%Kar1V$eLk`%Z0=|S+E&W3z3u|9U`+4lP=Xj)=nNr zp;d-nf{zZ3#kjcmn-J){C&GRV&A0q*5{XZ~IsVVPUQh=Rcu@MRPcQT&u}yB|M9z(* z&THbizlIK69v{$4t zcCD&UEhQLWpCvn4Y;~XVd7ToC@IAYMG$?$w-fqRn(DR5HrrD{)N*cG2C9=A-`CP3>BDsW zwp_1E_M9_U{iO2?Ojh;B$eWr;Y&2sXGx*C=IJZL%4eXOGiSbB-^xv zNVz;K%FUq6xAl^@@&e(dR!4TNI@_Lk+~y$IQx;T54uzBTZc!m7;$Ih|ErGQ5BA%yf z-54CE%a;@V@gWrqxJ9O4|_>xS9MP}$6nV} zoZW5uV>910J2pI*vO1I_?3Q_Rg`#-`ibe>AjAYx_01S$D-vJ(Q9$J+tziB@yt_S+pbi~|l{rOWj^-usp&QE5@w z@f^us`vG?@vH`=lUYc)jknE!gF5??)K{Na%cO%}q9Z4-MNa`^P!la_#ZPCNDz5<

ijMsUmOkTR}Tu(2(BUpzJ#jD74 z5Fi`;3m2O4;TDp>VofcP7lXFQE7qh3ny7X3`MISkH{C`(^6}=zXc2@?wQo}xEBf@< z%0-Sa{ov&n@f(sc>+|El5>7d)%=)mn*Fx(7h0}6td{o+AK39E>*W>CM6%@Jo6YW0H zGa`G`ET!WFUh{{uV!oa^yN8Cajkc8mqrfZ7`o5IsCwZnFB&48n?okPULz!2iaRb>_XJq8*C4L{%dy8%BBql~go)0^r}*5}*vmZ!Ft@RF@)%p|<;ppYmC6Bg=kk=ZL? zBp`hJyB>K(E%0woF%{P{hnL>_KZxHb%b@_TxHO+6=x;inafEsDCa;9ONBLyO-V?Iy zbXwck_4o;jpv{hcUDOR7^TMMj^EU93Iq7B!fWNeIV-3y=^exG~+?&{$t`nZ0HtnYJ z`JCSoIw@tocaUr1JB)mDvAl2@*el(Wo^W{GHAtN~q{UOq**8!DHnG(I%e>J>hYDbK zA772~Vr~I`srgmUm(@)!Ckz^ol$D5g)dfrhnX}WqC7m(=l9M(XYPeJ%58&A_X48-K zG0p4iQZvM3rnIl;hOt5#;%)2znZ$BPo(Ne!$zcldr)7Tz=H=tl za(oGckkDUlLIwoq_%)xuJn$JJ zY6&-hL633IHf6*|u|$jPNIyf;Q;k%smKtQ{XOn|`+J=f#?s-DN`99R`4RdcqAInBU zjVzfX5h|j%8mH4jpcp;j=iDG6WgQcbnC;Dzg^il4rz_nBjR0G(KSl&N3uJ$B zf~)=tcM=-IYbByc6e|>i9+Ia45w*UeFQ>{vq8;rNm!TbPH9cL@wJQys(qTl@zuBcmQqGq;T z{R}ZwWgzkPhw=&TSAxwbcx=saq!d4H{gFrFW9dVP4|^XPK;fyp2Roz8;jx9T&j$Ct z4mpJxyu?Vr{$KBdH{?p3SMo+2(^VhASijM9a~1GVLH)7X)}dXCq=D(>7o%a=40OBkv*ihcVN#>Iv-Jo7=@Gp~ zrf|oaI_O_c5k~iW1LJ1w;;B{lYyZ@+fO=FT@1lv>_4EbjtS-Vu(9;uV*0Q3q@rY=p!J z>}PCDtTPp)Gmn( zVqzHvBj)XWS*KMAfRYZ~eV6%>Qu9wwWW9A+mVO zJGlWBuq-PiO;#H}Y06z^X+82R)AhhxUxwA*ZR-tg$$(y0AphW=N$5)qNkNTR(A0Cd zW!lV95E_K?aas6mlf3bFSyqiUUInHc%_K+&EACxH@cW-_E@SllH0q+{9)wGN@W{sp zgzG6dS0$m`Io?((l-V+@P{E0z09;W9oys$TlafW|=~@9lIPzKvp)m5= zvVi)yNmLkma#nYhlNCC3jN2^&XMjjS1$rwv;r)TWZQGPsC1!hz27@+WpuuXS>Lh=Y z_DKLn|H9K@_k;UkxBq9?gw@x=nxHPg4j>^7a+}96p~-Dl`K<#1cA1l=P%7Mpb9F7*ECZdXSlNP&64? z{eE@V<&x7Kd!^@kMOGsN;0yS}Jr=tkuKo{M?;M@k608r$wmGqFI}_WsZ6|MRClhmG z+qUgwGO_JsqAzpKx%aN$`u^DO+Pl|k?CR=zclT5Elz%xyO%xuWlrj$OfJv3#qa$B7 zs0GzBBAA1Wb$ufS63?c~A2c*d3RBJHaVUb0(zl&Aue>jlPUvLeEg?{#cpS0_kr}e+ ze}sE~W8hzf3D@gD1l7797swx(pbv_Z`t&U+#As z==`Agb??aktS_mTAEq*m$K8XFDS;5*z zTB+&e7hk(mwkos?D>$GSOu&{E&1T%50?O{?{&2yAXMvWW*KtZNPPC!9c#wYGTg|?;0CqvPq&gW}j zUABAJg^#8EyP)2k!22XrE4I|i{49`Uv6_?R9f1uO~>i%KrEGL))dMWn^-qA?bvM5i8Tm7PaOaa zsh~Z5y=*w|1hG2!vbF@`$i1G6!(2B{(GMd8>YUnL0mJ`Ok+7EC<7pRTdadT+p| zBP@Mz{9EzsmtV@-^r?wPs^(e{XzO=3fltjf;}`PKHNPmE6O$G|*ah&$rJ>Olu{L*2 z+0~Th+5len_huIuo&n^nAAFNJ+9pp)VJ}v>Ua-C6-w=RXM(v(rv*5WY8mFAW+Q z8L|^3udJu=qcKbo716{f;vGu>t)4-0j9STj%twmkX_tznT8|7^o8y;HaPnv|>mghu ze!VLh@>q0_rh|xpXRSNvg70fzWhE=3MO#A_ijUz0*C$^Hx_0{?MM(sWjeK?PCYuxC zqu6KQT>jb$Q|Y5}9%gmlKZGSIbh<~s653$eW<$efrPi?MqRCvH7fw5-yq3-0xQ~`_ zr{mN_{F)Jyhv2$|DHb0O-q$_-c~u!>IK9sK1tG{2x}5<8gaasEGwk7?9~bXu8R{jw zw>+fcB%gLP9=C#fOCrE88|4?kKBM`iH6`a2vV7_y&0RAyGoET)(@$$}Rd0rP0=LSx zS&t*@wJfhoqtz?x{>csv((Kmt3uSLvsw-w@S}E3TcV|1{S|lnkB0|*Q2U0XsHMTLX zbNfw>RpWpGNI5!lyeL#8n+2^&nHf%(h(A^Z<6CC-o{A#FU28=4w^nXe<(g5><|!=8 zIQtfo*1ZoB+INb2j`Lme$>Ue^d6WJGE6UJg5Q@?^pdYVixq$2;{jl<2QTHM6dEDur z)H4hXvI!!3ooo8H@2}@8aG^$xM0tRDq-*8*P&~jmNC|i2HZJ0G-fs_I-)wDuQG8M_ zF}qYKup?4*sGyboR{Ixllm%6F35nJHhFvGxnB7}YsflukBK`V_?oqj>Mq&lrGAN%o zAHgU$LB!PaFvls}`_G9cYQ0nIJ0)#~uorLV6e&nuq?2u5tds1BLjgk>1?~aQ1R-|G zV?}`9Gh=LoY8xXEn;$4DC^no+DzaGMU&J^(1iWRvMX&ZhPcLE7xvI>Khst` zlco$ITH`msy0=GGI^JBwt$PXGC&zRuVE41$Xv>$e<``H;JJQYBCLcu-vL`0;mF0PS zSQJ*Q`6mGVT&M8_vo(+Xnb}bb(B}q^p`CL@Ii{%-kZ*U^5c;C)NXxojqtkLqO@Mhn zXfh=QnY3j#S4nD~o@6%JW`KB^NS(gTZ7K}hHR{2$kLAYuEyBfj4CX_~Su5t_s3!@7 z>+O8p9x;C1TJ0YQ7H52e4>$hu$A8*AoPf1?{xP3 z)$Z#1S^%04a7#Hutch}eqT>uW`l_<}pZQDc^hu;6=T87wARwU6Pf#EQ>C~^!9yl1Y zAH|iOU#S0z^uMToTq6PmAo=S|q<|a6Z>#(rv6}Zhv&}g3+(b^+h`#yee38r9?a4NB zm2+p1U5_wntY-^D1EdK|^o~)I-`6VQQcc<_nE(Cp%q8nhCW?7t#+{?s?3c{^9sQR1 zQAtOpKo8`?&{Sb%;vGNN;nDr&As?N+-|O2`kFVE6RO&64Yz4FgfHT#dV@B1rZRx@3 zDJv&YX@cPdTMEI`QHuJx;VY~|I)VJPeg33WJCtcbUh*plne-P1K|%rn!WzBqVaJNH zS2YgNcP|<0W57$6t`zk}<7;@UvQlTKUh$VQ0VBt)F;)Dw&gV#4xO97PnU31Oftq=r za7o1fN_RpOE@0XLAZEA|DGK21Iw^gg%(*-vJh>~;LfndkrsR3g$jXZm2_7>^O4q!oIbtLNi~!l z!Mu%tqa(|1UT&pYwt=DwEo2;^ly$s85pREvQIT{*P|Nu(32fE-KKQsBTNWEn`tz=J zrKtM-kq6CO8JA@{(}MTYt60lvcF;9%PD5O2v<$LcN82bJS+AEqpv$5 zm8f}$3RR^PFNNtAQaAr`i>TudjUH00;wk{$&%Cf5nebYPC7&vvFN4 zQVNi5TM>DXp z18$Tqni&D*M5Qs?x1Na|BS0%B7Ck~(6p5D2k}eA?9{aNsY}=j0#gxHCT8i5qloepZ zNdk!d;3lZjf}dAt3zfYNTY&9n>yx0ST@@e=JF@NnX@vKz4qHF=ixSkEMT4if$RIU# zfaJhd8$(miEiARfgt~t?0ZL8HqDn+F`%BROKZ(P*3L}RMDwqhXC|;js#C}B+&Y|7+ zTEv*+W|&V#UkY?eB&%G9Qa>Akqq+gI0f5pF!6xBSEg~ayj1{K6{D*NECIjnV5Sd=n z8gb*R(c|IRK?DL8bafZA5dAsOu>9zsgf4Re>uj10Ddj~dT6+YsX5PPg+62B6nU?7d zsn?*CszWbTh*rYfq3u`E3w=C>Nc|EDoUbo0(1;i~yLfh%(12D?K`UNZe=GQyKkBsan3 zzItIjIi_f1wxxqfX40`;U?EdsTIEK(`H3fJrg`9@alz{uJQ#%_`H=%16=Z`=3Z?z> z#)Ex|l+hYL^h)w(mH{FfagwXi$VOsVjxg& zX2z=8lc@#)V6bEwq<#NjbnGa!W*X)#vLyHxgcq7+L zu&?EmHR6@E^c%IAh2C!*WW*S$N$^ZXqv!0E*5mw=ZsF1;M@$AQ34+Lrj6w%+B^iBq z-3{1Zpb~M7xr{fpIXmZhuz1*QIZxfR2k!q$sghxI{~iOfY8!-}wl#OMRI ztN2>rjLBeIiKzFT^?&Qt?H;NUOET2_#hz_RH70A_cViH&t1 zBJ{~(l3z&<`XoF#mA=*8#!i#10{*KIJM9_0(x$~ekZ8&x(})K!s1!Tu$FSiNyB>k+ z!y>{X5sjWz<@N2v(3bYVg~nj1tni?&8TJ^eAcL$tgSESSK+;O#V^lJiOE%~RgC*6V z>?4M5PBgHFZcZ>@8sK&&9vI}BQ`(?gaoK4a0IA9#poC}ke-KsyuwWFQXt9j2!Y??= zHhSnV``y_^R07Q7Z6Dw^ZlgnD6219<4xCQ7VKiH=6&p@%w$%xOQX)~)@{Z_C+RSKr zIOG^y{-nf=L`Nbq%E-H7P@qr`H?Vp}4^w1^8l4DAxOFJxJxy*POZw}g5Cay4 zJxrH=-CZ@%FHP<=DsE`1zYs#U0B1geU8Pt+mKJcSad7Y<@orGai$@iw;febd;`QG& zuGV57D@&VUHt{u(ZL%M=cEVe}p|&cbVX^RI3LjC<+wrg(wYu4Di0~JrDTNr>Ga%0FILykD8;TksLw^L4Cb3_PCAWjPw#rx7Gg|&i0h#eF4(WuSp_XO&Rf!EVk!6%)*rKGgLYNak?kX1@I=9-+MQF z>bSXbN$-7pSDrTqF5;A}2iKBw8FX%)=Kk%Qz}(awW>NLt!zCN|xqJ0R1I}|Sypkry z_W8r63&4vpVQNQYOy)ATjxB-bX9?QVLz|v6&jB+lswNX*@>@sUn>#Gks4vGSXYTIz z(Gzwk6Qey{IfhpNH^`Y*o0HWO6CV$4>KJ@=?l#X0t*9hEWgH$hZ7iPb3Q&(VDdRAo zpL+VSy;GTbGikZ5CC!SyD>ijoe8zsotn}8+lpW@i155ZY#wA}Pyovs$Ge7rB+EFU1 z^t(3m|?os!dn(tb2bevKJTjmZIvM{NIz4~_c4M>C<4cpB1W(%})Ik&lg zF5`9Ri*j@y<5Gz~VK4RO)IXeDf0y*w*t&DRs|A!F{uW4FILJ+XTmkc|y4pheh7AH` zjjJQ2z@UR&aG_r<)%7uVd>;o>-9lAy{#|}%o90RYuq~I1v-(2-f&gKy&fnSaOkAK^9?xZ}+14qFqvtFh)=VqZCVU*m%K^Fk82V@_WXmMruK4w!^U%2BHDGrDj-vFFrNByfy2e9SL>pZ86uV(Yy||DHkKA!(uG z&e*xsY09P$Hj3uh(BWV$Pkc7GgEi+{Sf$q23KTHklHim!g+OMBMJUKYX|GcvQZ7_HBL)C|CP}5KH z+aChSwaGvL}7Mx zVo3V*${bC8gAZeQ#VbkmquZ%|j*fowka-&8-s;Itl2(PK`pU{{@OD7el_I+C`HAg# z)av2ef$;e91^wqN&{px+&iY+-_H1*ukuC?btO)2zuS?+Jp%NDR7E=FEOVB*4T=4lf5L_RHDS~6u7K@b0s z$o`f-eA4qA-+CwJ6FngVR`y5!9KX9;@r@4cHu!uCJWp5>HR(U%1$^ISha7}pPNH2S zF?}?8z7nsOViv3!25f_W4v1*RT)7#uqGTe3yl2Br47i1j@Q{u?(^dG*Yz2|}a;a{c zD9@589c}IyXD55tlHA+IT;E;X!HM?vbU8=jp`0Uq4u1BOgq_~c5@=4FaDqD6f2ygy zya=$Z35oo)DF}uCuwNaPwr0wfGmG-%py0LGG@RhRI-aW@0Ys_R#a2AubdPR%e`WU7 z(=$fHEZ~6*E+@bWjqU{&26c*5H3)*DhNQ~*A%dnMz^htT97I71;mUaSB)CR~^=D+y z!o&U(XyYPN(SStY-h6=zHY3(!u^odglfHI%?pil}e~eV09GuybB&nI1Dp@i?21MYy zJYOb#T~EDLHh^-G8{}ucRsvSxGS|{jWIRSpY<5|m05V}lA3CscpIi=98Wd12P|6fm zF$iHPa0B)vTon%#=w>4!n%3y7HrZA%pjY8AY8|=dol82$z66YpG8`5bYIi1V1yvZ< zjJR+)YK3|1hh&b-Ei`n8CjKm4q~|u*XD=?9#c)t_E+7HTPfUq4&SxZn6MR6_FwY4#*#Oe7REgNw#;Y&`kA4#+}L zKsgdl8H~zI@NbQ@NL(}-T8m=0P+_1Nwu|cG&4tESlVldxPhiWM5st>ewjg`Vl=!Mp zp7Z@!2>{KxOc_MThdUj_nLJ-aUe!g($}vT-Sg3aWCVjAjE?X(rx^%#f*zS3ar90b2 zPVpwiMQr=0e`B0OhYe@9E^F4m?aQ#D}1(c8_o~ZmLJlU}GID^TiK*M1ssGA*XtQ1|ioJq#elf)NfuWM+~!ta!#JJ`c} z^r8ODi%j5f{nMr-goIIU!KykmB#YzWlpyusT-y}cx_BVwy1jE74 z&>ok;h}FosY4GGrA&BJ(SqyV@kTv!&NJ1Wqpo16LPrHssGbECtX(C)*?h+|#;i~dy z>*NW_)=0ITvuFKlXQ72}gANUG{QD6-dS?^g1<{CJf$Kts5w$c{?g>+rSOI>sCNHq` zpXm~Qgz8_DAmfbADlc>g9kUh=4)aS)XoK1!KM-S%e?6l=w&aGURudjnRTdqXl=C36 zHv=eeYCL{xQ(|WULp>CxKJE=0o9C_^ zuP(t;ox@M~jK2maalvgX@q*yIXD!nxJSEQzY?ULC7iv&X%Y> z%fLGLy$irTFc!ZF!=X(DfwFctZsC0oN_s<7;460{tkO0aW+rHUSC%tcIVn|V(AeCn zp$%3>z+_b9dBSAW=X*MhG% z;Ss3sC0z7+Mti?%lz=HiBAhV_2sbw$zBoGGqG68Z>*wkPJn~=~EBTC?(2WtmEU3kV z2CR@6k)>!rv{F!S%B2X0tnY;?i9BomE`d@R;OGCdYd|in$dU)wSWbcV0OoIe18zaJ zGz$#}4*(ZioYWB(K-G_AVstDMHz$C5)WV{tdtkY71rDHVbB18)dtU}yJ|7#546U$y zV!hzUx9vJWI)H=|*z}+aa5h^KABgdRxFl(rW?C|WAyeh3f4#-nKnW|e=!IlyF8)M#{eYFRll8+ROVinse~CzEen}QP2V)1IEc#Bb z@l9M1nZs5FLJRaBmLe{UIo86MB>-8qZFu;?5oK)H?0aNFxdfALr2Pogx!8}N9cveM zkL{Vh+@h{O0(b06jt9aDSQVK0Wi-z(td#1xb zOB=n>f3|f}$Pr7l50}~kfLv6UK5zj_WZZBH5-QEp*`_f?R7<{uKSRf_jI_0bv#Tr8 zX&(MW)h(Cgx`zmrGnIkfSQUt&^n+Qm;jePPENq({MAnt-d<~Cb1FDi~cUFt`IrX16<2NOwKw+CfLV}o1jQkS@f=O-hcUf3=l1-fw0E{2XU>v`ZFs|;dK;O#n z#(zh;f6sf49sPma&%c<292g`hr)y3M>m(;L3I__)+Qfzgv|be;XJA3e_!Gyx1!AEn zFA5(NwFSbsK?^?g%-ITLVSf?KjizL|(L2K}H}+9XZt8l$HZZVRbygUh?&rI!nIoK3 zeW+%L@h?2~ZNQA>%ph%SFDn;Yz~*?_KmTwg1zicsEN@k8`+I2G;Pij>OTUFJ9O1zB z*J@>dz|O6m=pX-x&H)PZmc|jEWl?6n%OX?9DNSByjNIC9ff~8knvC7Mhk6Sc*=dHOe;g4X?&9KtSOYo@=yOoBCWf$_F;=pMSj=yrrS~{< zJyQH1ofaJ7qL{b?@_}Y~Ui4Gt-LHuwwbe z_of|Z?6VrO(rjOtbTEEnXuc$5UI9eF#M|A=d^^;?xdk#zu^6PT4p0sCGy+9 z_%#7*zK6=$9+w~|;c;8P;RH(IJq}T-#x5p(sPij)h6*>=YmIbZf5exBH$n4Qo2$#l z)P-5U^oH9IRDvOM5b@~(_r! zkfXh479`G~jm;yIowm}Vc;0(-{ctp!g~+T*B**@z`04J?umzP{T4j2wEgBDt={c?a z;M*jn8>7~@r3o8222R_1w0|4ex zp+}#3XtG1q7;gIt=mjNJ6F-8mJreS9-#)@6op;pqGX zjSi+Tz}`+;$XV1ewf_hC&>@hXv&4io24In+IoUyS>dVRcNAUr$zVw|^v0J*Dq$P*@ zkJS;@pq`w#t-YuBr&KUInKmDd6~F*8yznWk8SpyhGsuei!V(eHjN}8J`PW|D$VWiN zD^@=*X>0lS_SbP(NeeL*WI;YlU9M8AA4Ncv#&*rgl$~K<-ew?AdAscVs@E7`_0`y? zE5*%=k5@nHO}=$&=y&Vc)It0kp7!hBODc>CoBjt0zy7DEEg)t`{jI9|9x%!nFx%ay zOZL#e#J0TCq-b>~UbRqzuG65bc2be8)2q(kJ+LX9R?E=i&PSi2Zjrj3y1S?5_yVKe zX~3f8sitW^<84jAks_LC+iGjE_rVQxv8;>O4LoDeiRTkA;Zk2%o@i7{HPHe#=XL|h zJnZ5i!{F#P0c9cfvj8MF34rD}s(fxVjWi9$#quhD#x)g1y_UPp7XgYn5nV}y7J+UT zLQYDJqa$A%RJ5fkS1@ySbtr}Q#un4Cx zwa>dYzXj&*MjOT2rI5;73f4wKqWj4wlS0~;bs85+4a{t?l4g>RXP-BV2gps!K@<20|vUqA&u+2M3n%iwRv1!$$RsVjyF*DHp)Ww_azBFPifCcy3 zb!)8MbDXBSt*=t9? z^B#Trk=KrnyT>kGo9Uoa4ZrY|l~b2hox$9amX5m{6+6A;SwjE^4njf4fZ5Yr4co6= z{(=H8-%Z4Q1DAJqFPH%j!$YuA^uAZq$sNZ+dRK z2!(6jCASZCpWYrlv1acbC6K0hpXcKQ=GWfx>#x?T?^L)c3~}%I3Xb$o2Wr1P?MXgf z^`3FC&zs_o^~bIWZJ(@2viVgwt0I4dcuK`;lxlK zH*PPl^!@l!kE$3uTK^EHNepdRF*Jq)yu-5b1o~|*eEPmm$=1Z5N-ekBsg1@q>K0w{pq!01(e^w_6&pn5Kk#@g)-0I z9oBn#ajFV<8S%of9qow$VlU@>2|pCbk@1bsnNU7frP8;G;yY!LrTUf30{{RVc!JCB z30Ss5PuWN_WkHzGfdpyqWmY!E{RThEJQLo&h(5#qIQyuhS5+|32s^-?3vwkY8lG%W?nd*{jKz84*Ta>%aUcCo1X zw=q<8%Rq_VVbvWZE*D$PRaIg}JNF-G{dcoaC2ehH0TJQCurOq3QdG%`7LxhsAx<#p zI3TDAp~s?V;pcuGQ_0DATa2b5$m2K8f-IoF44l%bD8TR{VHrqnn3WhvSm5~9Z!B~G z#G#c03hiXvNJJFWqwyTk?NA95F-=iiNs5GKbqJS9@(TfwKa0Q#X?ImnM&Z!fGZIt4e&=8BdS|JTqLeeS)VlRsixe`$L zZxltNcx++|ue`IYjFL>Nfqf_t(%7_sg*3{idn`@n)yO_42%1T@UK>+Jv-VS!k@3J( zO|JZXZb(+1k17kkc9E>a0JNEZJ7g_z#SejE<#}b@7X`(Ck6|)%pbIfeXi_Yo7IwdP zFV6+ly=^} z`~5|}?A>L;I9uuqG|oE9cwo<@@4nuMdZC ztQ!wl7kiOA2XJZ@lae z*-xi^&;qb+h77oZ&>@0`T%*3e zrr78pR5SX>#{)f1I<6Zjavm2Ka?-0eMs@zvRyYV}L9~K^1_)MWcvtG=r2)J}a8md) z6hw%`p=VZ~EMVVx34<^rjJLlA@bHD zwj!mxWg!gDKWMw-MSq14CPXHV85~Q=L`eLs`4t`wX{>G{CaOeC{7p7UfCzakTH*|> z)LRcV4SJSr_7+Pw(8dmZc-U??8tpsjm^g0*4@PwH-o+ON=*)^Y4o(5(D}f4-#WdY>uwS_CNr zV`F402OeXk>>D4rV;5K3KXaFHXaSX^;!A_1&D5FI2V)H3U~_C#UB!cbK=NqeBg2g1 z%x)*z7mE@^2A9IDQOx9VKKP${toTdsJu2VUD(hAiUIRdRcIPA-YcoM}B$aCDCw zxf&RF>W}2gmMc8VkYvW;1GoZ-?kjY{zFWe*Tf$`cakkU0v(sR#uU%C>T{4Rr4cy^P zo0|ITFTilj*`1s!U={7^l0-|{rykg1`AAI#-KfwGT$q;V23d)Kh$UD}|3ofhgs8UW zTvtP1v64~!_E{=Q?@6_UFEpN~2NRWQS~LSP&L6m#Tcp7V~y5=4WQtwKQ`n$)ChY*9Sp91mjF5Z?KN)iw)#fbpEGpA?N!j{v~YK4vf@Y zR<8>OS>Tv|rK3+Y*s&@q-CTkfcDi9BH(c&i(hr2Me0%9U^l%XPiaE?|7OXrXjbKf*!96itt0HO37zgT9M+JO7W#X+yNAd>r{bAh*<&=yfhG()zNL zh(Fx=aiCwYcm+@0t^)sbw_8?KlGTf~moZh)Ne>f$n_h*fd(g^xOA3tEgAvS=m|il|kF(N>R_8Q@sr^s>5#E>eg2_R?wB><+!4) zR%px{=asyIN}~3gefFkvPqDh?IxB$RngupmnQ4}{{p^DB*G;oJzG1MJt2}8Y*l{J9 zAO)k~d;8jRwDzv^*BNI`Cj3k*87~DR?^oe5*pc5fQf_bi=vVP{D;XyRBjr58!Cvk1h_hDL-B)qs=QHbDBT~PWlS3_Yy`wx|WO2YOIt90z;>^tI|?e)9M<6Ocw zc$Wxnu@DBYQco!bHi`7VeQN0rLUP{gU+s3#7I{S2aUzL4HI>uXNwHy$4mFf{RZ76jO83+$bm2Py-1A zMnB?C*!gQ8v;X~H%#nrpFXs5QkxAO+M)=3W7VQd@G(fPu{Z$2@5SrA+_Tu~?J%3?y z5h$OKFZJ$h#cemUaGU&&k;UhukTbi(u%Wok3pS*Pik8DRQCuE8hHf z&Y#a0_qVTojBdrniK#cG{E+geyW_>@&6k5M-v=$jRt@0lyW&Gy=)yzUr=IFj*v@sk zH$&{kSspJY#qzC|UhGEXduJzn&5?ASFS78+z$`&b|Bhpaz=JhBV(QE>rM~`ChmqnX zf9z0M`464Qfo7xkp6;s|^|FiB*XZ`W$J_V4H&gX*GcrRh?}qyC7*elYdzXd}Zqy7L z_KU*DEJ>$2}t}T3MpW7r}2F*B3+Kx0nG!s`@-Cmxjajk(w^GL8X zZ+G+FRC+B0VW;{BGmWb~UFtG19M=@*!_V)0oo@g=v=w|@jbh7f+17epPlI;@z*DR@ zzsPE@4IlylxYRFyD)D1XlMxRX`Jq#>GZT*dieRzwXHf?PRx}7Q3&|C1Gsm|FC4#&sdDJNy@FqfNSpIxnY~r z500dlExE&+t>`3*b|Q5*^v zgjYoNfX?Xa8g_FA%0TV#gac$Kul+Kk?!eC+C(0G_G@+I>Fw{(^#tN{rV};H5a=U#m z-W7Imy*0efluoJRHMEGx#}a`KRf4NxY#dey&DRkgz9l8<@BNk zP3EZ>{xi1N^31Yw40^jdB|pn-P)=;uq%d;Mif?UB?Q9LK-%A0sImhHzV-6|u@>ydD zV0$c5?cA0fSWfNCEYQEMC^_3oPsRW`py;&SERgW^XB}JL7qO@M3L`4mnmMu1u}ZbK ztgNMdYaV5RrdP3b^o(&b{^}GV$k4FskY5abUgE}7*<7VF)31?#DyFVZW|cZ{cpBFl zykEFd_lBVTqP+oicr>WJ-{x?&MFs3C`t+>f;o=PG!Q#DT&Qs0hq6bt#(~{Kc7#Sl_g>-Ib8E;jN;O=JwuR(B356=KCaH?aIP!=l>cINMg3x#ZR?i-_26G^ z*uY{n36L9VtD&(m_Qsn$XzQEDsI_+He1}Ii@*8Q%Oxl?Gzg_@3hGvHN0Wh}4wX@sq z<(0nW^`U3oq;+>pe2+1C0d&y+3ZtBad%yZiUH)nd3`>7;zr*T1&(e}`B;B_JY{s8R zQ=7#u(b1bA*OVqPti79p zg}~obB>;iw{sl;IQ^R>{nn9}dFWE45MBsZu+kFE25Ko zm;aI>S2OyG_S7+XkGq#U`)Yb=hPeWc83*!CDD%F5e-ywHU(Q{-g^e7KkwAlCz((w? zKOjla&}&16hR8pohDO2Oh$8tSNfXt=6kNN@5Tx~I2VNQ9MzP3cRyVfkz)Sms8x*Qj ztz36L0kV_>a*Yix*`U@X#+m`+9m+^c`$GYi$PF02YRhTQLO-WlW!ncaiy@|JFCuhe|BFo}UE0UXw zw3_jkRDX#P>nM!fEY7tAW;69@#LVe3PEoW!Yz~&J{BE5rUHmFCq%~eq5Zs;436n0R`Z91d2HAR)2N# zgSaEjpDgd^l61P9OqJ(17wVx9G%p*9;Dn|I=| zcj7XXgpR|}!{bu?b)C3Sy!>daCLP0+sgi3A#W}l;&IJU)SpeGYV}X{k$GG8a<5W{= z=>P=bGc7z(B2oubL{vPra7C2~#gZ}dtlA&?#wx~?3K}jOvhVgA=@>R=?~n)oTyk4x zuU*-Z%R~y`ZwIVs|C~cR#7#6S-h-)VutiK!zeanJ^Yft)XiLg1*S2qB;XM<-QA2GM zFs4;kcY1E{qwMA1uD|$YSwcdXi|CIl?kw4G{wti_H1%izGA>oBJRLgxUjr>A=IsY2 z|CG?hDzpJ>+}56G%Yfv}9_hBhz;lrdwl6n^c2Eb%C^jzYQtp5B-tkPx??g!XU*lc@ z=)3bVVeoNJchvP9Y3sM~&i7F(@35_r+rSCfdEL=&BC0 z5OVd8W}p}A^Q}|D2~?uFtScZXx!%@5R;-!SLckhJQ(0ddfk;Eq+SWP%3hnK_8(9CP zEmwasL{NKWxf3eE2PS%0L=-;^P1lR8TxASpV|h0!_CZygZL@MlWXw1vo>W7CDn=RBcRm2m2KmRsm*9$JF>+60p z&nbIqZ2*KMNyM|uM;LIx-MTuy!+ffsR}-b+xxpJY5i8<(k)+UuQ0z7%%VByqncwld zFR*<>FNYO>vCO-FZB)RV?t_czeW5DTWu|n9kD}PS-8Jbqc9X}^;JsXn-8@%Jf$&5M z>H^nhyX021mXEX1pJHu}lMKZuYdM(}mosuc7OR`dh?8`?%|d{&7+owE6aH6Y_Y1Az$gx-9QJgM6F@Z%N*r-a6mNH_Q`WVSMLlr)b+#HP2LPo^^$-RpU$Nc zK;M|v;In3&zcuB}qeBbjufr zo&*5|w3~V@jfAHrZI8==)Qx!zAbiZxs3#j?CWcI*C9B#Sto?z;r9@+u%H-ZgNX65R zK2|3f@Y8ZmI^ee#8Mm=86Y_)4uQfbhDIDh-$loXmDOGR)Cyuw`5{udWJ z@x%LxAoCW+{T%~>g4Kn3;pwX@S(1{qQ_e#neFzBUIA1Z4Q()YKmDmAkzyhZUkkrC( z(%^_0ibHRr(zxoW*Itr?iy&HI)z*HJQtgQb4z)HWk%a>2S{KVW>dnP(@cw0 z^|ckwHt(%v_{CC!Y2c+8cJO)H-c=`{8t8Yl+Nqm;c{#TN@z-2z!a5jv^}s!nGFLpS zb^evP|A3-tMob=Hv8}#H=#8f5rL~RV9L0^bWY8fvZ;VjDh}?L;{$Q&MDMp*L;_OWh^R=~8OOBT=Io?I0C_)zBIevI7iGF(I>sED9VXd62`kuGfp z@n}aVfI@~Jt3DtsikF6kP#pbx<4a+$IK%Ut%;h)e+e$yjIs<9(Xl1#l*I1DkmI6aJ z4;IlfINgtpABuTpo1pIxcWBxX)1H2Qfb8#+De1SU=L+u+O-W%zLRlzVAsaB&9U}`V z4a_T^Tp;rBV})nl+fH|Zglg<`z0_zzKjyr*Xy~1IfZvmPLVx-$u(@nu1l|V|uQ`_o4#RuaD&lolls#+ADARLERsj zt!dYC57)Qz1(T84Hp~bIE)%n#N*gn1iqRIt95!tPXz{D0b@Vd4LcBlvbc5x-TRuPE zOiipOF;m?#+#ah#x$#)QBn^9pmvgI8JTCg4S3<(tW-%H6cHb}b&RSb}8PbZS$2!j@ z3!M15A1#)$>Kq+y99jx2iTt#_Lz%2yEBw(jd*%aE9#rFrdFu2qS4=O|tgeob>y&e{ z^$kfC0>zedPG>JUa{EFd%G8J#I~lIx8zUQ0wsoBj2)tLLS0N(&!rdkK)REzctJXA( zb=O9caW*U^BB!}!Jgd6eXO(1wXKNOV|3$@43K0uO-&>Ut#k+>JpI1t7*VD%*iqZVA zww(mLF5jjkHs`#pH9wb_iMX%2_}s!OM;zMTS>Ezs!-02Mx`47&EpD`yZP8$WG8M}1 zB90wHR}5eDojE62RlBMYw(&`+3>DVg8$rgv+=zRKLf4>{taO;!_QoK~IGK@+EH&J1 zEGb00K@}HcXN$bHbm$1Z0J>e6mT1+osM3{v^{GE6FfTm=Zolz3;iPddXdl-x(rRmH zDsn6%?|>2|YVoU$Z>gQI_dsjl;OhyUH+58;lS6R-F=CeiyF@$_tpIT z@$A{2d(l*Xl7@~0jw?a#L6vJC@uCupD_isRzlIjCpD z!DudcCFq)=0d@$VoiiOC2wo!Id}Ob`&W+y~83Iv;*1Xq%(jvfTG**P50pOeDVOe7L zIH9I){0?F$WTe&(y!j8Fb+eoIMSD8--C+sZz1jtKW8OM4wW2B-%~N_DtM9n)JczhD z;eKQuMaIM@u_a{OfFy)xC;MYH|7k_75V_YgtV9Lo0^$2xj$8-+xPcd)+1v(ZchT2r z>D&TG^)b~c4TsZ)fdIuM$|u| z?T&?aJA79k4iB{oJoo&_V%Zi1Hy~ueh>I=5E@ZGw{G!)#@;F>`!Ja%Ib&fKOO}^vq zhk&w^FWF(todg(^9n5P}HCd?Vk6t|-wGQW^{_Wt}*p-`u4Hr657@at15nrxV+Q_ev zf0bj@Q~9vwRN+@9vC)S`awcK<-7sgxr{Y=x0^;cl`80>VNnz(az7u8(BOw}aM39TWmb%XbMg~RI>QnC>z+F~+F%*A9r%1)((4%XX_&7ar39q-mMS?#uv z_=OFd<4!a_Hw213U*LS6rU6eojL?i42E56RJ z;OUQOrdCa^Bpf|=q8G6h!f4Y43_?dHZAh!cjiS}+ zQA$4ylx`et!CN}?M;ts+YpJU|hXr0C02 ztNJV)!34J7I98np&)nj32`w0~5pa#1=;aAA?$BYCcPR?LAfFBCn_>G+f%Vy%g)Tzn zoA06v0zPiVLvKhVV{b`U16~Er>#a}%6P3R46r_|zKI4MQUH3cl=!J%&9j~liRExE& zaNU}F3N>HHz_U9E4|CaZ&#Zi@dnU@_D(tg3hHEoqm)TmWX5O6;J-VkFT$^UR{xI@d z>|N3P$Z3MLGtSh1v^ay*NGx!wmvWr@!Q45=B)y0jrr7s9G(IkFXR2Q5Q+08rg_tUD zwu)uiNOajeJKFry5j(kG9u8VB)!5vGCM+F@3+{&Q9D2;Xp0#*8HUEIOSz~dY*dD); zxJ^=%^)&=u4ei=?gY7BXHg%AXFBf#GuZ&lpuK)J085i)tuurcSwoms}1=sDs^(Xe} zY2&@tdRg)>wz+-5ektnpDf zF!|*$dp5s)hB`K%B4O+69Xsg?#I8KNU{5e`P3-Mtj-+or!o)o-E7F*%RuX=dtKHB-C6HF^R44ycWQDg93q`-mN?5o&?z_$)3Ybq}|lTyEnEXZIC$ z26jcQvXBNTDcNr_`jiyXlxGaQu^T;R&$R`8p1)FiLYsyWZWZ+EO7fXgT4a%FF}@7y z25g?BExmpH^K!)io?<*~(}McLS6Z4JnON!Afkrbp6<1B{GQqj;?-Ejt*YfI|Ci3lW ze8^C`*w)W2&|QjU6tG_=9P&fH)fW9#Xv@FL%5J$*w{V`!~Za(&AqYL|MP2G zG=29$8B3+zR$yIW=knB0@f57eb>Qie!r zNdlIxau}KNo;nZpy_Q&SGTyMM{^t2~zdB(dWMy=JK%n`nkXNBkU|h&izFIT9f}Yqz zhnPK%h!4(4>~Y#%9sC~ti09L5T%Qaf(jN|S-9BLlXDCi&eYR+o7g_-#Uo0^;dI_?x z;KeM{$BQ+-4@Wv9i|#j-{)GFeS2tW9PSargG|W=yvzmRiRuauSESfe9yExt}zicwu zQ#Ozg>?vc+{+LIlNV%Y3;0WzVB3~-eKc%>5{cqb#ZowRJb{y>G#?5&n4ro z194}Xf#>&T{3oq058fiiygFlx>L_{wbr%s}0;h7tuQGNt{B%jRO~1=QH~@% zJwS0`#bhmRj`n_%RK50cvr6RSw7r=A60-2CJ;1(mP2&C~35EW7t~E8Q zn&$HfW7XN+PN@9(oYdBE{_3If+dk*}Ztnz?tB)@GFPgkB){fpB$7J&^%h4BEYE>N_ZR$SN-dd;(VC?V=~bHu)Bo(SBxZL-V+%7egDGj9St`9}jq;Hz2O zfubR!#89QNZUXnOpd4@>4huV{T^&E6#2Iqa74lyG8l#6QAx2?wkA(OMdd;MrxN%cS zc^~%_l%&i`_arw2CpgG+Fh!j)$|~~Xug&i=KdH2Ps0dEIF?fGScxYcZbK@&KLt@={ z$Y95K;jF3I`R&5-r-kEs1VJ-ATqLv{1g;j`Dae!JJ)|@WHp6G|=auh|kSIhj^`u~7 zv=V+T#H4tF3qpFc*3HzdI7o<#5wYNGJrE@Nmefcr7pXgfl_HSC7Tg@fMM*U21q5cb zFeI7H`=SsG`%(%$36Yj2;UAK`Bz|}c7#&kop8j;F5>i*O75$;WCbcKhv$^JnNVTmO z;?KZ-#nC*->uwyl*7DbeE7lJZLO~h_?Rbr`J^`=WTbdiM&VRZv$5a5#)ZSsju&X`4|bIKQwF zTZ4xSc~yirNDU`Oi=~rlwH!ToRBaLVvo+xYK{5mx>YC^bPr&&~7rZLhfgoxGO(n(e zKN_B#D3qKNg0FdKo_#k4@k6yj zTE&KE(|f(`1=>1u)1L!s6p{;~p4iy=%$H{um6g#a*|Z6WDof9wyUdd_51Fa5vzr~c z`y+G%dEu4Ya8EjD4fTwD>CBr}(O!CLmNHkGCbc3h;qP5E+2+L2>SLT;1p6I&#lq*> z>f!nBvuvO7Gb>RWQ_c$ssbeG+)suSP;y0*`t;wcxsZ;$dj$Br#F?ek^mU<4G^*lE3 zuz6AW(F^Y>wuHuuz$ckLl8Jo-VxQt|sVNJJ-b>L#ZQucGrSPNqli$9mia}!x+>ci^ z#Ltg)XS-KOPTBVR%VbCLXY0fGnQ_wXq7gk?%gX}Wp(B!Cr0DR>pm3_t7DG4?=g!>r-0y7@o)ud6h-mE8m+rGJjM1aXb&;5XtR*<;ss7zeVmy<`lKFUuZ^raFH!OQ_`tybGC z|7F)!wRy9`zUp!NM|^gS@g3Ga(V}Ta&hSY_M!v!XET`gViTEj-s$#PYCvoi%^cc!P z|43^3S6&O`FQ=AE%dK;Z2!(`5jYS^Ya>iFk`_aIaz6$8U*LE#tk z1Xwt5?n0_r#b0Y~ymtDPCac6~mpW=>>0|*?PL;vo-fMJEG=yG-2M#BxMdo&1jk+?w zuD#&w`Ii5!cW;>Bvz4(85A#9W7<1R-jckr@gX7$6;jgCsLijnh@I2&fHzBz!RZSCs z`*G-izT$7Vd6Pi;AeXOWoRC(yr>etK3#2wEXMa%BKQNAcT7Mi;7e`EZaWo!DpNN$9|FS z1n{hHJ`{%Ev>FPnP`oXOwv@kdv<)`KH#xSh#(h`TbM&Hle>uwk@J^$RGXhOhLXpdw z*%H}Ma(}mHg_vu>g}F^!5Yb%QLBvxrGaor&&Ez1znj&GlGfwV;c(>zEsWK$Ll)XN` z|8Dk+;1WL*M{e`efI7Crz2E_uT?rr`T!OCvq9vcts9hp1BGh@~7*ivUpN&HYObocfOmd zaAdaB>&N(+yc4>o3wKGMlSp%Or0VcJ%JN++BJjm$O4*Rq(O$!?;W?k>l8r` zU*%_QU|Yk&sq{Ef>eQt(uWD1E+ThZwd~W9X;9PmKc24}oB)!qH7OS*Y|HBZE(yOC2 zH!K;deQKsn{`B%59=M-`o_UJ{am5Q%ltBx}9Lceq(E!nqGoUvvPULA`E$Y&vm(6AI z;x8V)55*teD_1nf@p~oXACp7W_<`NS6mHAO6i0hCd8gsKP1!J;J2esm8pX6M z%^$IP)dMK`R(YvOj||LftLk3PUJmLjiNA$^rJuCmv*s=_gYj(ExpM~5u}|j>kNO(msTsl(r=O?2G0}f_(Ktkzcab3eTj1+b64!xB=gR_IH$peGWzTt-ZYM1Nz?ZIXa!K zHE%3*2xh>c6Y_oa(Xxr|vorwMKqUbh z1{e<_H*bw51B?a(5Y>j^0z}hLD4;kAWe1=Y&@5nj9C`<^nS!#{uuec}5CBtM7z)5T z4c?}BPC^GUo^;v|StCFok^tQzQ~{nJZ~Ca6i?DM6rCH{)U%IDGL$pV`2PP64J*FSd z)*i8AeEh6|-1&atT&yx0#qY$~bK#9yQ=Y7*zFt41$00goFQ3PH=hSip8`!L_oy^nV z57BF)lvO@|#jISI&==`yu7DzAtxlmw`(TJ2U65m)?Bvy#R~n8;>_(t3 zRaYSX#)%_!!xq;SeO85zN|&|e3%wZTDu1N-uac8Fv(_b1mYWYN3hVEogw?G_A&0m_ zLj@BB2Tk5t%H1{2+S_Ad-ZTFy=kV(H3O$P8^fo@yyR|_xHltm~WTlV%hoQgKUoaku zt=&0s=rYZm&@n|UkEULW&N8L&GM~>8dTT0JxNS$6L2MMkK`1UbHsTq=>M`K*W$oeS z9p2)WRfF7-@z0*eE0W_+%lR<#uH?3}kHUseT&AmWrpu^@>`x?L^HFJZGU$a-t4K{d zqqIJlIhKT9l)k(F`&WYV%^NHjF)eCrJV~Zcl_X7W;I}$At2U3 zk(GKof*x6l)-zfBi829GIgTAXoMx%pCH`(=SZw3R{mj>X3Is!5a{G-zqj`xKm|`@- zwECYzjF>j*3~OO-mAUa>8WUr4#BKRhRaGr?U^=X|+EysN=)=*BipqLPIZ@n1t$GzW zgj#+RbZ_CctlCmh7p45~m}f@$7l)6FY9TVh{Dgv%HRR!&&sH5Jb>6c&BV?HOV`4=2@0zJI=cHIv zZ}QXDv0rxt(Rn546L|4evcu};EfXp`8-!Y@3`5*I{nlLFeUjMK+9?cEcEa?z=%pTX z5%isLFKF#N>!dqs?igOa=bn7Ri$6_51@n`f4!sOi*no@7hDnX&8n}ro|YC4jS(y#rlxJztJb`SpP&6` zJl*&m80afL_ol{_W1?(j>+;vq*5Oa)gtY97m+}meCtK6ufU4^>gM;ls)9RZha19M<@2i{)@MXm&kREBLryQM z{Xb|Hs~7XzCc&$%OTmvb< z$1$}rqZ%@z3g>E-Mf}(GOL}u=>6VXr_wG0q&2lXBxPEHl`zB_eIx_f!8O6dnzuq-f zpApcWs8#BZH!PWD9nGCvN9U`1n_Ae@(<51hS#pQYgCSpoPMaY=!Z^t=Ot4wcw!SA(uGNo5I(w}sf^5oGUMBwu< zdrjRPwTT91P3i(V_7Z30L@H+iLo!QcF( zB6}$)<&oA;eq95mo*a6iybyzsSr)$9uMPsJ(IW67n47V77>eUpw?h3*p){z0LRxV& zpDSD38*(p1Z7?1lm{G*@uavCD4Z3%VqXm1PET?hGJAlDRJL38fY1U}0L7|yEhDOvj zQ8Mdz;%2Tzw>#d86YS0!JWx$IDmSymekDA^rd7iI^;dt2;!fzj7hzoT|DHN330W%jPLU_H>!?|?^|{<5_z*) zUPTHNvefMgcNKh=Lp!9jsn|8LA(I-Gn&k+2;kNC`M0tc&!=C8N{iL!b&|G?oGXuko z!zl168tRv4i#a;_#SfxG>{_Kr1t^2_c4*Oag0)L-0$U-;;m4^5YXDiTX~h zR>La2Jr#*ItCZZ#V1bvpIjeX1vnh{JSVNoKt_X*PZfy!cNy5T7D@N>dXTzPuJ_~4! zx?`_`rGIV>1!S_V%^Ikf2zU&EaW@cMU#u zqrj2vWX5BRPM9lG>DS{Vq{J*ZB%?98q&=ymB!>)DUuapY43Mot{)iw`qyEMFQAePra*!Ef}HAstqTAEex8+zJK($0~9 z``6S@$l4TJeU4*#gI{gmFNcPI0UnuqAD+!J4IgC6qq( ztp(ODlOT72oA;r+pHpP9f8c-}|9Ni}ErY62A!WpSXY)9tTEkU0N8UOi>+h!)@Ue1O zY{O||^AACxO?o>G!*{*qEp)y4Ps3S5a?(m-Gr*@`u7mk26xISE)~W!frR|n9?prs6 zFz1ROf!M)QCh4|4+S4bZ#Z2|T9-uc_*&unUOlS~vdDOLRjq$ZY?rPgsU+Ca5V( zht=%!z+8wQ$EBa8y2WKXk5&V-9bQu5BHQV*O)oghy4Uw2KfHHoOrMyym_fF(Woazf zMaaX{O`xv-eekap)@!=i3gTFgTJ;#{05-R2 z8eWw%;1povx%VT6VO08L2NP`x@o87uzBbj^I`6>{&|lg1jmOVF4bM7;fYlkTDBJHI zvqV+pp#xGn3yO5H2yquNS}y#F5V}qI*&`xnXeWj2cU1L8sX3?e#rXghHZ3+Sma+W` zK@Fq+oji6uGNzh0yA6lG{e^mM5X#j`W(A(C@+K2Z24db(d;7+ItCgk2Yp}vkdTs9U z2elajwM`Yev_X?`v!|%zm?Ow0-HoQ44hU&HVo%=nnCLYa<%~2+2gQoO@uhjwp@(!M z$j7SX&v<>-}Ghslhr)p{j%)rW*OAvLPmliWeB4?%<3Bf%Xmc={bH|N1Yf#6 z`HWKCS-A&1NkFlx#KYwi`Q-d#&^3LW^I1^UzH<1cCES-Cb(JfV{?WmRB}D8xdiFph zu&PL!e#=ql-L(AZcO*%MxaggXkl6kbrcQy<m)%SaTU6XIWcQ#UITX6 z57PnP51=gKLf8F*5$56M=+-V)-%#T@Bq=+fU1mKw-HZK;L(suR49gSle4fOdVmIq> zw9+7mJh64PD7Go#^D99vfZG;I0oM}eXO=IfyC<23(GiM~Lq-i zxJ}#B0%?QNwsy8h_6d9t4T|RsMj=I1N+IJDk$e{hk-taHW#WFQ0|_Pp_r&Bs9vFzs2CiUKDe~bgn+XNlnCAd^``4@StKK0%*EWr(dzdRU1@Co z@Ve*w*-W(eAv(24kC=Fg9lh5I3IR^Cvd?m=g24HAt|{hjSl`Eci=&l{yXV@dj#v7J z`vI9(%Xt?;<20WfS(`u1HT!sJSh(wN$XCo>{LD@&oJ$XQx=*}vY;){LoKd^}Rs~*T zK@tha+~~G#NWfBZ6cZ;ssCc6PYrb`HDv@0Qn?D&ao!<8yJdAL?9BIm0q140z#8O#T zI!`voc24m;01Jt8c=o|-A79hxjcG``FbfDa0d zy|`zM-+kv5TrX=%@6PSkAU|Tf?BZ;?40O+~a(ABp)pCGa+9)so_A)wvBH3p`Rm7J6 z>Bgf8A4K4;GmFJ;m5`-l&hLqnx9na%F}kgGF&!&x0Zy#*qyCTCvwZo_E~GDkce?qW z@Hg}ILd+jMTH*W0zUtl9Z{3+^{P;hoPuka8rD!I-^3p5y8kzNRVm-mrMW$*BoVm=& z)XNK4G3`#CD)RI^&lIihb*l09*^7R0URPz9fp?Kny{vlNw%6AGC9+0r%fGyae!fKZ z>QLbO)fbxC-OFze4kON6J2yVfj&Z!n_Jxbhdu;3gA59UfF#=9XF4!tI8q2?C-D!Th zE~dTEP0>vdtcHQ$z?mWZSXi0lwT2r2{}y!NJpxMM1m za3ew>RAfLKH%uMV9vnnq>SpEmloR+a0wba>4qYOEfaxv75C}QA$KOjPcnzNbLnjC9 zd0OlW1L1ndN0Pd%0Sv^Q|HJF`MzY&Y>d3u`jTyeV+t*|i|x*)@g0bCVTHMW2u5V_?;h1!sQvcQksQ zUvmlHIIw^reo&jpV~l^+<@t~sW2};(pYMdhbWcf8`R}l6DIyOaV9o<0qaq-V<`wgY zKsMG8z_$F)O)`bOXDhaktO8p*H&>JxtWCnx&omRq35LjevR zf_|_KC@m#{N*g5qgpCbu;aq7@=~%R@(hE!ooehSKMylPoVo$f+K$SszDC_Kb%P54aZ6q_Ds8|ni>Kb*hPSV+5E@C6oCNX zD8s0!(nn>33&7(1?DVHK^pcw*BLs4!VZ>A_&QUl|LC*d^-0G)WZsVGJ^ZG0`6O7-B z|CC4c=xy#fuXBI(8%NRvEZ>^{gwA5=mh*lDa-*Wu_EMleG5J69cf5CFmk4OS=J4t- zwNgPYLGe${`5XcG{s_iOHF#KXehHpZkp2EdB(M;#YbO!l`~Xz-A(zC5l>`Do2P^x( zYq2{$B9Qw4tev9idKtZ7M-rXtpU9Z-jVeOm>{``AWBe*ASkcXF|HD1J<)jor&YG0A z{~cIDR%|!COjnIr810;YP>O` z^cQ%tY5^+_)8FafnmQ2@VEzp3!n_{V1jwm^S^NKoBgv2eR~4Ah|ABN;-Rc8JKoJ2K zdN6F*zYSi|-2&Une*xr3q--}L24EZ9=l{^n!*{#uGcAz&d#Kc(J~;{@0YRUk48T1t z7~%EU59mLRK$K#)#w1li`$g(7a->IcNB~p=-1@2x<3rL=xY<%f(pS6{U!QFMzg#hW zbgQag1GICc465?h0!_2S7=TGl7~%inO1|-}E7IzqD>vgxz^kBsu#lPmRXp?Nw>dBx#>opLAXOVi2fV#@Ixq6pX=yc3Uy&Xtl8L$zu>hHB z;AO*&C@}7px~mORXSyI&mvk$-uMYR diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv deleted file mode 100644 index b348fa21..00000000 --- a/outputs/costs_2020.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,2500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,170294.0671,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,681176.2683,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,26657.9934,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,5.3,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,757400.9996,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,169666.742,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,131071.4442,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,103151.4416,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1586.2889,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,170186.3718,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,680745.4871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,101949.0686,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,1181390.354,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,1146506.0562,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,135616.1853,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,330854.2753,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,456183.7659,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,320299.2399,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,169144.4199,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,294988.1555,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,337033.2923,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,135293.0994,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,541172.3976,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,62877.4884,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,312321.7116,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,731096.174,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,513322.8456,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,28343.7836,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,138236.7705,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,552947.0821,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,7259.2007,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,135814.5241,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,287672.9532,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,176526.0342,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,121637.3372,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,431692.9606,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,250772.9587,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,891679.1058,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,11.3822,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1710.692,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,11.3822,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1710.692,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,907.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5059,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.6909,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,423.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,20.4043,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,5258.0331,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,5449.8023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." -coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." -coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." -coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,144.8807,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.0,%/year,see solar-tower.,- -csp-tower TES,investment,19.4098,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.0,%/year,see solar-tower.,- -csp-tower power block,investment,1014.9348,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,4.6618,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation, -electrobiofuels,investment,517844.1334,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1839,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,588.725,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." -lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,718.9542,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,757400.9996,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." -nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." -nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,investment,2128.4674,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, -offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, -offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, -offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,40219.7802,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,733.4715,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,957.4695,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv deleted file mode 100644 index a64a2cc2..00000000 --- a/outputs/costs_2025.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.2,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,2050.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,150446.7235,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,601786.8939,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,24217.7978,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,4.75,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,704056.1323,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,156106.1107,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,120674.3619,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,95042.884,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1441.8589,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,150392.8758,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,601571.5033,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,93592.5875,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,747916.8314,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,744892.3888,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,126161.4367,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,310629.9982,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,443529.5699,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,311414.3789,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,156579.97,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,254588.9617,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,290598.6752,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,132946.2396,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,531784.9586,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,57723.5959,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,277455.3631,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,710533.1055,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,498884.9464,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,19401.0364,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,134418.0752,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,537672.3008,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6664.1842,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,126337.339,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,260708.7462,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,167237.3159,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,97751.4205,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,402565.8733,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,233721.2052,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,810492.641,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,12.0732,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1625.1574,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,12.0732,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1625.1574,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,831.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.4373,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,402.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,17.0036,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,4089.5813,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,5308.7011,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." -coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." -coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." -coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,121.5174,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.05,%/year,see solar-tower.,- -csp-tower TES,investment,16.2805,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.05,%/year,see solar-tower.,- -csp-tower power block,investment,851.2692,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,4.2383,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation, -electrobiofuels,investment,473961.8141,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.6725,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.175,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,27.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." -lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,673.7793,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,704056.1323,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." -nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." -nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,investment,2128.4674,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, -offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, -offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, -offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,36907.6923,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.7275,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,612.7906,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,797.0658,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv deleted file mode 100644 index 6a93d807..00000000 --- a/outputs/costs_2030.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1600.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,4.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,650711.2649,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1297.4289,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,729306.1762,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,12.841,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1539.6228,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,12.841,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1539.6228,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,756.0,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.4934,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.1838,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,381.