From b676d320dcee896bfc44f797f397d105d92b81b0 Mon Sep 17 00:00:00 2001 From: Junwon Lee Date: Fri, 18 Aug 2023 00:27:53 +0900 Subject: [PATCH] Update datvuthanh_hybridnets.md --- datvuthanh_hybridnets.md | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/datvuthanh_hybridnets.md b/datvuthanh_hybridnets.md index ef989d8..72eda47 100644 --- a/datvuthanh_hybridnets.md +++ b/datvuthanh_hybridnets.md @@ -4,7 +4,7 @@ background-class: hub-background body-class: hub category: researchers title: HybridNets -summary: HybridNets - End2End Perception Network +summary: HybridNets - 종단간 인식 네트워크 image: hybridnets.jpg author: Dat Vu Thanh tags: [vision] @@ -15,22 +15,22 @@ featured_image_2: no-image accelerator: cuda-optional demo-model-link: https://colab.research.google.com/drive/1Uc1ZPoPeh-lAhPQ1CloiVUsOIRAVOGWA --- -## Before You Start +## 시작하기 전에 -Start from a **Python>=3.7** environment with **PyTorch>=1.10** installed. To install PyTorch see [https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/). To install HybridNets dependencies: +**PyTorch>=1.10**이 설치된 **Python>=3.7** 환경 에서 시작합니다. PyTorch를 설치하려면 [https://pytorch.org/get-started/locally/](https://pytorch.org/get-started/locally/) 를 참고하세요. HybridNets 종속 패키지를 설치하려면 아래 명령을 수행해주세요: ```bash pip install -qr https://raw.githubusercontent.com/datvuthanh/HybridNets/main/requirements.txt # install dependencies ``` -## Model Description +## 모델 설명 -HybridNets is an end2end perception network for multi-tasks. Our work focused on traffic object detection, drivable area segmentation and lane detection. HybridNets can run real-time on embedded systems, and obtains SOTA Object Detection, Lane Detection on BDD100K Dataset. +HybridNets는 다중 작업을 위한 종단간 인식 네트워크입니다. 이 다중 네크워크는 교통 물체 감지, 주행 가능 영역 분할 및 차선 감지에 중점을 두었습니다. HybridNets는 임베디드 시스템에서 실시간으로 실행할 수 있으며 BDD100K 데이터셋에서 최신 기술(state-of-the-art)의 수준의 물체 감지, 차선 감지 성능을 보여줍니다. -### Results +### 결과 -### Traffic Object Detection +### 교통 물체 감지 | Model | Recall (%) | mAP@0.5 (%) | |:------------------:|:------------:|:---------------:| @@ -43,7 +43,7 @@ HybridNets is an end2end perception network for multi-tasks. Our work focused on -### Drivable Area Segmentation +### 운전 가능 영역 분할 | Model | Drivable mIoU (%) | |:----------------:|:-----------------:| @@ -55,7 +55,7 @@ HybridNets is an end2end perception network for multi-tasks. Our work focused on -### Lane Line Detection +### 차선 감지 | Model | Accuracy (%) | Lane Line IoU (%) | |:----------------:|:------------:|:-----------------:| @@ -70,9 +70,9 @@ HybridNets is an end2end perception network for multi-tasks. Our work focused on -### Load From PyTorch Hub +### PyTorch Hub에서 불러오기 -This example loads the pretrained **HybridNets** model and passes an image for inference. +이 예제는 사전 훈련된 HybridNets 모델을 불러오고 추론을 위해 이미지를 전달합니다. ```python import torch @@ -84,9 +84,9 @@ img = torch.randn(1,3,640,384) features, regression, classification, anchors, segmentation = model(img) ``` -### Citation +### 인용 -If you find our [paper](https://arxiv.org/abs/2203.09035) and [code](https://github.com/datvuthanh/HybridNets) useful for your research, please consider giving a star and citation: +본 [논문](https://arxiv.org/abs/2203.09035) 과 [코드](https://github.com/datvuthanh/HybridNets) 가 여러분의 연구에 유용하다고 판단되면, GitHub star를 주는 것과 본 논문을 인용하는 것을 고려해 주세요: ```BibTeX @misc{vu2022hybridnets,