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,2921.1295,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4921.0185,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." -coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." -coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." -coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,98.154,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.1,%/year,see solar-tower.,- -csp-tower TES,investment,13.1512,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.1,%/year,see solar-tower.,- -csp-tower power block,investment,687.6037,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,3.8264,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation, -electrobiofuels,investment,431201.8155,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1662,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,407.5789,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." -lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,628.6044,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,650711.2649,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." -nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." -nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,investment,2128.4674,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, -offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, -offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, -offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,32882.0513,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.9495,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,492.1097,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,636.6622,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv deleted file mode 100644 index 2c39b4d0..00000000 --- a/outputs/costs_2035.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,928478.86,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.675,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1575.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0631,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.7,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,608179.5463,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,121.8784,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,783.5042,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1179.2994,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,662903.5995,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,13.1372,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1501.1323,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,13.1372,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1501.1323,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,680.4,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.4966,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.3085,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,371.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,2521.1708,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4783.0021,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." -coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." -coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." -coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,94.35,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.2,%/year,see solar-tower.,- -csp-tower TES,investment,12.6395,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.2,%/year,see solar-tower.,- -csp-tower power block,investment,660.9616,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,3.459,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation, -electrobiofuels,investment,396566.0023,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.6975,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1455,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,339.6491,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,31.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." -lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,591.5994,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,608179.5463,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." -nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." -nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -offwind-float,FOM,1.185,%/year,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,investment,1951.8499,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, -offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, -offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, -offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,29589.7436,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.9904,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,449.9901,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,580.9113,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv deleted file mode 100644 index 2750628d..00000000 --- a/outputs/costs_2040.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,794849.98,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.65,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1550.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,565647.8278,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,100.1144,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,696.4481,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1061.1698,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,596501.0228,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,13.4491,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1462.6417,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,13.4491,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1462.6417,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,604.8,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.4332,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,362.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,2121.2121,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4646.9979,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." -coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." -coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." -coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,90.5459,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.3,%/year,see solar-tower.,- -csp-tower TES,investment,12.1277,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.3,%/year,see solar-tower.,- -csp-tower power block,investment,634.3195,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,3.1021,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation, -electrobiofuels,investment,362825.0124,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.715,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1248,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,32.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." -lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,554.5944,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,565647.8278,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." -nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." -nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -offwind-float,FOM,1.22,%/year,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,investment,1775.2324,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, -offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, -offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, -offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,26297.4359,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,407.8706,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,525.1604,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv deleted file mode 100644 index 1a34ed49..00000000 --- a/outputs/costs_2045.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,661221.1,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.625,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1525.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0631,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.65,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,523116.1092,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,78.3504,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,609.3921,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,937.3581,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,526904.4016,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,13.7778,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1424.1511,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,13.7778,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1424.1511,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,529.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5035,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.558,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,352.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,1790.8884,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4570.4672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." -coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." -coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." -coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,90.2787,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.35,%/year,see solar-tower.,- -csp-tower TES,investment,12.096,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.35,%/year,see solar-tower.,- -csp-tower power block,investment,632.4447,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,2.7233,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation, -electrobiofuels,investment,329978.8455,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.7325,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1041,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,249.076,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,33.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." -lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,517.5894,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,523116.1092,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." -nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." -nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -offwind-float,FOM,1.305,%/year,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,investment,1603.1435,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, -offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, -offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, -offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,23661.5385,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,2.0531,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,389.0293,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,500.2702,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv deleted file mode 100644 index 25053c22..00000000 --- a/outputs/costs_2050.csv +++ /dev/null @@ -1,920 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,527592.22,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.1,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,480584.3906,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" -H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,56.5864,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,522.3361,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,813.5463,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),FOM,15.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,116401.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,457307.7803,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,14.1248,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1385.6605,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,14.1248,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1385.6605,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5073,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.6827,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,343.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,1460.5648,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4494.0463,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." -coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." -coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." -coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." -coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." -coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,90.0115,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.4,%/year,see solar-tower.,- -csp-tower TES,investment,12.0643,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.4,%/year,see solar-tower.,- -csp-tower power block,investment,630.5698,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation, -electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,2.3561,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation, -electrobiofuels,investment,298027.5019,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.0834,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,226.4327,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,35.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." -lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." -lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,480.5844,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,480584.3906,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." -nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." -nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." -nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -offwind-float,FOM,1.39,%/year,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,investment,1431.0547,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, -offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, -offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, -offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, -offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,21025.641,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,2.0676,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,370.188,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,475.38,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 29c931ba..438ceae6 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -100,9 +100,9 @@ 'hydrogen storage underground': '151c Hydrogen Storage - Caverns', 'hydrogen storage tank type 1 including compressor': '151a Hydrogen Storage - Tanks', 'micro CHP': '219 LT-PEMFC mCHP - natural gas', - 'biogas' : '81 Biogas Plant, Basic conf.', - 'biogas CC' : '81 Biogas Plant, Basic conf.', - 'biogas upgrading': '82 Biogas, upgrading', + 'biogas' : '81 Biogas, Basic plant, small', + 'biogas CC' : '81 Biogas, Basic plant, small', + 'biogas upgrading': '82 Upgrading 3,000 Nm3 per h', 'battery': '180 Lithium Ion Battery', 'industrial heat pump medium temperature': '302.a High temp. hp Up to 125 C', 'industrial heat pump high temperature': '302.b High temp. hp Up to 150', @@ -111,7 +111,7 @@ 'solid biomass boiler steam': '311.1e Steam boiler Wood', 'solid biomass boiler steam CC': '311.1e Steam boiler Wood', 'biomass boiler': '204 Biomass boiler, automatic', - 'electrolysis': '86 AEC 100MW', #'88 Alkaline Electrolyser', + 'electrolysis': '86 AEC 100 MW', 'direct air capture': '403.a Direct air capture', 'biomass CHP capture': '401.a Post comb - small CHP', 'cement capture': '401.c Post comb - Cement kiln', @@ -119,7 +119,7 @@ 'BtL': '85 Gasif. Ent. Flow FT, liq fu ', 'biomass-to-methanol': '97 Methanol from biomass gasif.', 'biogas plus hydrogen': '99 SNG from methan. of biogas', - 'methanolisation': '98 Methanol from power', + 'methanolisation': '98 Methanol from hydrogen', 'Fischer-Tropsch': '102 Hydrogen to Jet', 'central hydrogen CHP': '12 LT-PEMFC CHP', 'Haber-Bosch': '103 Hydrogen to Ammonia', @@ -269,7 +269,7 @@ def get_data_DEA(tech, data_in, expectation=None): usecols += f",{uncrtnty_lookup[tech]}" - if (tech in new_format) and (tech!="electrolysis"): + if (tech in new_format) or ("renewable_fuels" in excel_file): skiprows = [0] else: skiprows = [0,1] @@ -404,30 +404,26 @@ def get_data_DEA(tech, data_in, expectation=None): df.drop(df.loc[df.index.str.contains("Variable O&M (EUR /t Ammonia)", regex=False)].index, inplace=True) if tech == "air separation unit": - # Bugfix: DEA renewable fuels 04/2022 has wrong unit (MEUR instead of kEUR) - df.index = df.index.str.replace("Fixed O&M (MEUR /TPD Ammonia)", "Fixed O&M (kEUR /TPD Ammonia)", regex=False) - + # Calculate ASU cost separate to HB facility in terms of t N2 output + # To add the cost of an ASU a multiplication factor of 1.06-1.09 + # should be applied to the total Specific Investment df.loc[[ - "Specific investment (MEUR /TPD Ammonia output)", - "Fixed O&M (kEUR /TPD Ammonia)", - "Variable O&M (EUR /t Ammonia)" - ]] *= (df.loc["Specific investment mark-up factor optional ASU"] - 1.) / excel.loc["N2 Consumption, t/t Ammonia"] - # Convert output to hourly generation - df.loc[[ - "Specific investment (MEUR /TPD Ammonia output)", - "Fixed O&M (kEUR /TPD Ammonia)", - ]] *= 24 - + "Specific investment [MEUR /MW Ammonia output]", + "Fixed O&M [kEUR/MW Ammonia/year]", + "Variable O&M [EUR/MWh Ammonia]" + ]] *= df.loc["Specific investment mark-up factor optional ASU"] + # / excel.loc["N2 Consumption, [t/t] Ammonia"] + # Rename costs for correct units - df.index = df.index.str.replace("MEUR /TPD Ammonia output", "MEUR/t_N2/h") - df.index = df.index.str.replace("kEUR /TPD Ammonia", "kEUR/t_N2/h/year") - df.index = df.index.str.replace("EUR /t Ammonia", "EUR/t_N2") + # df.index = df.index.str.replace("MEUR /MW Ammonia output", "MEUR/MW_N2/h") + # df.index = df.index.str.replace("kEUR/MW Ammonia/year", "kEUR/MW_N2/h/year") + # df.index = df.index.str.replace("EUR/MWh Ammonia", "EUR/MWh_N2") df.drop(df.loc[df.index.str.contains("Specific investment mark-up factor optional ASU")].index, inplace=True) - df.drop(df.loc[df.index.str.contains("Specific investment (MEUR /MW Ammonia output)", regex=False)].index, inplace=True) - df.drop(df.loc[df.index.str.contains("Fixed O&M (kEUR/MW Ammonia/year)", regex=False)].index, inplace=True) - df.drop(df.loc[df.index.str.contains("Variable O&M (EUR/MWh Ammonia)", regex=False)].index, inplace=True) + # df.drop(df.loc[df.index.str.contains("Specific investment [MEUR /MW Ammonia output]", regex=False)].index, inplace=True) + # df.drop(df.loc[df.index.str.contains("Fixed O&M [kEUR/MW Ammonia/year]", regex=False)].index, inplace=True) + # df.drop(df.loc[df.index.str.contains("Variable O&M [EUR/MWh Ammonia]", regex=False)].index, inplace=True) if "solid biomass power" in tech: df.index = df.index.str.replace("EUR/MWeh", "EUR/MWh") @@ -913,7 +909,7 @@ def order_data(tech_data): """ clean_df = {} - for tech in tech_data.index.levels[0]: + for tech in tech_data.index.get_level_values(0).unique(): clean_df[tech] = pd.DataFrame() switch = False df = tech_data.loc[tech] @@ -1123,6 +1119,7 @@ def add_description(data): # add excel sheet names to data frame wished_order = list(years) + ["unit", "source", "further description"] data = data.reindex(columns=wished_order) + data.index.set_names(["technology", "parameter"], inplace=True) sheets = data.reset_index()["technology"].map(sheet_names).fillna("") sheets.index = data.index data["further description"] = sheets + ": " + data["further description"] @@ -1280,6 +1277,7 @@ def add_manual_input(data): l.append(s) new_df = pd.DataFrame(l).set_index(['technology','parameter']) + data.index.set_names(["technology", "parameter"], inplace=True) # overwrite DEA data with manual input data = new_df.combine_first(data) From ebbe3c2b79826976a8ea110f42366721ca9257f0 Mon Sep 17 00:00:00 2001 From: lisazeyen Date: Tue, 30 Jan 2024 17:27:47 +0100 Subject: [PATCH 02/12] fix future warnings --- scripts/compile_cost_assumptions.py | 22 ++++++++++++++-------- 1 file changed, 14 insertions(+), 8 deletions(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 438ceae6..bc079f66 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -360,11 +360,16 @@ def get_data_DEA(tech, data_in, expectation=None): # replace missing data df.replace("-", np.nan, inplace=True) # average data in format "lower_value-upper_value" - df = df.applymap(lambda x: (float((x).split("-")[0]) - + float((x).split("-")[1]))/2 if (type(x)==str and "-" in x) else x) + df = df.apply(lambda row: row.apply(lambda x: (float(x.split("-")[0]) + + float(x.split("-")[1])) + / 2 if isinstance(x, str) and "-" in x else x), + axis=1) + # remove symbols "~", ">", "<" and " " for sym in ["~", ">", "<", " "]: - df = df.applymap(lambda x: x.replace(sym,"") if type(x)==str else x) + df = df.apply(lambda col: col.apply(lambda x: x.replace(sym, "") + if isinstance(x, str) else x)) + df = df.astype(float) df = df.mask(df.apply(pd.to_numeric, errors='coerce').isnull(), df.astype(str).apply(lambda x: x.str.strip())) @@ -436,7 +441,7 @@ def get_data_DEA(tech, data_in, expectation=None): df_final.loc[index, :] = values # if year-specific data is missing and not fixed by interpolation fill forward with same values - df_final = df_final.fillna(method='ffill', axis=1) + df_final = df_final.ffill(axis=1) df_final["source"] = source_dict["DEA"] + ", " + excel_file.replace("inputs/","") if tech in new_format and (tech!="electrolysis"): @@ -773,6 +778,7 @@ def clean_up_units(tech_data, value_column="", source=""): "MW": "MW_e"})) if "methanolisation" in tech_data.index: + tech_data = tech_data.sort_index() tech_data.loc[('methanolisation', 'Variable O&M'), "unit"] = "EUR/MWh_MeOH" return tech_data @@ -945,7 +951,7 @@ def order_data(tech_data): if len(investment): fixed = df[(df.index.str.contains("Fixed O&M") | df.index.str.contains("Total O&M")) & - ((df.unit==investment.unit[0]+"/year")| + ((df.unit==investment.unit.iloc[0]+"/year")| (df.unit=="EUR/MW/km/year")| (df.unit=="EUR/MW/year")| (df.unit=="EUR/MW_e/y, 2020")| @@ -954,7 +960,7 @@ def order_data(tech_data): (df.unit=="EUR/MW_MeOH/year")| (df.unit=="EUR/MW_CH4/year")| (df.unit=='% of specific investment/year')| - (df.unit==investment.unit.str.split(" ")[0][0]+"/year"))].copy() + (df.unit==investment.unit.str.split(" ").iloc[0][0]+"/year"))].copy() if (len(fixed)!=1) and (len(df[df.index.str.contains("Fixed O&M")])!=0): switch = True print("check FOM: ", tech, " ", @@ -1165,7 +1171,7 @@ def add_gas_storage(data): gas_storage.dropna(axis=1, how="all", inplace=True) # establishment of one cavern ~ 100*1e6 Nm3 = 1.1 TWh - investment = gas_storage.loc['Total cost, 100 mio Nm3 active volume'][0] + investment = gas_storage.loc['Total cost, 100 mio Nm3 active volume'].iloc[0] # convert million EUR/1.1 TWh -> EUR/kWh investment /= (1.1 * 1e3) data.loc[("gas storage", "investment"), years] = investment @@ -2101,7 +2107,7 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): # rename + reorder to fit to other data costs_vehicles = rename_ISE_vehicles(costs_vehicles) if 'NT' in costs_vehicles.index: - costs_vehicles.drop(['NT'], axis=0, inplace=True) + costs_vehicles.drop(['NT'], axis=0, inplace=True, level=0) costs_vehicles = convert_units(costs_vehicles) # add costs for vehicles data = pd.concat([data, costs_vehicles], sort=True) From 6317eeee3cc83d8c757412c18578dea53d24bc5c Mon Sep 17 00:00:00 2001 From: lisazeyen Date: Wed, 31 Jan 2024 09:29:47 +0100 Subject: [PATCH 03/12] some more fixes still not running --- scripts/compile_cost_assumptions.py | 15 +++++++++++---- 1 file changed, 11 insertions(+), 4 deletions(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index bc079f66..1ce453e2 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -453,6 +453,7 @@ def get_data_DEA(tech, data_in, expectation=None): df_final["unit"] = (df_final.rename(index=lambda x: x[x.rfind("[")+1: x.rfind("]")]).index.values) else: + df_final.index = df_final.index.str.replace("\[", "(", regex=True).str.replace("\]", ")", regex=True) df_final["unit"] = (df_final.rename(index=lambda x: x[x.rfind("(")+1: x.rfind(")")]).index.values) df_final.index = df_final.index.str.replace(r" \(.*\)","", regex=True) @@ -687,10 +688,14 @@ def clean_up_units(tech_data, value_column="", source=""): tech_data.loc[tech_data.unit.str.contains("mio EUR"), value_column] *= 1e6 tech_data.unit = tech_data.unit.str.replace("mio EUR", "EUR") + + tech_data.loc[tech_data.unit.str.contains("mill. EUR"), value_column] *= 1e6 + tech_data.unit = tech_data.unit.str.replace("mill. EUR", "EUR") tech_data.loc[tech_data.unit.str.contains("1000EUR"), value_column] *= 1e3 tech_data.unit = tech_data.unit.str.replace("1000EUR", "EUR") + tech_data.unit = tech_data.unit.str.replace("k EUR", "kEUR") tech_data.loc[tech_data.unit.str.contains("kEUR"), value_column] *= 1e3 tech_data.unit = tech_data.unit.str.replace("kEUR", "EUR") @@ -989,6 +994,7 @@ def order_data(tech_data): (df.unit=="EUR/MWh/km") | (df.unit=="EUR/MWh") | (df.unit=="EUR/MWhoutput") | + (df.unit=="EUR/MWh_CH4") | (tech == "biogas upgrading"))].copy() if len(vom)==1: vom.loc[:,"parameter"] = "VOM" @@ -1898,10 +1904,11 @@ def add_energy_storage_database(costs, data_year): agg = df.loc[power_filter].groupby(["technology", "year"]).sum(numeric_only=True) charger_investment_filter = charger_filter & (df.technology==tech) & (df.parameter=="investment") discharger_investment_filter = discharger_filter & (df.technology==tech) & (df.parameter=="investment") - df.loc[charger_investment_filter & df.year==2021, "value"] += agg.loc[(tech, 2021)]/2 - df.loc[charger_investment_filter & df.year==2030, "value"] += agg.loc[(tech, 2030)]/2 - df.loc[discharger_investment_filter & df.year==2021, "value"] += agg.loc[(tech, 2021)]/2 - df.loc[discharger_investment_filter & df.year==2030, "value"] += agg.loc[(tech, 2030)]/2 + for a in [2021, 2030]: + df_year = (df.year == a) + df.loc[charger_investment_filter & df_year, "value"] += agg.loc[(tech, a)]/2 + df.loc[discharger_investment_filter & df_year, "value"] += agg.loc[(tech, a)]/2 + df.loc[:,"technology"] = df["technology"] + "-" + df["technology_type"] # aggregate technology_type and unit From ab56beb29200382701e342474a49e39b161126a5 Mon Sep 17 00:00:00 2001 From: lisazeyen Date: Wed, 31 Jan 2024 13:13:51 +0100 Subject: [PATCH 04/12] first working version --- scripts/compile_cost_assumptions.py | 13 +++++++++---- 1 file changed, 9 insertions(+), 4 deletions(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 1ce453e2..6f39ce17 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -327,8 +327,9 @@ def get_data_DEA(tech, data_in, expectation=None): parameters = ["efficiency", "investment", "Fixed O&M", "Variable O&M", "production capacity for one unit", "Output capacity expansion cost", - "Hydrogen output", + "Hydrogen Output", "Hydrogen (% total input_e (MWh / MWh))", + "Hydrogen [% total input_e", " - hereof recoverable for district heating (%-points of heat loss)", "Cb coefficient", "Cv coefficient", @@ -339,8 +340,8 @@ def get_data_DEA(tech, data_in, expectation=None): 'capture rate', "FT Liquids Output, MWh/MWh Total Input", " - hereof recoverable for district heating (%-points of heat loss)", - "Bio SNG (% of fuel input)", - "Methanol Output", + "Bio SNG Output [% of fuel input]", + "Methanol Output", "District heat Output", "Electricity Output", "Total O&M"] @@ -785,7 +786,8 @@ def clean_up_units(tech_data, value_column="", source=""): if "methanolisation" in tech_data.index: tech_data = tech_data.sort_index() tech_data.loc[('methanolisation', 'Variable O&M'), "unit"] = "EUR/MWh_MeOH" - + + tech_data.unit = tech_data.unit.str.replace("\)", "") return tech_data @@ -942,6 +944,7 @@ def order_data(tech_data): (df.unit=="EUR/MWh/year") | (df.unit=="EUR/MW_e, 2020") | (df.unit=="EUR/MW input") | + (df.unit=='EUR/MW-methanol') | (df.unit=="EUR/t_N2/h")) # air separation unit ].copy() if len(investment)!=1: @@ -962,6 +965,7 @@ def order_data(tech_data): (df.unit=="EUR/MW_e/y, 2020")| (df.unit=="EUR/MW_e/y")| (df.unit=="EUR/MW_FT/year")| + (df.unit=="EUR/MWh_FT")| (df.unit=="EUR/MW_MeOH/year")| (df.unit=="EUR/MW_CH4/year")| (df.unit=='% of specific investment/year')| @@ -1033,6 +1037,7 @@ def order_data(tech_data): (df.unit =="MWh_MeOH/MWh_th") | (df.unit =="MWh_e/MWh_th") | (df.unit =="MWh_th/MWh_th") | + (df.unit =='MWh/MWh Total Input') | df.unit.str.contains("MWh_FT/MWh_H2")) & (~df.index.str.contains("name plate"))].copy() From 55b4ac9b5fe620ccf50d2d2d0b5b61319f71192d Mon Sep 17 00:00:00 2001 From: lisazeyen Date: Wed, 31 Jan 2024 16:11:39 +0100 Subject: [PATCH 05/12] some more fixes --- scripts/compile_cost_assumptions.py | 7 +++++-- 1 file changed, 5 insertions(+), 2 deletions(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 6f39ce17..877c979a 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -339,6 +339,7 @@ def get_data_DEA(tech, data_in, expectation=None): 'Heat input', 'Heat input', 'Electricity input', 'Eletricity input', 'Heat out', 'capture rate', "FT Liquids Output, MWh/MWh Total Input", + " - hereof recoverable for district heating [%-points of heat loss]", " - hereof recoverable for district heating (%-points of heat loss)", "Bio SNG Output [% of fuel input]", "Methanol Output", @@ -1913,8 +1914,10 @@ def add_energy_storage_database(costs, data_year): df_year = (df.year == a) df.loc[charger_investment_filter & df_year, "value"] += agg.loc[(tech, a)]/2 df.loc[discharger_investment_filter & df_year, "value"] += agg.loc[(tech, a)]/2 - - df.loc[:,"technology"] = df["technology"] + "-" + df["technology_type"] + + index = df.loc[df["technology_type"]!="nan"].index + df.technology_type.replace("nan", np.nan, inplace=True) + df.loc[index,"technology"] = df.loc[index, "technology"] + "-" + df.loc[index, "technology_type"] # aggregate technology_type and unit df = df.groupby(["technology", "unit", "year"]).agg({ From b0fbb1a3b28a961b7380305ea785e8e6b6b95f38 Mon Sep 17 00:00:00 2001 From: lisazeyen Date: Mon, 5 Feb 2024 12:31:58 +0100 Subject: [PATCH 06/12] add output files --- outputs/costs_2020.csv | 930 +++++++++++++++++++++++++++++++++++++++++ outputs/costs_2025.csv | 930 +++++++++++++++++++++++++++++++++++++++++ outputs/costs_2030.csv | 930 +++++++++++++++++++++++++++++++++++++++++ outputs/costs_2035.csv | 930 +++++++++++++++++++++++++++++++++++++++++ outputs/costs_2040.csv | 930 +++++++++++++++++++++++++++++++++++++++++ outputs/costs_2045.csv | 930 +++++++++++++++++++++++++++++++++++++++++ outputs/costs_2050.csv | 930 +++++++++++++++++++++++++++++++++++++++++ 7 files changed, 6510 insertions(+) create mode 100644 outputs/costs_2020.csv create mode 100644 outputs/costs_2025.csv create mode 100644 outputs/costs_2030.csv create mode 100644 outputs/costs_2035.csv create mode 100644 outputs/costs_2040.csv create mode 100644 outputs/costs_2045.csv create mode 100644 outputs/costs_2050.csv diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv new file mode 100644 index 00000000..0a3cfb78 --- /dev/null +++ b/outputs/costs_2020.csv @@ -0,0 +1,930 @@ +,,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" +BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,170294.0671,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,681176.2683,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,26657.9934,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,757400.9996,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,169666.742,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,131071.4442,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,103151.4416,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1686.8596,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,170186.3718,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,680745.4871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,101949.0686,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen,investment,183399.6858,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid,decommissioning,15542.7733,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,135616.1853,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,330854.2753,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,456183.7659,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,320299.2399,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,169144.4199,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP,decommissioning,2625.8032,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,294988.1555,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC,decommissioning,2625.8032,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,337033.2923,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,135293.0994,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,541172.3976,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,62877.4884,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,312321.7116,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,731096.174,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,513322.8456,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,28343.7836,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,138236.7705,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,552947.0821,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,7259.2007,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow,decommissioning,20781.4985,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,135814.5241,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,287672.9532,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,176526.0342,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,121637.3372,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,431692.9606,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,250772.9587,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,1838.677,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,5449.8023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,144.8807,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.0,%/year,see solar-tower.,- +csp-tower TES,investment,19.4098,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.0,%/year,see solar-tower.,- +csp-tower power block,investment,1014.9348,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,4.9573,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation, +electrobiofuels,investment,517844.1334,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,1086.877,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,718.9542,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,757400.9996,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,investment,2128.4674,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, +offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, +offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, +offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,40219.7802,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,733.4715,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,957.4695,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv new file mode 100644 index 00000000..195be2a1 --- /dev/null +++ b/outputs/costs_2025.csv @@ -0,0 +1,930 @@ +,,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" +BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,150446.7235,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,601786.8939,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,24217.7978,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,704056.1323,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,156106.1107,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,120674.3619,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,95042.884,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1533.2728,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,150392.8758,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,601571.5033,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,93592.5875,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen,investment,148385.2562,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid,decommissioning,13139.9157,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,126161.4367,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,310629.9982,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,443529.5699,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,311414.3789,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,156579.97,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP,decommissioning,1312.9016,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,254588.9617,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC,decommissioning,1312.9016,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,290598.6752,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,132946.2396,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,531784.9586,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,57723.5959,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,277455.3631,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,710533.1055,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,498884.9464,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,19401.0364,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,134418.0752,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,537672.3008,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6664.1842,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow,decommissioning,19206.0166,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,126337.339,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,260708.7462,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,167237.3159,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,97751.4205,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,402565.8733,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,233721.2052,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,1671.2673,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,5308.7011,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,121.5174,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.05,%/year,see solar-tower.,- +csp-tower TES,investment,16.2805,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.05,%/year,see solar-tower.,- +csp-tower power block,investment,851.2692,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,4.507,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation, +electrobiofuels,investment,473961.8141,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,792.5145,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,673.7793,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,704056.1323,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,investment,2128.4674,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, +offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, +offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, +offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,36907.6923,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,1.7275,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,612.7906,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,797.0658,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv new file mode 100644 index 00000000..710f6b72 --- /dev/null +++ b/outputs/costs_2030.csv @@ -0,0 +1,930 @@ +,,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" +BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,650711.2649,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1379.6859,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,1503.8577,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4921.0185,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,98.154,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.1,%/year,see solar-tower.,- +csp-tower TES,investment,13.1512,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.1,%/year,see solar-tower.,- +csp-tower power block,investment,687.6037,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,4.069,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation, +electrobiofuels,investment,431201.8155,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,628.6044,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,650711.2649,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +offwind-float,FOM,1.15,%/year,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,investment,2128.4674,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, +offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, +offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, +offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,32882.0513,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,1.9495,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,492.1097,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,636.6622,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv new file mode 100644 index 00000000..20781661 --- /dev/null +++ b/outputs/costs_2035.csv @@ -0,0 +1,930 @@ +,,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,928478.86,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" +BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,608179.5463,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,121.8784,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,783.5042,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1254.0669,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,1366.933,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4783.0021,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,94.35,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.2,%/year,see solar-tower.,- +csp-tower TES,investment,12.6395,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.2,%/year,see solar-tower.,- +csp-tower power block,investment,660.9616,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.6783,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation, +electrobiofuels,investment,396566.0023,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,441.5438,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,591.5994,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,608179.5463,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +offwind-float,FOM,1.185,%/year,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,investment,1951.8499,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, +offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, +offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, +offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,29589.7436,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,1.9904,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,449.9901,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,580.9113,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv new file mode 100644 index 00000000..52c06552 --- /dev/null +++ b/outputs/costs_2040.csv @@ -0,0 +1,930 @@ +,,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,794849.98,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" +BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,565647.8278,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,100.1144,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,696.4481,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1128.448,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,1230.0083,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4646.9979,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,90.5459,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.3,%/year,see solar-tower.,- +csp-tower TES,investment,12.1277,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.3,%/year,see solar-tower.,- +csp-tower power block,investment,634.3195,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.2987,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation, +electrobiofuels,investment,362825.0124,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,384.9356,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,554.5944,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,565647.8278,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +offwind-float,FOM,1.22,%/year,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,investment,1775.2324,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, +offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, +offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, +offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,26297.4359,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,407.8706,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,525.1604,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv new file mode 100644 index 00000000..6d49186e --- /dev/null +++ b/outputs/costs_2045.csv @@ -0,0 +1,930 @@ +,,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,661221.1,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" +BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,523116.1092,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,78.3504,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,609.3921,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,996.7866,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,1086.4973,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4570.4672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,90.2787,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.35,%/year,see solar-tower.,- +csp-tower TES,investment,12.096,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.35,%/year,see solar-tower.,- +csp-tower power block,investment,632.4447,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,2.896,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation, +electrobiofuels,investment,329978.8455,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,328.3274,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,517.5894,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,523116.1092,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +offwind-float,FOM,1.305,%/year,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,investment,1603.1435,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, +offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, +offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, +offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,23661.5385,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,2.0531,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,389.0293,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,500.2702,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv new file mode 100644 index 00000000..a3b9ffac --- /dev/null +++ b/outputs/costs_2050.csv @@ -0,0 +1,930 @@ +,,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,527592.22,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),efficiency,0.68,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" +BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,480584.3906,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,309.8853,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 4.4 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,132.1118,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 0.8 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,465.4296,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 7.48 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline repurposed,investment,163.4263,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf Table 35. Implementation roadmap - Cross border projects and costs updates: https://ehb.eu/files/downloads/EHB-2023-20-Nov-FINAL-design.pdf Table 1,"Assumption for a 48 inch single line repurposed offshore pipeline, incl. compressor investments, 16.9 GW (LHV) peak capacity (source 2), 1.5 MEUR/km base cost with additional investment for compressors of capacity 434 MWe/1000 km (source 1), at 4 MEUR/MWe for compressor (source 2)" +H2 (g) submarine pipeline repurposed,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,56.5864,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,522.3361,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,865.1251,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),efficiency,0.215,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),FOM,15.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),efficiency,0.373,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,116401.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,942.9864,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4494.0463,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100." +coal,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR)." +coal,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up." +coal,fuel,9.2743,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 99 USD/t." +coal,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR)." +coal,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,90.0115,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.4,%/year,see solar-tower.,- +csp-tower TES,investment,12.0643,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.4,%/year,see solar-tower.,- +csp-tower power block,investment,630.5698,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation, +electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,2.5055,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation, +electrobiofuels,investment,298027.5019,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,VOM,3.3278,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (3+5.5)USD/MWh_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,efficiency,0.33,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. 1 / ((8.75+12) MMbtu/MWh_th /2 / (3.4095 MMbtu/MWh_th)), rounded up. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +lignite,fuel,3.2018,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.","Based on IEA 2011 data, 10 USD/t." +lignite,investment,3905.3074,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Higher costs include coal plants with CCS, but since using here for calculating the average nevertheless. Calculated based on average of listed range, i.e. (3200+6775) USD/kW_e/2 / (1.09 USD/EUR). Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf ." +lignite,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,480.5844,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,480584.3906,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." +nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." +nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." +nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", +offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +offwind-float,FOM,1.39,%/year,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,investment,1431.0547,EUR/kWel,https://doi.org/10.1016/j.adapen.2021.100067, +offwind-float,lifetime,20.0,years,C. Maienza 2020 A life cycle cost model for floating offshore wind farms, +offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, +offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, +offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,21025.641,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,65.2126,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,2.0676,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,370.188,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,475.38,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. +waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From c710de232d94d76a1daa587904432ca9dbaf7695 Mon Sep 17 00:00:00 2001 From: lisazeyen Date: Tue, 6 Feb 2024 15:05:40 +0100 Subject: [PATCH 07/12] change units for biomass-to-methanol --- outputs/costs_2020.csv | 616 ++++++++++++++-------------- outputs/costs_2025.csv | 616 ++++++++++++++-------------- outputs/costs_2030.csv | 616 ++++++++++++++-------------- outputs/costs_2035.csv | 616 ++++++++++++++-------------- outputs/costs_2040.csv | 616 ++++++++++++++-------------- outputs/costs_2045.csv | 616 ++++++++++++++-------------- outputs/costs_2050.csv | 616 ++++++++++++++-------------- scripts/compile_cost_assumptions.py | 8 +- 8 files changed, 2161 insertions(+), 2159 deletions(-) diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index 0a3cfb78..180fc50e 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.4,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1686.8596,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1686.8596,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,312321.7116,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,175 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,250772.9587,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,1838.677,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,1838.677,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,5449.8023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +614,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +653,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +696,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +722,23 @@ electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation, electrobiofuels,investment,517844.1334,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,1086.877,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,1086.877,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +754,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +772,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +824,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,757400.9996,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.5093,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,27.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +852,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.5656,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2514,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,27.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +881,50 @@ solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,957.4695,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 195be2a1..57294ae1 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.5263,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3392,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1533.2728,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1533.2728,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,277455.3631,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7784,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,175 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,233721.2052,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,1671.2673,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,1671.2673,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,22.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,5308.7011,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,22.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +614,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +653,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +696,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +722,23 @@ electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation, electrobiofuels,investment,473961.8141,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,792.5145,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.264,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,792.5145,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +754,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +772,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +824,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,704056.1323,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.3741,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +852,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.5143,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2347,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,28.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +881,50 @@ solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,797.0658,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index 710f6b72..26f2763d 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3494,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1379.6859,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1379.6859,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7795,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,175 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,1503.8577,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,1503.8577,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4921.0185,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +614,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +653,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +696,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +722,23 @@ electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation, electrobiofuels,investment,431201.8155,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2228,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +754,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +772,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +824,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,650711.2649,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.3185,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +852,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.463,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2167,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +881,50 @@ solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,636.6622,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.355,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index 20781661..61b45ec0 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.7484,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3252,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.585,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1254.0669,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1254.0669,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.785,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,175 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,1366.933,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,1366.933,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,27.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4783.0021,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +614,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +653,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +696,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +722,23 @@ electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation, electrobiofuels,investment,396566.0023,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,441.5438,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2039,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,441.5438,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +754,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +772,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +824,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,608179.5463,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +852,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4498,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,341.25,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2017,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +881,50 @@ solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,580.9113,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.498,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index 52c06552..3fc7722c 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.8364,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3006,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1128.448,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1128.448,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7906,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,175 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,1230.0083,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,1230.0083,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,922.249,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4646.9979,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +614,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +653,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +696,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +722,23 @@ electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation, electrobiofuels,investment,362825.0124,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,384.9356,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1849,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,384.9356,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +754,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +772,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +824,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,565647.8278,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +852,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4365,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,339.5,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1858,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +881,50 @@ solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,525.1604,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index 6d49186e..47f9e825 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.9164,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.2755,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.595,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,996.7866,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,996.7866,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7964,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,175 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,1086.4973,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,1086.4973,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.675,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4570.4672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +614,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +653,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +696,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +722,23 @@ electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation, electrobiofuels,investment,329978.8455,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,328.3274,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1571,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,328.3274,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +754,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +772,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +824,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,523116.1092,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1709,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +852,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4231,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,337.75,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1817,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +881,50 @@ solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,500.2702,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index a3b9ffac..6058b1fc 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,865.1251,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,865.1251,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.8023,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,175 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,942.9864,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,942.9864,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh/MWh Total Input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4494.0463,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +614,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +653,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +696,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +722,23 @@ electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation, electrobiofuels,investment,298027.5019,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +754,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +772,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +824,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,480584.3906,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1655,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +852,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4095,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,336.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1775,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +881,50 @@ solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,475.38,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 877c979a..a95f723a 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -744,9 +744,11 @@ def clean_up_units(tech_data, value_column="", source=""): tech_data.unit = tech_data.unit.str.replace("FT Liquids Output, MWh/MWh Total Inpu", "MWh_FT/MWh_H2") # biomass-to-methanol-specific - tech_data.unit = tech_data.unit.str.replace("Methanol Output, MWh/MWh Total Inpu", "MWh_MeOH/MWh_th") - tech_data.unit = tech_data.unit.str.replace("District heat Output, MWh/MWh Total Inpu", "MWh_th/MWh_th") - tech_data.unit = tech_data.unit.str.replace("Electricity Output, MWh/MWh Total Inpu", "MWh_e/MWh_th") + if isinstance(tech_data.index, pd.MultiIndex): + tech_data.loc[tech_data.index.get_level_values(1)=="Methanol Output,", "unit"] = "MWh_MeOH/MWh_th" + tech_data.loc[tech_data.index.get_level_values(1)=='District heat Output,', "unit"] = "MWh_th/MWh_th" + tech_data.loc[tech_data.index.get_level_values(1)=='Electricity Output,', "unit"] = "MWh_e/MWh_th" + # Ammonia-specific tech_data.unit = tech_data.unit.str.replace("MW Ammonia output", "MW_NH3") #specific investment tech_data.unit = tech_data.unit.str.replace("MW Ammonia", "MW_NH3") #fom From 9bd003ecfb41ee2af546376c92a35484f8446eb5 Mon Sep 17 00:00:00 2001 From: lisazeyen Date: Tue, 6 Feb 2024 16:11:34 +0100 Subject: [PATCH 08/12] clean up air separation units --- outputs/costs_2020.csv | 615 ++++++++++++++-------------- outputs/costs_2025.csv | 615 ++++++++++++++-------------- outputs/costs_2030.csv | 615 ++++++++++++++-------------- outputs/costs_2035.csv | 615 ++++++++++++++-------------- outputs/costs_2040.csv | 615 ++++++++++++++-------------- outputs/costs_2045.csv | 615 ++++++++++++++-------------- outputs/costs_2050.csv | 615 ++++++++++++++-------------- scripts/compile_cost_assumptions.py | 34 +- 8 files changed, 2167 insertions(+), 2172 deletions(-) diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index 180fc50e..6ee917c9 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.608,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.4,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3295,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.56,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1686.8596,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1686.8596,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,312321.7116,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7772,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,174 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,250772.9587,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,1838.677,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,948187.2361,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,5449.8023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation, electrobiofuels,investment,517844.1334,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,1086.877,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,1086.877,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,757400.9996,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.5093,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,27.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5656,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2514,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,27.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +880,50 @@ solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,957.4695,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 57294ae1..42455967 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.5263,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3392,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.57,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1533.2728,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1533.2728,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,277455.3631,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7784,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.405,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,174 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,233721.2052,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,1671.2673,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,22.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,861855.7642,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,5308.7011,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,22.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation, electrobiofuels,investment,473961.8141,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.264,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,792.5145,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,792.5145,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,704056.1323,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.3741,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5143,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2347,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,28.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +880,50 @@ solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,797.0658,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index 26f2763d..a843e18e 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3494,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1379.6859,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1379.6859,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7795,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,174 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,1503.8577,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,775524.2923,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4921.0185,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation, electrobiofuels,investment,431201.8155,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2228,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,650711.2649,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.3185,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.463,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2167,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +880,50 @@ solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,636.6622,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.355,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index 61b45ec0..2d93c5a5 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.7484,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3252,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.585,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1254.0669,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1254.0669,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.785,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.415,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,174 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,1366.933,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,27.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,704913.6037,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4783.0021,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation, electrobiofuels,investment,396566.0023,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2039,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,441.5438,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,441.5438,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,608179.5463,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4498,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,341.25,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2017,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +880,50 @@ solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,580.9113,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.498,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index 3fc7722c..79d5bfc2 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.8364,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3006,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1128.448,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1128.448,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7906,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,174 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,1230.0083,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.54,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,634302.9151,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,922.249,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4646.9979,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation, electrobiofuels,investment,362825.0124,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1849,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,384.9356,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,384.9356,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,565647.8278,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4365,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,339.5,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1858,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +880,50 @@ solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,525.1604,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index 47f9e825..6f38b221 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.9164,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.2755,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.595,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,996.7866,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,996.7866,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7964,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.425,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,174 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,1086.4973,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.675,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,560295.7667,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4570.4672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation, electrobiofuels,investment,329978.8455,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1571,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,328.3274,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,328.3274,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,523116.1092,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1709,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4231,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,337.75,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1817,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +880,50 @@ solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,500.2702,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index 6058b1fc..1afeba5a 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,865.1251,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,865.1251,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -339,11 +339,11 @@ Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.8023,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -422,175 +422,174 @@ Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'c Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,VOM,0.0232,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,942.9864,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,486288.6182,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4494.0463,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -614,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -653,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -696,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -722,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation, electrobiofuels,investment,298027.5019,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -754,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -772,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -824,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,480584.3906,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1655,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -852,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4095,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,336.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1775,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -881,50 +880,50 @@ solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,475.38,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index a95f723a..528b8688 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -412,26 +412,28 @@ def get_data_DEA(tech, data_in, expectation=None): if tech == "air separation unit": - # Calculate ASU cost separate to HB facility in terms of t N2 output - # To add the cost of an ASU a multiplication factor of 1.06-1.09 - # should be applied to the total Specific Investment + # Calculate ASU cost separate to HB facility in terms of t N2 output df.loc[[ - "Specific investment [MEUR /MW Ammonia output]", - "Fixed O&M [kEUR/MW Ammonia/year]", - "Variable O&M [EUR/MWh Ammonia]" - ]] *= df.loc["Specific investment mark-up factor optional ASU"] - # / excel.loc["N2 Consumption, [t/t] Ammonia"] - + "Specific investment [MEUR /TPD Ammonia output]", + "Fixed O&M [kEUR /TPD Ammonia]", + "Variable O&M [EUR /t Ammonia]" + ]] *= (df.loc["Specific investment mark-up factor optional ASU"] - 1.) / excel.loc["N2 Consumption, [t/t] Ammonia"] + # Convert output to hourly generation + df.loc[[ + "Specific investment [MEUR /TPD Ammonia output]", + "Fixed O&M [kEUR /TPD Ammonia]", + ]] *= 24 + # Rename costs for correct units - # df.index = df.index.str.replace("MEUR /MW Ammonia output", "MEUR/MW_N2/h") - # df.index = df.index.str.replace("kEUR/MW Ammonia/year", "kEUR/MW_N2/h/year") - # df.index = df.index.str.replace("EUR/MWh Ammonia", "EUR/MWh_N2") + df.index = df.index.str.replace("MEUR /TPD Ammonia output", "MEUR/t_N2/h") + df.index = df.index.str.replace("kEUR /TPD Ammonia", "kEUR/t_N2/h/year") + df.index = df.index.str.replace("EUR /t Ammonia", "EUR/t_N2") df.drop(df.loc[df.index.str.contains("Specific investment mark-up factor optional ASU")].index, inplace=True) - # df.drop(df.loc[df.index.str.contains("Specific investment [MEUR /MW Ammonia output]", regex=False)].index, inplace=True) - # df.drop(df.loc[df.index.str.contains("Fixed O&M [kEUR/MW Ammonia/year]", regex=False)].index, inplace=True) - # df.drop(df.loc[df.index.str.contains("Variable O&M [EUR/MWh Ammonia]", regex=False)].index, inplace=True) - + df.drop(df.loc[df.index.str.contains("Specific investment [MEUR /MW Ammonia output]", regex=False)].index, inplace=True) + df.drop(df.loc[df.index.str.contains("Fixed O&M [kEUR/MW Ammonia/year]", regex=False)].index, inplace=True) + df.drop(df.loc[df.index.str.contains("Variable O&M [EUR/MWh Ammonia]", regex=False)].index, inplace=True) + if "solid biomass power" in tech: df.index = df.index.str.replace("EUR/MWeh", "EUR/MWh") From 9e092c376b544a0a6451811298582932b6f95a5f Mon Sep 17 00:00:00 2001 From: lisazeyen Date: Tue, 6 Feb 2024 16:29:12 +0100 Subject: [PATCH 09/12] revert changes of energy storage database --- outputs/costs_2020.csv | 640 ++++++++++++++-------------- outputs/costs_2025.csv | 640 ++++++++++++++-------------- outputs/costs_2030.csv | 640 ++++++++++++++-------------- outputs/costs_2035.csv | 640 ++++++++++++++-------------- outputs/costs_2040.csv | 640 ++++++++++++++-------------- outputs/costs_2045.csv | 640 ++++++++++++++-------------- outputs/costs_2050.csv | 640 ++++++++++++++-------------- scripts/compile_cost_assumptions.py | 13 +- 8 files changed, 2245 insertions(+), 2248 deletions(-) diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index 6ee917c9..ce291503 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.4,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1686.8596,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1686.8596,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -212,7 +212,6 @@ HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129 HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" HighT-Molten-Salt-store,investment,101949.0686,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen,investment,183399.6858,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) @@ -221,14 +220,15 @@ Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,1181390.354,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,1146506.0562,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-nan,investment,183399.6858,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -259,11 +259,11 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid,decommissioning,15542.7733,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,135616.1853,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-nan,decommissioning,15542.7733,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,330854.2753,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -286,19 +286,19 @@ Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'c Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,169144.4199,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP,decommissioning,2625.8032,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-nan,decommissioning,2625.8032,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,294988.1555,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC,decommissioning,2625.8032,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-nan,decommissioning,2625.8032,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,337033.2923,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -331,19 +331,19 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,312321.7116,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -390,206 +390,206 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow,decommissioning,20781.4985,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,135814.5241,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-nan,decommissioning,20781.4985,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,287672.9532,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,176526.0342,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,121637.3372,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,431692.9606,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,250772.9587,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,948187.2361,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,948187.2361,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,5449.8023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation, electrobiofuels,investment,517844.1334,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,1086.877,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,1086.877,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,757400.9996,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.5093,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,27.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.5656,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2514,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,27.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +880,50 @@ solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,957.4695,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 42455967..3da27305 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.5263,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3392,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1533.2728,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1533.2728,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -212,7 +212,6 @@ HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129 HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" HighT-Molten-Salt-store,investment,93592.5875,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen,investment,148385.2562,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) @@ -221,14 +220,15 @@ Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,747916.8314,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,744892.3888,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-nan,investment,148385.2562,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -259,11 +259,11 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid,decommissioning,13139.9157,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,126161.4367,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-nan,decommissioning,13139.9157,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,310629.9982,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -286,19 +286,19 @@ Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'c Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,156579.97,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP,decommissioning,1312.9016,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-nan,decommissioning,1312.9016,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,254588.9617,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC,decommissioning,1312.9016,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-nan,decommissioning,1312.9016,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,290598.6752,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -331,19 +331,19 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,277455.3631,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7784,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -390,206 +390,206 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow,decommissioning,19206.0166,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,126337.339,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-nan,decommissioning,19206.0166,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,260708.7462,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,167237.3159,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,97751.4205,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,402565.8733,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,233721.2052,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,861855.7642,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,861855.7642,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,22.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,5308.7011,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,22.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation, electrobiofuels,investment,473961.8141,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,792.5145,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.264,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,792.5145,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,704056.1323,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.3741,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.5143,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2347,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,28.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +880,50 @@ solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,797.0658,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index a843e18e..a868744f 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3494,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1379.6859,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1379.6859,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -212,7 +212,6 @@ HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129 HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) @@ -221,14 +220,15 @@ Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-nan,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -259,11 +259,11 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-nan,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -286,19 +286,19 @@ Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'c Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -331,19 +331,19 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7795,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -390,206 +390,206 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-nan,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,775524.2923,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,775524.2923,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4921.0185,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation, electrobiofuels,investment,431201.8155,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2228,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,650711.2649,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.3185,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.463,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2167,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +880,50 @@ solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,636.6622,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.355,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index 2d93c5a5..8093ccc0 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.7484,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3252,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.585,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1254.0669,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1254.0669,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -212,7 +212,6 @@ HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129 HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) @@ -221,14 +220,15 @@ Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-nan,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -259,11 +259,11 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-nan,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -286,19 +286,19 @@ Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'c Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -331,19 +331,19 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.785,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -390,206 +390,206 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-nan,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,704913.6037,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,704913.6037,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,27.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4783.0021,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation, electrobiofuels,investment,396566.0023,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,441.5438,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2039,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,441.5438,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,608179.5463,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4498,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,341.25,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2017,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +880,50 @@ solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,580.9113,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.498,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index 79d5bfc2..0de71d62 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.8364,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3006,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1128.448,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1128.448,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -212,7 +212,6 @@ HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129 HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) @@ -221,14 +220,15 @@ Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-nan,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -259,11 +259,11 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-nan,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -286,19 +286,19 @@ Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'c Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -331,19 +331,19 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7906,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -390,206 +390,206 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-nan,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,634302.9151,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,634302.9151,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,922.249,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4646.9979,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation, electrobiofuels,investment,362825.0124,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,384.9356,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1849,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,384.9356,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,565647.8278,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4365,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,339.5,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1858,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +880,50 @@ solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,525.1604,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index 6f38b221..6f327be3 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.9164,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.2755,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.595,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,996.7866,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,996.7866,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -212,7 +212,6 @@ HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129 HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) @@ -221,14 +220,15 @@ Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-nan,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -259,11 +259,11 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-nan,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -286,19 +286,19 @@ Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'c Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -331,19 +331,19 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7964,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -390,206 +390,206 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-nan,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,560295.7667,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,560295.7667,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.675,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4570.4672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation, electrobiofuels,investment,329978.8455,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,328.3274,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1571,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,328.3274,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,523116.1092,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1709,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4231,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,337.75,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1817,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +880,50 @@ solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,500.2702,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index 1afeba5a..fc877a43 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,865.1251,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,865.1251,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -212,7 +212,6 @@ HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129 HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),efficiency,0.48,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) @@ -221,14 +220,15 @@ Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM Hydrogen fuel cell (trucks),efficiency,0.56,per unit,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,inf,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,0.0,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-nan,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -259,11 +259,11 @@ LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://pap LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-nan,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -286,19 +286,19 @@ Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'c Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -331,19 +331,19 @@ NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Tabl NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.8023,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -390,206 +390,206 @@ Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Tech Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-nan,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': [None], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,486288.6182,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,486288.6182,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4494.0463,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +613,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +652,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +695,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +721,23 @@ electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation, electrobiofuels,investment,298027.5019,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +753,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +771,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +823,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,480584.3906,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1655,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +851,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4095,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,336.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1775,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +880,50 @@ solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,475.38,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 528b8688..47abbec0 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1914,14 +1914,11 @@ def add_energy_storage_database(costs, data_year): agg = df.loc[power_filter].groupby(["technology", "year"]).sum(numeric_only=True) charger_investment_filter = charger_filter & (df.technology==tech) & (df.parameter=="investment") discharger_investment_filter = discharger_filter & (df.technology==tech) & (df.parameter=="investment") - for a in [2021, 2030]: - df_year = (df.year == a) - df.loc[charger_investment_filter & df_year, "value"] += agg.loc[(tech, a)]/2 - df.loc[discharger_investment_filter & df_year, "value"] += agg.loc[(tech, a)]/2 - - index = df.loc[df["technology_type"]!="nan"].index - df.technology_type.replace("nan", np.nan, inplace=True) - df.loc[index,"technology"] = df.loc[index, "technology"] + "-" + df.loc[index, "technology_type"] + df.loc[charger_investment_filter & df.year==2021, "value"] += agg.loc[(tech, 2021)]/2 + df.loc[charger_investment_filter & df.year==2030, "value"] += agg.loc[(tech, 2030)]/2 + df.loc[discharger_investment_filter & df.year==2021, "value"] += agg.loc[(tech, 2021)]/2 + df.loc[discharger_investment_filter & df.year==2030, "value"] += agg.loc[(tech, 2030)]/2 + df.loc[:,"technology"] = df["technology"] + "-" + df["technology_type"] # aggregate technology_type and unit df = df.groupby(["technology", "unit", "year"]).agg({ From a40979c5491c9fd22194fd1f206bbf162f0e1859 Mon Sep 17 00:00:00 2001 From: lisazeyen Date: Tue, 6 Feb 2024 16:34:11 +0100 Subject: [PATCH 10/12] add release notes --- docs/release_notes.rst | 8 +++++++- 1 file changed, 7 insertions(+), 1 deletion(-) diff --git a/docs/release_notes.rst b/docs/release_notes.rst index efb09be5..ac68759c 100644 --- a/docs/release_notes.rst +++ b/docs/release_notes.rst @@ -5,6 +5,12 @@ Release Notes Upcoming Release ================ +* Updated to latest release of DEA renewable fuels (released January 2024). With the following changes + * The following technologies have updated assumptions: ['BioSNG', 'BtL', 'Fischer-Tropsch', 'Haber-Bosch', 'air separation unit', 'biogas', 'biogas CC', 'biogas plus hydrogen', 'biogas upgrading', 'biomass-to-methanol', 'electrobiofuels', 'electrolysis', 'methanolisation'] + * biogas upgrading and biogas plant are differentiated in new data set between small and large plant, we assume small plant here + * methanol from power changed to methanol from hydrogen, VOM are zero in new data set + * CAREFUL: biogas upgrading units changed for VOM and investment from per input to per output units + * Add floating wind cost data * Add biomass-to-methanol route from DEA. @@ -23,7 +29,7 @@ Upcoming Release * Updated source for 'fuel' costs of 'gas', 'uranium', 'coal', and 'lignite' to DIW (2013) data. -* Updated hydrogen pipeline costs based on most recent `EHB report `_. +* Updated hydrogen pipeline costs based on most recent `EHB report `_. Technology-Data 0.6.2 (7 August 2023) ===================================== From b533560a2557cabdc6c2097549ce9ceabb481e32 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Wed, 7 Feb 2024 09:18:00 +0100 Subject: [PATCH 11/12] add back in column headers and absolute local file path references --- outputs/costs_2020.csv | 625 ++++++++++++++++++++--------------------- outputs/costs_2025.csv | 625 ++++++++++++++++++++--------------------- outputs/costs_2030.csv | 625 ++++++++++++++++++++--------------------- outputs/costs_2035.csv | 625 ++++++++++++++++++++--------------------- outputs/costs_2040.csv | 625 ++++++++++++++++++++--------------------- outputs/costs_2045.csv | 625 ++++++++++++++++++++--------------------- outputs/costs_2050.csv | 625 ++++++++++++++++++++--------------------- 7 files changed, 2156 insertions(+), 2219 deletions(-) diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index ce291503..fababe14 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -1,4 +1,4 @@ -,,value,unit,source,further description +technology,parameter,value,unit,source,further description Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.608,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.8712,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,2658.5,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.4,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3295,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.56,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1686.8596,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1686.8596,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -228,7 +228,6 @@ Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2 Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,investment,1146506.0562,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-nan,investment,183399.6858,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -263,7 +262,6 @@ Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,135616.1853,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-nan,decommissioning,15542.7733,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,330854.2753,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -290,7 +288,6 @@ Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'c Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-nan,decommissioning,2625.8032,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,294988.1555,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -298,7 +295,6 @@ Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'c Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-nan,decommissioning,2625.8032,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,337033.2923,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -335,15 +331,14 @@ Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2", Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,312321.7116,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7772,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -394,7 +389,6 @@ Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)", Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,135814.5241,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-nan,decommissioning,20781.4985,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,287672.9532,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -402,7 +396,6 @@ Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,176526.0342,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -410,7 +403,6 @@ Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4 Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,121637.3372,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,431692.9606,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -418,178 +410,177 @@ Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,250772.9587,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,948187.2361,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,948187.2361,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,1032.4577,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,4.5939,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,964.7165,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,4.1613,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,192.9697,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,21.6979,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,5591.3924,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,5449.8023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +643,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +686,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +712,23 @@ electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation, electrobiofuels,investment,517844.1334,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,1086.877,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,1086.877,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +814,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,757400.9996,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.5093,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,27.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +842,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5656,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2514,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,27.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +871,50 @@ solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,957.4695,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 3da27305..6cf3fd08 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -1,4 +1,4 @@ -,,value,unit,source,further description +technology,parameter,value,unit,source,further description Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.3395,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,2179.97,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.5263,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3392,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.57,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1533.2728,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1533.2728,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -228,7 +228,6 @@ Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2 Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,investment,744892.3888,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-nan,investment,148385.2562,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -263,7 +262,6 @@ Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,126161.4367,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-nan,decommissioning,13139.9157,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,310629.9982,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -290,7 +288,6 @@ Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'ca Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-nan,decommissioning,1312.9016,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,254588.9617,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -298,7 +295,6 @@ Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'ca Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-nan,decommissioning,1312.9016,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,290598.6752,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -335,15 +331,14 @@ Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2"," Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,277455.3631,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7784,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.405,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -394,7 +389,6 @@ Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)", Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,126337.339,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-nan,decommissioning,19206.0166,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,260708.7462,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -402,7 +396,6 @@ Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,167237.3159,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -410,7 +403,6 @@ Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4. Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,97751.4205,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,402565.8733,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -418,178 +410,177 @@ Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,233721.2052,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,861855.7642,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,22.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,861855.7642,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,1097.9155,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,4.2111,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,884.3234,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,4.4251,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,205.2039,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,18.0816,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,4348.8608,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,5308.7011,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,22.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +643,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +686,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +712,23 @@ electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation, electrobiofuels,investment,473961.8141,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.264,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,792.5145,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,792.5145,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +814,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,704056.1323,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.3741,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +842,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5143,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2347,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,28.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +871,50 @@ solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,797.0658,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index a868744f..8a891c1c 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -1,4 +1,4 @@ -,,value,unit,source,further description +technology,parameter,value,unit,source,further description Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.8078,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1701.44,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3494,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1379.6859,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1379.6859,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -228,7 +228,6 @@ Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2 Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-nan,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -263,7 +262,6 @@ Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-nan,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -290,7 +288,6 @@ Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'c Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -298,7 +295,6 @@ Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'c Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -335,15 +331,14 @@ Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2", Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7795,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -394,7 +389,6 @@ Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)", Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-nan,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -402,7 +396,6 @@ Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -410,7 +403,6 @@ Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4. Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -418,178 +410,177 @@ Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,775524.2923,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,775524.2923,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,955.1865,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.8282,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,803.9304,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.6704,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,170.2068,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,3106.3291,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4921.0185,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +643,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +686,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +712,23 @@ electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation, electrobiofuels,investment,431201.8155,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2228,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +814,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,650711.2649,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.3185,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +842,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.463,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2167,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +871,50 @@ solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,636.6622,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.355,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index 8093ccc0..a380ebcd 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -1,4 +1,4 @@ -,,value,unit,source,further description +technology,parameter,value,unit,source,further description Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). Ammonia cracker,investment,928478.86,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7812,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1674.855,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.7484,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3252,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.585,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1254.0669,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1254.0669,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -228,7 +228,6 @@ Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2 Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-nan,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -263,7 +262,6 @@ Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-nan,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -290,7 +288,6 @@ Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'c Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -298,7 +295,6 @@ Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'c Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -335,15 +331,14 @@ Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2", Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.785,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.415,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -394,7 +389,6 @@ Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)", Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-nan,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -402,7 +396,6 @@ Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -410,7 +403,6 @@ Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4. Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -418,178 +410,177 @@ Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,704913.6037,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,27.5,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,704913.6037,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,938.7177,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.4454,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,723.5374,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.3842,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.373,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,153.313,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,2681.013,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4783.0021,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +643,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +686,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +712,23 @@ electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation, electrobiofuels,investment,396566.0023,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2039,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,441.5438,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,441.5438,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +814,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,608179.5463,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +842,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4498,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,341.25,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2017,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +871,50 @@ solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,580.9113,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.498,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index 0de71d62..d003dd6d 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -1,4 +1,4 @@ -,,value,unit,source,further description +technology,parameter,value,unit,source,further description Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). Ammonia cracker,investment,794849.98,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7546,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1648.27,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.8364,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1311,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3006,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1128.448,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,1128.448,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -228,7 +228,6 @@ Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2 Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-nan,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -263,7 +262,6 @@ Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-nan,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -290,7 +288,6 @@ Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'c Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -298,7 +295,6 @@ Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'c Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -335,15 +331,14 @@ Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2", Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7906,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -394,7 +389,6 @@ Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)", Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-nan,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -402,7 +396,6 @@ Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -410,7 +403,6 @@ Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4. Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -418,178 +410,177 @@ Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,634302.9151,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.54,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,634302.9151,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,922.249,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,922.249,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,3.0626,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,643.1443,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.8139,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,3.0755,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,136.4191,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,2255.697,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4646.9979,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +643,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +686,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +712,23 @@ electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation, electrobiofuels,investment,362825.0124,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1849,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,384.9356,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,384.9356,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +814,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,565647.8278,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1762,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +842,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4365,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,339.5,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1858,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +871,50 @@ solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,525.1604,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index 6f327be3..da0c2cc6 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -1,4 +1,4 @@ -,,value,unit,source,further description +technology,parameter,value,unit,source,further description Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). Ammonia cracker,investment,661221.1,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.728,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1621.685,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.9164,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1305,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.2755,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.595,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,996.7866,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,996.7866,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -228,7 +228,6 @@ Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2 Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-nan,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -263,7 +262,6 @@ Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-nan,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -290,7 +288,6 @@ Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'c Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -298,7 +295,6 @@ Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'c Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -335,15 +331,14 @@ Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2", Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7964,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.425,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -394,7 +389,6 @@ Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)", Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-nan,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -402,7 +396,6 @@ Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -410,7 +403,6 @@ Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4. Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -418,178 +410,177 @@ Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,560295.7667,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.675,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,560295.7667,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,894.8011,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,2.6798,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,562.7513,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.4434,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,2.8874,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,130.7968,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,1904.4308,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4570.4672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +643,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +686,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +712,23 @@ electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation, electrobiofuels,investment,329978.8455,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1571,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,328.3274,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,328.3274,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +814,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,523116.1092,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1709,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +842,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4231,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,337.75,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1817,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +871,50 @@ solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,500.2702,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index fc877a43..15223003 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -1,4 +1,4 @@ -,,value,unit,source,further description +technology,parameter,value,unit,source,further description Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). Ammonia cracker,investment,527592.22,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and @@ -14,28 +14,28 @@ Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7014,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" -BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG Output" +BioSNG,investment,1595.1,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.1299,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output" BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.25,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- @@ -108,7 +108,7 @@ FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as fo FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", @@ -194,12 +194,12 @@ HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy. HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.0213,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,865.1251,EUR/kW_NH3,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,investment,865.1251,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" @@ -228,7 +228,6 @@ Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2 Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-nan,investment,113370.8267,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['Inverter']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -263,7 +262,6 @@ Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-nan,decommissioning,10737.058,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -290,7 +288,6 @@ Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'c Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -298,7 +295,6 @@ Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'c Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -335,15 +331,14 @@ Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2", Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.8023,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -394,7 +389,6 @@ Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)", Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-nan,decommissioning,17630.5346,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -402,7 +396,6 @@ Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2" Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -410,7 +403,6 @@ Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4. Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" @@ -418,178 +410,177 @@ Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-nan,decommissioning,0.0,EUR/MWh,"Viswanathan_2022, p.59 (p.81)","{'carrier': [''], 'technology_type': ['nan'], 'type': ['electrochemical'], 'note': ['NULL']}" Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,486288.6182,EUR/t_N2/h,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +air separation unit,investment,486288.6182,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" +biogas CC,FOM,7.7769,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M -biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " -biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" -biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" +biogas CC,investment,867.3532,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas, Basic plant, small: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,VOM,2.2969,EUR/MWh_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Variable O&M +biogas plus hydrogen,investment,482.3582,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,17.0397,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Fixed O&M " +biogas upgrading,VOM,2.6993,EUR/MWh output,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Variable O&M" +biogas upgrading,investment,125.1744,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Upgrading 3,000 Nm3 per h: Technical lifetime" biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,14.4653,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," -biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output," +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output," +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output," +biomass-to-methanol,investment,1553.1646,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" central solid biomass CHP CC,investment,4494.0463,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", @@ -613,23 +604,23 @@ decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions @@ -652,34 +643,34 @@ digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." @@ -695,11 +686,11 @@ electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible P electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime electric steam cracker,FOM,3.0,%/year,Guesstimate, electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC @@ -721,23 +712,23 @@ electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation, electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation, electrobiofuels,investment,298027.5019,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,4.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating -electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M +electrolysis,efficiency,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,23.8481,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" @@ -753,12 +744,12 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -771,23 +762,23 @@ hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): http hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.31,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Calculated based on average of listed range, i.e. (39.5+91.25) USD/kW_e/a /2 / (1.09 USD/EUR) / investment cost * 100. Note: Assume same costs as for hard coal, as cost structure is apparently comparable, see https://diglib.tugraz.at/download.php?id=6093e88b63f93&location=browse and https://iea.blob.core.windows.net/assets/ae17da3d-e8a5-4163-a3ec-2e6fb0b5677d/Projected-Costs-of-Generating-Electricity-2020.pdf . " @@ -823,21 +814,21 @@ methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carb methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,investment,480584.3906,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.27,%/year,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (131.5+152.75)/2 USD/kW_e / (1.09 USD/EUR) relative to investment costs." nuclear,VOM,3.6188,EUR/MWh_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (4.25+5)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,efficiency,0.326,p.u.,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","Based on heat rate of 10.45 MMBtu/MWh_e and 3.4095 MMBtu/MWh_th, i.e. 1/(10.45/3.4095) = 0.3260." nuclear,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. nuclear,investment,8769.6136,EUR/kW_e,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.","U.S. specific costs including newly commissioned Vogtle plant, average of range and currency converted, i.e. (8475+13925)/2 USD/kW_e / (1.09 USD/EUR) ." nuclear,lifetime,40.0,years,"Lazard's levelized cost of energy analysis - version 16.0 (2023): https://www.lazard.com/media/typdgxmm/lazards-lcoeplus-april-2023.pdf , pg. 49 (Levelized Cost of Energy - Key Assumptions), accessed: 2023-12-14.", -offwind,FOM,2.1655,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -851,16 +842,16 @@ offwind-float-connection-submarine,investment,2040.0,EUR/MW/km,DTU report based offwind-float-connection-underground,investment,961.1688,EUR/MW/km,Haertel 2017; average + 13% learning reduction, offwind-float-station,investment,384.4675,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4095,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,336.0,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1775,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions @@ -880,50 +871,50 @@ solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed inv solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,475.38,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,3.3122,EUR/MWh_th,"DIW (2013): Current and propsective costs of electricity generation until 2050, http://hdl.handle.net/10419/80348 , pg. 80 text below figure 10, accessed: 2023-12-14.",Based on IEA 2011 data. -waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, /home/lisa/Documents/technology-data/technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From 20fe8222847da208cbc556c0762ed05587086073 Mon Sep 17 00:00:00 2001 From: Fabian Neumann Date: Wed, 7 Feb 2024 09:38:30 +0100 Subject: [PATCH 12/12] fix reading out of electrolyser efficiency --- outputs/costs_2020.csv | 2 +- outputs/costs_2025.csv | 2 +- outputs/costs_2030.csv | 2 +- outputs/costs_2035.csv | 2 +- outputs/costs_2040.csv | 2 +- outputs/costs_2045.csv | 2 +- outputs/costs_2050.csv | 2 +- scripts/compile_cost_assumptions.py | 3 ++- 8 files changed, 9 insertions(+), 8 deletions(-) diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index fababe14..931c8f2e 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -713,7 +713,7 @@ electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation, electrobiofuels,investment,517844.1334,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating electrolysis,investment,1086.877,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 6cf3fd08..40fa32fe 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -713,7 +713,7 @@ electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation, electrobiofuels,investment,473961.8141,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating electrolysis,investment,792.5145,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index 8a891c1c..04e27311 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -713,7 +713,7 @@ electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation, electrobiofuels,investment,431201.8155,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency,0.6217,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index a380ebcd..34d7a9c6 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -713,7 +713,7 @@ electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation, electrobiofuels,investment,396566.0023,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency,0.6374,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating electrolysis,investment,441.5438,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index d003dd6d..93b9a793 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -713,7 +713,7 @@ electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation, electrobiofuels,investment,362825.0124,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency,0.6532,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating electrolysis,investment,384.9356,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index da0c2cc6..4fe701c6 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -713,7 +713,7 @@ electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation, electrobiofuels,investment,329978.8455,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency,0.6763,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating electrolysis,investment,328.3274,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index 15223003..dea14590 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -713,7 +713,7 @@ electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation, electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation, electrobiofuels,investment,298027.5019,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M -electrolysis,efficiency,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating +electrolysis,efficiency,0.6994,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Specific investment electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Technical lifetime diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 47abbec0..ff0b0fb2 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1028,6 +1028,7 @@ def order_data(tech_data): # ----- efficiencies ------ efficiency = df[(df.index.str.contains("efficiency") | (df.index.str.contains("Hydrogen output, at LHV"))| + (df.index.str.contains("Hydrogen Output"))| (df.index.str.contains("FT Liquids Output, MWh/MWh Total Input"))| (df.index.str.contains("Methanol Output"))| (df.index.str.contains("District heat Output"))| @@ -1061,7 +1062,7 @@ def order_data(tech_data): efficiency_heat = efficiency[with_heat_recovery].copy() efficiency_heat["parameter"] = "efficiency-heat" clean_df[tech] = pd.concat([clean_df[tech], efficiency_heat]) - efficiency_h2 = efficiency[efficiency.index.str.contains("Hydrogen")].copy() + efficiency_h2 = efficiency[efficiency.index.str.contains("Hydrogen Output")].copy() efficiency_h2["parameter"] = "efficiency" clean_df[tech] = pd.concat([clean_df[tech], efficiency_h2])

6uz$=k?xF+9g!+O@Qya1IvMAN>HQQp{QKqV zt!|Weh?{>I(F?`+r-tL!d!x}GY&Tm=Lp7M~-@&+@{_$&HcxlIVlAA;WOQg~u5Wd_v z+FB1BBctVe?)e&Fau2AwGTX*JuNf&?Run}L4_4+&2)}Plnc3l%b z%+A8Oo%ce$5-n^5Ho{|04HE_tT33b=d9eY9FDW33sO- z`*qMpqkTHoz4_4?aqtiaQ+miON3*`qYa`q7eNeUh^|-y_bzZtc(EF@Zq=$q(&-iB< z5l5cs&muhsX@_*4?AfNhR%+n{M7+2Na4c!TZ^Tdv-})1GFC8|rUt=L*VrRY1c7<19 z|H5I1go%XtjPO0R^1~fj|0^L~fH#tJt)p2aKb7Lie^T(ZEV`dQ4=w!oLr}y+1I|yF z%v;pRlsG!Uj~dFKb#=RCx+0m-_Y&j2h-&H4N>I~_N#zsO6x04P-%6s9pw{7u`BL)F z+l1~{+ZUDc*j>%5u#qf3FmF8@GYo8suBK{)d8K&3M>sA7lY~f|`bh@yUrv%_=o}dX ztWJZuc2m*{>^evo(xBUZ7iA`j+Xh%>89OQ7JAK?htQp02FGzK}e@{&$8P8|gxfc9> zlB~Uq#>k<+KpKSpbBE8={qO026tXVtxrn!Ssh*D$EqF(Q3@B443MXH}5qs!z>_SHJ zIbA=VCMt-DYVi!m;F0NNeC`M)hQ8xuMPpGA;~1GL;4K$u#OTZq`tdWkXx4i+CJxwF zqye8u0=Vm#ZTU&QwaZ1;|J-M}u0r*dMPx~P8&t1ThcL+sQi>y1MTPzHpu?rmQ-})s zrAVe%hlb!f6j9c2(w@s(zKna=Wes9rEjfIqLa^}BBwf>lFZe*?jO|rd=sSKCv__wn z-dkBGz585VmXwen1jgQw@F0lr@6Q6S+@vtMRia$O_J&J~J$J2CT~yj{i@>dL@fCl$ zNLoe2sM?@xc{JF2>=P_v1JP0ToaAA>ROaiXS zBwgc#mxg>lHN*ucyOe>3kxvapr@b1;_XU@tR~7uEzCe`BgXn1_uodHUqN0K`;P%1D z5Wj=Bt_EOc|7TpB|HfU@m+OA>|55eUQBl2Lyf7doIp7Q>ASK=1Iy5Lq4c$n$G$Q&4 zi>vwZWWt2=LF-!Oqnd@~JITWGT(Nh^Crb-L!N+2l11S}}M#&7-y;+AvZ8Rs~YV0ZL zw7P5z?<~^tuz#&s%eu(~%PfaQE@#b7zo0NZO8{6`ilr|t65zoW=fT1y9VB{(OK>~! z((v=@bz0t6m(Qmz=cP}aa7;hzSvptNG6wg@Bv>QnZOdrJIvoU@YpMgxlj=$_d!7u< z#hfqp^`P?W&!R2bRLk+lR#?C+a4`#nWM=~|%7ps-m#Zg~fTl->6MMIm8M?R6G76H& zgiNm^0xTq#a2MMXii;IV0daK+HpC;zx$IOH_?^a}KxWOQ(_i{&7WGrBSA&jo1x!|1 zBW$F`s+?yur$ATn$Ed@r|8epz4u15w^QTV^E(QqVx}`&>PBBC^Cxso`k8iOD!oM&| z3?qFg@rYGf6<)K1<{5lr!vo7kQe9_A+X*~*4eMKD{P-lel#QJaGpS0v(AJw<;q{}4 z1u++pVj_}y7%5PSyYNw9kmzLYCe!jkGV5{FV&s!{8dL}sXv%juf{}U2N~i2zGF!wZ zJ{8QleWdMN`Sxrx*DTn?tsGleLP<;Us7Dyc%-U~UDFEL+e8h;H_W`xE#b zNy1%)V#f;j1BaNZ?ky000ZvXp$yW-bil+_S#!*$6qN=MVkydrEH%TFgvB9xQAgd29}0(L^97DRI^LHFowuA6Wj0 zR08hpC@+1G;znhGuQj&!{4FF4 zldfHoISPCLSq0B=hG*sbIGg3b5g43st@2!jjsl`mpoxK)?Br3Mi5GA6;19F$Bl}&W z=Xk`jtO|J=mtuEwzZt31RMd`^owMMLPF^3by8*uomPsN{SI+NQ&4NH^7PAsnQD`%q zH`s?LHFAhgXSy!sNOp3)Ze=B+)uJ05%V?#cOn@1dW&NRyT3sek3aqw1BTkQ~lgE;u zcrI(mZ8V>v5zfMRF_gRexUSlgN%Pjikx`Y2yIinPXG4Z@#y9sbTb+yBRMHQ0R^kM8 zR`xiV+_i(=YY#Y|=gr>iCew3qxG4;PRMnQ2JF&r6lOWZFcJnh$huP<@3Ap~_E+AD? z-za596lG+JGE9VwAtS55%?BF{BS4k?ZhjW-KgEkF3KqIPHx_9GYUC$-UmAl0*S}UZVioLrZ@f!LIAmJGArfapLku zs0iq`>L9A>pjxP&vl~8O#NcOHibigx|aKbQpJC7Nc2kudzyBorgVz)$(+u-Q*g|E{&guxBHHKucEbaV>o+c2`utF#p)q?VkvG zym1yiu)Gc->RJdTTKH=3Cb@yDAty?aBc3hmiaryEx&Kxpw(w4z5mE!VA0(;7Q_{ck z-LbhvUnX0j*ZpBe&$EVc)ssu}m?q*Lv!ki(<|ZJMxfT2imjBt_xBFeq1OznSRs+>0 zZeNgiLR>O5yB!DW`*(AF>aP2;8?SrpNN-_-!UA_a_ygLBzSflj<9?h`b>6# zp)>Ybmq!A~{#TWmG(s`?oUT9`@JK0u3ux5eOJFqjHU=#>z(xBAKK}k%_Xem}dc_TR z);)I}q*lnQ7rNr6tM380Sl4LQ=i#7vVekIv4oC!exNN;Y@_e|SUV1ngImMiwA2Il| z;v-If^CHUAsE+ePSzfP51{q`@+yS9H&muG`d`|u6iZ0^5^7giX@yK_KFv=s*AkmX6 zB>AmTZ3>gm)=NYZ(`tZ13@)1NAGY5Ys{+-=i`VZKOHtjYWht69z*jgoCRGjfywV5} z^7Dq6*e`snSOuhyM`%O`kF}o{Chvjl5d0}VC;f)E≺79$}xiSts;;Cs!XNPoGxi z2U^J>G(jxt$77!>KMjeCXMa0gS&@mk#KDN2AitoXKH#lK;InL24ev49QW5;`Ny5S2 zrJxkGzC8o1`%ms`t}UdpiEE+qg~@DuIX_&5N|U!8g%!ZEo*ftoOetz=Eems``wy80 zoqC_g{ajCaSl6f<5Bxf(rcYH*bV_PhsK0i%V#}XuC-6Y844m#sn@XHC_PF|h2QcTo z^|LD~*Q1W6h7}^yyKMqRgoK=wx3r5clYM;!}J1`YQeQR4==<&bT%O&u8oB zp@pYLtK0FbfmRLoS$JPtY9n@Mc;`pmryd6Rki%tMD-iceU{XVSn4LxmNn z*#6RT!cAO~2?HF2{(^LnawdwThFB6{{DaJMG0hUQt+Z^1=2ruyDd`W3YcF!W7Gp7Y zdfD*9q08YS4gbudh4ss9DOUHtt!$7MqFN=mCKyxV>m3i7KKQ2oc~$SWCxkReG+s$@ zd)xR{(+{Y$3SE7R5yJ=kY|>7D-2rVzb=u;qtEkM+6ZGSCInUfV4nCw+B2yZqcUlqk z1RL7IOdP)rt5wMuhLOST0lnk`#2;F|xxCU4*tLpN_ZZDStHBKs?ci-~7uhK|MCP^A zxM)d0NMweqUcztd-DRCW)!0a|tcK6w$gg=fN`Q5|0h3}Sg#RZ;p}g!kUr8vxjr*-8_H8XTgpr0;d%Fkn_b8iJf{N3=EV0 zvurqQB$$uh{KK1Golyh9!Urtr@KU|B^8ES*_RNN=w`nfwu8WF-W3|#`4Be{)xuhgA z-8u2mPwa2CP-+%14j6 ztXKz$i^iQ|#6tLb&(1E`AH*KM`gNTMyu_c5(WWs6l{EdxR_UgJ)+}3N90aW3^N<8i zejlixghVp-E@t{)mxV*qrpEg#p)D<{4x-*lyTECnB(;Y?U8OnBZkmkoILx-rl6X>%Lc&w?>;{Co$eOIe)8zA_tWsM`a^a;$f& zrl)du0Cpk{=bOsA)vKR33ih<`+wAJin3}SLmM1ERh?(Sa4m!&QE6iTxv=LUdf5>OFiL`1BRt~Q?)qR7_QI3PX+vX@A}9Foko8$Ohwuwk!qy z(p=rxiEQ~Fi2JQ~!E^1r9C5(aD=Hr+uLB}QYJ$is#nHM0#49?^9!!>TbrR0PcU0jn zz6`&str+i$hf>_+<&8|kq1)zzMCN$J=D3l6XD~V>yUl*hY*3n0;(L7dV(22&llwbm zsj{0z&*cJfCnAw4Df;^NtP)1~0pdnPLSK^q)tTSLAqw4R+SbM(HpE&Bp9r(S7$zNr zQEog7y4ZSOcx|z=&TA}GU!QWMJqdCTMH6k~bt>C?7b6WMppP?F`MauvfOqOC3kAk_ zs)5?(`dJBlwLvmE;Xb57k}KBga-3wGCG4@5DQ*gt4SP=mfA=7z+XH5L_M+^#^C&zW$RTGEm?*Mk1kMEGGljk%OnOR&+nDxvH^J|ODQ@c|z{ez7 z>_fsfS(cMBfSa+95eJvfTu|+o&dkO8%1E;8WT2!rK&59rIiE&6y_Qpy1k(+MnhjPU zy37;;yi@e0||oSBH}zp0Y{a5#TC2C?@p56 zZ$5r|<4C22qacheQq}c<*D?G=>ibvB2jDT@iz6Brk8mI9d;W? zZG_ci-mKgDJ*ZD&NWXcXNZXYI@yXZ1299YToI&bcNUSOYk+%BHw(T1e@(h^x&sQWC z5NYs47udzlCu-zX8;#ogqbFb%g`>@i#89i>e@UNF|;J zr)?xSuQz(NdRH@a5gC7~g`I%cy4-DhY=IaMdHSnoy!E3Ua3xT6x&?V;o;$x#{0=DJ zU6J`8%4j$}@@b@GNdr~oMJ;m#ZzRqP|m`OZ?trd-e7?A%$LP(JJxjQGBNX)p0yQr^hM01wT4 zP;JdDnoQr>OVFe5*gkwR!^LozXVZL#+*2Mc!j61CK8sgHFO#XBoVN-PO2Fk`8>X*Y zof|aoZl9trk_&g)BZ|zmh{Fx>Y2!`rIvz3b@Q!m}-Mefm-Q)l4U99IFp}nhCP0v-$ zyF=4nWJ{kyu20@fm|9Z2o{*{lNN=WZ12ZZB7{_T1pR;jp<}4@PZ`qZczX`x)+!*wvi^1QVXRP~qxRTr;6;5vjp; zKZazFAaV(CWOuBGFLRl87vc_WGbhmpX^9gUq${AI1LB#8WN3O`^KD6GPBWrph#9$n zxAfD+ler2-Ebkg)P|^KDa}t92v=UiTX5vjHb>$q1!G?OXEA+BHW1{!i#ybs1lB2d& z9FiJ4uPk3C(S=C8YMs}5sQGX`cWpIpK;>=or7Jn8Auqg~#>l&XMk+^sT`OSb)wWhq z2$kxE0nf(<>COUdvs+clruZqu1}&rVWb8*G&U6`#U<@L0Z+(^Y{;NeX zBH6fGH)lx)Ww5A5Yaed&;40E(uqN~8}?aEC|&Aa}9wl1uY z=qncvnrC!{FIgfZn>tkiGYdqn-e!Rs!fYpK;)Nm6aX*o2`mpl{jwA)H-I_k*5VuV* z$t2)%R>=iEsR{^MNYgwv+2w6;KV*!cNiVrQPfQy2x6Xw56TqK;Xi9!Xe&klbgKY$2 zloNWF5^;An%K;c5C?aye&p4^Uq;74B*Cs?Uy)s`CE3i}bLIha<+ZWv(1B4iWAtll7 zQY27u+h0Mxl$4tRbh?%K6_^0scL5z|-K5L8Y5qF3?V8J18{6MjJhOBh8m?ZUZ3n27 zpS7Jgl81zIa6Se)wI1 zsK|p%)xEStp2?hHUCmVBX2MwEnrd4h*us9GrhXrqujc;9%8_L>E6xi_f}=_2dM_8> z;p1GSle+G=1|TP-_zguUO<@C;RrfPq$9q7P52EeW#HY;$Rb*d2$YFo*W&YhzO*l?l zsz~Lw4(TOB@BROEER%~XrD#Lmrd>0Efc=0&Xa9{5xsq$cQ`3(XWPAjy%96)`Rf{L)(iUKl~rSSW^-~`q`>% zSPkx9M>%E8r6+*rB|#*fXYkA;dDEgr!YRrj?FBHdNe|}zIIf?Ky^ej_Ddfeg4!zD$ zj6FL(@uanHC&X_T!q;uR`|Eg+tOLKNpW9W05E6xvQ6rCbr6Sm&>RY6k2)OAtzB5+>th-dl5}H>rNS7Zl z2=FebY(jAMO32KH)ShW#(Z%&cO6ou)f1`_|ao6ZVM1Mm93cmeO@z)D*Kv987%E6br z%h17HJj^~w7nh!JVBl$w$z`h`Um{y}1+`*z_14R7vpnDxbQjh5^AvKJvFCG$wLr}I z^@WqjqU5D;uktMSV)*rajm+4SIN0Ig1vF_Xv-U*hZT7P##bntt?PFei;?y`IQGe_u zT1ut|?#@M1M{4zLFz0FrmxjCT3Gh0Q^n?LX*;0Yi$!;IPPmcR|-wpbon+r4f70 zdbLSBuA;hP@HQxQEu~8T-G{fo4H5sd)aHwCQXKe7MQ}ZE3yG}a^o1!zqC(N8IuLh3 zuIf$_ioCQ|YEGum^+6w8;mSV&XEj52ZN7DbJx6o(DaIqn#UuiZs!$6*z&xu>LoT(` z6kAOK@i z@8v<1?#|ws>?BQwp`N4QGgIh;)2;Xr)eFvTJsOwmg_RYvi`JOTucc&fi=Mnf@`6Rv zm-S!7m*1|9`iRG}+Ks$>&WVN?{_3wD?XOPo<(s5b#!RTi=gfyARR7CV7>Z_9@|i-#X~vK=e2O?*D)t_nQdK0op2MBaCv;^$bNeP@pxt{a!YEz;99PMK!@J zQLFcQqNa|okzVHel;Qs~2uy;OTC8F7tD@DpT*~(jreq z0*a;t{6x@|T5!G$BMQ)du9QjncA&p5AaIP8)5f6aAlMb&lALe;b=(zgHLh~tZ4>tG zZTm|l04o<^Q1ZYD82k0Gd1+4Q+!>A%pagY?L!Px3Mu#XJc&1L2bxkC1~*=%Aio2um0goxB|h}EW)&*oq4 zgT!2)5cgr+>3U8PQnokE^+hq3d zUg}OZ*02km;p({Y^@LFPJsx87w4qeFf>URU~!Z93^3rKl%z4vUSL-_ae-dR?Eo zYFzbp=ETjoHSpb@Qb&RH&x>#HD{gs9e2xMSBjnr)O)h8K8<=V zrFhhtHDKy%##vYmOLlA6yC}s^XHsm^Y|4{DIx$)l5E<)rWe~;gbFnmP3PG~^{nc}3 zVG6byBO688Gj#|)md(#F1SamE?gz60a{^qC=P}xi#&crOfq7AbQ70LN;_!DGyD-NM z>to?%ksej-bXT3t8NKd8ZX0VOW+Q6|G6a)tob|ml-~K9_swO=;7$2X2DT7TmFc^E= z+Io2`XHpNPm@8|bsq;##wFL$bn83jgcs5ESRH{n)uSu#gqj=Qh8og>@Y|&WN+V(mb zrwzwFv5TdaLBnrTj0<)0-&@rf|B7^S?R>U6bWx#`e=KAwuV3LNWq?qr?gp!*42uOu zc8<_AHeBYup`{LgDS$rg4R2a~tg3P0=L z7gX6{I(4#|YqSH)aOf$|phIlN)S>U+Mu-xci5Dg|SlbBm96ooKE2IERbr&9Hw>FqL zbzgzk;+9xkZTy&U#zo`*si=a;vzKVQD=Q1a0dmLsWu>n@Jd58v_*$k<&e=OH{)9WR zbhA)tZjQUDf&pzdW{PJcnn#qv3{SL|s;<@J+1j7uU!qe6YC>ztCplCGn@r&vm-&M~ zXS10V!e9D=!7|Cp?Yj zG;QvnP}u+l46e1mg`jdCtG_IhoZGbH$M`hEi?WccDadb(KzVk~%77olDnCmYQ?h7^ zWsnLWmQawIFp&&M?6eIj>8;6J~@4K)q;~XnhB1R_%OX6iy1+fS=hzIz|gE;C$ zQyVh$!-Oem+PBdFBM#0;dMrhho zsT0O&wIs4@>*vETfzdG(saziLBTg}yHC9-GO)XAQ=Xmqa%TvEKxtlH8MERzO4i@-9He%2$KBX6A$)?sq7Lv%5@jzy=-3Wn%;>BY@37DRU}I zm;=fHQqn*fHS}3=+^pu_F9JwbS|L;WXP7U~A?fZTifmO|-zzz>zA$5&Mwmsy^_<=J zRs#-=z@Z~zhNNr0YDLm^Zuy#jeoFWW?Q8w{sw&#K`|8#wA}tnSJ@Q5dCL06^W4@$T zZgtna_tBI&wjRWgP@|Ak3O}9cj39_sr>%QVg_CJi7QPq}62Y>S!!>tCtOkBlB`0ef z#Fuc@LD))fa9^N!t!j?I^~vH-f!7$kj>91uYXOyx(bI#JakBY*Xh!QO8M1(j#*9Nx zhpeHPrS+hg{je!9%L~zFMW4aFXt29KAc{uQ_VDs=Ivv+YJ6S|%o z;RZJ&?+gvNHSvIev}V8WPB+&N67526@v!771wiyx=O@D-qgO277u68ycBS#)Gj+2? ztoL(~U46fn`S{+iU3lmFusFj_(^7th6~+V0xdSIL&b>3uCR{wru&H=r%wtr*$Q~3fKZ(wfuC>n;9(%Y` z)WAeQY(6Fde8@e_pWr+VOvzSVUN6(jK)lqqF$%ErQxtfsv}-ErfKw3y zXudf}L^~oV4rjFj28$b7pqGVUC_FB2OhW|&TjQ`@%K6+h>@=Kw(^LcW-=Z2}Q(3b? z4wW){7{r3_3J?s2cK?xcQ~yWq!QFCMN+kSQwLc*T0es=+)jLnwh|L{+(7KU`ibUUT z{uHuO%{aDJ6LBQ-C|GOXE14~{`wNhoN}`}XB)-ktW!1t9=U8f zyOS$EYHhyfkXX}IozzdenKhr14S0vkdtF7dR)CU-8{%*q?_JtNraMk$IC<3I5*@83Dk@8&x;-V{XiMFloT z5k#N%4Mkd^t(UMuuS`cE23P6UZ$j&~dp*IHoQ8jaLh@_C#9Hsq@*w2>3{rxZ&)V#` zi)Mr>R4a{QyDdlF+!9XCn8-H#P=me?>9+KdcfTQZf{xhVSMeslDt-*+WmF(%t9c)< z$*axJaav2yo;<)jm)q$@w6#m&%)oe!M(7%K-Osvp1HCT_0eLpM(_#I~`v< zl9hw__Akr5=UQ@jlPkXi!7zj9U(LGW2fy{NBR!6sqkn`gis^t7GkIw(XPV8=fEn#A zLNti@+7LSBFDrA<>XD1WlnjdiRLHwqVrVwY1o5f3DqIy1&1D_}glHe*!en zJsFYOKX+#tysYeKT~q-$UHY~Oc3!@gvt_4Z%aeC?S`|HtYp7OEZ#IwqH0-{(DMwvh*zdo-hCGruBx5gcC_BZly0@eE(V%mX1d z(lQuC%r;<5M1MDdHELA?w{ttpJu;d5qo8Tx%h8Mdz4zr1m#qdp$xT9N^1>O2RxH87rBfy5#sgbKDOaI1*ygo~V!MH%qqe49 z@vmd)wsR3Q1VEG?x@p^db@RgRc41it)+yz4?t7ifJ>~%CYhmRvZ|;VCT1xz-8|V6K z$qnI_iwG-q{6$THP9V4gNy`ogC)?V1Vk;00MGvh#(9}oX6e33vP}Y2+sP&%NC+|5 z3tlWNOu-UqhUEh;p7~~`zP|t~?|^10Ky0i6&9Dx6?Kd}uF`Eep^7vQnNg`-7PM$c=mEf;8OBkdFPrFfU@8`_uDSPOy#!N+^+@gk1*YfJ5QOjN^Z2_B-% zzVQ5QXJ<d_NwkEoPOs!r&%RiXZ!N&mJD_x| ze<|7FGJRXi6td~&XKq$=H)=lzFzkRJ%N+mFUGv!H>FrC%gI7EKjtB5Aof$T13sFJQ}m#AIJ z?RGcdXoyDvdtm)3)8e?a`x{Dz_ALGO00pvS_igqF$G%NnA|nBOQ(6XbTSgFAi~XJO zPAWCh6IebMkuZG>+DoXI%~-zR{g|HlFRL1(aft69Sq1LjAwCaUe9Ihh&A_pZFL){h zY3&>BSlRJ6-4u7MH}nOmfHs~e^-31R0)PA|QjQ&M&%Ky9$}Ky?rWyVu521@pn+zHV zwr%HSgDXy)t2PD;D}V~CoW&3sovG<2MW0$rv#WvofvmJW-8z07(<7o-p$O9>$XPCNdC*by- z%2Hl5ge>L(%|n?q$qadryS*44%@G#yWU;y1VQAQ*A;JoUF|2fQICOHF{6XaycR(A` zDvGT!NcL{1!Epr9{+CBu(d~j=fH6IGIAej6jdg(J&Y>RbU)iz;>eFZ`m4%{#Y)P~M zb{@vm5e;`BQY9Q{Y@rU~$vUSEXa2O`t4&sJgDp?r4g8DyL-ftwB2x2MJ%kk=n|9_b zLqs9=yBj1}L%{uvW%a;6*}jP!+gN?G#?!GHd6MWRe(rJ+%5r8xCp_ zcbM{SLfj2T)v?i*-pamQ0sFtT?n@_uzT{~zhN!XaHm^eZ&w1RTVqAv%B}B(bXchLm^OBS(01##$*FFP#XCBJ&|>^> zPA1JX%KZr35G&1rCek&ma7EuUb$$Q;o&LQq-_`is?>FH?RbJuOpNhQ&8f+Hs=-#Q2 z&GQ5MczjlK$qBYj05!}v5aJ?$yzFN6V1ixk$Unu(-m}#_04A=zi`V^s>4>szor=t& zVnQYq-927Gvgg{@0#*omc;EcD_yIoFQ-Gjs^$wE>Rw1-O^{li-zq~2-mr~jiSD;vg zaoVj$g3FPnopI2DagZwYJz;f-V=xXGpY-2);`-y>i3{pddyPMB{_RIiKU1KY?L%$1*DRu0PyBsA$ zFOshvflXeGFXgD%GL)a^f|QE}=GU!KbZo!oU7XK>tmkO>6sUv+qU*XV=@8LogQa>4 zb5n2m}MDJ^Z z()b$~of-`lWb+xZlN!=RwkbqIc3t@r$GbFD zPfYxC1B&zcEQ-x86V_u3rFm{1?1-o{8%FDJ>nHbll zbW$(bJ-D$HqfWMZ(<=PkihTJKPm#|{C0o;X-i^&AQ8iyEUA8*sJfw^TKL;~l6FaIE zxyW`ZV**2)|L@RJU}(}?y>1WdQo9(3+Bdpa(-qw>R$ltP@u`+5Epj42bH*Eg`8*JP z0jPP(O^SE)tBh=aG(?ZjnO!FDY$tz{6lNc9qklR+eCy@7HSqIa>oi*vMqw*W{Iy8A z!^oRou;LI1k+5C$P5eA7=NDWp{I5jEEhH$~#YxFL3pu*ohxNt@t|AHZ4_WdV^YK-- zzD8(~e9RZh zVT!?R(=1q?V7~?g`V^CD0f9aj6^L|{8Z+wUe>R3+m}@M@%2R6LZwHD{7zL(6Ja9a^ zC>i|CoMwOnWgyFoR+;>Ze_#oJ)=2&Q<#G2VY^KBL+Abwpw{gsXGHSFyy zk006$!rLD(&1jUvpU;lLza*5Iu>~j|RAnk>z09{|DuT~zA>rt-gZCPr=>XDzv%K#a zw(;@Lren9&>}9!az6pY5WK;zdb%>s-%QECAF(m(e)}}T13@{SWVY>XvcoG!xxaL7V;K{Q@fi` z2DMXh{IsnoLvBWet_+rbWj(tg4qh)!=R9F>R>Ep^EB77xT}l-o?^cWFo)^KJ3IGn> zlCauqu>g=oxzJEmhiIA~Ceyti=wCjHVG&xZ zH}Q$XguS0m$kh6lJ)1{`HMz3Mz9cnOJm`3Y%)2zdP9);r; zL^b*RwDKb~Q=G5WfO=$l4YvRJR{h|3`CkhETfmZ=u-$v6)hRGk{LVSmvID&-c#27^ z3G%ozt&7-Xo{yO3iTp=7QKE&Ch`_3r0=iSV7qYj!mukO!?S%tWv~I<;nr`)e>3@eg zc9*HO^VZPCgD_;&|bHQWe}oJTj+3+kv6$O?;y#cg~w_AZLjsy1&@nnUsZjM^- zD*suv+_lt5-W_?|%`bg^Fn+iic;$Bs6t%i}_4#^nXHVTox$^4Co&HVK!7;~%QS-kS zpM6`aG1DL}(OUE{nQ*X7_AqNnw^Q(cBe- z0kNzYMD#ZFoihQ{^m=(aLvG1;!G^bqw{GPW@-`U0^pE7{Fw*MJVSzz0w+Sfp0C^&9 zr?4mOT|p5O_>Di2?+<5w7F?iss`#U}!CLSYnFDAgx{9cBIPJ+hg2_JhU5UOitaAIZ zXyG$`ov{;&Fz$C+`w=`J7q>hVlX4}v99%Rff*>bzkDc8`speJ(sT3jf_<45pmwYSM z1`%vSurzeQtCQY_glY;;vp}M`@7FYArdNI~GhSluD zcy@w0k)*3Mrti7X|IYD!~3BQZcTbsv$PlmIl-BH#bc zhJdsS3o*kUyN?Y&>QTj!xZV0Ge|9^kyY0qTfr~!Z3;hL$HVB#>OFB|3d4^-$k>q`R z>UQ0(W)tPocYGqE71*=Ixn+;?V&Hsp_#!5b?dN0#by&XLK~kKkuTd5fNVI@!mT!gS zXMKkvImk62$!YsX+lQ=+c`sUjuYXukuO3XY9X~OE^>je>3XyAVh&nB`ahl1o%3t*S z$y22t^$PPpI`f~`))_D#vYR&(9yrikJdpY|UnlXu2JTivJ_5VK*5BDSC>#fiwp1^) z-(o7)5Sr$$UO%{M9UxBql)qTFn14OzMFY|g4yZ#H(vRxUGPGApI##(cAiM#Hm5&GF z9OYT!MN~%T5Bww@uJ&&JHc7lV47QXG9S|sp0<^lgF+L&-*b6`vBEKV4C(%o?pMzLb zDFWtpDZx+2lE}A7AI3Qi)hOCxNePH8kZ@m)ee!DeNHeu1ZDTV3{_{%2IEPIMU`02s zK6*q9J%QW;j=HSvfJnNJdd%&4!F2C1-i%>%G#U<2G8v?rjcYEdzHU1V3zPv2Cs}@2 z8HvO0%dYw_`34G$&Q}pi*H!ABDok0zqC7K{y5-_sIf+Oo+9Zn8VHqL-84=JB7ATSB z)gTnk){}jB=J@=h-ZUM8>1t<-5kiXh+>0YN?}z3)q3RnrKn#2L*w^}uNUd{|J~^+v z7(B*a|Be)lQT@K_6ddcgliL8;k+PE8h=+%ElE$$$i_ zQJrYI$x(5TxUJ}w3v~^w?JYPs&OIxDQZ0Vl1%Qj>=P)W$*(P?NudKrEHWXBT)=Q9Y zjIa(d@F)jk@V)OE2gO=$=O)n-j4NplfwW}c3!dm~M7NOucua?Qkzn{5+!+OVBmEYU zp3Le87{RcUKnM|?;QgplilOpi#&G)71d9*V)ec(LvU`yZh1vMtf@Wz4G$7vxxFMjv z&gC69Egs0~Kbv6qT=%C2e_;v+FKf%kW#=|?Z68fA*t`jFK;bu25%@KDsoi3k4V5;1 zWd&^(|5E8|o}Uc5n)iSBbGqNjTcaC6p>e2a1K4Aq@UgzoV%iu7Ld^h8ScIdL=!M@* zJ-1t5bmo9?$gxfR?N*{y$V5{aJBKTGxS!I8MyBsWfS(IFBnybU53XZP1jVaKnWF~l zNbiu!g95zrVjDlP!hv9lVP5%HQr9YHzUnjkKyEv$eHk5Z4x)}gapqXmzR!zlI5*ee z#X)|f2lrKh9oCbOwWcb9sKK_fe>6Gk9Y>GG;>#S{HQ+(!XcEPISOcZ%1$WbmwH$6f zkt`k{ZYHuuA;o*~L1)v%XR%~!>!AF*aoFD(Jdbw`DH2>fvOCfVZzeaEfA_}S2EhwP znch!azEwM@+uw31!tLIgGe-pOZ2S{VxU0NtdR>R1giIBqc<#JG$&hQS4J?_v0Fikc zTtbsvV};1=u^@fh6Sjg1hg9xu-TeC~ezesiG#PC(e!c*k=zy9blco z3p$K|yP^g-e?&f$=6W1qb3;^m`sUTiQS(ALaitSAdP1L(#VRrgNYd^GZ`>Yz58uNugmuJKoNQ=HVKlWM&<#`cViyS2I?JcY)w~x zgk4_Ny&6t1gQnFEls-^6mQpKjRc-y8ED{Bj*o;{bRBI0vbUkMkkB?t*%Li^WYHTwX zjz@KLHkmSF>2@;(ABBAtYgQSZQL?TKku_9iwu)^uKNk>h+b628&2`Gt{Z-})LT&Se z6*6FA!4M+;c@{K|8J1)Z42n;XNV(CqO#k^Zvsb98np%V~U6<(Bh5a~ebk~G;5AO zZ@#l%*19d81JS4yxB%!P3=wZ|ZS$IN1N%N=Me2$YI*O>gc*MLo#JpPC{^9JPl8XAa zeEuJ^#xsg$*Hv^K1=zFJDb}|W&+|aDd^^dP|304a(y!6bbO1lfR5Bn&fTtm2FE;eu z04tCe&6|c3U2k%o3K?M6n&q<~Wb12PZ>ZQo^N6kA|{9ULGd9p0f!n4f- z8lM!tG8p^$biOc-&qX zcR1Ng#wJ;eykUn81wg`HLVyxqlG}rbq^?LScgwC8T54r>`4irj>Rj=X8Z)|qoX_6K z`{2MTPT7Y5jF^{7L}s%Aew7`6EnAcT)yh&{fS2>SxvxQ8&BF~v-7amsFPiD(9 znhF_xDR#BN8Sz4Qk*E@O7;G)zG6%v(`?)~)c9LEq4(wk3Eu?)J-uY2DWVO9h-1{;@<~g zLX8|{oa1|FUa%UlVzmw*epo3EvxpQMy!>{z(gi7f#2<*YU{@xx?fnf{W#3$&MI77z z^?KIAE<@b++>=LgGStD!2Py2-ADTvY#Vvu9ZqYNuUo6~J+m}xQb<`ea#Qn;jXdN!^ z2&uSNXAvgdUK(&370VZ|5%3!oD^i`SyMwTv7Ul<*(U`rY3er)-0^%czm{U!v)d@NS zk_B6SMfx#!C;gV@s*{gz(PQ5Gp1|`Wl;9PR?JQY zeEm7PQbRc~-HpwNE92%OAHSXHoztnF-y^QAXYKBy*uyy@!s*Q-o{cI8rW|!;RFX4} zU%jv09y-fsJ)9kDs3b`jUsVsDdi&gv|6tIL(>PPPHT3#R=wD}xuV?_O|0WawSz!Ge z!th{Y$BR}nbIE_uT1V;PaFK#}*#P2cxlsoqHd<#EoZHXDnOgf4q0Z!`r{s*;0SCk}JvTv4z||(id)) z|6@ou3f=%R5~(D#W6MFbrA&*at7?z6D4pvW#0Y0k(+y`$+wxtd*a$mMHN~gDZ}UFat30soI!$ra+WSac ztOd&1E4Qq!qcMt-Eu3V%{Ex8cKf)@#vnyr&$2liN(`E7?=wX$cRdqBUNK&;5XIyhv ze(AdE`F+FK(&GN(MU@DUjR9oYk7Slrb;}m^S%0e+3^SyCRGd67p`VvzI=DLQnC=&p zCyY>t-b#9IUz;=?>|$u$;{K(MJd2Nm`5Mi>cLC9ufjC=!(8Ed2D|S&qhNIBV6%-=5 zhmFhotD*hFAzUfV^TL+ZUzvx zRfVOhKN1#eAaLW4O2VDStlJLVL~CPiGg=w5M3VHPY}|t35o!}xFFtX$FkD8c<#Ap0 zN4wa?p35iCki-7`Qzk?Kc=8UiH&xA_Xo$cxXE@(u`A*jTpJnJs{awM`tRKI4noGSG z3w2MepLpfV3jkRa6hcx1(IGMOX(;rF=j{p(@2teqAb_E37{Mo@q{6ZskyAyKqzqnaziG;fAz&p{7ZoANR&^ZaZ{U#Hg5PdKkJaXrm2&}XU1##Ii7eV13?g<9oHj&tqS(lx zq`MjAudIueF?5eA$>Zxz#2vc*IC?7VStnEv=w8_#fK6h7_eJ*E|Hsu=M^zboYb(+X z(j_TKcSw08B_t2s-5mldk{%F{knV;<$Dxt#?r!N)DFwlA@OSUJ_q%JIKVYrr%sXf1 zotZs*KYKrb+E!l0x$9)`hCjeD?xQy+;3b*FdF_=hf_RV41TF}dJAUWvnbLFdVU-o_ z?lSGkq3)b;kvnkPV4CGU6rFUR#5?xc?=BIfHI;e(!|V~EsdR_bVGYVHG4x!@Yx%g= zu%amEiCg0vpM&>%Y3EXYMx901bfrM66|cii^EP^9*;vw5xU_eH6Sxd0PUJxW*2vZ; zi(far+W$3;0m5aKKzVk>aBR!#hX_LnZP$Khl?bK z-RVQ@-aQdm;)hG>kqV`esE{Kw6#i+`knGV>S=P>b2*8UO;#{tpj(A#(Q4W4Pj#0!0 zZrwCbXmF_}F2CDs3NO;U`C!%q6uTSU)wY2}EFSKL21vkdUxgoF`9_^P@{yh&60D4y zKd;#2|L(~*96;>S_+6r#*9v9PzgMccgXx(!@GiWVKqAmlJ6Rt_PiS(+XCI_aE!1Co zkdXSe*ZECm6-@xKZ$N3n1HocHPCHR>f|kzX27~v9oD}&}6Nu6W$Z+uc{~$dK5CJ(U zJ(oyDNkNxSmK)6CkoIx}(Osk4!*O2f;CI9ZK`Q5IEzU~Yb6Aina|qqeLODBlXY=rb zlv%T}QfPk3lA~d;L-Se**|ImV&@LzxU!!%H4dLVZw-=Mm5PaBPUQXP9ihCSr8Rh=N zE8N*S7KC9hKaRsw(Afy}W~DzQh~ee*2-1sY%%sSqBio3e+4POlP} zP~}0{QW)4_h34v#FcSSw4jIIHPV^~4s&+Loslp!k32Ng{EhlB-Ur{mE<|uUr!V=!% z=Jf2)r&@<3ASNQTW)z(^brd6f_q#BDr<^PL88sen&}Q|}rbY9}*#JLuCa7E?`KfC| zZ>aHiFx5A3gTV@IW*I^+xlGXnjGC7vtjwkIHo77s#%wi#Y}?-gX*e#KM+PxuNj+h4 zUAN#?TQ8EJThC??*K0ebNT#Mdfk_ei7hZGs8hby*X7CHkPkrJlJ3mWPv`H|FdqTE%#Xb>j| znl4du1e=|Q`t}Z;PNdx#SXULYRX*slbNAnv8k&9w)>WKnIM36S38<$WRo)Cs6BxGp zZvi^qKcseq!xxjdslaU2O0(1LH+Q~YjL$IJe!D0y<^YC*JR$%vbHgq4k=fK8X#p4R zi`gTBh;kOF(6_)J$%s>0y==HXr6`&-Rl~AEh>Vvu?eYMn)TDY<_cT7u1Rht-j}#7LN@W}k&k;U zo1NHihd~x+RrvMGfe;AjdVvinFR+0ET4Vli11jxJa5pA$7m%#`+HBB5;a79EPl^3s z?IPU4t1HV2Bl~Z#iFD1D-TPjaa}3=w#6ly}2w<*o!>vGWfvljYi#l{9YGm1*XaqN+ zoEdsTlM?>{D^#JK*E#B{!tbwL@DLirMX?EN7y&ZRq*G}oF4l(|B%pKV#D0}IhXE7B zr3bzS;N+m`d5iG+ynMd~v zmIx~;J*q81Fn0TO+_|lSMZwFZ3Hx%LoC*GtDATGlvk*}VqxoTTMiL#0(u-%T1` zfJI)a8Bg>F?1C7TEiwb8|A-NfP4cNs9UI>uE(7<^i7RIFjGIc*r2yD$7oVg% zjvIr%J3L)V@U!vJ2VwytlkH^(*5#J$;>uyaMv2}`nw8B=bjh_iOuI3~M13g4R7S78 zG|S{+9Lmc{jyKXyzlI}^N;x>K)Sd1^C(08A}QaV2f+Qt;;Lwyp7h+3BSSp0nt=48-9O((9*$w6(@Y(jaO4Hv?IQDPs{AsZ*FiW zzmK8~{R#F^H(!B9_CV-4?AY1gcsiTk+_e2^ll)UY53)(LdjaWmO419W(iB#-HT6?U zx7?;R9JeRDZBuvOcln@Cw1VMmWrpZ>c~X2I4o;Mzm&G#Y(%PVCg}9SEk}t>JK45tI zwkja`+A&P27XQIK|1Pljb7(w4cifLL9uSuIT=Dlz@h|(67<@?#%EU=M&ex}2j=dYS z|7;zC5Yl9ALld8>84fp^6cg7x10*}<6lQkV`7cGwv&EY5l}8VL)lMFYM(!YXkuulV z0A6wr`#fqv>pV7aKO6HYE}^&@w<#p=;{jT^pH@|&kbR*-#g*iX&mmI|RG|vn)+qr- z&as_b3SzM|V1KlJjZnd0n@o9`vf`6HTO_zCNpZ`UD_Rs2X{vv|)# zq>jn4iwiyeQ#$dDkxTZCA7do2C6kI}!Mf&Sg$*~9peJP$RBzcHRsv?JrQg1UVH)Go zch#$ZywN3}BBzf*9tlJ%xFph6%iPGrrpYn4Lq-?K~e z0gW%hFW>{Y9z|-QwV*W{AGD*vWZu{;8E{aYeTu$@1a&K&a{!_$sIkH=wPyAoqH4h) z5%6SM=~@l2+rFlOi)_&HJRZTgPj72ASP4?a8wE^NoObqCgM129f0O(@m$wbZM8_ol z3KtIbXg3&Ty?w*@Tb}g`2plPDh6EDZ>c0d*sR8U>7;X=4(NZ|lKO0$C)Z{1~dkv2& z*|MvhZ(segB`_wal7a`Fj7N@)V~>YcHqoOVS(rwPA%c_4=km8BDp-rML+nn2nXmGz zcbQ;&M(8<3nl4ts@(LkzW@2?lFC#!&eIQKxOl0IFn znAR=tglq>k^4#kMTU3$Z8-5#7(g>B}J|g?5SEoOv(~+oSsq!x5iNhGYHrpj;tc;Aw z)mqlyH1XzyZ%lN%YVv%q?FfG-+3czAVet7C>6xY>aHHhznE?j893f*1jau)#bjbzG zH&pI%pP*RFOud0ir!kzh z4n12NiJ44x?9~63uXW_DJT7uyBeKm0Z}PV{R>b z*Q>t@tZCvE+}~(RrLmEuh9?vN5AN+j;K|#;E^AP4wp5x52iuU-APlgL|Fp%T0`D6( zG$@ETjP5-(R(Y6~%K$zKE*@Iw+1?<&sGEs1U_!OFS$;hgSU&D|sraGr95|0mHK~E~ zC_)oIkzS8TIDK*0&^rR89>@^LYDd63T{~Qy&65Rs^E!R9lLPeqaVN>+SqWvegwLQ8 zRz~Hr{K8^XS_~9aG|DBe4ru|R{%n`;6jnAxBem5xj(luI;AMO|F~ZfI52Kc!^R3y= z58t|VZ?qHOM3ww*Oa`k>)PLx$JG=AbrxP;cS0Nxg5VhxPBOZ!%*b@e2!% znI#^$o%}%kTyP;wLA57dYqmyJag}7QzR{u?(goR+C+4cyAV22X9+c`hw0wW*+;P|a z{M;rXRhINze@1uY3+221*%G>goZlpXTldNI)ZWbEmF}6kr~{zJ7tzz_($a5{P`(J| z5cK+H_zCB&UQC!%@Ajr&SjR}P^-x~2Pq9@f@aD48^J3ETYVm!*o{6CL`HU?SG4%fJ zRTi-G9PoMQs`Em9vJJCw3gM=epviDpgg7>>6rMTSG=tRPW_4x^Mj4;h;nD}xe$K)) zPoLco@mKh1+V{BxXb*L8T1I^gpsP)@YD^o? z7(Qf2C*+62##vzFs-9wnp0iOCYXswk#1y*3fA^8}C~49u^{bd_(=-7(9-m(g?jjQ` zOH4qaPyAsv@O?fw3vA8`J@dnGd(hU#cT!IibYBiV`!e)OlLZp3MFEwzA(FP4Mm@`l zm&MJeZfwh$08PIZSj+xx;!(K5t7s!)>?RV%!3BxVQUeV`f_poWwI~oRwG5}(F*H9G zdiGr%T#}tj{`G;XF|GS9f%ZP5^QF`$bqbp6E3rR%cQ@AJNYnD4e{CEaBA?qD+RZER ztw3)K-YSdQl?i?pApj4c2fQObwP2SXoaC5{_9+H|n%c1Ic-b;Gi9^9Z?G7uAlXhiE z+e-c0j49Ey^25@PJBgE%i(cvtygw7hifzJ6mMlBOhW1aBox1;cKBd{e{Y8WBw8bMX zbTl|Aj5WB>$|?uTmdVem=Avl0KjfE+QF2R@WawUlHo#JgZlV^X1wiX3i00n9o1!_zRleR=R z%8DVyTfL%=!tJAejgHVYl&+~<%Y^Az2@8#P=xAXn2U3;v8X6(6_@h~XE6&Du&3tcU z&q=nbuW$8=SC#VWKD$XVda4@uo6S#JK-&y2Uw0p%+T`U_M zB&{q!uM<;TtkA7+Ic=q;K1U%C^Gk))-qC?RpxHjv>=j2bXe|u1R;+-`w(9&hv&MZX z-cYD~uYzn>9II>=5h?s4ZAf! zImQmTIB>=G%%0BlxI|ku9GF$oBlW!|KsKTzM0!1g{zez;!q=D?MPS!qVKVjAI9M|+Vc5DlYxee#p`NV@*L*J(N)dJq(sCAk>~7Y63^i+ zFK#TpcKjjtP_{NQ9fc(AlI1ahH>DBfqrF?=(WrYV>Tro3hdVoRTLO=e9LmU}1fHFx zI){oafm6ln^o+g{u7=UEtm5ZqgzlPp-39_sVSZj_wUD!Ag-a6YeWVlK`YTf?he^~O z_KuIc=COB3MK15oVO`#n*`-9eyT2m0B(G2H5odgRjiW8yR3T(M+Tx_Rk;4PxJZEeR znY)^iJ3hKtNhJ!ycUeMLW(mJX8^vt~GT=;Gv^?4za(fCDj$)hHr<8j9~CX@J=*F$ z9=ohwur)EsfQ)$UB#=%9?NnN zJtMS()`4KYB-nc?F37S;3{t6A(FO1pa|)aYjYM7zD?ACw_kvvK|H5jDn<`kWj6_8%?eN*|8&~mCvRt{V*WO z78kcW!ZPBfW#p{NsP&h?NmfAWj1dnmq0>yeDd1(oKRHd5Zbp7^C!fojT+J~pfB%UE z@yu1c)3D7E4Tno>*hOWi%3*(h@GfQYQMvWixda-=a&lrpquoX&{cCr4gX4^xz~mv5 zmaFgx3dU}DW1_N&y_G@+j#IN?xnD=!FkW73qS0=aIvCs+9?tx((ELy-h8NW)!mfu_ z+;3i5<&rpOw9jHkqdxuc@^Q)x#Y61DD&1qqJw0-p?4BM;RTJ)Qy;_o#8E`y{jo+hf z{~~m&;A2t(`9o~Ga@`pNz>b9P08+E+jDgk<+;!;iBZqpc4>_H7z4;|(#g)Fs9m%^{ zEzi#;pJ~Qx>kw1~Xc9bx{~Qec`sfYu*@LAra#|dvx*T#chY(9y4eq@>D@|pWxIsut zpxqpz1WIHolNJPL`QHsPsq%3Te5j@@@uM~f z9NZmdn}gsYL9i#Ox@ie&*Y}LZQJM$)07G&<1%0#KgW3T#G(N%-)!hX{FO83jK=Y;u zkS_DWm-H~=J%pTz6$3{qxUNkyX<4%`JxPRY%4h1P*VQ`G&7ga~KUjGW1!q=rLHyiz zm{#Gf9pU|y$2dQphPjD-s5fyw`X25t*4|u-(jtS{LOqgjMku9ut6s9({Ut)%$1WQL zT!yn$OT6zS7M~-ZZyL@bt=a_Y#jK+q!NrE;$L12V@W2qKX{F{@(vRB0VG#>x56!c6 z2XURd8%j|kWOTow9*ym*a74PQl5@a$!El&E$xUS}h6mBfu+r584`8mkSY%Ub8@#0w ztm6b;n$GEEDjEFIp&o`SdI@FpP7GJ?TOHIJMza>Ev*QYD12_GcpeBFXlgx~Zu6CmP$POe8C>z&U#@k!@-)FT%_I{yWo}`CEav z`SQgcPDLoxqwwccxRVCvA0N3#1}forVyM|u2K^6|4?q$9h4U`uD9Xd|6f#^w0YRP@ z_sD!SHT%?n|3S8G20Gi-lKm#4RL8ph0=;-f#b|e=@qq#*nF5ZLGb{MO((ZUx>0f^n zx>1@Fx_KGw^i@Bl`E28+2ED)u@-XZ&xklAJ>tZB1{}i+DYT!I@`?KWl?TE_$QZeVk zOok55*ERJSI{~sMS~thj8<6}^r6HX&$mvKdN0I6%D1Z!Q(II$f&PVX@X-MaX!@2VH z8A8#o0lOZJe?Fr;*fM=+vSG+g>3}UD7*8`@mHFW(2sGdLOcGxAwBLs zXu5^}cypX@ah%z3P^hg24#=1nfp&*bpu~viKCybwbi)P`P=>*xF^E^Y)V?ysb)MDP z5j_*zD-@hjag9zYc@Ky-?ryTfEe_ar%?DG|wK$^B>%nhmgjX-a44;`LpK{|ZmMJ6j zsTg44K+X_TK_e_E{a2?Xc^f3iL{K1U)A`su&tX&FPzaPwh5CUx&6mpRAo= zN`>q|mZ!*zijj&UH*YX*8dQcs>7YFShNXQcaK#$%qR?X~9U$9?+<`!APbx+SO@gZI zpMeWjQg~H}^cVZQ2VUN%Vx6-QIFw(|^^dDeJS}>V9Uw7?68cX;!OFzCIt12~iSHn}wE14mK37nIF4+A0+uU%6R_Xp?vD*ktt4M3oS~a)o>@J7yW2 zUo0a}T@?KmxWW`>xjLV)U1INll|>G=+E{4;zs7 zt`Fr#F?RBD*$iti-7sF1DsKUVOiN+&<2m?sbqp-#VAF8`U}a)K&iP}hstE3-!1q?# zx7cVHsR!18=e>1FC;ZCnCOT4sUk8kbvL`3!ym9Q8W2yQYjv^f|Xq8KJWpOwP8@-?h zIsejPMwZypA{Yy>K?y=r8%*jS_waT)VClsgA{fCi!9#gY9|k>4eg+Hty_<-QS=fq7Xamo z*N5fi+?=9tXe{)thDG*Fac8mg}M&}yH^+2pzGhSWUtbC48+*H7U$6!o#*^9z{q>MVvCh8$P!0dt9KuZc4`=aW(& z+z2>b`8pyx=YweWRK$BhUD_ivkbOQuLudIzyPHfU(&8)F5Hfbkr{;}~bsV95ki%+Os5GRGr z2N|Jgi7IEAX1(uJ+PHZnM>FpXXjY6#L;~p#h85?b1mJvZs)5;&9%{J)eqkN`+la^+ zo2Iz9oc;19HX#@7K%HJK*9xZFq{F5>=Ub;GcO&21Z*t=n={{kitXwH4@PW>3*QOyy z1+AY>O}V9k`%%YAE}q)k+U_pjpMSQD@bew8Uox&ZSLpa{d}aEJzylm=NS`Mo+DkaG zKgxc0s{kE-^tlPET_fsg3w$gkD0it&JyZN^)ZEvyv0eLAnzNX@wwoA zZdW)gdNpxNznX19i1SxL2K6vgGvCV#WpUCY3F+$L2ODfGBcm<6SR&}?Jo1Me*n}^! zaILcyy$G5jQbQ^Q=(=Nyr`pKLd=1$7UXq=ga?N~njmC#dV6)M`T==Lvkjhpx^d{I* zQA4(9Bp_i3i2P^5{^N5aRl>+orE5eaz||8m0n!ZC;IU)tzoCepfE`;X>*Dw0yM;{Y-5H zq4V6yXUk{J1Ej`h#q>xCAzvcj3CR^xJpAfL-Tp@BK?D2w+wngfGSgcneo{X%;e~u$ z54C0Wd*Rac$9$yGpF)h_4D{!#hCTNlQB&ir_XnqQdOrsJV?Y)`Fd)^_ud8-v&8T%$^BbKg2Q)?N!<|)@~OLw8y#AeQX0uLNVAjkqg7o z)5P#H$5Fa0`gTd*c=T}EcVHOKs5o_(H&-f=y&0El)qK(eN!fsZ28O=Dr5bqGLNx@C zjG8zeln=spiuyg?hNA>gdhiD`%BksXwRJ^<9#%{F%!A#R zS#^uKcCG#K7>_8aKgAZa>Ya3Z5TJb()n+K7<1g^H?RjId@A;WKvrt=#ezm=cWZTsxo14U&R%L1Z zzk9M*Dn!qv5cI=net03}!;~8rLVAKHd8<*<>;88?ulSD(j8*oZOtckjbG7}suK0U( zws!Yp2vl|$Tl;hVE5-l%v%h5X@EsrZ^H1EgvJiS%5&GV**f3KmBA_ypp#v@>_Vstg z^S(EA`D?B9QB6R;hNlK0rmA!NA|g;a!VP?c`zqtZV1^Kt(v_4juyOKGh41Kalq`mf zLmi~q3*ZT86fE@rX9wgYg(U~17Y zwJ4YxZkXv`{Qv2Om6jN!)%Wq2elKqgHQK#U~WwbR#VtObG?%3X*bc8 zlkv=tMj?%)BrUdIA1nui{9;7g__%nOc3&zzlT&*3QE4KeT?`=^{&#frhKupk#(L=C3VN3zS;oPTx;fnl0a#`hKnRywLDG@D~((r!UwK_2jnRxPJ1$H9xRB-mRZl zG#F;TWb$RS&1;#V{CL%;d~?0~0@F*SUF%5HAgI7fT^R>8ti;BylEzI&L&{)cdR`b* zZFhR(ys0Oo7=Te}wzffWE)sX(&Mj{slNodo&89%I32JBblDo=ub@@G>Tm1fk>mRCC zBF^sJJ?iit1t;4KpZ$lz>jo(MtGk@ypD(fx?Z?<{3mhZf%36q$(A=>TX+?yA`Eh3bNFJCrV50nJJ`mPywSdcBW$?Twx%} z`X7uXSx<5Ucy4CZc~SmIkBcbZYe}WY$p9^>?`cYlXwP!pt6gQk*plV2>#+zq`Tu-B z_fkBFQ`|0*y}t5If_f$rrSkw6IjbR{caNL6$3>9D z%I5wDC#`pE=Jv=t(LCWd?ta#mFFXnhgo8Z{bes(rPas&h6;pc+F5XSA;}jSszdRz{ z>^(LvP~4yKuXpo7C7w%8Ofb$XM=vRAa53qIvvQW`h*5axSIDY#hO=UG4(4qBXG$6} zAU&QtOr<%Soq@HpFMDKapil!rw=m)v=!|LnaQ@QL23l!RgC6PT!G*Pbaf1ixPi%?` zJ}xzqNKz8UL7Ns>wOxzDw^-g3_AGV^E}_ATiib@?2IZ1IZT2l0kS);mphfi_5eEeq z6`2Z1imnc4vgFr&q04XN^yOytJ?T+%w7SoBW~v|Y^E~^PJ6UJX&oHgAk*tS19D1pM zZDtd)9XJ}ie&X_M$G~s2muf`-xVZ8hlgGB6rn`^78DY%m4>E}s{{a+1n0%$zoZiCD zqbC1gwT3lz|6oh^FuQvgIfs_tJ1@VrasO$4=Sz_c3kgd~t~1)^MpP;viG;m-{uE+N%=IuB_^m znR0e)LMb&}Q*jIVDD>S8;`6g;FXm9Nh0tuS^W#;R_#-sQ;Q*SM^6K#hh0eK#PV|Xq z5e+XRT`+bP%21RwKi*O+pA=OZnNi1`LeaF^94RsU6k`~21MYI}#WtD$lqUP5Yw>xz z-?NEk5OjH+4&$RShiX@{rIya``I31k)+{QAK%OUtJ7FA_U97z}nu{KK7OeAYRrAK{8zhgpg7DcO9sgr~xP3nQ~b45ab zluo<3`ki)kyXkD4x2xbAlT8S?A*&q)bp|36++>+N)$5>>J__1gd1%(`9V(BDKHNIw zX`N%a3SJ)%;?) z{}sf!h^Akp%7F=j{Z>sn73|7Ai#sp=77|GY&=tuzu>?5xtvJRDM3 z6Rk(b^$`^8K?$SxB66H5^ZNNvu(HpkVNFClQ$5d`igQo9v^03}kp4L}Rhko%ef}fg zWxGgcrXY1|wR~Juj2srv%2fsYM$)wgxD-)-6t&8aDy{k%fdGVh-}ZGqb@jAv zkUDTsvT0%?Ne_1@byIvVvgEr^oM5kJ3;0T$~%cJsMAtW_Tz3`ULjg04q|{ zLk#Ez117~-xt2>m5jEb)Yo&=F>#N=8i_M}uWm-wLBp3npi$9qQ*SmI)g}!skpMAk3 z)EL|lV;Xs>tt8sniPlh7FY(}V^y~|2A@d;T{KZ3HQS#QWs>HI}s~)EL*xJRG(?#UW zb_5VG2>qy?Q!3FhljeC;s6YL@eCM5F8P?@keI^}p1f-${E)K>sB4@6{7Z%fkJ1Tqr zTyS)qvwJ&jZliUB6F7QWA0`lRqxOu#!>O?W{rAX3yj$K3jVEWm%2k$3?dbbza21JY z7BaY5^VoQ40eV?9ceoYWA)PF*D2!kvDw3}gX7%yvX#`^7A+t#jcqXC-Zif~Wtfncd z!}acUO^d#YdVAn@HR2XK0qa_yfLDsELC~z+(W1BOq4K)h?I+8b)~Q?F5lft=3_dOn zpYA(qc6l~!5Aoo53!K)ECJc#+G>hq#X1JB=QI(iD;$GcSH#MloW66o&EX`hEU3@}C zX3e(rB&p2C-+@YU0fPh})OrQG`Q}{V^bCxLc z*2#-x_v3FpRH|N$%gg^{H09M5_*4N@0AG7Xq!gMfBK4f zNN0NqeL?XqK9Y}KxeMQRaKp1nP$x^`XdU2+Y6YRT_c#Tt!!r8|5+^r0681Er+Qx<~ zV{h|{#|DLJwj1j%pN_!H{Im|<;P^>Gqz3|#4lzaau$=ME0D_#w5)0y?9+DGW{3`8% znHI-rm&UuY*wTu+tgpb-kybM{g)|A7y+h$6@Qbv0S~nu=L(Npj+L-1y9ppE4TRslA zKy+R;L%b2i>561|Vb7Y_Nm(AvnxvDY<4|gy98`M!cDF~Bl}UcBa5l5qcU7*<|%)F8yerc8;%o{u->PMZmRK z9Q2!d+lqSHgvNGBT@D$lElI!#>W0=T>EJa2ZMkxrWQR0@Ij>VOV`w4pJvEbqDYhSf zc6=|!=1L62*!1V}_nRu$zh8&H4)gwa$aeW+W7UMhpxmBKPn8thA7i8`V6@>) z=xDOAJwF>aGqf*}d?{%_O2#>mh5v=igU$s6X&EOFrS>LxlSAjxYct&?-{f*!|28t@Vy6C9-{o0VwXh=aa~KxX7km$Am&ZN;+h7MZdh#dvnn5kv8d3#s}c7 zEQbVnMEBE8eSmB#poFne=3P=bJOV=ppaEn!*0cM6vAmRnEbr&`f8pq~XJ~bMV%bh`&kz?X$t8>Tvmg`qe_>_z zH+t15w?0Wm$S%OB>AB0je6%Bs?NMQZ>!fd3?%#1swe-F20v$6CY*(rB*aTW?v>WX( zsG~x4__jxn6+=6#AXB57(+v%<3H>F_qpDEjC$qgkZ!5zUFb?Uo)D?vF)t)T~zpw5Z zQ*bFie$qqr3nTGxY_^*D)zxFUaS<@hKf^hI==^N2Cf>8SOUR&OoZ5j?)fTy0f$3h_ z|6B#AAz1g;W)9E*lTPL!GVpnYOlNsyTKx|Qa9ULbxRG=xhtiG0OWYn^sVrKSOl>Ld{J~6t^HsR?(i)`l zpr!H1Svz7yX-#tOX-zhW8l;NM8Kv^by;}#~&Vov%Hxg}uJHWw~*0ajYE}ynwfH+&g z#1+YH>|6;uLtGuJNSKO$GiYXiQ_~gRBZ8(pt0Ye73T@#5Cry=4a&aQhqmS3N1#sSEZeX_zjK*DR521f6nl2kw|v0@36`ta6_2484^Oqnb<=(Jv6VQ(VPT_~XtHMWZ=|~`4+nZ1 zckG{riobR`yq#+_sBG4&9){_t%7Ic-K>UbDP0m!DQ8oj8m+X>nL70i>$jEKsVHLPN zHWhj(--?g`FVGCXX*4XX0L&aGv<6LPmjUnwfn)t~q?v)@_ z)fX0V6a0XD5K!aXVi5}wO2h&H?)xQYXF;k?!pvwVomA@+m4h|;uAW8OBMa?HgEgW4 zx8GANYcD?U^F8=o@$7FESF}HC-Kx>RpOaQZUp)D6^#y?jJE*>-q`__g5?sZlWlzi{ zACNywIDGSmJ-3XU9CyZO@NMNBubX9PzgeBdJ6K(C5dRRre&+=~`2ogD5RzlJuiw!H z(XD>z$D2W|GoV%aPhp=g=)&=E33-*@y0m)QclQyqt3*KM4o;_xgnRDFy>Px@ww-uspePS6Td5N#9o;AAcOXu+G_0oRu3+YyrOi z5HWPR>9-ho5$Fqv4_^LcniFOSworZJ{89(&%jF@lcG=ZH?NxL1A;VMERUZtxFoKsw z7(_H=1l2Dd1~aOHX3<|2dt4TH+LUQ7%01Gq66(6xyXC#ThP{gSHp-DF3}&%Y4?&X+ zXNP_;V^g?`)?x#z2>(@$$K})Txs%&C+hW}lmR_-;YkYAmG@yc+C;DQLPUe#RMU2>x z=W=eN{7!z2kXnn^=~{2%&h~usVal^2BjCd&w z>%&@vR6ROQ(pxRx8xTJ^(csNLHz>@C5&?MvYJDb4g(?^-RTDKGQGj5dTXwEog0I#$rdw zF0V)l|A_r+iCgMi(CY<5=$_*nXT6-+O;o4rvU$qQpL?t4DiBY=5QxZW0-Dn?2XwOP zLJ!{6 z2mM)a%i4Y6{j0ZOWws71gI`uyv`AQIK5e|KC#l-ajd8q z3_=5%{*ID`ZM2x2?tW{|9qMbEZ5PQIXU$oC^LEJ|ad->Zkrp`1G))Fqy`8+0PQXsp z{CZ4IBme>_Zx~HrWZOHW__?%%Qd655n}7Zj(@mZyKJQ*EOTPEI=4Qj@;}6HGRjj1h zSu8W`*np>wj9A)?NZQQ8(u+P+y%)D-Pba7>nG7>)=TV@ajQhg?Lt*puuUw`e357VrmEu}r)~w9z9q*eLRV?c#Q;`xG-;gyjXe$q#jx zg8`_)Uef;FT||LT*(^Ql3wD%B4A5w6rdQ(~`(vDbDt=mPqnEOsfmX?OFI+4#Ea6C? z$!aYx3yY!`%dLTaZ6FMG9V)2wTV2*Dh5Gc3FqWBaPQ~X1A0wm5qBn7flaoIe+o@&rA z92HCg4Gbsh1|! zH8!y_#uLS*0tvBL$!3E0%N_4pXK$;TPHDZ3%MAi|z74a18dgXa!xQ^J{$?T2C@l}= zHP!-Cb95EO3onr?PNXM_SdAitNeu~MQn*bCGL8b^v0D1dm9#H=@9=`(GTlTMQ$S=% z&Cv}11lc2oKD!ua5sdaa&pPAF?qCTD4N6)aI5qndt>@j7e20a);5tT|~YeGD&L` zb?sm4hndwzhLvm>>}O9!{i#3CeHE`if4RZiT4#H`(&o7a)eWrP1&j%uFXA9ozfBWg zB<^ry$ay8?<>Mqc5Hx~Z7E-#=P%G$J=vJM&;9h6TIL3lwz#8!i6^q__QfktFH?~d-#5Z@ z18~s|ifN=BVvxtN`>knnq%xuODL&o!4de;*I1 z3Il0sTC6Y~HJOfSM7DE5`H(@}=gOS9&Q=V2$9aq0ZZ>ydBl`_(wx;8zc(mz~FzL z^AJn8WA2~LS_hZCVPeX-N?Q7YKp0s((TG8Z^TNjO8c{mgwh+Imci_^bt(6c)kK0rh zkNp^-Z4zDHXvY9#F1u}V(W|oR0E5&_Q@=roz8nwb%SYlH_R=WF#d`CMf@9&oZC7mY z{Vyr6TmPOVwiRZwB)w0U^u4UG{XN9hc6a#q_D{Y4pP%(@g*896>|gJ0oi!f#7c{We zamzT%!ZwDN$+HqyPoh#! zVG8~;xAT(}9#9a#m&Xl%058Xsll{N~!_T5EahTr}e>$H+bK6u_zu39m^!Yu z)py20_dJ6KG6W$gKlnlNI<1hw1a?d8E%`h}!8elQBCb+$+Nfng%LW5~6a$|^nsyGG z!AF==NpL$AEyB^2VYWv{x~xr1!V1k zX+*Nfoc;rQbFEW%`#woDX5!g2)6D~YwJ#5IBsybk4X3cNGdg$~0wJEY#Rup?{3t+` z#ljOAdEj!LwKwWVFLh%?W}r>D!R0Cu4%+J>vY`lc)RFOmItkNgba)vk;h~bVe2uIP zVe^rzgi83}=AgUjqaoWfqa=Vc4jr{;tRVaeHX#K12h;}dS5}r*<(3q5sKO5^`^_uQ zu%%l|Lq_z07_dh5(v=aw2N?*T=?IjMUW$ihWqCTx$I>cLB~lM}_?qYqyuI(GWleFU zJb>9T5Z-Utx}Hs`^(Ms*i%*DMI__S|9!a?&mXF10F!?#LKQkJW+M6@9HCLfTjwB~) zmE=@)1UAfO2lkUKh0?U^>_Mu#*zP)NPj?&Atl3$q>b>V4=aa2hJ2Nj%P?@(;P8T?rLhXd5I7lk%J+OLX-5q`#68~c z6fh(;2Od;)QM&dNFf3C(Cj~crZ^hqy>rH6H+pl^q9xI+5C!UF) z5W5zM?q|eT1wAhAELlYCXA;lazE1L0GPRwbrR;9$WX?%0AGprb)Jg+;m0gb>bZdgJ zV;K=H)$3V-#~Ri70AO<*%buQ#}@OOE97@JP?dMGhA zc;}RH&b^z{GW$GO`hQ`5Re6@hiSK#v9R!TT%6UM0<6xcX;5; zV9RiHc4wjGWPfZ$<)PMmki#t>0VNFqYA`}{56vMm3q?Vm2}8eqN(Z0S`*~+uCW8jc z7NPq0n!a`L>y3ePMNA!Tgrb)5rc!lRYzEf5ofVXoxhJOfZrzmvWio*03JcNf?v=zk_dWRA)4j9G&A@eR18>czY1CLIJ zDEF@##@8FKr-C~J3&VU3X`H2hygz1L$)4#|Q^7(Esp5M;lig7D@GbT8F`+ZNH@}d! zRZ%ceF(|NzKFC5sLl*omDK0jOC<% zv;P|F+7sOi(qwVPL!|ZS-LczizaLe#&fZ}0t@!Ep>OJyZ*_Inm0(MI_Jq54>v4~k= zssm=+(=omM%oc3Pey4S{iDe9 zsfqzy*4mtizd?xKufgCirv7#EgRQIz5zYJJeM%@lz9|7!HQW%DQG|3r!GjxjY#RPX zuq@zXuFY37?S=C9Qm*dtU(9hwsjxJZ0#S3_V1x}EePx<_j_xC;>hq>1WQ>$2iPbA zovktM?^wPwc89P$kJ)fm~(fxhBYNc>Y=r1 zGO)9n3KI`9K*Sb$1=N`Me$(z4V9_;5EL8>_)(rWK!c*Ovy-7`h7kW3V+_$(1GpJj4 z2CCzdx^!j4zBh1GQMcBIl3o^AHlWopYfS$Nh1Ox2T;l#28Shpu|2b zIR)3OROH1IH&*gx?`+vu2p5Dy$U@7KDR5<`4@igC=cY=NUU0DF8RdnzL^5LD=Xf&` zsq@cOmWBR5s{R5hs`vZ^?3uP`=Yyz|A$>cA z2^2?%;Rfd=;x)_hjYoht29XJx-87+ zFgBUikPES>Ws9>Pgxq6(P!WwEbyxW;4hmhdpC)W}0`{H#dN9XDILl=OXL;5rNBFQ2 z>R1I$H$zEy=WqJYeX{>ueR^2DuT#p(n=ebpxtxboj@-gMyV)pU-GM;F?PY1O6gxL7JKl5E6mVH>FT;nD0x5)desO%i9nH2G# z?^j4xj>PMYL^#WcWQIBb+g!e5m;yG*Aq4ftOYgr%({?V6Tt8@iymf#@C0d)e9&jD*xbfT z#_|7sDHRql+@{E-Vz0r%ZV0g_lnX;pi2~3^wGt^Y8yYDqzI?r>45U(eqtFcMWI4g( z7dl0SZ_~cs@bVWKG)9&f2+F^aSpuI?GlxJ*FRS9Qg(N$@je}CI!Q8>px zmgwLk&gFQ2;nGi9HOPYd=Knbcr^P@*96MJ($(LDxxiQOfWZt=r#a+^?2=TZIp--2z z{hzN#*0<6FzgYyTD&1Vqo_{-39{Z+*|2HA={7d}&k%DVHO_?vMoa{hBUaCGKIrfcDZL+DC; zU$R9Zicq7Y8V`y?d@CI5LYb-Snk%k`mXX?`Up!`ag}Ej zC3&8!`hyhw>pWgZ5A6?h8J=8=6x8Erf)D=5$h=${gw7#m1_0<;>~#0qM-!6Qbn^q$8mU;BftT_Fx)u$dL)flSoJ z4@2&t8g@B117Hkc@DMHjfAq|n0tCxh3hBD?DH$@oHhwXT@Cu*gQYU$i*#K;dv`)5+ zQ0tu$*1DKbzzPk@PF9M znx~OmjXX@_qVri?`9qx@Xlo5#K`em)i=W$;Hn;TMu?NsT{|Edu0l?3tMDB^hFgz9T~8VjT&umDK&EAtM|ql{p+zG_brh|-VWnLbv&Zn%QxxJ55EqrM=? zc_njfAF{c6rDj)qwbre7c5XMDUS;?2AoS->>S>h%l)+2zFqdi^R42Z27EQAAG#n|C zQhoQ&A@s@;-<@Mq7~*2nTn98d>>sSe3EL#vn%E)Zk4Ln`m%3cO4o?h6oncCnM2Vv1 zZ({s{uh{)FSOvpS(#eC6NSo1u>)PU1rQbGY_iBT|&lsE^B*ItzHk##zeh<8jPgg3W z6H@$Ve@ln*<63KS{tL6Z6r+mzS+k)i$(24rZ^5QdZpY4VM@}3JA$fQ8Nm1~)mJjzS zH&;sVM1k4*7!IyUJZ-K5yf==<( zfX^lX(*U?qN3Ft-P)BfS2IFOYWEJY16`^u@s;&Gz)k7FZi@*N6dKR{J!CaJTr1h6w z565+4`U7lI^_}KKf|!np_Z&}HnM{?1Gb49h1m)}0Jp^@eZNBWfl$%F`0}xZ7p(uqxr28H0tzfo7WZee%Ce}uB!LU)}`sPZ6Da&TZWNV-(mz8x1mrOB|Wgn-~ zU!jO5;oA%=kwQO!qb*R|^M0;GkrEv3myNsMmx<`HvEyDDaA;_^I6mImu`lm?$7>& zoQU;{hkfT}cFTqjtkAd;%3u?-;Rr-VJ`kT@QEo&(?LRoX?XS_`CLx8LLnI7nzV z=*gyD>+EXk5}!|$ug5Y(O-YtuK8{HzvtaRzzZNx~+D}gYME;4L z!3P^Vo51`yjjxIG;NZW89)MHzQ3HYq+eCW*@!*xr@42U=!Ht{9l?8@q$t@hDL!hL} zw6kR7)TX_mGx5~P=R@gka5Wvb6$)SF$MQe_G=v4#w2DexO%oeO1$(rJB%KHT_AFdp zWOA$A9pcP!dbnm7 z))Bqm-Lb;mFdXjwlSec5ST#M5om2hMAAkYo7}3WIC(6|5Non%-%8ja!0B`EpfS>-X z>_UZ`2j!>$ef|_*3W@|=Zsn0&nG%D2y00f?ot@bj;?|=iHgr_LM!Kxq~p}vAMpD#o2 zRi9x`yh{L(9#8RLJQWNx=?x1M@ovFGBbzU9AK{)7JT(7yNLi+5tFZUahdaj@>-&9`ua{Z$zFaGnQ4hq5nrpb zPKn+!Us%^%=0Rm#Oq_gWV4N0Bi3lSN<7L^5%15%X(IWA%(OL{BKouc@HS;cBwHXSM zu-7eQ{548oEPdP9F0BrHj1pb~AET;hZ5Ktn3#>zI!k^2>vo6EiAuCzmtS&LW+@AY3 zwd(=;(&I)6=u2qy6qMhi@R3wY1>D@tJPhI-C`?6VUA^v`c>{iqAa%RLt-!r0v@RFa zzyVN6=n<$SAQ+5?g>5DsYJn0MXyw5jhu2>;H;X}Oi(E~Mxt8Z~JD18Q7;O)3KBO|C zp-3kaQTX9p`JFYcOr+|6{)`Dy#4Q1q600@o8jR8Hwccv;i)XhO$Q;`w@Goi1 zUN`X-lUgPK=Loaryi{TLrDu!aS%7fd4RsF)Eqo^6Uv^bSBJkMBCE- zZ7fD#S<2X0*g&GawYmtXLDVU0@#^9xq5!wyjuiPGISv(dy{4(K7&f z9RU&K{?CTllieNS#U5I*(SvF*{2?JSGd)-~D8btQ~wlzCwR5|+CapXtR!t#wf6B6>_I_2gfBz9oK@a_F9de>U> z82lWPn_ACWX0P*T(b@*^^7-~4?0*TDj^W_hMhQm5)lTx9TIpd^4EPkLgCVfyFZ0hs ziFUdM?zmkPWj3BBj>tOym+~xFJf?*8#?3?KUS0fsWZg;BlOk^ ztXl}I8xUsl4aY18c{AYd_~po~+MWv@8a|x8)HBFl+=24rZtsOENX~y8y3kBs?;-Pge*7C1RU` z)K&6!4l)3UP)kqBZvD}m*HTFH>}zf?nGO#m-kJ=`VEIYP($*ez?xn%KE?11f9veOP zT2pp5MF5w6Gi4fCZ6+8zl4d7BL`y5OYNny{4i9Q}gqJQ^J0B9LjX`WV*uFSD3>s?F`3`7UT7Vafy? zhR28GL*JfDQ+9e@|7^IP+CXWj`!Vfn&hQN%Q)Z^t;>!E_r)O0d{48K_?z5V)eo&NW zIO{|&P@(YFvsN}-+~OT@*P2}anjVU=g#8vyvvyB&BfQPFR$rLCP1I!0Y41_iVm3@j zbv+x()%Y0l%SV=__vkR?+EO(n&o-N?tsf)4(PzUldqaBgmJXIkBfll9^2r5~X|vdY zuqC@|EYxSmX|pcl@5wX1X}tbYAj?LG_4I4h0V^av)lNGMgO1nPU%CG_<9xgDM_fo+`{BMGI`)265Q}eC z-??OIx{l=1pQAmeQUCWUi|xLjNfNr{u+o4QQV0<^j<}M2*og6Y&uX68C&bRdl=pN_ zTDEs~6TnxSCB6*)8f-3)WHt|)uox;-8YvWWxn(*jl+{`roSxqtB;&OKVPv(BUg79r z|A%l}{gCkg1a1xZA|YJ;(sqboD}7xFM*w@!BfTvo>i>PeEeu=|%tzgb8S&*wN0kCv z?M7i4**ty-0HJ}O2&WeoIX7Ez526((81X;7K8e`hcH?}yu#b@HTuKA(G=0+{nXi@f z<5`EW-rP_!*gC#4ostI(HF8Ajd4N0l)kOc+hTI-EC2OSKI5egTLj6q5MqeY;u=iu) zD-<;HJuJ}m2#a86p_nPeG&p)qs3Ud%_vs-_Xw-tQZ_=jQifG+PjGjjLq83pX z#JmWOTRt$NMPklqVEqN~*nWgJS8R=Z>{#<*YK=FT2zT_^S&W(pOD*LnrL#zvTPk6Nqgw6>OB2xnhGk{r$R~Y`s6{Q> zE=Yb6I$rs}q!v9`o&A^F5_hcFs0HCPhYq~=84j!hg~@z$ucjVZZJ^P_%EJ%+pgWj6 z|5Ad5UyIIpFHFBm`p@A!Or@0Z^MDGJ4j@Y4_?@tg?zuaq?zb2>6b){2Gj~ky>@wXI zjH5|NK1>}h4I_NEXBBG|_~OgMs44a8U58j6tEq$9P>OO@iotor=xwsrO9Ny5_FMb_xVFM(IdIci9MKYp7@oizueFHWVCg^i55p6Bp#HfJjgruRF8t6 zUupY^E6RQLPg=_OB{#dtzbgF8rk*s(k=t}H`Wm?O)?snbOHC1M+Ys#qXf>T=5pbLJ zlecABm~F~29{^Rm=PmjeG=Oii-iUjr^>YE+Ff_AX*lTJRAWmxS-+@;!m4?n(vicxD zI?hfnJhAjpIqvZiWVx!no}Mr&c5?_eHi?_LxbYPoE|xZK8a}AGznAFJIXP5dt=}m8 zP@zv-9z_5wQQZ?IN7~;SzE`TJ%K1i&d)7$IC8r}ZVj~AlJ4zcL8RJ$HE^M1O?}nsr zfsq3M4*7)7oAV*NmaWdrW@JJCJEaN<_fZ^rI^upwV3^N@{1TMD7h+yX&RiZfGKkN8 zMo(t)y_9_P@qKkRKHuft5~1)#Sv`i@EJ1S~LvPqXsDcgmnK94LmMl2le@hsaJ!_X> ziGO(+cS1jsB(PsO&xMWeJ{4isd)np}s#B9ILBW}#Ue;_XIyzWx#JPll+FRz)dqdIz z)9qYCsNoSS_Z9n%<6u&n1N-bZk?rJTHx-c{`?Bm3Gg5Y_pfvt;L~{y5P?$4+k(hoc zU))_P!n&7-e4{|Tt&B>Zl3@rg-VKva6D86h-cO62wcH+*DxyL+gwTXmoxgCwG zP7TrTj5oIPqzIvY;+FR^C1n^Q&djPY;u5v6;1;&<>J8>eA!o*kMAESvmUrGrAhb0w z&M!yjE06l5mm51{RVG-tSjM6YGvh9JT*ItCQZ)A~>)BG!(@QR?x;lMnZe>)tchO)t z{N=|s(Kk7bVkaLoA>UW&vvAe!JXiCiru<(`P|+GYjrA2H57eJ%TQ?tv?M=3k&@V(9b(@EI~$R@q)SgbyI40C1bk zGBNmA6?f1K**Dc@vl!qU-v|tlm>z#vd;yz33i|q7A*FGHasB1ec28w1A0>H0Qa$)s z#X9xkfd%t0!_RikBgdD+JSeBPdx1Vi(^dguhZ~5`jfaz14)Wl9*!XVHLU78Tt%PdV zm@1)tC0kECVWH|Z+_HsfyEc6MO?YmgCeg_ymgsxE9Jij~Ho#XpL=9&FR6Qt^4ET^a zHbvR}9+h!$D@RtYsTsj;y*_gIOSRuL+{@cEWzlb7eOD^P+(&J1K!)<6l%)??tXZYV zC?oM&cME6*@2C%tYl;##zt5&p$SU@;7Entf-_NrL7osLK6fn79tviy+NI2HrW2w{) zqMGUfE$XX2^YAK{Z1JQChhbKwm)HoJm=kcaP%uCLYp+x(Vn(x4U`#W`UD@^RUyXY| zLBeg$ni0!<@uZIq!%A*l1_pfl-YwdAPZO^|hGn#T%$Q zKP9>?=HrXSrU)(wAW$(P?VhxuY;D{ggN#$4^**K2vLvN$mPR&N@WB`E zWJC!(1smUi3#N2&8flM#)ki?HhJ0j_ek%`tX(veN?Q8iM>fj3x09>IGxI-7L%I0d^ zAaJ=WB+!|?AXa`KXALQJUqb`T11X>$GMUvSouTjNE3!zF)+SClF>mGIbcsh$)0?p z29?0R^IaI^yHv+qa-UgV~f;Z(qjhpe-F5G`tzYD0S^r|@17%xbfKbLaiy6FuW&QKq=|+N#ggt~4)2RmZ^b9&@0P+?u<Hs?}t2#ft*ga0&#T3atmZqaVbrSL^J#5L5#eBadjq?x5{F+S%3yE9ss2}{)On=$-umFB6=0f}}GnQGq$)gA4V z_2hXge;ksLV+$?gSPRC?6{o@lq;!#T(q}=>*}LwT#q9cw;bZ_4SPT>F{u%QVa|^rj zqzUbSbUYX(-AS~tDH+SUnPo7d8zIL$jqkXC->-B!CKNHVLhmXd;dFsaH{t83JtRmm zs2k;-(T@Ob{6^v+1cPA_E>Xhs`PM&Md{`LV!~QgVIhBEo6|>1H#K!h0#M&AHf!a@8tf@Qu0)U!ve!$@u6#Liex6z{ z$2mp)7%K*1dyZ!3W`BJim`&FzjWu9xaCImwVxc98(V?rrhe^botFq*R1Wj5Hb&^Y- z6%Uh+UumqQCASUUIW39RNNf+fNc<$2DRjx#BMk)h3UO!JV%R7j$o(>1E6rqzBKi=g z>9lLFtr;9ECaVbsox~oj3os(w`glODM0Tca1wh;6!=$;gkRn-uh)M^~c=iShud8Ux z_zHKd$ov*2QsVzIA(ppOB_I>3QGaR=sI}W1wv|+npa{yQ=@tQJP(V;w4Ow}{KCE2I z*f3x)^~On|uMc2n7mSFPpYfQN}?& zFQ~w?tu_Z-3OL2O<-z0yZIQ`?c4zv;)w4L<4L72Wxmn7b*d`xdm;|ER2)=C2sg8Lq z$ZWU_cUhqsHG?*r$}lJshiz5=P_pd4;YGl6cIc$+>n0abS`0p6X?({!QZXeJ0y<^@6{2M5f)91V zcnU-==)cyT5_j%-Ljxw!(<^^(u|3Cs`JB+(*m%SJb;`ziM)^?z z8u;3OCi{%Xt)qhbNMs#5_GvqsrQOtuwSH#+kgO8}_dm7`HAze=_!PNK03Lssbwmht zgj>Fh8x!9hLv?0>gRHWthMeojK6a!Am!BL{4hcsC%(|TUE9jT7b8^cW$&5fTz?R~k z_(pKNVtsIG!Ae!{f%j%!{g?5x*M5El&zh zH!&}vuX|mRg5$SeLKriMZt*r1o;8*rKLXhJO?6M+J^#H@lUsal+@DQH;(>tKNc+Z2-Pc1%ezt_JvfziqPsi>Es;-C*2zZnc*vE34JChRu zY5IIkOfWlh88KAb6@bQS(OFj=yOXK91U&yu&VdW=#h|N0mXjc17K0xU^*?7 z(3wjiNzDSP7I8z!7Aq8Mz`jPMT|Ex*JJOsV)r!3^M`$1q{_hZC99+<3DC4{H8XCSMR~m+ch*i z4#i4lcszVW!*CX2>qOocFG=fPKjw(_=LI zAY30G8(&~5(X=g#DC0mjW-g!Krc)H7-=ilD=MR^*(i4GoL&!Sm`N3!LE* z5&Y=_4bY1rgF;z!@y1KE@W_(3O#9?`tVgDTT@7MLEtpLgpA&DZ-P#b4zPKBP-;iKW zh-%+qXiN9GnIwD`^?|SOY<=_lK}6r@ZEB&@bzZ$Iy6g}@n)8maTtN?XrF>$vBT36@ zkt1dMX1k<}(6mouxOGB(7H>$+V+w;^-+J0oH(76ea-G;OhtC0D1?^F6@ZPgMp)r2H z5!B$0vzNQrF$?BBx)-mVN8Y^DwU*HPmOS(2pWEO;U`vV|U!2$9lN$cga8UfN`uQBs z9g4B?W5DoGpf=IwEWPaMS>sYvY8k$rui?e|l48N|OxeG#+k;aMlWHHMkC3mERQPo}2LZwLwXD-(~X{J!z@79(#r`Z;DU zPG3HlTm=1W320e&oPNQ{P2xnXBfV)`*XI+cmB}k%sWp=6mlEt_5R)2xIQ)Q=AT7kx z*Z%L)uqJIF3v=YyON_zx}?R%im8*Vd5d@4`G4vP?P6PC^>s{iYxX-^W_NL(zT8I zl&oTSok?BqoehlSZjQ{lL00(1=P*JLp^gHpFjOeNh1?)-i7uA)?rh8XRu^PnmK?{* z5P0p8O=hCAa-!IN%fdxOgO_wQ(@8?1v+AdqEZWaXCd=041Ov3VsnILS_3w!8JXEd~ z1`u{~f^G}{4fI~TnsLi|n7KG<`u4CHbbogy5qNhi5yy`Ru z7&(2_T}&@%@^aKlN4MhPFb8KEI`bp?xfXf0(s{VEj7@#$)bL*5`lTVAA^*nYv>TpC zb_fj~@f0{MUGRBf#cY*@+KA;9Y=ysgUu5C*brN2!fy#aNK~i5_RrJf*s}@mRaf|qn z0qM+6(ZB_Lk+HjNp=AC^JF5V~mLmP}N=aYjn`o(AP@SE^sf>Tb&AzMz_gzB8p{*oHsr zhM^jHnrfe7`o3`rTfX$@RMrWYb7!+JI=Dl~|c7oLIMBEm3#K=BVAii+AMvmp3 zNF#W>qC|`{rGhIQ?>GEqJH6WS4OpLZA?~k$tm86&;Ea*PX7y4 zbXcDwXaDoz-5>E*9Sa(X0~4`;=UIGKIs#T)M$A#(+^F8nk=`{muw!aS97(`*RMUld zu+F*pC1poAmj*H_h1fs$GcI%)DQ`&pHZ=| z4MLH4wfJ=}BYUwL`=7sk-L2YYprH$j7qG-g$$Zi+ z_9Dr5Nr%#%TDpBv)XzLSl9~!)K^s#&QCXfa^z|n*JSxAEd)+Z4+Z^y3KZJa^ zpWCyD(VArLe6yKb_R@6FeEWonkKap!YsJVfE>?7&8YBx zsegNZ8Z|BMR0s9fSApecu)w&$+##LOOJ*;Vr(~C}@M>$s;Hq7&pbb!=<-FH2=hgWG z89e9w1RfwH9^Kf?`U@o-z&MD9C2HUY7~k=Lc#7ViIbb-l-;X(E(d>oeh{n`_#(~0; zJN=Fuy(Rpx6BY(4@H~@ZVVLjYsMMk#dtM;dAoVMj!uTY{E0wGz_zJpWimMir-_;5F zV?@}rQsEYB^#gs5|Ft5t|NaRDG7*TUntd936`KT?{D7b!hXmIZc^aFwUiFs!ga7)MaWfXCVIKHl)8(>%6KPN-XSP=SNdU@^f`ES?)JiVIYAzO>zz_{xJGP194HQfqmFA_kp zR-~a8{cAe?)$Lgq=cZKl3vQipeE`vuHn*>ApV!XO=Cr|sxS|AQ?n04{#0n=~+jU;5%U(T~x6Ac_9O29U)NB{DjJ{vVd;QS- z2Zc;@s9L$jj-4~;LErf9{@X+Qa@XEEed&9k4aw@E$y@s)NWd+(%_bfVU9`ua}Q!~I15vBOR)CHJgMy<8rQ+0sd+Nez6=&9PdWhB+?k+mK<))a|1N z#&_cP!bam614cv3(Zs^LXtGIriOIoW?vEK<9>=^I*K|4Z>IOQ^1xrIN!w6mL2sS%Q z>UA01G<(Zxx=|jMzb+=j3*XYskQN-~j=Md950{=SQ=vnD$*;ca@g$H;F!%X*qUlt%Xfgg!W*93rg;T{nR6TWRWakXlAhGJmEquHnrT(wH8d0-OM8=!=zLFIRLz0Kd^+UHriS` zW}=Nv4?Izw8fbpHR`_Nio*>8Z|39#E>(=|Dy%Ozy;?quRq6I(c`GCpa&NhMRD+tEb z^>H$auU_k*KDXAjp2s>?woeE5%taI zsye7S)CSgLygM%01=hAs(U5iKuTo$Rsd&D^f+*v9r!o88UbF6Zg0^>k&cT(qV`{_u zOHX#2z7JiwYM5*+o=$i`18}s%3`j<3jX!bm8U4JP6%1_b_He=)`|BUN_hi`^3BsE^ zrMRZjnpeCV!4*}f;~}Msdjjte)vn3v(C3U>5K8TUzuINVv#lN(yLxwOR%N3>4Yuqd z_$ly+{M747t;?;~xkGeWEpU%s)^OIWj!iVd4?*0v?VnoF0fxfCrYeDgDB3G2MObQqYDV<-kATlVb7vai!ch$U0P}HH6e=(7r zkjfN3p-H4jDqWQSrYmIp{;p<%z`S$kf-oHa5L?-XUEC1mP(blNakQ|2w5kGgPyzTSd<0;jIw8D^EPR-{^SeWBrZO| zFyh#Lo6y%+JRy!gH-RuB_0z6dN3A~IeoFJ7_9bg+R%3g;vt)+!9+SGr%D_O(ZE7%? z{R@g>yM>5~&uQ~z>mg>ZQVjF_vU1R0;J!T3o7q6tnd?BK)sY(P%H zyKGSN;sxwmy`#9?+h4HJ)Q+SZpv^kN4DE>tT{{I>Y=1gOB(`9VbvSoEDlTdcMGWDz*SY}B^?yPCS-`*qi&6NlIPlX)6* zUBR|bSw2eWfHI+&?(y~E^pzEsdFLkC`3C=`URyzq?Mqne?ROYn?3;&Sq;~>tF19-! zEywvl-Pb@Ch`XJ|2js58q3{S4){vD>%0wBNP|LW27t!{}1FM44$)WUf^dxF?#uv>W zGY&0Aj|vvRp0D4K@@S*$DZ*t}Lx%b@e-U)KIVyvR`)TV*DRXL@->)ewydvs#nDUy~ z1=>OOA@b&L-(g|N2CygW_GHr0VltkudFutS^LlA=4=%8cY_CS{!!{6|Cbrt4IiZmD zNtiegzM_$ZW9Ew`-iO7|AzQP5l(GfJr$MXt*Z%Q93T7-#DM0hUv_4ZRvf)6n6DZzCSJBr!9z|cFYyC* zn2adyGPT=&j=5xdl#v5)je%H7akZKeaho-TjC#qpQ|M;6KVjNnR9t`m98&*fw={_u zij(=V{l%EvJ2?(gzo?E`l!G(;e51ruaEhbB*t|aW$5T}Iu<4Lr8Tu(6I{J&> zjv#EW8bq;2^f^$sEJ!eq0@%(vU@T&oKZ~7{3oJp7Y0z+j%G!lM=05H<i9)g7TB+Ni9J4~U=g#Gi4pV$>mXg1oix zkkt_B#7y7xAy^?p+yd(UL1AJDlo9|`|HW2$;QCo;tvOV(jGlopg95Z9sTF&R&qbaYr$i~V+}7RBE(NACE8}r z7^p;;L$x({qLe>Fbnz0@Wu*HAP_4=4X+(01Ldik8W*a8^bIt99ZBO`P7lFmZY5BT7 zNT+=M&l8Xzhem1?cmmQ<)De+kBeCL={NoC}^&j>x(ql84DfkWwYg5WZg1W#0MkcHe z86`Kb6Kn~2v2*BHk#x2lneRQHu?mDIf8s4;vEhoE;f4R_1~@zRgs+|#lt}Bj4f0Bt zBsfSt@pY}y*_n;C8*WiTQ6IY=phY3T`2=e;n#u>mX++!B-U1j7H!UZpNh%3{hC1zc z0#*qOH5O<`3ejInl>!-!Bv@nmd>zpK30rc451nKzgDY|UXJ;c-r7>SVU%Y)$nI4Yz zM#^l})2qs@b6PRBaPZjl_r~f);6g0Hg+qBtChGNi_&ZdT_hcyV^|V|qJsDmw^`ON0 z@y*{9zi_&9ue;c9oIj#csi$`jjB7M@V_Hv2N&UbS#!AOq2__eb++q%(s7@6l^5K6g zKF+x$ZMy#y72)Bv79y%OmIexvOq+c44=i9BF`N=eNY*7^8f>L)O8RqT+oWUYaSD-~ z4l11~d(ax0S)WOHIBz&<{a{BcAGdVNfw|9~iN4#V?de0vN z6+xilW1tqD;YkDLQ8qOs=!^DY*UV-16;8PH@7bSzixL84L7W2ZG`~ppoNxAq!YMRw zL{6^N@1~}1zDoV|tvcGW5WDyCFDiA?(B%}$0Y{3JtnvBMx0|D(nrQLxP|T21#8y8m(4tCc>H<@fW0Ns@r|Fl!IDygOxRJ$e@nUeh0sk8KQ`FNZ0& z?3)t2bsQPSKFeZoiNSgL+0W9}W~y$Tuog~d=Ft*tqyMfm4#B_8eax+j`cz7%(U+2F zYYa4Nm?1s~JX~_1=w0E77n1g{zr@jBUon%oCZnnp#(T2Ti*zknFoH4<=K)>lhEh7o{%qo~ zKn9C#-Pl~v$ZUnD?B_5DuTAoLFF2m5Le$8M%VvY?%yDgmq0-xg(%TG~E>_McKAz(J z_K0_=(+?p}T4yWV|1BIuB4u}D2juKDU9_@o+#U8;-2dM575J6ZwF^gQ#ia9q>VmSB z>Q`9a_`LnD238r~c_Zm-xj5P4tNZHLNwa2T=L>hW;)hok@7g-3Q?|&?3yxahUok>a zjV_G9cR%USe7hqo|1*U){k9W#Fo!2b#brwNVxpdPWMGid5w!|#=BCRP26SXb3>WD_GcB@x49lB@renaf+{H7dNX*_rJMd>!h zVWJs44RFiRVRe@E0cX8q%SPOGnnlOS&FSp#b!yL!^S#~a`q8cANgEqCO1OJmaNV8fFl~LA7MNr0Us=-8ylaE!hMZBp+y!H_( z!z}T+KWZaJM6nke`15H5yEgxz`UwihS0pDCjIft3H?|`hK;P=(nbrC3k>d0kVk-IV5=**V|87>uYh zY;YCi8*{5Q792(*v-vWnx&y(rZeiIl?5$4d;Su>eyms?7JZ{Wc0jFt$aS+TeN@jJX33Ckw(RqyCmY?m_OF|4~zEbBg=TfIBafaPxu$_c#vOXd=zNi2s&a6!yf zJ{>5fc8{Iv5JpSWspG%iRyr%kNoFr?&+kV3ZqC~{Uh%xib8n{=rM5Hzl}aeD&Kegv zf8sDD7dy4s*n?~Fc=3Q=oV6b&xKc_N^5P);4-y6VaHR2h?C)jTV^~zn<$8UG6CzUX z{zthvrwT8;G_xp?U5Cn4vB62sNi9_p_Hbg+Ln&@f(bHqBuIuIv z@e%s~UMyo%~{vB1Dj9k$SwZ!o51ll(w_rw6$~y zBUJtk)L0h}EnibIB;>5t%pjyc`<{(uo=t~0JG5dH{r7s?3$baS0nG;!x}*g}xL{-! zDMJPW&tvddc$=rcEtS=g-5pns$$=YFG>~ZZrFN#m_4a7hM$)T?tDG5w=G2ZC>{H1p zZ{W#5NTJxMwPatzW>>ySS(saD$RBq)`%6WZl1zOJnPW?nRY338V$xT;VI@@P?=T`f zT4>LlyyO1kON$xfEh$jhckLqe>T(7VE`l?u^|5xtnU~V z`imD6bKHrIS1OfI#H(Q(9fTg#0l|sY-^mN0PhdCX=;k!NF>QydFO)BqG|bMrhDP!S zPPqnZT?n^4hqmsmW}gcg7`M757D4{N$AP3z@R|~lqh5Eeq+*c5E~4@{|QVayc)ithoTxzN$BFecMl>O0Zf_M63stO+^H+u5wdlEWHECF^kjXH1J%g$ z**Qn;8&W`f)Eve_XL(qNFc3mh+nw>BXhi*a3!c=qDH)cV2Hg_$19;jWgi8a5mNYHw z>{g^m%P*?5V2|XXB3_=njFbt?hblK!ole^+wHFS_T!CM7!Mqi>#!6lDtck{h-K8eIZ>NYr&jX(V z8^a&=*dY11pC`NI;1=59hB8t_!I{0i1VAt({PR@%T z)>+VZ+*9yMf=4~c8N9`9gaAx*$~4{%v>6Bd!WBVQ+{jnx-q z`IdNsQyY6g_@7lDR#!<#w_!aXlxkP<@S6~46he-VS*ZKd{B=TCtK-8iE zv?oBA>elJaIKiBE>|QorfB@7&iin}oSfTa!Xe?d*i0ndNHba~%{~tX`R=d^Lw+QBs zdJ-)$Y~+Oh^dv|`AIQlGbfa|#Hwoga8#KDJ>6$M5pYDXL==c0jPoiao31Xo=Eq%U` zC3%-L_8`Z86tsXG+g;_+ME){Y*IJR?PAeO(-btfj@dW``1$rCR)fC$d)KHWd&MY2Q z9w0V?B{Kmp!tROvKMIdV;5V&`8J?;BGe9ogGKSzkjKBVbL!8Wtd1iX zB`eIsG4s{ha9-q@j>I)VOv2wNZ6r3s#dCMSQ&vW&Gv7zfN0ty7AehY=RMUHAw zvXfrKAZh+m-HF(vuyLyO83P%w1`Y-$==v(Dq}e-Hcjt@gXZf@gi*!0`4p`Y;XHswbsxr@4o@L2P}fbG++T60y38lcH|$>ca{$fFLE>* zMsQvSF*;2o>*QL*TMHwjfuB~S;xgwHOr0e|tX!{N*=^kqlMA;c)+oeFS^z(NJb9$mUILk@oz3wuc_)l+|NG!hyj`=W(ip zc_-h;OZER@>nx+9jJmgvNJ)ougCN}?jWp5-Gj#V564IrBbSof83=Knf2?CPR$j~Ly z5+Wra_#S+o|60$7cP+lS)}AxBGxwZ(pS^$ky2>ZjU&P*fi42%G_y5HX`L`x^Kp6)v zSQBCiNRlJy14V>E4Zr1&Ig^dhG4r08bzVy+eoM)RlALbcKOZF8?vrs|iF9$6^)!8a zsl)pD&9ojVu%Q(WOph;(ukIlYar`b6gaht3UGop1?$bXf;0b%ye)jx;3^;PbnroPz zeX`&`xN>0hVm(tJhT$lDCQ~@^EDnFe7|5ODSE-yfNYy;65 zPmQ0dP-ji5<>&IO~1OE#=|>zS7mu*O1DFE7Ul^4v0TE)hpiSLsT|wG zs|J{wu9p@$@2G?Z3Y|tmsDgZ#5f(fzn9;%dyOwEOoG~ZZX5JKM(vioJGY8Zjm66E> zJZ>BVU!)~alLER(Ky%5kCJ1$P3A7Ox zgD4YW3s~*%WQ?ywnr_}@*nJmLBLZ7YS#clw=b|Xv;)xWa%}N+4E|Um|m6t*^z#3$7@5GXK8>AktGNB}5nD<&a(jy|%$2U?To8ivjb$$>LOGT5)TIbL=V%~V)Yvc{&^QRCU_G*p$CNn z40$i`2{LuLJS(P;7EkzH7C#0C|8Bg7l-p|u9{4?wy5v%*j^U-DnjF4Sf&N+#JQA3_ zaL8tW>$@0w`qpICkGu{pyV4xzN!Z)%5iA`){}`TAL6NV2Mv1RMkK457JCh!-;M?Pa zT>4;KBh0Q%L%HoK#aFRdVQ`h6AE@w`@*OO|Om2vGsPX2r0g=|49+A#extoKL^M1ME zQfFp*Z|UOKXr1OWqd0s_%^v{j+_Hc1?FRQtofI#lo-LrM!?}hRcx#ONj-4eNA%Cfs zydT?!1HW8qr1T^5eV&Rt&%bvTT9DAYd=G&J(taG<2X-vgc9x65?}&hKm>d zwfay@JR!#BjIPVG9tI}8O^|wo*DZmY1#8i)Fpf~--O@~V^yyN^b@;!)BBbtt)?Hu` zDbyqvBH`lSWz&5e-Ec@1>f_i#C1l)g(LW_(?86~UkcN;uu;MglOJt^(aq-1qLFS}a zr6LMJvQi0dV1qP0k#i)M?ZtF(ODzX@=sb`8J#tp!wp;9KeseS+6(#~3SBtu{LMGy0 zWP9IN7hhLfO;~S(+FP`M+G|i2lq4jHkc=%CDT{q#YA*YuVVks_xe_8m#9HM9mmUD(#}wC$Gg?rLE6j@QRuBRt*hm=s~tA^ zbO0s2-;032@Nv+>ZTB#hBenk=6D&8~>Q8WjyP|C`6>K2D`S0eP2tJ9FN=(%CWk8Q)V&6u=tM1*tW4O)J?{e3Rj6JZkVOZH5>+1IQNS-O@onulHH>gQGJiX7NxLj!%Zyw3`Z{4&X zMMgZ}q>c0dB=~OKCRkQ5TcTwl)enLT*p&(~E~92)DYINV!p%&&Q!CzcDZsfLhG^Hgg{p2l=oD=hE*9?8h_N*iSG6%Tya+nX2yc*+aH7aTurk zxyxBHddE!c#?*e{7isoiT=LcbUc(kyj~nm-Yo79S5SX_DVHjor7N;Q*F=>iLh&^T; ze+2mulR`vJOp+yGk`8`yGJX%q_x}yXGTg1%q891~T7LP(Va^(+ZmYN3Kt|~F$BWgF z51k*TOix0JueD@CK&|uk=kN=ezrURPSAwsNrp9NE-fk!61_p!};quO1r}7%h>1_e#s-vG%!HihGyBSbG8reIy@}|L;XtBYVJJ*675;``)exrdy)lR>Y5X3msGj1Ak57BE!{7*3lGz`e>0fi{y9U2a~~efUhtN zWoC$pl*L(Ub1ZXhyo{7!d+jhdTR4?jy^H3apxRliOBkK6kSB)S*&i?15|Ja}Gt-he z%#N`y6xJ3;bRc=7IhizexltsB*v-;Z%q#%f;rZ5#`EbvrW8A2;P>ik8V*i+X5(M%l zN(@wWQe_Qx0phY*1t|x+4;AuDEuz@w=$?$da@c+Gs?;tt=H9i@H#R#333Df-7rNRQ z2Y$8*R!LDFH6007hqc)kb4TW#mw%FfF(!~i=pnH6PzrC2u?txssB=b#s;~Pu|ZU;Df=HTqwA3Y5s=%XCxm{%qLLQCvo zmd3I#qa*KKtcB)Qh8bA;jyF z)w(jp!R4To@0B8Y?biwnXxt_qX&54{0@X-~H$k0IPg!ieZy@~a z-|~-IK8@b5G4?0pJuh*Xcys{T==lu!!Zi*lZZ;-@WvoLSX$p=$E&U1VDdoXPziZi_ zotQuTF*(7PkPB1U3}pp-tODe1IO*=A5!MG=rLYw6|Gm3$lv#%$^n{fkB6gaJovGS_ zyv}YOK71Bnh8hzbRb0xJ;kzpX7)$yM zHAV~^wH}ol{F)X5ACI7nV!R&d`lX>$q4eFl&$g1hyBNm)XXTWV;^d_<+8kdBI4wf8 zl$Prx1Ktr_Am)$^ZU8ArEVu#u^A$rklSpaIq-$5Pd?LRdl&(e*gt^V&DNl@A^eKsk zjXAJ-hSlqODH$ZYf6CZ8vMC>dZT8zC$12);awe`*Fo!zL4>0&|&3-812Fk)eiLp)YKJ0;j-{ z;Y`r@iwELaAotNVeqF;fA~3=z@KTg-xWdXkJFJp&-f&tv)Y!R$?7Qp5VFCVdV6X9! zwA%w%=G_Z~@t}`v^neIMF(Y_hjn{cQDFG9cdfdo-LvM`L!8OAOQffw=%=e1I{1m+; z1rAm5phkd=h%)P`(ifE|b7yriH9RL|bT5wrnEsw@n6qxB|$y7K@Ne z_lI{EovbL#Orco8n2I^y_ zCVCh9xOfvD8IH@`YTL?fl_ObTWnM9AXEUw%HCVb1>pY#__F{M`$hR5oY#=8cdWpF0 zifQ;_e{*ldAOuBln%-OT&F!noj0}VfxZqp1Gv(ZQsU4Z~k3G0yLgS)yV}c{x)oB^% z$|ob}%Vk7O#eNvZB!YCpo8#a?|e*s6CKOq)`ys}VyZ~tE2j_c`ypB-te zm$dWfi1w?N%2`xkY{yABjGKXuH<&GnHXjH;33&+WNgN*5h@c2V7cO2Dt*^Ulc%@%X z83u?|`xi?(XbNGVP_WBK?G8<>blGZv%RDKjUqy7Hq>wT4>}n_fJ@SfoY1gSIoAXwvg&jHd6tde60niKr-4^=o$N{dHcKJmvO9)PjXzT5_(brfGK>Z1?0b`V_I;IM^7jiTJmgG;wk#$z zhP8>-End7umrk0=1k@n4X1}8I4ST>z{G8+W++Oa&v%ji_xQz+j=r@o0mdiWdu6PFc zu(Fe)4rr719Pxn%wel5~QGpciJw-}|r;1MD%*@&i(hTtxR$_|oJ}CZM;!hPFH}DI} zDYyhNsNN|NK&UJUs|)gldP1?@Ey64!@&)VMV^WDwXvLVh(0Jq9Onl0mGQQpHFz>{H zO6nkfE+7rinpB?sDihid9?MU4(1^4rDFB49FcY4vuy|o>v%eCgokWyBW;n0jkCo^>p&<1g@gF&G)!h34ui9OmJJ4K(FbT zAfEg~;rIm}G!RXyM4^!Hkk-Xh!xwr@b}FRsFesV!cht@xxjQ415!9+x`#S&dnGfDo zzEpMAOMVpvu{q*Cno%7bGL=`QIBgO-D;=iWZ8WPbZj1~@kRGpOTWQbf4$tSKlftF3 z=N}dHkctNGeh~ky$g_ypmg@sP}y-+&GMUr=Vs5ZKZsQBo&U7Kw_kAX>o z>-ow%qcCysA0E`B1?MZEiD0uIhVnmoKS^rhuovFzJ9Wn%d&puqU(~h+B5IH=YH;p1 zN}b@&-8Of(O-DR031U3}MkwCXRE#(r*${|0*zEKGeL$F8`}Lm9&ddG5SZ~R>%w)@Q z0tU_-0`pM>H1{x?pUnl@IEfkdkCp($a+Am_+{$=bzv#P7PV`~rQ<&iWi({a5IeIl- zJ_CP0e{u&O2>us7u)~1oWz^p1$ZMR(y@L-L179af8rCv4zyl4D-n6*u>i^{h4sf2z zUt1}g$vM?iW-cUu4_z*~Nu!j*!A^saa#1Ka=mD64Ft66~o`ZwI{-BzJi-^4L2UnAy zc$JskFnwn%?j3C?GS7nW4tW3?7yZQO@H~ZDX5Rn2asF59gJ)~)SWss)7aUlM)SYa( z$^`gpS%2xYic_<(Q?-D;>`&iRd?xLzG400IQtsV)=)Wouc6LklkTJl_syK!a%<_Zz zw(ma03mJCSaCUOpDs6n4+(5I?mfE3pptl~I5B_J34lukUvdtrLm0i2 zSOoPLlSWT)Au0htz2e3Xd>E-c>KZ42ySF3(68vs>&|YpT_LIbyK+u8 z4K6l6qLN)f1IZ|Q8V)2XtXR}wm6wCl6OrIS@Zw&(#oto{Z-j|9&Q(%;A)49OI}wY! zG0sAuR6*TdID<%3$9n@bD&SBYqTefUQtGirIN`h=W2o#$M423bDuj_y216-EKcoeO zg@8!KE2Cu()F-o0XB8ltE&@c;3Cqfq?!xZ0EK-a(Wd#0dS%5HoRG)ugr3xaD=({jg zG|sB=bNL5kr%z_1UC;34{C8JaF0I~n-tR?joySKa46YZKvQ9@Atv3a zlos;hF0>O9gudj%`lEhsFA6Q7Gy`KZrFmU~bGfI#eXxKJ1$|z6lveYAb%2!XuFS<} zjx$_>FZm@4qG7UVV36KI5iMbv3+v;deHndy$z}$gG1q-8UqjHcvKqphhdfM+MkVks zE?Mxt3-@QOi0XPK_|1Pw)hv6emg*j_gcC~3Lcv!WvN^orkFTrEcZ22+E*E~GnWvqW zSIOMwT^}RuwROP}#IFj*Q4xjn1Q0+&&-qVv1T}It0oIV-ha$cpC|)@miSE&hKMemg zuxJ;tCMs=09$WsbhWjs`d}#zqC3ImgT?QClH?KMLw_Eu1Tl1ri%c6{T&y38P+R=Dz}(OQpCB&IR=m7r zC4j#g9=dokMf12mVhMsCDbMWl+;q^C&rJlzZu3e4A--OfDf;B4{)hqV7b%BzGeq=f z1`mA=8mPjd&Bvs6hIQv@MxWD=UQvl;kOSF9Pq-TiMPf7srFnjk)8Yd)gTHSfB-wE&oAnwc*;Wz#vW zOY@H3a!9jnnIYbPX2{uv@JEvB|E9&pA**m5KOc}csS6p7u&Vl4s~OXu>LC*~965FM z{@d$~_WI|2UNTpg*sx|P-cj2+$0$9dE2v{D>PD#ih~S^#6>&Z$C{&E8bowaBKq@|4 zF*DHca`u~S-ud%4R2W2M9Mhm_rfB^}1--!TGk#J|(I2ip`FoK9;z^Qfi6g>OyJWhy zM<4mr#IRJvu=GvvQKtk&#gDISj(Qi%pySW!C6c|pU6YzHr=;(T2{IS*Gm9+urU~IQ zJ+Ebn=VW^B`pl`i$bP7k^_a5cnNi_3oQ|Cqn$}iF zJt1>RApw@gcfsv&L;7r%>i1TSX}gps>Wag{(kUSo_IABOc8$d!<_!8}Z8(g$tD@9f zYvbN0G|q_aZz87$By}e(E|&vXzmLSd?~g;iB#9@*OfGY%XkilAT;aD8heEe&?ibs$ zkLxw)2ETjq75Y3YgXrt~I8~{Ly;l8qIwnNvDqIDbFBr2(2h<8{8SRAMMLRkt*U|^B9|u`B>zF5`&C0&x{bN zS3-HKZY9p-!29u$U^;r7;(9LE!!I$Pen`I4>|;*s1zR$t4H z!f3xNi9&sXr{C-Z_}PP9mPEtxP1%^Oj*z=z*03HCyN?3N$Y!mBc;X9{RxS)r%0!$) zdu8R+*&*evq`q}d(XZUac`JU7MsH1f9Jyg^bX2c>gdU>MJC%CQG5)NhK$*>YM_(J_ z&XfJ_54Pr2g51tU!HOUHZ?hKsJ6-^H0Pq49ji^qq+ifmjqsTRwDXG(IYnCbMQOnmW zH6!*hGM{oz{-`(q-u-mV>Gi`${X__zb|xo1D%RBWh`E%L$$ft>l(U)k`}^N5l|Ljq zCm;HJ{*_9dh!dTN&zU`4Y4F|`%J=tbch;t|_{bymulhx9@aZbN^o7F4BK}x>2yEXoSB`qmM_9AMg3my2TVjm&r3h)DS9cZ+W0G?K1#Ua z`r^2bM9}`?iM{s%@~)M!{fEeKxV`U0mIgxXGXrr+%y9XY-&^{r&G68l2eX1ZlrD!C z&(3l5Qn;X#A=wd4w|Mm-yiI1o+5O}}@`Xin$C!cg`@!RZnV~S}akUa#NIZbk0Ov|2 zB1Y68=o@@>cB7y2H|jR5qd{1n{iTBb^7;>&_`V=R#>e+s7<{iSIK|XTFkP4`Z zejS5Hf&;xE@Xi2K!T}CKdM*fR(-$Gg%~r(F90G0XDK7-04j zx}e4Y16H;gq+C36q+EA_9I1v74hjWWh2ASF^j)0!xA9URs~V-`LNp!$8%nBkl4I?c zrsW5C6-pIzNk-bSBM35(-RL%AK~0*suB&%Ds>bEd+kXZ%2DQma3u(c`H{n1F#H0|*a5n%qlTu?TTS6-D+{?AsY+@;6jn7N0?| zj0b_Jy2b^a?6|B1Xo<3`^PpcMyg^H}bFMSYeplzdR_BzJu(%p%%3xcwtQpgjnnom! zM7_}77(onnGyE!w@r@~F_|@l1yJ7qz_57xH=$7I0r7_w4PQ;nJ{P|5cDAp>M1a}KJ zzEd9#T4Vkb zN++a(<4BXzNTIN&>4z`Q_Bn(0 zlH!>jMep0fy|NmnoJY0hku{c1N%6W?pJy1-X-)QF%u1YD%*-QA@L(eqvTx41XCzP{ zB|%C=?Y&RfB)C)UaxfF<0xXc{BjhI=HMCWMf;w4)YAg(ZPW2j%ss{YR2kD&gr&hJ- z!W^icNOUO?XM#}Y{^A%W^8Fa5;Xw7ZE2L@4QW(r(oKuY$mskXM%K0;cW&Ik~ z2OM!{;6WuamsxYH&9?}C*pKeCK6ZQ#5v$z{R=PJp>%n=6VR}rY+&~DcdnOK#I(%v7 zhtmff@ANwf40OEF>_BYOMZTyxJ$V4qP-iARwvY%5ZUS3Nlebfj3*x1Fw`+B@Et<3J zfQLRUAbLLR0hL!PKtpu>V?=6GfS1CDe_jfh$h#G}hfEtEQ7AYgSh{0=K!*|=9@WA> zHRTa_4INq&RL$I?Xxh)6m$zkGT#vr}Hd$0cpH_>sZ?-KT}eH@%Uf%H#FNoKZ%5v+3YvQLAyuIjG_u}Z^4wyG8=aMvq}0o5Q8X8|3iRq{>( ztO9T8rP9?#Olt^9I2C7;3-;%N;rccq(XaX;&oR-*Oi4v46s8be-7&tmY1Hw6DsZe& z+J1pc?1+oHYjo8`f`3i&@$nhyF8rjmd<-*8C6i-4OKDra!;d;0$58xX+!{pY6b`g?GQPx;aqQVtpUUYeQkYI-s!eef-^hrN0a01HEJ z-&*~$uanuVrPA;N*M-cO&u#hZ)ce*J|JQCw|BD}4zh$N_Mw@Qy=aeVl;20qp&Ht#H zN{A*?n!u&|c&O8vE1$k8v&HCy-IClhm$*Os_@f#91EB_k+VKwGBdOQQ+STAy?4A6| z+wPERpdoVV{M+5$Y>ydi2ixuyGXj13r%Nca<7~hS4C(>d3H{b%o17Qb8RFA2t?co#-$?Pr+&2h7k3Tf_(+A` zlT!2Jsn$etbb}F0$b$${{pLT5pU~6k^bOqt4@n;ZR!7s7d_=d>W%Wo8W|m!v{VgCh zO)SUsbTuIu&1E(xJx%>lEnzLJ9k6U%i#(iu!Y=dPjW3kJL7HD5MwHun_??~FInEak zRw-4@(9giw&rk{HQ;7opHGMqu9Rr&%zSwdrZmX(k=?V%uh!G<=tvf9mYgEbxG;XtW zB07MMWBO`^lX*u?jCE(v2QQQO-w7)f-&MPsr8#^lY#WsV!xCUD1qwb-L6@;y9Gren z^u6@}lk)IDV3v0h(r0mta7Bo5O^~IDjZN;p*y~vn_XMr969dz>{ zw3l6jlt`@eREgokh4^})H}?e8|O#gASg^0s)`)l$59tch>l8k3rd3Te6;`hvHZUSh;3 zRkKGgEhEmaIv}r{{4!Ism@e5GChlxY3vK-_Q^bjjUQ&4#tD5*u%$M^>i1fAdER z*SDV*)|!;~KC^b!r;WnO%$$FGMEync=B5 zFUCYoNenz&_JSw;=0R++KQP=YJ1_?3G$(@s)()~^jUJ!Kp2~+Q3gU&Kfb8$-XK%Jp zZwx7rpXE3n0N=mJ(Ahqdn(LKh;QH4Df4gw<1te&rLikM+e99%tIR3V>CCcP4CoG&o zLEA%!4jbNTad9uvwtpft-|@TtpM?xiS%^@=hPz8ZB)&RtFgBc5cAQpXHDA9LkpEXn z{J9ZodgGMA-vF0dn4|kAvWAN)^reU=XN$!F_}MI!-{d_eKNXCp(YodcUChXxTeDO@ zSY(AT23lEXd{0~dQ}F^>+k}ps0HwIB(ug&WNYck^&(M<}Q&Fq~JrS)1THgePq?=ak zZCuG82`nuyYK*LNWRL1=FJ50pOR4pegmu037$iBvK6YM=`}Hi<8#9M_ILs@{b2%65 z?+bo2A2C?tieyQ3YXC_tdgEA5Ix8ED7Bxl|MO6$f<~;mWlavxAX!AZ*JDXaWx28ok zlAy^1!~_b}yC>8>oZYyJe)3QGv7WL=KAlV^oDkd@Z)uP~p)I4j{=mVr(U4FH!IN~U zwJKg|7k9<^k|D*bp#uTsrM8IYvX5dsBBGiO6#Zg=Fn)tGPbfR!4-|fg6t&gzOR3j} z5l3N+j`nA(@+m_+fx8A9Dc}Tjqu4U3CFo?DUpdTgpeaDgzhmrUqYh&!gc;fEHsWI( zcPdVcgAPu<6JvgZKDV>y6)823mqS607ayND9e##Di&uQS4^l_Eu*QMt z7J+(&En^N`*=|H|Cnm?nd8^Wt)RJ)fu_}w`_c~65banQ2$zF`fM6SEA{)YD@$ulcLdo$5no6aVhEbfp>E@>+l3Z-WMxH9UP} z8z!iis%Vh>>i+`O;F(+i9eA~FIgwe~q_{@r-0=Nfz>l^!_7h~F78iqP0%N>7O^Q$T z8Wlx6p6S&qx^Cm^Na8XXEi$>`h-5w$a)2&`zOE(b`0W@4B?8NI;%V&Z+Gqf-?#=v z@U0=52LDkA4B~Z)RadVZ45Rgx8oBq(mCa?18@5w_uwg{AVJ_D5Y|;HZ_QpwA3dLy) zAfL<3)L4Q_53QHF{V*i$F(w_R5v;o=1!Xln(21g_qW5)(Aho0n7we70lY|pjSn)Gj zI`uyhkmXrhb%B{tfoH^N{RoBm1X_p6&xxQ181CnJ0-^KDV!b7q3=+M>tF7%$XCCuo z`|`(MJNXPq*XQ+Pa$~FYJ44q2L0PYLH(f7ut^H?WNS9Pb#3Q=eh4xGRi)oS#RM+!+ z(s_>uVHspQ9h2ACupBAgZ@R(+&_{u#eptB(Kj#f%^F{V|$MHt5OxFC5pF=WVFx=xh z`8Hcb{!*M5xobfHio66 zsrm6&YDWrkiV056W7E&cl#@8(@6-1z_@Yh~FvHN(uQYk2TpBFg2W~5>3U{|>OeR)q zn}Z}X%-V%J=z8Q|FMD@4ixm{9?i%{jOKZw((OmsGkl^JK62lr4@3t%J5qs*5fjJoX zQ$fl2Z`0JwCvsz6`;66&*&=tlmHLWAE>`H2>iNlc_FeqV)zy&egT-L91HmACCV|TB z2plGXhnxpo5}a3_z};bRhlT5t*Q<(Cfz#e^T<4SQ+0>ygdFiuk^VR*xt4f%ezS>}u zE7-8Gf)YLp2Q4Dd^k3OWvC7>458cOB0MI-yWcIrE#FeJkFv1(X%65rbcNyjH`&&9i$MvvVBi6J2 z-`SIvzbqTH2>0YR_{K-htOU3f!nW0Q@;~CJZL4blBd`GyhZy3`3InsP!hVWRo{_9b z#>_@N$ACBE-AY2%&w&cf^EY9lPbNFNmNtqh;OwfYCxmL5&voNgTjk&GH3T_%G3INQ@>zC$Z*5>{+Xi9qJd(6wAjT{OT4*xXI4dT*ilJ7o;C`ICE4d*;U zQi*XWLd9lVA4<(cqXhMIc})n%oAdp}IMbdMrGYEKWTV62j)0MWU75=*pw)7tUo8K9 zw2!Q^cODrVc``ZXMtIN38+`Z{wenjP2B>M`Hh;!wyL>6oS`L#O>2az=yf$#I=Q0gN~E_)!Sr*XJ_V9OTbsuO&`0iKnj#O^i?1D!P_{`hWkJL&0-Mj z66la|P%n#-5)y=l$8v2YmCng~CYY!jQV;wML&*;-rZT@Vy5D-QU9($2siECDGn5r{ zDiw5ocGZFAvkpg;g3kB^jUtK7fFOha;S%VJvv}O^jP7Y00^t{piGJ8I`BJ<@5Jf;{ zm0P}Nw@cfzZ^$rJd znJ8Rfz+GQZYLLBi6TxG$aXC>}QsNeFxPvIM3@Za2Zai#2JN1kG^Hc&1qKwi&U=c6B zDL=T7kP#PmhD zN26q|`n$bHqr|N2x;-+?JGe5_E_rq~u$?uWl;$$u1CAf|vb*YOEihNr&K-f3fJvH+ zIrcDM?dtOdrM~H!WmJ&5#9;gLU2l=e&Z`8s;wh*v8EPku6teFyN@FBbWNGyK%%dcEUVr@ z51=D=0uoj=em-s>a=XI8bPMhUTGMfg8K?vlK$ghBwV_ON;nF0ImS>Q(5$DjH-nX-G zU9=bC-0F^gE!gDRx*Mz?m=or0H?HP@Orx$)acJGdn6RqG$ybyDoJVFI5X^wkCQ!F> zq5%(cYOUtmW!s7M5ky}%Lr%P6EO6IxR)@W*uCJ^aYUU`lTN4KY7)HpmmgMV_?*(%d zF52fK2rw_7Pijj*rqEzxLBYL1N9`cw3TUtz+#X=ymb3r2jh0}-SF1*TWC3oH)rL2l!uL(`2-$=M@- z?U`8VLFo9#xqE5@8nQXG(FV_LaEM2Ad_|>7DknNCitN99)$7B-doLfu6RgfK{Iob!N2# z+&PN~ihOD*+hcTbGeO!Uq)qL(hT}?JlE06%8^Bat4%9Il2`X3ULxQ~&XFA>D`DpV1GPb3bk?l@LO72T{D|wm zo)X8#NpmO<;TqCufh#Yb3$ifZn}3w%#x_9!aI6f#i19Sevbz%)72OehmBi40*he0D zC_(?+#2Y?PsG2uC?fQ@$-9NZ_b+TV7EJt>#=+o%(Ak6m`%og04n7knx5qPNNy`dPw z;5-Tx?i!czcxH2Ll`Dzr;1Al$S;2VgotOr|L!h#+a3M+m#Y0K~sgm(yyl(2(%iO}H zur!dbJyt^gvQSh2r9et2x~CDD1Nfy1cQhkS43q)nQ`do<=Q(zoKcP?XF5q1NY7>I2 zf#IRMMguj?s|XAb9uC5VXky?<4~)Zam2-qf+G9)4l9N~m7;CejZz|waq-+<#(d*K2 z)yMeBCnP7DV}nTVAEnX+&UQ8tq{$h3a?blHhE6I1_28&&pO53-dMim{I>@{ucmA08Ur{RxU2{-AYbh5N{+bl2yes_%M zS1<&p8wB3}xzng}afEcQ3$1o}5Z02BaV_Y95cnm%gBv^HuA3CZsNmt@JlA~_MQih{ z5<;Irg-z7#^|X?V>E}HrPLV>ghfD;Jf0)SspC*YxH3ue)@-SKEU)sQV8I0d4w19U` zjY{PzYy8EmE6=jtgkOpbVs-Oz>5G^SRo%$r_&2*5ZP9mz3?^I(z1i^*mYU6(EfW1ZXpMXPUQ3`bT9eKuT&pm5Q#z*)*dRX zW&7kWP`YA@eF~BJ0o5uN`fR!-c|!d2R}d>oLL^eUgqChvW=Xc=wU+tUD-R8SWY{NR zwijS~D~I@j8nXaIVQ|h^uEd@C8vD+N#hxdZ5k-KG>?se|PY#$V zD7875oKdwT?uQQT=^Cg$V(oLFaEf^ zo4iSPnSpbI0#+~7g$UXktwEYB)>O}M(w6sTY(+2reR|_7F>x*{X>mm070;rx)ks*C zBg;4W8PqV*@iHcX5(a_C$Z#hQiNW%>Vi4x7B6ZX)*auBdJqA&(lbr2~>Ro9U>2qd!g|k1*lS1%3ge* zT&fpOKaP%XUcN6rOYxiVtVC?zy-*5_`)n1qzW3wK-C5E^M)?^6S#u3J@V^|Be#z_o z@LK9b(qRaSOabCtcbJ}|o)_@^69oDX$B7;c05^HE-Rx!f$N8v3w*ftVF(CZWS#i=tef+FDPZH*b&L{)jo_E?omnNmGd1-77=y?`^d0JbWQ< zzSPh_Dd|hswZmB8Ch$@*u*k0Q%=YiazBR!@t45=dVeYOyV75PS1y!iVA2eb$6dpk>AH!RCK`vy}|zk;rV>~m*IE~L-l@I^h@NZH;h zZ1IYgP6Yk?XLbFdInyu0%%Pq`w>Q*HMXgfH&8WT`=V^hWuANUfNtgUW%f@GAmz&Dk z@PGgX(gg@mq%c~CGMA)k&CTUw7{68XG+yS!f2zHsU2jBRHf3s#IXYh~Qff)~0I`M3 z$t3$uR}>T7%kDE-_0R4ZbwXtf83C#%MUyuWPHbZk#x7UQKSqonJG1@r) zlGlW7HFeO3*WJbjcHw*uB{_vrJHe!3QAr%@k8C86Jhou4?U5uzCxkeMGO=bk^Kl*` z$E4;5!`-x^kcJjg2#lp8iXU*Ua{)Ei%r~L1I?Gs2M(0s1NIWQt=2~PB^}vPw5i@t% z6pcy-L`3=Bd3|xIAH|b%kbk(Go9)68#4wBqCH&zyLJYhKU6--DQN<7S0K(bW;sOhz z)>#f4`X269zd@|HE4E);rcpBDE@YL!zyvxL^v^!{nLW_8jEa_!T3F}}HZVutTekrd!N;4y#_umjrV1#nT8)R}; zL4Vt-6E7Qq<;&EQ;`E|LwhL_k3P4l2P3dBpoEeA;p>8LXou3bLnBCikvWXU@Yu@Qx zl#6lkJxa4&11-I2`&0O-f7ujH*r0JLP+#%$EPwcu%&5qDdQyB8{lp)|w_K?L5#DT` z7X1sKsxBQi$QSi-J_#bjmJ*D9pR+g^z7>#7#znZCgOraxO^8)HpLMqBSZgdsko{D0 zpIvbwAmA|XN;L9rUJiKl7yGJSiZ{FKSuCT)xjoAJP%Mg6a#XT~ynU_xzpaF8$ughi z*2Yb$0>0a3@UOvn1ImK5C=|N(hf(;@iTEz-riJeV%TK#=Ov-z7mjYa9)jTaG7qa=b z>bY6f+#7$9=E>+@^J++23Wb%5;a5-4lYL6muzhhlM{XIISC~yB-b6J|$k{gbd<@&# zFFMz=B=oBnyT9^KVWqUxEf{C-KVhB`Z+_CXOLL@f6p6QoET?V13l7`;I@ZR0Lx5XI z57o+bx}DYfRIDYUwW_fjaVzunrX=^%^>#?e@6G1ikjpbr32P7H{yRS3dN?vhZGR5M zxRv2;GY%56x~~}+SKZ_GXBMkpHfiZ5X%AYfQU#OVB)Crim*jvQHL~ldv3Ol7P2D;+ ztS+tkeajz}wHWIjy~$jVK7A3E_u8+##VGaCrh(%->_jo3Lb&ov3n8C5Ju-LMygwji z`~9}bf;aJXlW5dP>kFsMZ4;sl%pl{hejTZCFB*fk7E3<$8+B#j<76cAxIj5w8WPnw z4^KV()6!BG&)QPOLM}zdJ;hxlqQ&FG2D7}V`0k$YFBF}cy^~ho>k4OX<797PUM~zj zp+`FF8*SxU<_N+zbCb?@gYlU>MPOZ7p@Wh;xM6;shqz85Nk_Aux$>WT-niu?Dhpq% zHd+0}J;{PBYUV?}GYHt1V~nu-u0|Y%{i!nfp>5v5TD}!_ps(ZbgT6h#@|cYR7VI~N zxyl&{>;?n|vd@_PiyS02H|8XGxjzs3F^cFU90S*n4=q@WOZU$sQ5{x{YIQ!nUu_fJ ztfE5hO~HiB%xgB^&3Y3X_lri&DQxzEragN#rlpgt%;Huh>Eg#Tt>qc?CY`Fuy`4d< zdhW+{O>f!i?n0CALZi8QXF}-~KQ>x@Xofo9d44F{-dTe(TMS>89z42Y!)FqiRCZVF zRg%W8Z3LDaFDmE2vUh$TGbv@HBsH52Q{Kdl#F#`MN>f|bgZ^Znwmo93JoUv-GzeZr zmuhMXaI(Kpyh%ZeWO8rgzjva(H+~Z zSr*4ueN%*QVOtdlP_o}WCmNu+2U9C&OP7ZLPl28VM8x& z3WX?yQ+Le8F{7H{9N>9LCd=Ave($4|YvkTMz{vjeml&<2pA3}g^9NR!YeVBZr`odL zdVpGr6a8KL$>dsFaU+gf?x)G=O-Xe~Chy@=!ua3vdt;((?lV;Hx2*4ffDL%N1!Lf; zZ+@3)wa*JMTjvtt>qxYyh{|ex?U+>IC0&lEE=@UZkHE-s*Itk7-sR3at0i@@51GtRe`DtNd61?E@l>8-~ZC=uT!vOt* zc9^1P1U>=HV(iv(Rh&qrLl54!see3#eKL4gXIJt#Ga}>4*^XWQA2LDsym$F_1m{SA6z*v@kAkE(FtKw3i|Q$FWqW_>qqYWdFh`j z4Y?lkXn=is^kzOMz2+^Z{62#3bKbXW@ek;cC)Z1J>nX>Vv^N=xU!`<=lHKtW4^$_% ztoo#%%rW*9^0b$>;et#8X$vxm=T5{yFTLthR_$ENx9D)%q@?7IvpdhaY>~F|6@;uB zb8lWg4CHb94DyM^cOaj@Ri_x~ft+aX8r50;Kcdb$Dyr}M`zqbt4bmaqh(n`<0}S0Q z-3=nm08#?d5)wmq2ug!ANS7dz(kUYHocVlzYdvd?|G4%&bD4Y3Is5E*y+7@!);8%o zwOj_?#^FRwr1CV#y?4Sm^#)j}x)k)ksM# z`M!tb)wH>ZPIx3lp^O^HFJhvEqhTt)P{1@A$XD5^@+O}i^5Z4Fct>V5)>E9*URI?> zsStt4>49%m@NSMwW~0rwR9J-*FuX~dRV2qrV~J#H=<`o8>F6nxQRq$P3a zAIXpY3g0RT6MT%^B%)0OJ6Jay&eg5otYe z73o^7^A{=L%iJrK`izqFez-Iq`;L6G=w@LV>4=qmt&w=UWf&5EbDkQ!^Tbu&RW-3` z=i{qtA1~nUY_Cj-d=D|`znoS-(FcTv>wfdBRI{R6N3oxQidgVI!F$|`;+rL%bMS3@ zh#Np){I+$)$9>~m;`yE2cq}j*ZL*wLj-ivX>U+SG^z1!Vz2@Y_fQ0;qzvn%=yVqOE zZ(11r=<^2CCbCh{N)tgVOa5-nufIphu!A)}H>1@S-htysx6pkjT1lKZv0lk@v7rIE z^Cz$8E3PMJ$ucK+%g3(%`mHHtS@)VMkYs-eWurjN`q`Fbi_>21e@pV`HSS?{_HB#j zbDGXLG+}7VSc(&ef?14Hc<@n+T$ZY0b8@L%7Ukot-Rb{b*$A!-$ZC|DJdhzDRo8KJ zyOzeTgZ9m}`CHffPRtiGfaV43EyneJ#+-ogFd05-IE_jLZ%d(U*X={HT}-= zOgWY5s+;OdwcMPXS)H_xJIcnk7imaQJ09oSUm5lv4evLHe5!BP56!?2C)bo`?PxUI zUZ)98^8dt!EWz34R^@4LwN%WiF(wR6(UJSWySu}Eh=1PH4-(qT^0FD~J;xQS6gZ)XeTOnHi8n*Fzk#=_|8Ph0$kGeA0*rT1y!#$O|*=A6K`@Sfb@1mRJXO2kYucUIstn2#uRqiARO9 zE+LA4JpJR!(DG>||9GHYyaNG}GJKV8V5RowefCmaFGR9mOR*=0g+%Gy;|QYQc)H)% zn;pLWWz^IZK~@pV!6TIdY; z)TB8HS#Go42p1LeO^dNM*pz9jg@M z2QQ3PraxXC$>8E`{V7qARX^9g`o`}5^TOZtq+bs-H~NJtnzjvQ<$u^w9!DcM#Ok-i zsPCa61*czLt54ubs7RMHk7?3o`lWbx-z>8**Gwtsdla7D&AUc z@`N_$h6`2izgY<_c=q3tfwBrC=z~1s3i$8=EH7l?&!$io#c@73?|}Iq0j!??XN3vm zmyuS~1xPDSV1_#jim6DW=eU_2xAqeOx@e^f90#)ph2 znZm2ksGNB5)1x0*1HnL|y3xSA$eJzb6ePQANM|;j42z0P!TNU?36ng~-2LV~-aYrf zsXy_iltK3(p|YwnIy+8zdi%g1i)tie1OC!fa`1o3KhqrIBa_<;rx!!p|5Nl?yIcQ6 zsp}NU!|6ot(1MS#*T>=W3rQ?kl@uO%xv(HEBX}_8zIe>wicH|QLQF)>k(YwEh?B{mXh-!{z(O%|OAUtX-$vAUYTD>HgTFnE@V zQ=i=+S#b`>39tjs=_3WAKv!e+Yo`92^2m{X&r`~c+7*X}O_o>Y-~|+c&JyZOb)5{M z!VdfD;4(T(xgRXq-&WkvIXrPYnTni!F0XF*KH9-TT;-)APA?i3VkyIlEU>Im3ex|X zR?oBUVviSJ^nrfeX1zaLPgeEj?Bx~?Mr;uWSghQ2Xgn(|Cz5^G-h5ibic+Z***+_WrDxl73a`QCgB~BEV zfE<%D?3=mbj~KLAmUfa>n!4mqH@nRtCWAd|X+>Nv0NkfyLG{LJdQ}?wwd+$qZSjo? zSuD$2HCkvHp|Y2l&w7aDw;+Y=@W5}I<`lTDDm*N1YS_7@TwdZTw2B2Jq)wf$ZYW!qL~dU%k;it;I&*U2KSD8OIj|E@n8TvJyYGN-63@_!$~HRF6^-Re}Y0gz!eGmkLdr&-pks9PEy)8!a8-stxBlV?Z*t(B3C3 zjGsbvY<<|Lnr-3pcKGo?Bdx(B*Ws;6lel7Xg~akQv#$_OEcmu@BY z-LrSmIPJFtE5Rk0QW^c+M{1-d{4)>J4Ybt^b1B-%^uKr{acC(P4rO6-r05s4*+(zr zLRaT}v{2!mI~pI$p3?!92MA9?$@~8*yWEmE;2P{4;`d8&Xt!Hgl((lL3apx+jm{W4qJuY9gLyll7h3bv29DpfpFa2~1Gb6-s9(6r^J z0)Nh_F0_Qhe+Amta9-9_nE6ini4Lz<6pR&An`Idj+SmVl(-MFFkhD}ADSXi@-;j* z`%^FTy&*NlIH1zqbQbOZOg{nBUpa7!+mP+WI0 zGR#y-KuEF>fz<<7c!%={Dhhe#l`fISA$m8ea9d5s_}n{bci|r8iP91TOCeQv_oL5W zwI`VxGW-jW&4?t#3 z9#vtAa8W!?M7zc>l!FePn9hbM$bJ#uLG>bFc(KseRQwlucP0nMPJ@e%8}m|FoRkiO zlW$qaZKK+mfH9jp9iyaf;SM)13*lI1(JxhDWk^zt!!`$pAC(Jfh_5R|lk_v`es~_o z*L>*BeH~3nFgz0@Up;(6QBwzKJaq0|zB^Ys?hxjN@)OCA(V(%A$P>#B)uPGBFXd8> z2i}(_^>>!C5$DIb7#Q02^V`K$v)2)DU=qt$5pZy*;HrLO>?OazojSuUY#s0QKOQE$ z&Z`WY=s$OJQ$WC4^E{?^b2HdVI1*Z!P59~FIB0VHcxkKv)<28lOEu`TwXiv z`^yfSx_qatc-(;s(@``|{$L3Sd;S)^Acf0eup#XEm|TZgbx^>p!lPO;Dcz@uyUP*t z+T&QAU@e-$a{u32H2l6TygA|EuH*Z@VbFT~3p{X*M~>R$Ow=SCi`J8EH$aX-DEo#{ zMNb2vLhEk*BL+K4JO#@E<8xNx`P$_$=N|@!pnMxUqe;O>gE{wYc?$O=sIf)cufxLn zi28BdAK!l)FmNw!W?ZA$*|ZO~RsL_-xt##wDow)2Z?i73u!)stc>9toHEHbnlc~e~ zTz`tU=iLml8`g;odQM-0-1na$$a)M!9LP4D-pC1{kRO;#Tx&*6&arpNbJD4EJMn@Tb24DnUa8A+9CL_=I_JXUlOlEkuFeMr`2URi>B$q|Asv0UE>kGEYu*w!oat<9WRvG(soucBgP-HQ2DexSYMWH-GEe{7?Nx zvXR*XWq_pd`dMlI^5*Q_e27#KY7QyHZbrcCk**@4?&B_=um}9Hj5)O&VF!NXp%gOm zdX?d!?5x5SsN6orQ132Pc`qeR`B0dA1Q`}T4fBIh6M6pda>rfpay;nRrT!s_>F1@m zPI>U*EHrh0w-UjEKTZ5xN7*=uug%)k4ZTRR-W?39u7DhNkc~NsK$nL=eDB>jLK}#v zljjmsJnmZ2MirvWO-Vow$k}d5hbq0qT1$+yzelHX`;@=&1pe$FT&7$+4>UEP@I; zS7x#96CNHB&ov#J>=6?`io-1b&>G|D%VAJt6%a&G911Xrz#Wm-1t@0w+>$gBbbu{>rbP|D zfINv6#+p#?IBkXrKZ#QunUUa&;j}m|J#nB$(iR4a?V1M&h2C+CYE0mMax?bnRwD%G z#IHPiFZd8ofEF=HFc!Ij?LxTx=wt?P`-Bc!-51e>x?}b0SR0BTwUuEZhub9xht6Yq>0&sicLWwks=<2#y_u__J$+6g|f2sFYRG_|H1Ys-`U zxRTY^btsc_<0)nTYD*#gP8Mj+xUzNzs#P~;^h-hu z#>_`4`dJ_32Z*i|om4qN0g4lX6zBmaV5cvN{w0MOB%DCvrq zE0lB#uTpk3^z^x{FqgnIkfhf6*aK;2gFi>Z5!CYFiYNUDPiTC$7Z-2=AM z2635wmDB+n?F1YQta5wfT1FPutsa%BwgnZO;!eef#bqIwR5Z%-#?>9BGq})Z_IH+&NlasN0apUTUxV~jcn@pbOHLS+4fN9yF=Xq)8$xThtCrXSjJ z+wTj%KWsBiEd((cPZ$~Kj@afRe_Z*~j_}tCk@gPPp@t{f?JGCeKFO~IZDKR9n>6mc+z#Ah0Ht~5*ElYBWupUXTel{ayu`#ow-MY z9?8qjl?F#k)w)saCEoI|tBywr;Scb_QNd>{tRfRI^Gmwt1izU(z8R2z6Y1S8Cak}z zZ;Qpd7vh4r-C%_LA3o_PK`#9vr4$y95x208jLWa+8^M`$+rRhsHW1MImvHs99gfzM(QkI*sJ<_YOms9yedJ;Mwv*L&h4Gu#GY3q zbV|z>cDjE8q3H#~@^W=>ztsvn=K^jU&wr-t2!Xu110t&%u9A@L7eg&N(WTWlaHN^k z;8o79q9fq)>jx@l86|gfak?-FH+6t;6R4|mD6=0|z`M1Ip>C&;y7-41ThebsF@yTe zvOj$$#d50zP6n1AM9j=&7o&*N8zzS`-Gj+M2M#S`ABZ|3CpaST?y0*V#5NeA$YL`z z9IakHio&SvKK#zosJuSpP@4Y@W%#qifd~wR#QIOO2?Y|p_%o~W3XP#SgouUjt7C-6 zV8Sfl{Ee7%l%@P9C6o3tVjF+`*FODgF)i~Gd+y8h*EuQ`7M^MY=zA@a+7}aFZ&|hVZCF9~o>X{Pnn(Sk=fd@;BQL z@y}aLz2CSQlG#fE%lTKRB$4|p>&9f{?}HQ`iJbXp3>%xv?UYmhT(2q7FX@6akJfcC zB?U7uU~?|%b%XCWUP0r5i%G=L6Ok8V# z9DA_ou&aak%~QUPl%<1e2O$6%fn{4LqH6@e-y}W>C2~V3b=?|1FmAHFV!tbV$&-qf z_s-VW%c2oq`y-WZpSM2anE6LK6(Rj-tm#qw$(m)X-@};}Or#u}(Bx+lf*2>?&V4$i z$CnTP`MK1b%s;1BwQ1f-ixb7Lh_XrwwIZ}@WzA^O<)d0Nv=DjlbSBGAoSb?68}!Z7 zy3x9`kX4tR!NVIr=bGDJ{+?!(3>y21#e&O#1`o@$P*l($qw@bSx-H=n{u*k__w5}O zlWWo3>!+c{BDUY4-Ew1s7-u_oZE5+&;w67%f;P94b!-7J{jE!aZ5v|LZ8xlgYQ2bR zFy)s4ABT|M*yVQD+*v4&@<40{b!+8V}Jn-*xrnLVEgxHZbn~Zqw_HG%(Ci7;TBq+GCE`ZkgRCLb`M;dz-G)wRA*O-1##9!{>< zS&9AS{kaMP0iOR07%YBJRxC$D1IZOxEsdT8k7BvjW)gdkOLzhIaH ze_C3{h7?rU?9`kXdFX!|&G+*C`g=T*c6v*)GL~D{X|^XEQW+LjZ^>P$x^?j~jRXU$ z0+Cb8Y=!rZ#GLG1YQnGkWX3t&Q8N+P)XxE|KyRLgo-EQA1TY@to}ehbiEfEy>&Te? zpn@^|K(oGY3GQF%#V>AzmTNs&-}OgrzX-7A0F6jrKt*35reQW^B(?TM6uSjbnA9_Di5{l&CknBE2iFj9b? zMH?u(6lw&))uDRrTi;^kbTZ$yFMI+9tW|L(RyN&&oSt8xDhlU_Y2T z*HI+E*h3vIv~$z*E&%|(0%s=sh8|9tSW%7Z6ilb8Nu9dQu#J(8bOX5;S-GVSKH@5q z3kMI7ke3;5ROeAs7&icrET9-zkL?XgPI1hx@pI=}b`$}cEHgoUI@s}xX$ ztoqkxR?Oy3)_-RrHzUK?54}tdm9_wzl1aTpnB~}@Rz9;`l|~Jx0PZLYJ4Jj3^C001 z2i5a4oiPwkq|T=JFtCkgir-R~;pyzdnzq!@q$OX|BR^$K(g7zkf(Eko59jG^Q)9fL zM&GNC`p+YVdP00_fHsE6f?>6zH0evvZZ`qTOxC7iG5_*4unH!0ewCiDW!9F5J+xEd zUR{#FKnJ3uVQWj!}j3i|pS zF60(pIvvIIJpU<_5e*Bl<2hHN{mlC3x#T-A3)ErJVPwht*W-j6AAHd0Srb0G!s(aT)E-1TTPLXzmj=E&Rv<_1LQa zsV3g*A2m)LDcj)HUC}uQ^&GbKH%u<}Au%*r3{r(h{^(9sD>Lad6u4uFHmEMD*XLTR z1Q@SAmmgtpp9S?QQT&KH8bsd*7&G_9{=2gEkjjM=qZ_8QGqmOVza!sA^qeNXNM{&r z-AkC=pUs>78@&H_<$C}77ZCe2`|?Ne=9$J#==49XKG!2a7yBNzKAI5D|6N>V#jw6X zR!EG&X-9SGkMcFUtML7d^WE?mMZ$sR2YQU9V_$24{b zBKtdmI^~l=E&Ctj$+}?o42uwZNMin|e``ndP8OqVA?V8_FSeQFC8A{htgi{?&m;4sHE#y2m% z$`nm8Yo447xFK1#3*vXkf0ZdbkW<^1+vk(Ts6we|(Mv{U#pv{aMP#NiIUwG%*^-ns zo?xKjeUU!3)%fs=MqwIOSOm0D&^TEDT^F5SD^8uJd{EquTWPBCw|PgI1pK4G_RPrP zr=5Wks*zsGSB(ld{G?5np2Sws5Vh?ngLUoFXK?b6tcU?h0{ z@d23|{aIBcLFq&4Hg{c`@x%|dw?7QjJm9wOW;m4EOoEz6zl)T)UERncy2SUg#>oF*OpE8V7NC*TE$Ci6 z4FkkcE5uOzq88Dnw-HpTi)>R-kBFkjUz(nbw=JN+`%f$pJKmguh(2xct4dI6qfbcS z(^*FFqWa0;ug}b8V=}+oty=A5#09mC@r*B`$ZkhxcBjTA%4>j+sopOK;Uf68k{3b`S62+VKH*HntFwHs^U@9maZeft`IG-#4m708kz*9gCGWt0W<+uB z=4IxY@66q7?x*^^1R#6?DiBvd<(x2lXfkEwSHX*@mQudW>gd`g>F?didjaBjxE0jM zn-G~+oK*p5XM|D@JaXftJg2^-&U)fRM0VW$>w6|qdQfEEMyjk7WwklA`(Y$&0A2;I znL;}xFeZ>t!7XPV?|nw{Q2tEd<99kr?5v@Gk5@f)7Yug_9KwwGg(2w%0%{H);t+4d zRd8W=5oG?L<5#)s<>WI_mkC0eB;%{w%Sp6ekpvrE+|;a{!Ydm0BuYdU2Df1EhwqqR zyupD(s`1?C-t-8t%gU!(WdfgSpsj373EZ(m1Cg$E6r_QOpH%p5!m?1`97~4DsC@T~ zejTtXZA*f+Nk>t*{%iUhSG;~BfqKu2jsJS}3!X>I&c!z&XX`J8{vA=~uezJ$FOJ90 zk9KxWj4-#3dJaEpe*DK|oBM9zL|BX`K2oFc^Il+*hV0=;S#Nmli|M6B%dXXmswX~H6pTZwv0XVWF9iRGk1RH<`8{WFwU z#BZ*jk?8Lf-KxQ`PGMPi%r2viZ6Qy(ZDG-Bfkc3Hx zOuau4wRYuwG~|5ea$(GG`tt&vLn-}2md1cG#|ClV4fhf$4qL`aD!6B|-UX!xlE}~m z=<>5&Ec3I+`^KFIifvAu5bHpZR}gxFOml}tCl##Mxd&K#HZy}h>_x_KjYb6t!F;KI zWnwNbsDWO=Dh&c1q(ym(0G}TZpGiI(q}*Auks8>FL#V1&{p3T{s)`LeWY(0$1_RwU zhEZ+Ho*^f$-D!pH5MSQj)rnr$>a>dNkyCgI&X{QskAkKoj}^|aJ-%sb2uPzpgUN=I zS>RjZzd?iyaQR#ZyHs2Y-I*Z#;H~nXW8|fBBpVde)4f9&E&%(5|e^rj~L1C2T~$pPu9DZ!rhSd@kr!M#354r2m;$9CpUtU`dR*O5uXPWC`C04ZPkTe{ZCz)m@EO5 zLKT)-#BfkE(AX(@%}#|!?tZPu`5ZevTs99W&HpW#MJlH^Em&+K0KT5KoA#q|+u-qz zlD|lwlIao}sa)%=8;-%TB1XTECNxFSu9bq$gs2g^WIhr&Wi$;qDK;h%kRM;WGugLe zO40PBO(qwaSAw_qEQ5&pCA&PqGiBgy*v@>XxaIlyTrAW+#FEe-J|?YC=#Qu$;_|6r zZkfHy`s0P=T^GtuH{k!7gbpX!uy*uJ<09Ql5vfyB7P@XBs2g!h4hS-{WCs0tKvU-2 z^CR5&vc|T1tLIm#4aiC%c9nY2cS;fPTIN#)80x$xcdPVwQRU5vmSTA5&M@hzMVC4# zUbXB7r8C#0)iExr|6|iMpO`B$!+E6@bi4uLMOOZmFJrqFK&|+~eufq3*Tz2+-h;b1 zpa8@RHJ2!u71BG1>LIQxAPnR(%1GnE-$QME8S>Y8*3LpvV9{f&Pls9_7hskf;vVVK4Syfw zm^}Wt5~imx0dK42ZkP)_sBM&AXuAkKUFe!b`yQvSf2P0fDVbmxb)<>|64p@;BZRsU z{xK5PG31!zA9d?KNw!xVBG7S{IgX6sQmKx<-6wmo$gOdEM?)@J?IF55eIaw0zY4fu zJDRfjLw02eFDh=Efc@{ciU!{nhPanE z!}6Gx^4z~dbwyl!uj>35*XIZ2ep>N*@@V%alCGpSgENSo?(CJhqGUtiAr+b{D`JVB z;zD8Sif}6JxEqD35R_*YC?luD|Gr@yI(22<(YI{xPHbG!pq} zLNMBjKvv3Ka|sk^j6vUtpNyh%PtyWH37sYxQ4dX0X96OV8+yHasVV4nC~d8wW1;G@ zr=Bwby8ByrGY0a(U+MSfaV*g@x1Y&W|MUG0PUD^=BebQfj-QI?jk{&`0)e~r0=hZL zLl#W%HePLZjj>_@)N?%P^O~jox&P$-+cS(T)yntC9qY)!mk`}O555Y(7@1l|_}+_# z{dt^+Z`JhfAl3iE_Bg^-9@A!ud{dsr0P`@gC+vn(RT7jnZefj~kRXBw&dkNpr zHGdGJn>I+|`%3b%@T>nRh+bli02E{&EDMM=!UxNs-zBfTs`>@ycqbnve?JOSNzV%# z(JXKWarB5MpzV_^n25Zi9Y5|1;Obsin7xzI#<^PaNh01N$pBRvdpu!q{ZOYVd1+E8 z%_X5UU!A3^!$!g|OL;V?&~Sid15KNiGIOAL_T4`|t_F^q{l*;ZRd&eTCkd}g-a7QZ zjN`rZP)|}?KiGaq72QONX_@8k<%bMGR`9=#tqRHQ5apuR?*)EReet?~Ss0K&P$LBk zNpitDlQr*d@|Y1f()K?NjSU91^natSOV5PR0j-%jGw^T(g~k8>R{7tEY$^c0D3`7y zOaPlQCrploqvNdQ^#*!)-xP3BQ(O$$`~E(NSeDXhN4*C9miQc6e1ME1Uqzy?*_ky`e^t5FDSQRxryWVKIJmH_OF2=>YI ze*z^sO+w&(dgsGl$Stus{Cf5WAH~z%+R=jkiPEDlwIp|$!XkmD8*vaxG*36vY|FR5 z4c%-Uj3;x$+m+{0tew_3PzA@iMB#Vvh71dMIK>NwC^ZVp zLo!-RxomsprX^zbCO5}XK+3qG)&{j$HQ`+6QxK4|FsT~>KchOv1Fw*L%?$X84oJZsJG zhphfhH{<+4d*Z-6M6TW^|Ax(@yY{qKkU^dF$*a`7-SPlt06du@0dIIz9_D8bN07!^ z@R3y^Z^Bp{Mxs>YmkHV!xtp!ibs(C=f)|r0;X`Upv)y4sxG+Ki(4{m1LR26#F4$WT zvsf0mUJ(6X(m1bl2_6oyW^4Xo4hF7|e&6)L4g|kOfiZA;Mh9$Z{Pr#Sbw^EA-+-#O zKzUqZA^h=27@mEjVHLkJaU^YPoA|@4BB=<_MvYH`Wx`=GHtC}&@a>Py(@3sNm9YNF zm6P6n(P2;6s@A>mQzlM=QYUD5fi?SnwHVJj-ZGaX?j|- zAU-6CK%jGnA-ZV`73ah3ji!qfXHo1I_i%r$!pXx!eUfA!>sFBI<#UX9!&c zkLCs9XT1H?;=;4lOzO!W;=+ys;!>VsZqkm4hS5S_`Wi&bT}%<}NGQrI9$=Rgt5Nc{ z)6m#Qk`FR9Qld6m(GZxtN{k1ix|t$+kY;4~z--stZO)QA5wB5hq#8qG$l*&OjYQ+4 zbpM9n#>k&1IzQ8dB|uy0OyP$&rOf)td`&upU$rRkH4P7b*P$3D_q*FqBb*^FKYvFA zk=~9jX~&Cl2ALvGx*0VLp})aR$Kgqczp`u54%wVUH!Rq~XMW#^AopO2PE_UbT=~;y zpK7}MF@OnB+NN+UfVIri81nuka5Hh6la;W;WEzPeW03z|TFx-Yo>6`RW3V8cg8u<~ zwxQD%q;WUV=>wUe3s;yy#d9_>4<4SkmV+Nfvzo58#|1mjdz#Y2Lq#z)(qlb8@_PP_ z@Wt`5S86)F{Y23G$#Ct?Bkw3!9CLsfQ=_HnDTRrHk*&W`pzN0QjMS3?vfIekA06>O z!1Kveus514`nXC|#Zk1BeEZt*T#qY=FRPK4iYiA>=O;yl6U!|ecc|KjKI4J!6ubZOW z3p66$t3yIV59p!aUt0Ob!uTKX^ZDgqzPzUT`1X7c!TsEf$wDjU#;o`s$-wj&Y3iKA zY6w+wSNtuRO`tSTX!BG|R(AR3kJtT^0Fxgf!)@ihrpyV$u_}%(aAl?GvalH8@^aDf zl*ZkXR^}A?+xYDX!$wQj>E#KZc3Fmr&DYD!4SFzeXE0EGWeQNld%bAg13xg63dHMKj{ny(k#(yW%zuHddvN}H z>++mK_Ga;4+)~=nPB9Z;R+MXrDCiS0X(>hw!7&*Nnd?#ZnZ_5fiK3Zfthk9e9&)Eg zy?-ZbS0}Ld7Lo(F@Jw2SO!apUW9(la3$;b;@b#^T!YZ zVoWikoOJ^V;ncxG@-^X(QzS<-#f|w)*`y#awDZ)>#X~1zhAG65D#Y+OKVW`N1OBWZ zIaP%HO3V!L^8%nBs;~I1L|m|u9aD!;ip4h+Xrp#|6A7a(FoE^_;T#h4MrPYXjLJ>G6>!Ofo0UZxkY`% z0G-Pw%BA1=?&>4o7hmy-$~m~fbd|AAOBf`_4q=289!lfZt+x|(d^e1{1z-Mic}om} zX&S5WV0yZD(FzmOn2z_61hIUos{qNBS=zj3u9)MmPsEA%+&^%{Id1z=OX2&EWTY;{(P(c!Oa%DYUh<3I|@~mifhYGD>Bl zzu2vwhE~!aG4cnTiq0k z%eW}G7qxS?o_~xP?sqnMNxN*lp4?9MLR*b1BM!->CxvZ=ksa5}&0OE0_N<2eV=J7b zPuY4{_2R65pTMLfc*AbR)2~C%^+|24?PpeF`ks7~stK*jQsHO0E=La)I}TKb-^X!T z@yGbVr~sMe2{v(`lxR_WA|BV8LC*~5@-dd5;tL_t_O4QbC3F7{&_n|51TRU=zH=?} z55-qT$eU+8{?#tB_L%RuXF)qr- z#gxUYeCSx^Xc_F*8MvB5e483Wy?H`fPh+U|yfEF`n&P8`Uj>V5J@J|kgD5;FBjQ9O z;`C{ohx}2^zd+&0`wEgRg`@L6zX7*3M z+X+IpsEb`s;V#cL5lP(X0%ez0%>@}gthdmDays}j(^S%EG~2u{Jd~& zsBDTlF~2`eKlA@`$gOld#MU{b?)KyUQiu=aps8G@23boz=Mbj7e z12d0j60hv8xLN7h)#0x%EfJ|2dnJ;rAo@PbX`%R7?RhL#qNHPUgAg@ai-@>X#j1?@ zNAAB*xBYSR#abC6UH5Xn@a0F8`g)4*WxF6;dl-pzgGqE1dWy5(yK%oUPjl+kohV(M z3$0!H^G&Dc6XOW2BjU1s&2|3r=B?8-WK{!_C ztob4$O~ZIlZ5)kx{jzzg-teXBUgfIIkZX7D7KP_uws>DvTy->#Gh;<|z>Fg0SzL(~ zhi-8PI;JEa9=DU9kYA?V2_%v|TIHRsQph;7%ovs`uW>ry$PfpN=H6p3?tf5q{TF+=GNpvk67Uz#_pHSk^1Y==1A~?qi+~ zy>e%I#v{yWP_=1!hkpuGeXlygD8nNt!+*;DN6l`3{>j{LZotwl&Bfu;&KbzCzw%K= zlj{>?Ya4c)-#Yg_U!-4b9SPL(0&T*LOKU)4PB^amNK7VA*B!IH8P;Ag!u_r^b;~VzQ`CJ~dOm*BJqq?0Gx_z1I!?7A`x~B=W z?o{)&b7uM3hWrgMqB%OUUE&eit_)@g*RAH;-%o-h-8J`Xk?e}51Z?gfxIhU!M~(Cm zLzAep5bY{JE;&AQn@wyZGNYihKdT*m*g?DF^~85RS|)Z4?KAt<0;nUl3M36OddSV} ziiqj>`hv-|J7IAHPuGrbkPi)KgQ`=8t97&9665&Rqf=)1K4D^4RnJGygbMvMzPeqo zQrs-7{6ao6btP+-hKwS9-eI9^>q?s5JdK`^mU3;4;q51r;zW1ZWpq3KJxVGqi7fo3dsMY0lN3VMe)q;Jc8#>#^S(7wfN`+8FBk1)_DkghG zS`45k6J4K)9JAjn*nw|z-$UpJmY-ycToMBAY6Oe#-{gSKNv^jFxHNtobcI9Vec`vE7af-=K>=jDPS=2_P> zH*q(KSVI7#DM$7-lOka>LLk+`*v#Dxo8#{J0Wc5{^5>k`+YV;ie6O@WRqd|oRq~C?bNi?dnpwLe9!dk9qXaL zZVZmGyy{vI$KLK+o0&`YGWq3~Fkwtox3xNfJ4!+vN#6hps zlB3gFAt&{K$1(sdzFn~o!WQFtSI@@u28J65E5wauu;_=#&VBidlpaf?2h41RopS!B zJXE|k%^GtV@o40$bo`C-aH5z65Clzdr&szJr$Cpk3C`QycJo$IA1dXR#fJP(ez*!P zQs_x|>Hbr^H3!BSzZOf^>90g`IVXx`K?{jV6B!mavk4-`>np=l=3-RHW}@-HH#!me zw$-(Y;v>oryxoErt1oVT^izMfxmKeF1VI5-XoQfi$a8TZe^nQ*hE`-9>=!?1<-_KbdTag{+vG?2~tTVBR4qDoQ!v|02^J2YhFVfe+VCeEMp zQ(W1j^{^vPpW3F5iibvVWct){cO+@N1* zA8Y(PZ};B?y3nadrC0K_B)9@*p7$GvPMi0g&z~9Sr$}UiG~lg47#w z%(GwBa?BT-Oc~fIzd8dNlkQIlo&nC_rYU{s-1VMQsq(?vn<^S4l(5MomYl6=(I17E z(>o6_(+yyRkE0^RqU@}rd3tk+ zl#d<2$2hsnz(aT*bQRB;I~JfDjTmnhtmE#5)wH2I5{<-fFXg-gLL!AF!(^2)GXUhb zd6W}Uy|^%oP23E|W*Br1mYp}|KiIAvO)}KVAAKyfiyI3{T`D#I{GtYmMhlcEVvf4? zB|b+-Je1ZgZJ-g_m_!)BF|}SeBpWz`!?@Na8|??B?wjeq;Bz+iy_P%eAc-3>b(r0#X;=y zF!ndJwSSGTv@vBBfadsEu?o;w0$yu2LIsqXrYd4jIvt{SI9e6W3ICG0RaOCWk>J9F zFX*X#CdJsL<&8m6;!|!5b@zqgf1HrhQMwgH zBhehY)K3Pvc6q9oS6L2&wFO>Cle#;N5m#naF2rqao)I-a<5O(`6WGaN1P`bses#gB zJ;gB%J;V)gx|=I>KjfddUBJu!^E?A5>be~04tsM!G-I+V}SCqi-D=HS>PyVqEs> z2xKdw0}S*RT5FKGYvnKX%hVTpXC&NhFUE~@+_8CSq*?X@& z*Id8(JS2S1HTdGOl_NNtV}5D*odL3Y3mUeiO7Y-=Zz2?d6-&AVLBD&Fn9rBm$|c@z z*wZ0JM-``vEAQ3?tyTt#zUGf6Qkn5z{K>BUeXke9HIxgXAAruTdlP#$cp19$$@UxC zT2+~$7W1dBZ9F4s^IfDN7H_FEM?E{`4gGyrzqC}T4ljlZz9N&GL^Oc?!TX87l2Bwg zOyloq?Gcj5Ode>BC?E7pD?7e;yy4VH;d z=GdeeX`RgB^);mzrl^0x%^^hp5n@<8+Xa@~3Tt^mZUlbob$a(9zJ6qxc3wbR{UHa$ zZK~a1oI1j&$vE~*YoXph5bfYtNWOpssVVfi%-rx1T4twsYrviY9x8KisaUS3W@%AQ z{M%G#FaO^QQ-OEqdsEIWs!OUHLVsHRiIM&8{`>v!#@#@kP**e8};Doi}FLB0*ZQ;Y25j8r@{W4ueQH2Ul0&+ zjTgH_Q=mtYM1eJm5xLB=|!&Mflb$Ol=EzO!QIa2s>;)Y*5R-`64rjH2$rV%dEvVQ@bx#nD;Ttfd5bQ+*ihJ$~0(| zphqQKp(N+2D93jL^~9&JE2NSfvEBIWXSg<-?|?3>_4jr0Q4XHB#1aIrI>vZkGYV5j z)9g@PQ|q3-ILLgU15v)^9o9$aD5pKM-DE3DyY$Dc|9yKZmEvvnQ&Da2H|1ed{k1lc zgJj^@n}pZ>3xwzH>&lna41c%TuQk3NA7Zz*K*XGO9aAhNDr0n@A`6`4#jq|EoSncL|RHb==(sTERYo!N)3i$0UH=su%nL0&M7kpjuV z)-LhnSv&Isq_gDUp8q=EloFoo$BuR-dxihji)LAl^lY4zlLBp*_9u*i`xcr1)Re}E zC5SQtc+q^=!hN)4@fZ1hzN1}TQ_kFlhV1BnV*L@Fp%GNa-7$7i2QOr^%K=r%R3ySd zW2{HUy>!MzTA^21e$CUn<5{ux?~r^>o-T)V-zmq-8!pW}HONn2?F*?X->94o{QjwI zODbhk@5g%&&DX|lQ8-c7TqqAYHt;yuS=;Yi+Wz$a=FId zB$pM$YT~8D{i)~H(5AjW$BRDaKTMOYe}wIlX0?$uSf1C9W}!tyu{>Me6UDS{1I{XW zcJO*k^oSh0|3$O(n= zMU;WhO=Bf+(1HKNCX)=U0fc~ED)UQmpGo;9IXPZ5Ikvib;U837;-L0@)fm+ zIby8*saCzzx(0&s;G(?pRMAa5ekt8i+{i@P&{f>PROcS_%0oqsF0-s*^m<0jO{MJm#u%Lx>opT6LvOhKC>zK&ig({v(3^b;j(~b9 z3%SKY-IblTOeYcQMMWJp8;z}O`)A*ojYcz5T@c*BZbF?sLKvEA$uK1>n7ZzT1O8c5 z)$;G1P=O^(;q*tOnbDCSvTxJ9TYYBSvHr-Az<=A1;ve|#gd#-gOJ1-* z*dux>egp1_p=zy2AIWSl>|Qr07_G|uv1MHz3YgjPVU2RGnU-TeRqWvuhFfuOTLV23 zE|&j^28H3O0=3r^0f}d)T$bj%5j`EX_YJhe=RY{VMooC))H?NCljLIG15&%p42E!^ zT3(g+tszksEX03njdC&X0PEhbWqSrcXIb4&V(Ybd%HFSM^OH%QR+uwbDlxb-@Bp)8 zhI^qCubXPjol}`Y;u3YBRMdwo!8g!TpW!PQ8UAp7bywBX|g=L|XUb2KvF=yJ&VkgxD_A+#S~p`sua9Iz{p1{F)a|1!6!#jY;xsa&q%@&}E*&fHt9m(^gOcYYbdQT*}kTLjxmM zg6ARh9q@Yj%o>AM$Q}c}=|blFjcV4sEhq{NXywZ>sb{GHvy_S)?BG{w{~mrHYG_Sj ztf9q3b>f`J4+JbXpCHTUlR{>^pyU~I?1<69Mk}qcQl~M^J>O(uNo=13=XDc91%Ho2 zWLiwg4JbP0lDoFm7g44Z5WK)DN^yj2r0A6(I7GGgUg57(8+}m^jUX25IBT9~kG>_R zkQ2UPj0FiKA9)U!<%zou3T?Yq8NX9v^prTmBf zf^5L%kdOTOL4d~5wnOY5fz#xJMvb7OEZEHpEu|EtiW;7vM^6>e*%w?HB=kDN+DNRH z0)1QgvrkH1^b`V9nwx)*uH)^bW9@~(v-_5Mdt%(?2SAf?C~*XnHa>3|KpK2COu$%- z4~#XM$9Prz+llv~;Ay`f6$VY~H7oC*^zbvyPXSLOrUc$gR48YIQ6c<((~6)@k?`Lw zi-qu59a$368~YM0E)2L%Z0eO#~QJSMe;e!_B@ zWaG_jKOkSKP9*G7^@VCxj!s6nGPxUPeu?kV;B4QIeaN>M%BRMMRGlba&(hxWfp++8 z^8^>Sitb2}HoMkql7O0~XP$?CAxwxgpYdte4xMPd~cEC5WD# ziqb|7{|nAxED>^%MQ0dMvd&hKJ^+&BM|Mr6^LlhpS#u^TT@{E%&XyNnXdR2|IK1Fx z^UFkRg8~kbJT8fU|F`W*(|0SUp%d(In)yH{nro7Y_O<+#!!sL>?)| z^-Bu{a9yXJ-`~X1`ly)#=JyPM>!`Uic8)xda1a2{1fD+Di_X4!`liv4+=E2gQtsOW~s2V)OM*k_dMU?~nkW~Cj26M=m^DJ^w0`5G*oH1GgmarBfdCUBT{XfoMWdWPly6o4R{4@4%0}7?TEn4bB5}Bw;{2p z`5v>^QC7yb&Z);=2i->{?^B7Gmyu;PId9q$pSZi*u6kg71CscQIaqLSSV zyX2mI6yAEqOC0JP&=7p`;j&P0oW%X*3y@)P`Y}J^z+j^yZ*|+k50ZakwFddi{eaUx z-`dy2pNNF9!jp$^@vm-aWzENA8K8P<38i~SY=_+`gOSha^>_F^_(V59eepFbr|^Y$ zEl{SKnN|Gu?W@{#VOj~EL`plYv5l5tYX;X1D{XY_b2$>v_td{4N)Wjfw22a!U9a?v z6bF>3ff}et@h&S6RZ8(BO6bg_rH>Z+=h;)EWti|@zBu=VUb?9A^_K~zoxIEDHqsCQ zcaiBK!~T(p$>3b8_n3`VL`RDzj=YL}tlVh+Mo-1r3^vbdFKHz2^pg1g9W?nnVzW(i zoS!*2Z`16FIY>8ZMM;q@M|@jLaY-4g99am_FgY%LUs2ZaaVe4h^AL&#B1tJmkU;g? z;C7K{_9$=ED$9>9g9!HCSgLD`J}hTgYF-p5pz8^!x*UOQfRngGr0+oO_FH_c;gH@u zbq|8M7yIn4pwsZF;S0UZnMvK=S_>?0%7MX-HOcW z+t)zplc)My7Q5G@s*O0}@L(|=@UUff*JpW`j6{d2j6MZdEDiP%=;h`DTOP{v2joJ+ zGY_FhXKj<%X}0l(+?h795*Ue03nMu~{APHszCr-EftOe*{>YLwe!s`w@{N~l*rTF4 zRBqCts(cMLxs>-Zm__6-QGs>Ye?y5MS=zq)U#K-&LPmp6%0wH>_Y@|_p`2MzC+9;% z^sq+s=w3bG8<+4}7p#(OqHE9IF3X0BxU@KTc96Vd+HnV|hL-jlV6yE6!Jnxde(1&O zu^$BUdgEmgE{oqZIq^eLxpdl|j-c+QR7nW{`?h3x=;8ldbgWxPR!5K*R`F|7I)O6D zun%j{X0VybTVM~HbY}%Mp#-|u|CKyIR+SptCoBFWGTkUG7Ts9aF+X{AWe1j&-rk$| z6zS*?P*qca0{nl%v5ipt5p8jmVUv`p*!nG=pX?AqKu1pm7?xG%3F=Lt+^+#3B8G?C z-(SWa+9*2iul&Xr^O-;F&YLZ~n2DumN-m3B*l4qAu|jz^Wj`9e@4J(ffBj!uo^~BF zxZO0|LJ`6xXS&xFGw1GSZNr^un}es9EMqyO(hs2nt(xRIa@Gj^%F4a37Dr08zTn;Z zF&ls9XyX3D<>2cjE8ItpJ5iKG0Gnn$V0aU2#J{)E-G%ibVs1CH;1Pc|v~7 zW(h5r#plp#-;?M;!99qW6AhZ0#jkI#HCHTfv80>IBLT_6y;Op{xSF|qUcMhbWmEnn zWkM{4-#`DJ3;JWm`6%o{uGDl=-wk9KRcJ$(^k)(X63oV};`pjnJ7##YMci)Bq`1_% z==VbI>wSLyyc9x)K6xSrDmhpV89F|^(>Ew#r_-!IBuPnB{_&fhqnB?&11t$ytf z3G}Whk$TPb%YR&LCl( zT_?`lh(s)5exB8_?t{iK6Ea4<_rTF{q%+DlstJGiqLR2D4>d(>)>q6OpTZ&x+aL=Za+s?6CjY7*{BrNYz+_h@^JK%vuaQ}mebJS$SXISbg7_>;VmuX278qf)RIhY8$sV5<-Rmrp*t+gqn&#jT94b+uT-Ztwb_}IGwd?H zGwVO{RXCM)T2k}L6QhPIgVJ;AU+=3OK!3&o;}BjmY{tbFNka&;6*Fl-p;Vn3DU+Ha zh}7y6rO0lcE@v`o)_cd~>Go<$v)GkvdS4wA+i=iv+1j8+O-(qe^z+Xq-O}o~Z%CD;t zySgPWxBcYuc_!ApvTiMn+6?`>85XCpp;$S@lJlf)?yS=AD1Oh;&$zcd6-k1z?>&+0 zYvV`dQNkq=%SH6TEGzGpk#TLppCJvk;ru9;9K@zZkoQqd9iJvwU(LBUluph0pDeA~ zTh70KfB!+AT7Pgpt=jTP8l&J_;vU3tM$7y{9rP+Aol;vq<;BL`cmJ_kZ+uy+x`2S)hlt6a}0&U z04fV{Cwv~E!>wCy0rzsH7N98+oHvm0d3VaimN7yZ3%&M@*>Qh=*u_x}XGKjRf8E40 zNzdK>jW!XxH2l^))~2M%92+_^xnKlqJ1Cf|5fKonrePZpieH_(<0&3OBZ|q(vbX?x zAYlAz!sp(zrwbE!_Biq6el7gm>@W>qZYW@3?d5#MpBbX|SkH$<4OUV-%N=%Kua5@x z`kn)GIn85TAqTbN`7y%0L?!+D9G*~GE=~sJX#1C-J9a0yP#L(!t5BpsD)Lq`pUSZ5 zvWtDE*k~wFEV^cSB_NqK>1ZEl5}xSMR)X&YbG*WY)Q#`#h*=urVP0cnq7?nnTWRs=`!MN_0WR&QO~~$6fpK()jbzI@-%=>~ z-qWWjt*XPyJ|P;OM${M4ujbRPZYr?-;L_#3amR86!*|{8kNJe`=as4i-Y+8;AWUIk zL&_z;i4%|ds8NttJ|S#|3E?+964#$^Uc|?0i#(my&n#;yJ(9Xw4L)hy^Dyll3i+^D zw;Fr*d#v1~<(BWw*Kd=jOFMUCLrZ_w0+;@tUTm2J++Nk0a6hTzS-QR3TDskv;|ZMh z+mMvd*5ge1dt(1P>+Xy?GmR}`fBM}+F${XKeL8wCo8hl}btzXd`?vuF3)4jh%G_k- zUtq1o0o?u#EN><=U+HL&G1`(fmr4j=5eQ($F{fjS+E&y&2U^J#xX9%J06(Fx>fcNM zjiNuQw4j7Fq6%`hwG_r61?fEPfE~!Fh~_r!#ypMSkIldb>L8<} zqNJ3seFFC9!h567oV=$h&<&o!5NK|#F4E@YT1X4Y^kB+1B?LtRi?gn}iIOz7OyS4Z zgW1@|AQyC-w(5`_c~7ZSK)((W)85Xk^hTC9K-#vjND`HUUJxJ?!|6XnN4v_(o!;yX zD_~Pb%}=&YlzJ-OZb66W!p4*IH_Kq4;24=ygO$$8*2AJqL@QT%ggLtjQq5eD=&8R) z*t@p+sJRgVVq*3~6YSN~i1F#N2Z9)Ug6Cv%rOwD8%LGS!I~fZ{sDggl_f){zFez!h zOql?SUJ#mO+G#U~4S}n3>e`j`jW$neFS5D*tU!NTEKMk*U6N`p{iO`u3_Qb36?W{` zKJMYE9&FwdUrh1vi@A|G=*=Af^Jl}S5Ho@1YJ`R7{)NW%HDuVvJdk|ShTwMd`t$`n z6&RPf17?u-#U2$FfjK6QO{Gd$L<0q_Q`AL7!^n^>mh85S?Yc?R$A>-I=XvHD(``ug|t?yB!M9=i;7375@CMuIPN z@v|*B@H2iC*@S0fev|X^m)*`arY{K{o@;;PY}Ofod7c;Kmw-&K6)!FRMO!{J4qF~6 z;}4-Msc6(bE?=nRE^C`I+BXT#UmghJ8?NExyWQ+-4lH_)2@^AU@o&l6=G&ee!xxX< zEDG)8`59rAts(Z@WV`HZW<595kCbjNG%rX|@EZ{=6{}~HE#E9!cYptweMZ{w`86Y| zLG*2KX=lKR=CS_|DV)qEf!kG2} z{{2C`4h6=4?KE^B9d#=GqA(1eIZQLG*M1L-+6`Wz=;V7;o2TK2kOXTWY8Ohnu1->; z#+e7Y6>vwDvzf9}+iv7r2eF#?y=QOth2|jg0P0HW;Nx+q+v@f|`TOq4&1+^OP<&BO zLvVoA@7}y9G<-2%GzJW zAPeT7at<_ZGp*>5VUc@xq#d_RL?4**L5#rUGh$u^sbK88RAGsTV>$)>B|*dfgPhMc zCAt*mqXXj5XMpr6Yy_ka-pJcw)&045LJ^>j$~Fcb)&hhRcv#uA_fk3pd3W?Pfz{Fd zHZgV53(oBIZzwtE+QMc7qfG6MqnC7qZ20_1dMB2*l!HzGBG1!KdkSI2mx*82_Sb)1 zNjtxnB)UuRk{(B70sKf%iBRDUv&Fb>tfo7jrhA3r0u8l5<+Mpukm!y_CIV2>IXW5O z*vF@FL%%i(a(y0foYwzz)gnoZ^iYt-WT}4@qpNsr@^R+?r~Bw*(1odEk)UajFxgJV zI8IWsj0a1_vJre0qDPJNdYo!s%Ucok>nz_|eu~IW9C*3u9~c1p95_2YY#&!0>;O8?VRqnN>kJn>9 zcu30#1O<(;UWVSLU_<$nzJn8gV;ZZImfL6HQgZw((22~{o?-+*dLfEXWIP!QE*!WT_{S#6>%;$R^s~Y6 zvLeHY?Fi{&rsWn8nyF~-6U9++r?#TTcgBrRaZ%i)4anNu@MD5+B+qthzmv{`8icCB=GZ5>mUp}?w}4X~Y)3q4kE-9y ziHdl7Y!Re+Z1JDmPKwgbGClU-M>SlOk0Dg)NU(SjGej5@di0JM-)#BYgY4yRAh)Bd z6>8WwC8>QpCSRqazv67lsgzZ-^+7K}S|&mo{*H{3rF`}<#Xbi)d`d1At31*W+j!eH z>VmpO`pcj?ZaiXsSKr#9AT_TW)T_)VEPz}bz=2$sE3frn7A*~(u4z|1HiDfGctM-- zm_Gn>h-zbkgzd^mPF2Uhyp>MxyeDfSgrB|&`lZ_Sm8^J#6XZkYCF66pHz5jtk8Ab( z$0_EvnTiU*Vn#Gn{vEL^iMG64Oj(3+Wp(A!fVq&y?bOUC^B^*ghpRg2Bb<`=?}TW5 z2r01i=|q4+TZFKS*3)Q%naA&7LMFG4$OQ*w z=mpU^rFJV(=&@fx?kOVJi9f7ZP7Jm>?MYU*r>hLzbGaXO#Vf(Na*J_M-cY+84hM7i z927lhfHgO^=Rox>nkCN(Uyr`!+W!H6rTbU+5c{dHU?6@VM)1MomD3_GPThd0<|~%G zADfp3R9~{j*mZcw8cGkNH!oPfs7-a&?m3>7Hkp5^#Q8IBq+J;3__}EX<}uy<`)Wa) z#xPmNVd#o2SDbaiLekDJ_i z)UPxz)8*1U;W&pTWJX1#L&XjKBvU#*)eE(`2L7nohio{>EbvP=0*7YFK!J$XeiZZ{ z*iGgTFq9DG>4EqtnMn0sn_&xJ1Z00u^PqUQ1{eXwX4dvEiyXtx^#Hx0bh)D}tmWUz zdB51>C?`Dhxm&5}@!+iSL-h&c8Izs2gpjcN#r!hZh9sLVpIL%S&iJGB_p<4Qp=dTs z523~a)l%6lBw%q!6?{Uq;h_m1fxx@_Ptd@uaFK<1UkJ0kU@_>WQy-TIJ;S=5`L}gZ z5Gx9{&MPJ@eZMZW^HIl3HHa`Il+cQ(U%hu>^3LAKD`Enh-Tz`9Sz>SusX@b{-ofQ> z4n|%+fzVTZ1*3;dH6sWZ0}g>a;ze?jK}irjj3H;bPRem>I>5eC&dL5czTy{8hdIFs zNfSMd+ENGYK!qa1GRQ;{|!XHB$zqn{S_ccHSA^ho7u~@L1dthBf!NwNI+IlR-3b%I95STU3s6JS-lQ z(X1Z9v?F7oIHZQN(OtM!@Ccc1)Y~*|0?~l22P_ji7k&m29{XwJI~S+FkH?1=zMqbM z&=e3cOe_m^aBDnDOGhr|Fbi~F3CS$5bo&DqmJzbz_Dphj7gP@Y`~_~4m=qMEO;POO z90VFVB0sbtB3nHdHCiu40=9x!ChV5BuMI>p#?>RXwi1;jx%GHNYCt7!3INNed%3Cm-oK%y` zXk8N>ezqB+<-MI&`MvUNA+NE|^4t3P5C>02cxM@1*^4bR_6WJovTXNtznsy-=hd~s z&mrg1cTbJwezH<^#%vP^{7T_oo~K#>qC_}tR6xO~lM26P*_LiU*oiKt=}OKhM&la* z1+oAr(Dx4%AXGyzuhQZZ3*rN%74xlO7;&)(c?nN^QD(|;z!eN=S1Q?dMumRBpx2q8n&}bL8K7#&cwB-Ifw5=*s_A!S!xmecVq=R1 z_SukqLO<%aRYEyHW#fawrA<*JY_#Wq3XhmFe6S^`p6#q3O)h!VR)$orz!*vajxra5 z7l|0{Q7HRwAoPotb|kSZN9?MIpPDjI`0NLl&W$wWIgz{EcyKP|OHz+fFbF%pFp7x; zq=3MGNP)Hg1oPnElUwq3p$w@*Om*cUWh7Jt5;buw%2lWlaq!sVr_Xso7w%(=w3V}C z`n_dt0*Vp1bSXMqEB|P1r1$ z4h%(3EP%z7m=9?4-!m926uHJv1^zJ`vQOn&f}4$#+rVu2O#46z@DNf(w5O1F0I@h5 z4+V(DG8;y2KAy>QKy0Y}U&O}tBLoHmWdjNV9WWygh;TzvFryb599yzu2Mn=w*} z+B-oCjFjhP+bZ-w2zvNd3AR%pK;}lK06|ysV!Mzwr(J^Kt1%9fwd( zHXkR%@(OJRt$Zt>9LO1Nr1d-pRP<8^#2T<7Z7tzqG{?4(Bp1c$0ngO*5A*#IM;zCD2 z-$83)p(Q7<+50GH4ZuiVb8<0Y1ic6MWaS^Y@1aViswBf-dNAk?7y95Mk| zFMkwsas~>?#|Z*`b9Cy7omdAU#COrGef-xjwsdVhUERfjM(?$$_|_mZjW;Z7HQHhn zAIN2QNW*<|7}|opr)qD{j_xiFQcnwegD2byZqaA47wkg*xD_nvS7-L25UM%O+p(|Y zOz`dI2-<}mvikpE1g=Lf<>8L+Wut7vB38-IiEc_MJ7<@ET;M8x5ro+XU*mqr%>AaG zx)QE@q=XBaeciv@ccqQwf=oaHZ$vC46BNsGy`8W(KhGwQK~^tp58e!By>OtBT1{~KR>@NrTnJf1*}MJoZ-sTffi}4$vv+}S3yr5%`T0odlU(( zqJm$c#{U=VZvXTOVh6VT&U(R~P$)$zsmgkY<6Ic+{3)6{u6x~uVJdYoDduEx>LIEA zD^ibh7w@`1bKz{_W=B;-8?7s+TfyaDSgRLx6%0GXlQO}L{1mDI&_d?A#RsZR-yVLP z_Ph5&74y`$hkH_i*B5(rCi%{_8jo+i8~>i4 zJ^TA>>8i#5_IIku-`j)KzV3rQ@0O*%ba&ZQOzfn(QEmzOj8Mj?_w8(vPAK31IE3pi zU^bR+agl574-6{cqZY8~HBlRm=~mKp<|X(RVvABSM&%^52ERz8^f2W%4~dKAheuCW zg}hFF1*Dp3miT0&l+e$f*U7kReE|N6oAg)vKgd74_6nlE+@C&)VKpbk1%S^xZW<1u zypR91gzilo3vDY*e~(-oI$B}skZ}(wG!iSWB?Wv4srqvB#=NDj&TQc6oL&ls%;Si@ z&eY!ANi(Ij4f~gK;tf(c zANEmMuEj3`%enhb7rhDaB#BVqI)Cti|Ze#ZMiv@O<@Ez zke5pnnKU?~=z7&azG@^XRS%DAmzL5tjO0_`c4$cy{WG_HGIg!>!_vv)%5?^|7?^Qd z6BW`AvU~35kwfc_elOF4KE~Bj7YFyI?V+1=y@hA%akE33b3CPAxZ)_yM6;YujiPR1 z&r4}Wl}D%rW!MW5sC5$(x+qlwI7!ghB+B1vB#XpV{hvx+ALQ^W$LDDw0PcZcfq%`> zYD-MyRH9}UQ_eo^!w?!?&x;XZEY@d!#d}Ve^85R;XvTD|8Z18?ktY1YR(>E9=%Uy$ zD@14hM1f~_qR`bZx=D*tXA!rH(Q;hIUgBrPCm-%)H?rUm0O6G_3x@}@jRqZ~y5u!*gfk>~4FMSfu{b$xcU(Kh0k@~<{a!$F&4`GU7%I@O8Bm zS9-i3MTo0_cZC^IJ@CJ{kwJki2-3 z0%DWtdtupjIwu7Hm4<$@2H9@rBviRt`$OqEkt2`vcqQ4qGgRWsw=U;tRDOF-UH>&B z+)feD7Az0iqz&q#RkiHLx5XTs?Bm{^>}$TMFKMIVDz2vu@@myI(cQe+Z8B`Bz408kS5XCWe;(lTAx8bLr-J4P(`0lAmLOyaX8 ztdLSMJ}vPEL-7OA6C!#QSb^F>FtCTn1@;ht;h7eD$ak*pwa!(=+r%LIML<&18_+(U z%76h57i1EomN`lGsJWS?iT(i88wYTMT15(eRp?IJEDb!aepG~SG)b|D5z`1f8U!Kk0Jmn$E`vSVkc;j^mi z!6#gA_MFUZhw_Sxe32Gv^>M zR#Ds?SJ(h7Tr$YL@M4`g>kY+6;`I5gmFPgujfQHMStNtRaVoAI8}Y$mC@z;}W^1P2 z(iAhZh4X{lgh}{Lskd;eJ(5dYvjOq1pHha#8%ci?g~a!((i0rwT5HMN_F{x4ccJ zdnhQ%$1FDrOQVKC$P3f?oK{S{n!#xg$=F$O8D}o)jZ_)>4RMwd7x?D>fkAl+#A)zd zd58U!S=;AcuxHbw$#W{93~2(P(C-M9jBm9{MJ zYOQ)o29uojvH)C2cCC4e}K)k9TYrgao6wii(pW|ki_Lbew+1^Oc=_r z?8x!D_;>USOzS(wfi`h`o>t}Op`@GvOk|6ai~A@nx5JO znwtS8ZFFPz-Jr(T#tDhODVrXpoimwKS$@3_k^n)O0Ln!c&KNR>P^wSfc_sC25sq7sKF?7Y??u?clG4@4;V;TyMF zt?~J@TDK2Q^QQfZ%%el9l>wfZ9vqS0Ou}&FNSHBQL_z0l|IlsRF|=8V{nrTeW@~_c zi97W@@y+0n#=e%za~dSYb?M^~sm;4i)<$vG+Doaw*Qu=2f1jOC z(F&hSpebHGOI2F*N|n$yKM>=2JJq4DiQoEFchB$A>v$YBblHGZ=q_pw2-~1#Dj1=Q zBcuBVdbGdyR!l|BB5<%`JhyK5l)xB`nL;wq#J3So<3y6Wuy=w4UOzt;U=LOtnS7mU zz5b)AK4#fSS(It&``IYx)OAKM7%_|J+nA%@RTMZ4P%jb*#YR;y{hW-U(uJmum=-V^ z6vZ9JSl2So1V^C(YRaKX5AF5t^!$pN*;pakr{J|$b)T|BGI3KA#Z`Y6_|JJ8!{_17 znC$e)(h3=rrmPz2U z3XwZ3Sq%~s;aQgybUi%IpSOdom$5ZiZ~KsY6Nx!ZDx>Z+?zfaR zia$x6TcZ(w#xa45!;sOYKq%pMMGq!+K}=5Dz&V&{tkQOlLO0yay$1cVOwtmhj) zky14rx!`v#4D@O3ePWaPy~wTdvSOlHCL!cGUWkA7ua+cO z{Pcwj87Wbel{HdwzQbR$%2P~>y4!+;UX7^RODFi-Id&WZX+#7PTLhApJe{=khnXj< zi?r+|gA%x9V$xK;9(3HK+@HDl89qXcqY=%*FOZ-c_o^qNOpL6;Je0LefYCvZ66%}4 zDvwD?!&mhyk+&z{_$z{-0Sh#!Mf3!6TA@hDiB{cH1b{q3va_rrDYLZ&l#qTjlU)(a zSTqBXg26$rjEG>Z+``bpfcM6g%ljVgXdxc;62}e|I5xdHW=i3+OIj`3WC}(2fCYyH zc6u2;vF3dI{$y&CXh0t^Kr)gzC=kef{py8E@2WqO=g7w*?iryx5KM*5Ktz@Fzrce8 z4hsE8ef@aMj>Ex8;dlrk@IID7M4&aWL?3b@QCoIT(SzeegO034b@jn>r?Jdl?sIP2 zqh+%LQ!skV%CSJ#8bd1G{d1|T8Kkw>vg|_Vb67Rk0iTu&muH&9u7B~(>`|R;q_`0& zWoVy`zSEu%(Z%=G?(8P?Nrw0u2YE036gYqN=I`T!z=~&>9XIZQP|XM*jk#jOQjhXZ z_-(!@13Xp65nV&e5F*7Ba~L*I5to0niP zmPEuTt=m`8{5$Tn=!+-;Bm&8zsviHi>PiLccPipi`ir!;x)llt?}Jf!X9&#{VJR zD{WnT+O|sV9`de8n6GdM1cX%AzF>3E3%H30jFsfv%o{%By(Bppu2=&C^Zs_gU&q%x zjjcM5uMyE35rP!^0Urpk_&b&Td7PW^HX4q3T?CX#xM2wk1#ouYsbH9(t3V_@m4}A# z-4Q5?qAiIiP(t(^4>#a7SK1XC&hJOSqbVI0R=@%mayxOP)uJ}{bq|DGaK{}6G*Ygq z0Ps@?+x@z>VyfwfPViCX5i;46 z3v0bhD9V0F2eVKaR(G6l)TXREbXWVp1^6kYICE{7Qj;6>00TG<%@KcAkj@XI4=Ic_ zdM;Muy7w^B6`n~?kBtxiDn{-aTGC|2NpUW2Amv>AJR@=VRl20|NBUrEv@E0W58VA+bqx+-6XY>^4E+#Hd_vJfE&u%EpRSjS$<*js zKR;GXzqAbOzIlj_*VX>0?N++AiB;%h&Bu<=4soBIjJUtT zM9Z~(Wc7?{;`qz>fjRjI!+a7!;pUgLnA!;8VgevGH^^x1!<_Zghgn+?{?n0bx#XJu zMmG2Fb??tvzM~@l8-1raw-!n6q0`pp(-!+*MdMY@qtsx&Vd$x-i$AnDFDGD}Rl53T zpUVT^Owe3%kG@T2oO3gHg`cSJ587FtZ)3J*upl|e$F=1x2Q%b;q<0Vwof)G_b0pr< zB@3qYoxrg$>CWy7!<@gQG|bi#Y;5|D8Z1DZJEhIb{5VP?w!GYw`kN0Pw(+peR`72+ zatYTJNA&?`6@tD$J>nYr<)2{Rfcq8S;Y1feA#7-Z-5p459k*Iauiv#zV z1rR8jBge|x)aB);=B>@^Ys}8cDMsv80X!5sVm0E>ZcN=KB=mr|(*bo{JQPd_g=)BZ z07IlTM{@33%Y;0kMhv0Kn*kF&N(}b4um#ajY|4=R9s>spukL&ylm^pZ;@x~_GhQ0{ z1@KquNmNJjgP+5NoEEmg6C0l2NJEN6%9xTSqY{;Idt)-{{R5bj71C$YYV8lJu4R5cq??o+ zt6)I`^S`cr9JK><01JYC5HQN5H56Nig&?T`#|8i*)*(F}5^+tb+(>7SIcD(%Wq^RW7+DB0%E9w1*J2qBDO0NhPl5z4knZ^+z zt^eVC4q52OWuy|Rmxu(hqYF=db>$;Hb8BvN{5Eh(T$eGQym%iCv%m+$5d>e$-2y+G zgd%$XSALW9b3u`u`9|ng%X@rCvWPcpesypr?np zly=cd)KlT$(gf%#ILP@ja)C+84=omamkENEVYGD0I8!HspSakH+-u)wv0Ki%r5}|c zzU-`g_&-#A1yog0*R4Sbl2X#$A>AM;h=9bU5$W!31%%6`Ly#5(flJq=K^j3oknZm8 z5O^EE|GocvW1Qg_!n&Jt&pv1Gb>^IFuF+((sJuj*%h9=4mjz$8o7{7Pu~jJ)Mm3J{ zyj;~}-a(WEdE*%G)WuJPIQoiL7>_hC^Mp~t8n^O7+JlI!*p3-m5(m>09OOl7Ru9p9 zf+-as0D^L@Mt#D%beRt77mi*%HQ0~@E15yBko<2*%PLFApdFiweqYV>&82R}`Lws8 zL+SV>aSKmhbk06N>_lN)DSPn!wyaoD51JuYBH>uu31%;nL_#O2wf)~%;-m;Imv4-$8B@EP;z$v+ zwEfM~a29QHlzKGFzfq|TC){dye@rl!Sccvi_{Y;ShtBsu*q_%a0&Nw*6G3L}LHLGK1 zzY|ek6YiKVUJ(DLZ#To#3?gE#*EI>^qa3>+v+{nsDr}W}>5{{4l?(8`B3|HM) zv~70(nuvg)@!Lq7;gtw;EIT@A;^9DVC-!`|G{?;oA+bhA?RUlfZTizOLQ|GkYji%MNPz}@57Y_j&R z<$kP!^+@IEBb8scz^!jn4zyc2?3jI(!OhP)3w6M&vNY z)fh$uf9v0>mfTD4nrZJX(}l_Ud?$Zn@(c0QzE6dgePru%t2YIi%XfoA4N>71YEGk# zyaq#`aNnWh-P^gSDF_-2e$6bY5?Qc|BwQefOuPxFki+l|H5>Mf_umeif|+xoJmExs z!numW>CQ5=BNjx#xr+s`8035F7lw&j1?=YEmPXH2-9_Wo3fFRV!q39X)IhsVtnzG8 znxg+v6>XORRZ-ba=1C9~@yqG68>iLj`eIJAclPJ(FqkCGYj6nB!BU{ms2inKdb(?j z8#o3Ofk21C5xtniR~UUjBmmnATML64$3WG|026`45 zFm%~F`RuC5$GHfZ1>%dwoy4v`r37h9Vy7|Piq_}{12cFOD2oIn--|R!9ERDO-ac;~ z{T#&WBU=-U>~sdV|H;B{VN!D%FYH?W{%pwzjLK3>6oZ|JyV}mWnE+7IYPdQO9@tDW zw-!Ot<05B_N7I0?kY^}1x2|LTm2CRGR3?3suIRB! zuK`B_c4G2;5rf&V;%5aix{T~MZNTd2I_M>~Zl`;QHTORmiz^!Gm~*KKi`qIj<-A`O&pB z4`uy$m48<*;4^K~&XIpmK2dcf{$_a4dQRYaf?*+di~)ipK``qTeM(*m|57Yy_A<3m zv@zJ=zm00QV$v!~P_1ehrrc<;rcG>TVPiKvQ>O3SwUM3#g>^w$hh>0R;~9ikZoP+H z^(XOV`s3_ut}WJBLqVQLLup*P987_7)uc#PQP!C9`Z(+PmJtJBD*iXHIO&jRX#iLl zSwtj;TSf#@;f_Y&63Ku;gjo?X^d>7FSWpPLKwiYu+&Me4uiyek==4H*X_+0Ji&F>qypr zeIX*e+42CxkNVvjqS^8iZ@!4B)Qa&C)+E2*hWD+=(}n28pSDe%)1A&&Tui&)R#Fyzw>b%! zuAuv`M}wdv?BAmygxye_=^7V~{0wscbb#9w*u}UF2PUGeJVxCdQ3Ows097j)#4V28 zSW)AT0uTn}!{h5;Gf}e9;wWw9$c}>BIXhdqEl}{)e?1-GNg08(b;g;2Hc{zS`NCmA zG8*7XJGk9xex|w-gq$}%q<(R+8v8wdhUuXy{INix0d-?tdBkMS!RF@u#o#oMQx(B| zJH)WqgQl?~p<84uBAa_l+v4&dVGHNCrsCmKG44mdbCh*E&c1yLLej92SPDctIpHZ0 zaIn=9Vnw{P^3dKKaE-fpeDMrf6w9OTEw--tt)Q>MRZdEhITMWW5z7@F+4FlH84Kbi zUnY34%=0(m>!n1ceKPUS1=tjVKr;EZ{GnAVtZJYWg|0s2UP@;F(fXg1th4>A&k)Z= zM)vRd_us-`MoKB)QnbpPan_iDHQ1VEhOQ%m*IBZLw{5ojS!pYX-@%b`_T#)O^K&Pwqu!vP4L* zk3qbz3V`s*3J9O9OhYHqyl2N$hI={#h2XEhmE5b^{^`#kxwxod`Am^zR2gm{?tZo6 z{by`r1?FQl_I^IBs^G&=FdqrPdFFOYoJ$8E%!kFS`u4?kK11Yx=EEb$fVw$?qWb#{ zCXkbjHo6kX*2sv;ng!F+s#HG)myAb4{hv`!egwE=lGi9XWi3WZB;Qh!JmFnvtiyZ> zK-e=%JlVsp(oYQ3Tp5-TUAG}6ID>;@#G7EuVaicp{ACB+9)pvnV;4>euYgFbv+xp# z#6Bc#eUR8fKXkR5j>Yqg=eL41#0$z>m<%x(Nv1WymB2#%uAc#n3G~3ODlRBso&HvE zM7^1yS7yfDf1fy*O))okG%4#4hB&C{;gSCeiLCA53-$PuJcE;$v-^K; z=!q>1>Wywm$bTR7O9m_~x@cT4V^tY_Yv(KY44Bl6>;RgIY|VSQz!e!?_`9Dd)&p}d zfmEU*`@QqymY-4cU50Et4qmkknCkt&f}}l|V6*KtkPE=cWx@><++Xrk@nU6nJ|>wB zCKb%6Dz?#WUb0vn&#?uhPcchs8BLb#q|CZWl_>P=&DAkiFUyze1kiWIy&@p&g0?^0 zY|W2-Jje21Fi2ptWQSxdhYqNwcs7T!^B+}#Q0*APF1zDr%`QfF`q}Zd3=nV{A4a>t z+V!D;DkHJn1nps_0yZ%@?t|}Sk2G`RZ`3MLB_ep$!|#{RPUU`kTMEB!{*Cf$cc*%;~Cz!fsf4Rs$Q*=&asMY@YL70(oo` zGe1Nd=7rgZ+mLT^WCKQa4RVmNf=mmjPLyi{7jL4?z7K<{*Z)sQfkxgI-37dQH*t2be4s+!NS^>5_#45I1eF_Ah6jo2g->~wG=J|wIN2duorlJsjL``_k1F{^AK zyQw5Ysvr&)3KycWX`K`+#;Dh$ob%JCGKsSHtEGx@Yjq?yOFmCC7%#&H1)}%gP}W4& zl-bkIZE1bot~JYH{E!xp(00h3TwPYH_UkJV#47?JAdC=i1rA%ylTY3`R~s+kZD#N) z@o|<*)64EKLGO>>1gC!PA`LtnlYqZ>2mJlL>R zH_l{i%{`Wc8A@Ym@j|~^yBvT?*LB~9sV(8xtuVAm78>3}i3gag(d2J2?0)V2c4P`< zfReNFe@Yw?_Nd}RQW^#5XqIZ{5!bKKCRs;UKi!|3fk>TE(>JvvyX)Ot4eHXNG9yS9 zCY>Y53d55#s+~BZqmw|<@QUC$g&ye_XG^;s=oGVnxre89XbeUdD}a;F#a=ejD4-{c zcoSxSM+fz8_t3Tp{o|3hKPPajN4j>DmF%vaS_SxY2UH1f7)BCF;@5$F*)FO5h@&~26{yyn<7{wE`R+@muFG&Gj=KpHV zXIp<*G@GFQKSuuH!R^-tJ_3<^z~F!O`fB@;4+nL#5mY@1BI643|5+ruH zh~zA-eb~-dV%D6gjfKV$oyO5w z_GzO-f7buiDiosk-EKxb$8u-|Rh6OzRTS{yC8~#7p9wW(7IKn_J?G1%e-w~B1Z2JA zsQ)D8)uNb5pXo;j1yar9Ugq?m2V_CK?OfVyOA8RT39rv3nYo?>Nl%;5HT6oDExZIL z?ie+YFev9eTg1fbX@Cz$^ZZ<#T=5$H5nL5`HDpAR#JqBI+Z0K5Kl0`z*ZaA3N;YZ5+krbBz^e1Q7k|5CcA}z>qT6Ynaq<)dNaL##XqFQWDm8> zNUB`L@!{$zxvczC{ERY9INmQuwD)b zhaVzk4nOqDfW@==9536ECLb{BuvIPpRc;(GTN8d$98kklQP5h8m6k8zRi4zK<8WwyvJ`gBwI=&(qIq)v&?nT+lP9@`F^c1C!T z_16;aAoWj}uEmvqeV*F)IyHRy*wS@sG@NBN^8V%X;<^k4D*%2Ic)>>|F2j_1O{v2KB;@{4%o}B~8A2j(qmhitmrM&wa z5O7iO_i3w2z~6E2imRHVOcdsPf*m4MD?&9{8F|UHPnJm>H!2PU`&OvW#V9$jxeU5! zMY|8stW0G*QQDE?Fh!-mXy~d`Ln4BL-$Hb?adA;z+cYxh{!~F5w5C`DJYMW@546m~ z>V0l8;J}B~#ULtR&(HT}Dbh~FYjYz#Pnp z0SIC_OAauBGN(q4P`Ch;_N&Roe&WIU)-oKfJ#1LX?^kjrX}l^b_^+#UHTyxQqb?2H z(m$r|G38VlI|t?w7MSm~(UOdAR6nMa8N*ZLb-(9X18r#^*C;or6@OEL%7tNP$iMaU zxM&vxgL-XJb$7d*)@s;M_7J6-ZM{GrumE%6P#h0<2crH6J@UWw>(CkI`tYfV);~Ims{`a_r*>@ z;#6u^WFABfnZ4|%9G%j*zz z;$>HK&Mk;^_ihtF7f*EE6Ljf6k)?GklLZiZzGjNTIZ0apn%Ck7y=T?0nm~KVi%!G4b4zV$qNwV{VgG8*cN!fK zT_bX|L=mMn#cNM2ro4X&rF*>7mPTpC1ro}W9?1{xD2#cpC`Bzu>~8wx^zNo?Z#>8M zJfcgiEzG(9^g4upCsCWb#MM3L7-~t9Kt1g*Zm_zFrV{j@Ove!CH0WOAEP2mrR$p+P z$FPwcE2iTxYquB`I|cizdCue6{_JgLIES;v+O?I!Z(_td=Zw|#B&zHfYA8M(G(j3# zr1JojB;Z(i1Pksp56VvY+3FqCd9qMco8!2wnKqRPeN2W*2Fim&C|JHD6&-25&+`&$sL*hkG`#SxUJK6r@ZF)w{IWH^gY;9^dJ{>$k8crt?!{YV% znDZphBIh;ylLsSweeQ5Xl-mj}w68X$*9+0ihDm0>28U42YYwD>ICr7DHf9JnSEGn% z?oq2}1%hGij9`|mBqyk)WC@y7jHg>trhfZqH zcz@IDMtJ=F?zGi5y@mOlR~T)|^Cfx7C3&G0c?8lrZCLU#XPPseR(k_&x6Ank))AY# zqbQ%oAQz*}7)Bq7_G6=JdSmvHs9h5C8!fIo(i{p`NDjNfw5VQ1N>faWlL;E7ZL^S}K^Oi|78( z8YpI~F-jKdGdB3Gw0=b3|JTnTuJ`*| z?r9|4wv5IpC$I;1S_?|cLJHn;Uh(qR3OI{;VDFz4PdHgch%mf0D4zH@)RZ?hyUD3w0whwd8j+yTDM|xJ$T$GQ zNyfyan`ar?hH@?!)l~M8)Q{DiOvP`)*>dQxft)*0sA_0ea1Jkdzkx(nDOVj+Q}^FWh((~)p=(J`h6h6UOq>)^BUN*5qo zR6G3*AeK+;(g|Zj4%a{ZKj7Zdq#H}JS_s%NPBFkxjduNEt zn05cpy(#Lf;4x|S1k%|fNY;F>z^B{w=p3*Fxg@gS>GUq9(X&dA>xgv74b~Uma*~x+ zlH~}6qw=2Bmy{TbTIs2{UU~=H}&v1 z2O&0e;_S?F$K;*eh>4%CJD+>sGM`m6$c751K*iyo#9iF97>Ex*)-A0(M5#?;elI=5 zodP!Ig@_>jszvDmJ}baG7#ETNoWgdJ>7m{z69BaIrpPCaV$FaS3g^0$CRrxK{w!~s>eGOlmjMQ>Xk2128roHKN<1ZEvo|9Wby_M#a6 zeu=7IM)ie}WU#!r1uc~6i*4F-nH{vYCS2orT%H{QD?Yo4#rbz~p{?Vz4HomU%r z;g4c85W#9iCM1$D90b^T45#(uW#Wn7fyhh?L(3< znr?#h82qbGMPH=2nO#aYEWaLx2g$^-45xL3P^ZLOx5ofxb?aC$mLb}SWB{d5O3Kama)K8(DmuFYF-&nUAG_xE zdSKKWo-t{TaytYsnnc?SuZ}djI>~HGU&tf{(avA1#O+?Z&3kDWgW>Hv(fOy@xBOV< zbCAiOeiH|0G^6=PRiDB~_0-lz8l_@`Ug8Eh3U`vJRxP|)tNr>7+Tfwy^foxX@6Aej z_j#~Bhb?;fFa3uzaV&Xj^e}jDD_B*p{p9E^kn`}%=TSXSVNA}R>#7gHLfm4Md>OgS z&g=|SZqTmKwQMG5N7J-$cuzU3f4Ixe&Euf`If47!I!z=drY@LKS%c-7IFf(EcHJ+k zs>?szhR~JQmo|)g6@7r;yljG?D1VWi{)>!=Zk+v}o_E$Qb1pjmmj<iiEXEUu#MW~jK*rasq>+WLK zhV#@kMeQKy2OV*!SW}a;Rp7Nb6{ZaR5(YsUD4Ze#rCzk z{*3X#RQl=pDF<>ZRjq#GTVZSR^NjMB^44Edr-s`Bf@ni}gtNXRlDd9_Zemb?7J1D z5>%rOSLg&PD3XiU!YZ=#Dki9r0E^aet@5GAxDPLOw;^N!nTzz)XDq~dGa~_z!I zKn_>2B|TuDqE4&&M#VDr8_N;_TcXO6ot3p5e18%6CGtvcdroI71-hru0M-C$ zuY0EWfe;xto1A$ti+(58oG|`Nbt}mgq8I;pq%< z8%ffI+sUa=iKKk<8#YeGja{XR$)$=VAc@}DSTl|1*eXGgJAn<9108IjJ9pF-CP72W ziI~rR>0mw5(NJ|vIL)yW7*v4aCLZ9`IRd}vW5B> z(0j7O9#sT}ReVdG`y(F50N$In|Lv7a_fx}yxo%bI^JZQV1hKn1 zT#W_Q#tw++X;g&5^V65zNOsT2=nxvQYwUeYUuyFGq3j5u$&Z5^2uYj?I7ct!son&e zi)fLbpP28pdOkU&f&kDVvT4rZYc`%?n+0&he`J~SHZ04`Rz+^ryXM#^ZLYem_My?g|W%Ay-4EgE(S~ON@Mj1 zg_e`IH+ZN|XdyBY_%ab}U+T3YUcZVUH)-I{p0(nS^0t;JSXywsrkS8)`BZg0 zy2z+z!;k4{Uwspo^^^SGzUf3EilC;w>D<5aVK_YC4)bKJIygZn^=my85 zB|jdO`Q7GcdDb$G#j+iTwI4hKG=3Moe+6ujPlQRgNK%&J;{dY-fa2lTO*H7an79lX zANH?91R-wsG6`ksWJ}N0?OO@IudUqOCY7s)Qv(d?dzZb5BjNyWLqOCUsvCh8( zkP>`Or4kBA`nM5;s$I*EdZnJl-4t3S#A{lr7vrE>ea_XTE`lcfL_a*O7vPaehU0=K zTUAa^c6(#eXqRY*_Bhh(+S{&={jbppdqE^f82dMppq21QN6VE6yO*^b+oPCHa^Xnp zI|xE2&B(Z$+-?QZJ!kgg{>v-3mYJko{V%d5#)>2$MT35W(JaA@fW%J_fl7Utd^S05 zrV(lGt``n1T|cJM=S9my9Fft zSi@;xmNNq7Z(R+55?#Kz+ITq>tm~2mydBWG2|gEmJU@`=cDtQ$u7YJbjn@Ye|Jp))Ix@8;)!Jtp*yd zB2Xc$M_>b>Rdv~%e&a|>3}X=f8iY^b=Wt*NxQf<98_!28G>>h&)us14ABw8;kML!VfY#Eko_vmLsHV?3zK0QcMxDTsjP3~j z;T}y!CW|FPO2ZVPS81p5f^^hnwNJbC{S6oxu-EdQmT#!RyYMBMjk_AWAfw`O_h-;D z5)|hP+$Vn;*FXttg0RIEc7zTLy;)XOo!(|w)i*ArpT9~uaTMY-Sb|`O5|j@C&sKBn zSGB-(d0n7Gsh!4tw7V{A`S}eK|INe>AM=XyJE>B1p(5x;!IF#B-p8{}Z>p6mJ0_0j zoRe3@?=~fCMTT$2u%aTg9E=`+A-E1Cxk^-MKU2dbMcp)3BEY34;g=#N=6}gV%zrHn zpM8I@X|JXc3f703a5kQo7a1DnLZzl{ z^~PWV^QjN0VUiNuY@XX1c!7l{g_Be7{OGU5cNqGOL^H+rC)8#niK}V!Gr^cd z3Yn*JO30c)K_jc6v4A>GLz*9{#Sk# zTBSAI(X!*$ci0Pz@4X@9#`ds><`C67E@^hVWbF0p)pGHYnxij5Gmoz_svts~)LM1~ znjIK|5Sf*u5-!r~oks(B=)w)Eh9C4tHDgpYeL^yTD$FIA_`rMWF-gsV|WK`)2 zak_!uJY}VEM(BRfpA#@Q$#fHfNUucFJYIpHYz>6l_ismcX%SpY#IO@S~Q-7}SR0`r#X~Nk+$FF-F`BiO8vjT)xlAQ8b4-4TKbH4TT^}Zpk5x z`uEP8NSUF;3c^MLiC??rL!WisZjjSrDbH#L4n3YzvjyRf#aj4UH^u5WbP*c34Y7gH zSQ$Ly{~DPr?FGNo&eY)N+zFiJv})bb>}vGD;MigUS6bxF@O87D#T9Mdxb=yEtMQJ! zJJ&op8uW}Om+wUh#u!*;L~7ox(~U54Dt*chUV=^dYQz>S64Iw&DE?O8mY6L#&Dx&;9jp8+=pi4ST5W6L0IAJdx_#Kj|s?VZJXi zHlmEBtzC32o3eMa!jwm(^l^P6S-AN|IAw~F#O}j%?>3c{c*Vqt6=vd|tEKXYY(scO zBxAe*Im^c{5@~$Ne3PVcPI+l+>RzjRcUp$f1ph2F*1sxQuDoivCf&W%D-*M78VE~M zd6)87HnyE0_C+`uRgt|4i%B<4w?!|lCXK!i8BN4Ga`3d0x~q+@P1-j76>Qx*^@Lxj z6laa<ojmb7W$-%2i%|uqG#^;T-&ifidskhF-@-hd-%-I zj^rW-qrQLx8Z@#9#{gaB(_Ei=cy60qaXOXq7qz^58#-Q%RtpcCiCKI-%H7TDr)c<4 zXFmFrqKV3<3HUyxC8g-i;GGHuA!zso9Kr$%y~^m(OV*03sK+*6W)_;({_3(mxbdYRY+fWtGi)Jtq3u5Qv}-L%x;Wgn8xC4+(MW$3L*o~9KAFhYTgcPGo6b=Q*_X2!_mH>$x0ZVFunk<-~%=fy?t{uxy6d>NEQ-EtN+oIkevRS%;dmeeSOB_6A(7vf>E z8mm{z1bxS%BZ;whBT$;sz)U3x8X58Qf2kW|b!ND)?bWT4nW&JOc#Lk1C8hq)( zipK=%AY}0l$b`H?n$kz6{Tt3v1hKw8-Uq>xFh8-=deOa7_E|Er)TwVodBuG>hTx;3 zFu^Ua(bC1=6UQG7w>kGUk2=0KL|l`Qyjda3$~y1_dJGXQUs&t%*1LGTj|U~?BOHvVc+W!1BV?J z3&WNXcLN4;-2p{|@QO$rI8a>31y@K{##xMS`%7p|c`ZeOVpqj6%r`CvsyjB9WbZr~ zBPX&+0E;9w3I#-^JZb4cY~p88X{cWFOe{rK{c0iU7luD_?w`;YmBs@fVZ7l-eL@Y= zig+ch^S$iR5DG(i(v66syjh{{S{Qc8(#PEH@luVSLm3gkEjcAp4P$h%4p7nwwX6vym-Du z`pKmit4ny*bbhGc%B?>RbSpCx9|3usVa@sJsqi;3tM8hlZ=7Ph_4$CcfRFwhsyY3j zr8-|DTmbRJvXHbDe1yKzEXqO|#Jl^Sk;j@0}~uQTw}oTefWD6jx$=ciiqVFD`L8 zX`gysO66&@Hgi(!&vsGYhMd0gXM4)FN9pZDhdkw*$wz@`O|+l zbgI*@%}4wi@7FO^8dEs@e0)>%^yyFxt~5HHbT74Zg-TBu(kv1AF6YVl9_x#p=(*>^ z3j*&aSOm6yPWgVqz8+UN{(Oultzp^`6W9^s+!KS4qi)ALdAjLnJVDvSgMV&Tr#}eCZ|U6jC)NQcSOji_wOEoCI>nQp_xY`A zoZo!};4cguLV?zj0d;iw92;Mk79S8qDZf3m^fulOG%D0x(_TyXq;>quJr&$UoJKNc zvc$~t#LS_@3QwuK@J@&~9oxWZnB;uJ{Z{7E3nSl7I_T?~&I#@HdP0lN+9ogACNI<> zk3i-6-+bX4JVpP-U-39ItcX>tqTMcq@~SLO@6(zxGLSOFzEH#BiffjPpx@vcUJNdm z@b1p9rzLtyUk<_#W!;8}?QA0+(4st{MSen?n!9G9|7TfGL{>sT+%WRDVxa=j39-{Y zo~ef={E>63CqvOW$EW$bX$Ciy0Y##>CsM%?fx!{gI8@RFQax7&3Y&fDXGB+&3|T53 zrtlW0R%~v^s>I79fg$gJR9AkG`l+V_KE|{$?@7#J2({GMzSLCg;vC(D>#Og3N?`nu z!gGdB1O5U_eqK)AmI4^ydbnA>AlSzpqUJawY9*mDS=mmZ4NdYOrG6S3c-~z1UNm)7 zjzNy!%9MXD9LXiw+Vr2*pNEv3+REfz%nxf?E%On-tzVY3@8h3;`UX1sntB(mIUlZQ zk|uA{&lof*v3yBOD)|f#yoYSjX=E#?2gW>d3&o`ij~jkx*ScYb$q9^K-9y*fTWte(AXrZgCKH1Ja*w^AnlQ9KoD zSa!aC8I_vMwj{o4-GpG!J6E9^S)ynLSh3T`b$m^mH%`N~IYe20?#!ClkHWI8^~-2Z zX$WLsOkz+P5+adI(5jHblQ)cqC?fTcc&Rq0KJ%|-LZ6>n-AbdYlB|IAEE5Y6*>j=n zQ>v(ZecLqLR~jJPnJqL_Q4(-s-#Qomg$AoaIJ9G@z*Uhup$aZfVzuJ3T<5vJKUE^( z!Ju)Mmu2!}6U%|UcoK$n`UrSPD=hdv*p)UImoFlH5X~guBubTl2e|*_>#qGEZYfz5 z-!yl=CmWsvvY}w1Y4%Mb;gzPNXCBNR1>11SX}Dqt`9=wAlSJFG_S^DgIf8G|JmNa1 z_@~#CY-^h`8p)hMG+Y97KH4b~5z0G<2h?Yw`?K=jo^`~9rTZh>@UQzV#I# zzjDdO5cUZQeI_F)YM|`pda%erjL0@aX?Q~!e+DiK4A}5xTRJ$J=HyS27HU^#U!VN- zMi1S`A0-DDhJ%=$CtJ|UfdbyNc+bU-gj+f+1X|N#`{3?kQbaXDuR>nsy#o`oEz8QE zEx2h zwDx**?Y(S$Z$_Ue|D1ln1-m(P{#W+t^+mgJa}>lZ?I0; z?4b|&-qVhoZaUH_0?@ZN&+uFAahMN6RXpinbHzmMY6ZBr0fU{`o@`*51wSc|wW)9w zjLW5plf_0dMaDK=7xgv1{K6|K1oX5XNB7jHh}VL3Q3@4l9fM*htqwYkjwp3KCgDy@ zdX*SI^FGWr!&saFS#?0s79t6h|Lptw4-s%G(9jy;Dp+9_k97XlQ>p`jwEW4MJ+dUJ z!Xj7lI&DNwsPyY9)eMCR&Tr!=`)GE-dNFs&yvPGb(8khQPn`PYcHrXHDEF)B#8Ukl zOGblX_1P!)Lgso;r)9t$ z0sKz*=^5c0iKww%U&Q;-&I8s)j*W&|C{<{^;d0xMm1JL#dN-oE!0)5CH&G11bsLFT zh?nx!_p~IA&aHRA-!#eip1Kskm6>5RU0=S#EP8s=%ZmEwol0Em{t`df>TdJEJxc7H_^8)`s?r6ZHuVBu6=iOiHFw z2Io3m+^Qid{Q}K6;KX03vvt#%#S*}?TOA5vCo%#uIFK;VRFj5aW@;MLj`X09xftI? z1rVLM7`M1F?MgdNHaRU2oqB4wX`!GQ#1dRDV4QD>F)D#+sLZm4mC-DI3xr}T4PhLd zUi+L;>`2TWjuM6*ES3eA5=b4KDv;U-JE)buszGXCSlms%qOxkFMEqNB*;{o-{ zg=S9|)ti*nt?Sx|?Z9CN}Tl5#WI}-5U76oqdHK8NNfrvg$p~-0Qj8_uTEVWSZdL zbmpq~Hl`K-sYU)crHTV=YSLoT1`N7jL5+>&&mwZt?j+F>n(><_s}SKPL$_Dde_`&9 ze{Eg)7S_x_uQ&ku5dI7#DCpO&IEm&iS~%#1#&weKC1(G?(n#?yhzPbFL#31ye7>W-PGHIX~bE8T@)C52lwdC&Ks;;Hz=^RIr2LmG1-qpQ-0{jIjAZ0VGW zku95UY_WG|#TJ~1B30!n_W^OrRyJH&Nh-ePr<9VImb7R2_9u?+P}M>YG%*3ygB?yt zY6(cV``DWd76Ip(>gph&OXREZoKIkRFSa%U^LpRNHAkA5-I`b=i&~ciZD{HF!zta< zubJhQ*RH!yrp|M+etIFZqh{G~p;>ahvSb%bvoRR%ul5u*hzWWxF>V|~K~evH0+D!G z9|@zNXl9gE9svDPWB)Y=m8r1QvV>P>v9d3SpGv3?-D$kUL8{nlCe`B7hw82s+O%7! z?JF$C1BwiC@&3LkE-t$caU;d_Z$4dNic~-fYMx5%1-CKYCSHDZn>VmJ+4dR6SZxdj zKL%ZKfeWW%ssk}Qj9MgXNP`sVA-g^5BZ5VikUrf$U$lH28 z<*mIxgmD+C?EUWFtIT;PNr}<8XS!ou>mjvW1tF8{Ml8IO4u_jD4!T8qdC!FVj-YE+RSL60lxU?EMVzNx;L`( zEq?wLHGGMf&x@ycIeq!`XGLXThAhEosqajW)8H7(mhCD}LG~OR@P?;F`PpSuXKZ_A z)D@Q5wrSKl{HiYrmGEN--Xx^YdMb%nWzR8vdCBbzC_9FG%5KJ2+Ei6$Qc${rE&D@J zJ!uanxqw|I=>}f2!5SzvaDG=$cJJCVyh^NuZxH1rfukPri!p9_Ax=vXb`!^RdDvs zsL<;DzC)k3%ZB$u0^2p)X{lE$xg3PE_*!o;+P$A`ML&56nVGW4m8g3kS$|z{p*GaO z4BkSpv|T>l+3>ybVq~D4E%ou`NU>C0vzdKXySyuGktGhY6U(ex8masKIk_r#{qfwc zn6X$6r92`sQ)Md>V%NFvGsE?ciH(q)lm+axoEp?{a%?ytGEjUOXrtj1;n*|Q&phXm zZ*Z=^-6j4WUbtCP&I}hRcTzNB97xXHW!W=C4@8P(p^-tSkN#bhJJ(*$%yO2>xuGX)f9-m=}sD%nuEu zG6J~fJpg%w^PWyZW5D;{+XPcR6=ej`=V}aL5EzJHCCQjOLI!Us|Dg^WsD8+ElAz4hV;uA=C;fT9RaeRJ{n?X=zSz)BeCX7nN7G5;}y zCrH`_6>i=2dhCIX#iIv9KWmL2e<+UMoX4)vDX0FSz~~}9D#i143%vWdQ$b8Wz!S>L zZ9Y`9Km1^6qF?^-$5_|NJn3}N1kOTEWL*J&NYKbfcw{SV5IHe`PUhYCUSCEkM1Po* z`fi`{`m?t8+a2!PP>Yn(>+g&zO69lYFZ5xA(AB@oLKSDc<9*k+jo%GJs_tZcJQ345 zwLiT!Q^G?+p@mB*p>j(r$}yf#x;hFbmi%V~?jCe2H*&~z6yW1JsD$g*YYIQ>NK)vI zKSp=LdgSzUSQeNT%>??#Ds&jUpo{8+da6H#nlNjJV5w~H5B76+C-zM*-$cB-ZD5aQ zVOpo}g`)$DhGZ5RGj2)wx>@x{mi@Z!ql>Fe8b$#$0Ky<-E1cKqa`KAd9Ua$*VbGa#Z}+GvJ)`n)ScN8H&OM&8smmU0F}6XIo_sD*Fk z3d)O>cmrRJ4h2Q(L*1A6pXt~(mLYR{j_WXpk=TD`xEy}5TOoRW?m%&evHvqkAr>$# z(SyD@Om}Y|HYYR$=2cQRL-UDTg#7v zi&Uqz*3D&0e{?2GDd}d|HuC1CtNp^)GyfD%SQ`HJZ;&IgvwQa~{{OJ`6;M%yUAqPd zh@^B&N(%_miZG;r#J~VUhmz7MC<77$2#9nk=?typ(A^;2-HlQL0{6x5``5bb{&%g> zwa|Ue9L~(y?|%35?B~%jO)w~DPe>#Fwc)n6LY+SCXKVCEA7hlZx902e!|OE1@`B*N zKJl@Y7=IbYrl**>TpTL5&)P%vcB}B)7>dR}mk!ZBbbB8G`*G!I+#ko@pq^9?5w@qx z`lzc)t0T8>F-i5e!+M8aeFRr>g;+Ap=;T7-spH!#Bm9cP-q91Ow0;iyDa2-Y;V#;| z89BbJO`@0C-IQ0&G_n2nFI*;HudQ)}UY!VrkM335g?%dOmhihc07G#{fO80gW-QMLfd!02 zPZP4OLTWr7kAVCbI^W-Y!cz7AmD1V`BGKgEe+=(*hr`s8O2|J@@+65Vj=|6&JQLwE z#-F^O$04YG)U#OVAwA>1)t|*WX))A~ny zls(OXg`%D10V)30y>JAjoIo%+3~id^jElAY4k zX!WEl)tTv58H`09J055y53!@Oh;LRES9b@|GlNF2vt)_i#!}Ed#v2B!j={OrB^64Y zp8?jI_X$M5`eA|SlWz=2_`qxE?kC%$D$o$laVG)$z#=!>H0@A58504z!o8a!eEA_W z;k#gLr%$Cr!-vFq#0pq+(VfUY_#LgRY*1l0 z{@^!ohtwsHr#%p|9(s<^fuGHOv>)^WbuZlt)dSsBpoiAs6h_8OnH5hUAva3~fK^-< z^PqlDUKhz}>cfC>P==b4Pn)zf_~ta2fB+L~N-njvD1o?3rrM{r%&X zA#d7`YPNO^bRt`oCZ6X2J0ATLVRfR!5qCf;@1_gp;{XCGkP*rJfA=!G9#P&qf$ITa zbuefKO4|l-RX}b6m};l-|Hf1oYHV7As5l75=v&DZRS8M|8|tJ&>Sm7T9quY>3i`zY zi}QgRKVdomd>z!Ef!empGfMw$ z`t6sWO0%o!oSs&H*@fLK{KYb;R>azU_o3bTu^b@lUIVbw@v9K+jl?|Y;gG&J%}{+C zz_DHx!XoOtX2=5G7#)Nj5zPnX#vT?}Zr_BLzPggOb_UgZ3Ys0*ubR!)Vujp}xgCNX zW4@-FoN`J2im&p@=Ru37+51WfT$)bpmx6z9Vx7p0(WR6<6$LS?a%6PnwCYj4nYND`+J za)N%_H@`E-o#>4RPk4qXRd=|{o#NHIGK0B*5LXY>3ov)YcAsZd3vqk3rJzmY$3#LB z^2|^Y{IG5PRTDpzA{E8GI!w?W#OnnO*liWAf6E9dvq^A#Z9%^sw)tiVz#X>ep!_Xg zjTZe84FGot>2yn5`%!lI_S3kQH9Ct({+!b6!WMbM~hjPt7)CjJEtScSk4bvIqfdC>7D4t=FDa zR!%T8{o`ma$-VOrUuq9|4c|?LY<~5Fjic_8h0dKJPy41p?xN=brwOj600gSQKmfPY+Pk7^*kE^qf`q)(Fph^LA*l|MXYfvnd+6;hV;jzKvN>3aLf@k;? zy?t-6lH?&jJ-u(}J6gLtw||%Li~5!F*;=e9YL%(<@tx4ecTm}2x1IyEDRW9_;57mY zSptd`ubY3UNZBWzQS=(U(JG%4rcF+dQR7`>+ed3P19jz8{kcUQr+Y?@Hn50>m`Aev zo1>s{P+8U`$hbdcSyg19@5GqKRwM9E4PBNJ-;f!Q`B8U-hA@Jj@mtyDqyw9J+$^8V znK*aP15aqN+bbM=$L_ZcMe$ST-qp3AoKMe;AETafT!1xmUZaJ?^BQW!mEO0#Q8&Yc zz2!*j{s?uw^vCr=?^$9j>lj@2_={D{j=UU+ET>#F%de}ASbM<5InoA5cZG~KrvrJi ziZA~ZTrh3P$t7N5(AR)Yp>3m@!sSmn9rtnBpSwODgI}dIBK%cB1qZf&f!jZCeBJ)J z&Dzg5Svk~A4-CmAYBByYeg;;7j+!A-&eHWh_HOUL->&&ECVNZ;hr>B)smv zSMk1$k)d7ppD6`1UuNHl#hCLz)W~^u^bkepq~FE2Jo8?@!za#7F) zYV`|M^62uK)9yCu%--bs_wMGH_vPqol=P^`(yyI8dMqok%PSOPlLHd-DUbkBwhE^vVtogFYJY0ZbUE`E;a&-;3Q^TOvAg8PolO#Z z;u}weFI{+pcIAG}jeaf)`cHKaanf`6yQ552?6EQO@D}J>l zUPgbDT#d!%M0S*^G^|PF?~=-QJ&@NlR&RnKb`8+SlsbjozTO`-rkhqaTTjL#{$f&0 zQVxyzOQC@z0fEtgHRK!;eMouDE-JZl-IM3SJb#km6VUprqh@CY#$7nILL=SsPF1`x zB_0zUKCJv-n^!QhW?dBfgWX8CC83hCBySOUx(ro^k^VFtNY zR^i??L{tsR7dm*&57Bdzv*mBLaq2#r7PUEA5DOOn z0v$F~5y2EZbgcQ>(Z!1$dseN<42P2)BhzO#b?`Jlqeg5go#_>;=F^FI1Gs$BkhH0t-X*i8kJ#U|@?hW3h;F zUn`gdLoI@65PNc;Nw!)R#41Y&PPbx#rt>iH`=#oCU)F;+_Hj=sCgwmh9tBooQo-3B ztd5_{#Db5-+@;;(k0$7;2_ckiq~WhB^ru@o*b90M%D_My-~9ptiWldfw=N{l;W_%W zpoLHE9q;}5A`LPuns6Jn>HG^*GAg=2v{TDL4?3m3-^78PnXe)?33}7fZrM9Fgd!)H zOPT(OqDBc8G)i1&>+L(!Gnv!9%l)17r&q^2!FvvKbAy;8rtCOck%0LC79}+x8Ltu!%X8ITsS`8Qf_}^6MZBu4HJ(gdebv$Jo66ssd7CA zx63W3Z!JTOH<4e9ayovt$VGZBCjJXjI+&YOn=9lcBwb7XICb->TfvAsS354ce4%43 zY<2h(wM^;{v6H;lE(j(!w3SOG({plrH53d$^k21vYnO1uX6AMRobng~7|sc{ZPksH zMf`60*7xD1sTc@=vLKCG@`Xx63(xe0r2V39ZfHKz_lh&C4?aves4|AE z-N!=Z3a>R|M?c=3+<+RPU@>hoiWeV}%v`@xoDiS>2&KqpJMdBLM`av}e0McwKPvr( ztYkiVOfEOL{wCxxD#Ka&^3GlFB>4w}8LGdR+FYFNV@A7sMtu4nW!L6#Svy@3>#`1N z@6Sr-{o$P1LY@b|{W+&Gv@mn-<3+}-x^iausfbd2s4PHvZZLFKz@@&=`kT7Zriq5E z6J!w>se#Vlw{W;|-iG5mvc$m_$+&EHy5-_@yFwzoDPC@-$fa;ICcZLbI71BP0+keW zCO3qlU@j26k^aV{yx#$$g~hiR-iUFPeXQkrvJ=~LvXxSEw#?R*QL~5~u6Tb-kss=WqjruXY;i`lFQh9aUNKJ%pPSU$RsUy$j-w)Gon4*A zgT;*?JhQ=`Je?q#Zz(9ujQiL}Q5{*B%!L7k3NMn6Cq$|M$(IK+M9<_pL;_7@GD8^Q zEUpU}ir279oRjs|be;KWd?b;$OUF7msm9J1k_AMVb73*^0V6RKka*fGJ(&l-hp$c4BXjD|5U$ zxe&1~aW+Z{gob?}wfy$l<6^ay`g_=R>r@rWC)%fH(;s`%ll zvQxb(4JrkUZOGsK&)BP%IhjdTghu)mvy?m;IM(@sAMaFS(ZLS;^SQp&#ZK6{z2-Bp zH`5@02?N{@nU;`S$W=fraWTKzn2lIZz5&>!_|!6@6JJEc+W5>g1!jKI4b0@D!L;PR z30(5~PCPRGApNg}$m5AFg6T@A@`V9o*O#^u(dZn;c%|IW2g*;KiFcs_xO4&vbO1fo zb(3i)kyfQEc{shiKi@Eb-Mo@xiS;q2?X?UE);5j;bZP$`uz2P zM>u)JV0O}&*Ts>be)63$`wrltz(?%WV9{s5`%rh}a=gRs-QYq4wDhS%)DRAukMd+o zAg94?@Q4S!1*)#Rb?;&(XXq1Qz1AdddO~=ssw#+6um^FryzkUz7aWb*SHL+h&|Lro zytsb0Fdu;BY1Q>Pr<<1Vh^=vrGv&ESK99(r6|@G|yojD;%2$M=uFuK?>^619=_)fA zHq*aiWcqk(@Y@Kc&b}J(gv2Syd#0B=+uK=XYLoWCIo4ttyDgqvp-R#e!%(|`zWv==WN?D*F@L@X( zqOTp+B7^bCK+45AD^frRqak4y9J`b%&nU`Bqo8G5d zPOecnNK0Ja98WqnyxUh6{iNFHiabV@_CWii9zBc4ty!-rvyArUpsiX}4!*5BAW