Skip to content

Commit 1908695

Browse files
authored
MAINT: upgrade anaconda=2025.06 and python=3.13 (#503)
* MAINT: upgrade anaconda=2025.06 and python=3.13 * FIX: figure -> image directive in excercises * tmp: disable build cache full execution run * upgrade quantecon==0.10.0 * upgrade quantecon-book-theme=0.9.0 x quantecon==0.10.0 (lecture install) * Revert "tmp: disable build cache full execution run" This reverts commit 9f1adc2.
1 parent 461a5e1 commit 1908695

File tree

12 files changed

+34
-24
lines changed

12 files changed

+34
-24
lines changed

.github/workflows/cache.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ jobs:
1717
auto-update-conda: true
1818
auto-activate-base: true
1919
miniconda-version: 'latest'
20-
python-version: "3.12"
20+
python-version: "3.13"
2121
environment-file: environment.yml
2222
activate-environment: quantecon
2323
- name: Install JAX, Numpyro, PyTorch

.github/workflows/ci.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ jobs:
1515
auto-update-conda: true
1616
auto-activate-base: true
1717
miniconda-version: 'latest'
18-
python-version: "3.12"
18+
python-version: "3.13"
1919
environment-file: environment.yml
2020
activate-environment: quantecon
2121
- name: Install JAX, Numpyro, PyTorch

.github/workflows/publish.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ jobs:
1616
auto-update-conda: true
1717
auto-activate-base: true
1818
miniconda-version: 'latest'
19-
python-version: "3.12"
19+
python-version: "3.13"
2020
environment-file: environment.yml
2121
activate-environment: quantecon
2222
- name: Install JAX, Numpyro, PyTorch

environment.yml

Lines changed: 10 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -2,17 +2,18 @@ name: quantecon
22
channels:
33
- default
44
dependencies:
5-
- python=3.12
6-
- anaconda=2024.10
5+
- python=3.13
6+
- anaconda=2025.06
77
- pip
88
- pip:
9-
- jupyter-book==1.0.3
10-
- quantecon-book-theme==0.7.6
11-
- sphinx-tojupyter==0.3.0
9+
- jupyter-book==1.0.4post1
10+
- quantecon-book-theme==0.9.0
11+
- sphinx-tojupyter==0.3.1
1212
- sphinxext-rediraffe==0.2.7
13-
- sphinx-reredirects==0.1.4
1413
- sphinx-exercise==1.0.1
15-
- sphinx-proof==0.2.0
16-
- ghp-import==1.1.0
17-
- sphinxcontrib-youtube==1.3.0 #Version 1.3.0 is required as quantecon-book-theme is only compatible with sphinx<=5
14+
- sphinx-proof==0.2.1
15+
- sphinxcontrib-youtube==1.4.1
1816
- sphinx-togglebutton==0.3.2
17+
- sphinx-reredirects==0.1.4
18+
19+

lectures/career.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -370,7 +370,8 @@ when the worker follows the optimal policy.
370370

371371
In particular, modulo randomness, reproduce the following figure (where the horizontal axis represents time)
372372

373-
```{figure} /_static/lecture_specific/career/career_solutions_ex1_py.png
373+
```{image} /_static/lecture_specific/career/career_solutions_ex1_py.png
374+
:align: center
374375
```
375376

376377
```{hint}

lectures/finite_markov.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1113,7 +1113,8 @@ is known as [PageRank](https://en.wikipedia.org/wiki/PageRank).
11131113
11141114
To illustrate the idea, consider the following diagram
11151115
1116-
```{figure} /_static/lecture_specific/finite_markov/web_graph.png
1116+
```{image} /_static/lecture_specific/finite_markov/web_graph.png
1117+
:align: center
11171118
```
11181119
11191120
Imagine that this is a miniature version of the WWW, with

lectures/ifp.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -548,7 +548,8 @@ Let's consider how the interest rate affects consumption.
548548

549549
Reproduce the following figure, which shows (approximately) optimal consumption policies for different interest rates
550550

551-
```{figure} /_static/lecture_specific/ifp/ifp_policies.png
551+
```{image} /_static/lecture_specific/ifp/ifp_policies.png
552+
:align: center
552553
```
553554

554555
* Other than `r`, all parameters are at their default values.

lectures/kalman.md

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -565,7 +565,8 @@ In the simulation, take $\theta = 10$, $\hat x_0 = 8$ and $\Sigma_0 = 1$.
565565

566566
Your figure should -- modulo randomness -- look something like this
567567

568-
```{figure} /_static/lecture_specific/kalman/kl_ex1_fig.png
568+
```{image} /_static/lecture_specific/kalman/kl_ex1_fig.png
569+
:align: center
569570
```
570571

571572
```{exercise-end}
@@ -629,7 +630,8 @@ Plot $z_t$ against $T$, setting $\epsilon = 0.1$ and $T = 600$.
629630

630631
Your figure should show error erratically declining something like this
631632

632-
```{figure} /_static/lecture_specific/kalman/kl_ex2_fig.png
633+
```{image} /_static/lecture_specific/kalman/kl_ex2_fig.png
634+
:align: center
633635
```
634636

635637
```{exercise-end}
@@ -732,7 +734,8 @@ Finally, set $x_0 = (0, 0)$.
732734

733735
You should end up with a figure similar to the following (modulo randomness)
734736

735-
```{figure} /_static/lecture_specific/kalman/kalman_ex3.png
737+
```{image} /_static/lecture_specific/kalman/kalman_ex3.png
738+
:align: center
736739
```
737740

738741
Observe how, after an initial learning period, the Kalman filter performs quite well, even relative to the competitor who predicts optimally with knowledge of the latent state.

lectures/markov_perf.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -722,7 +722,8 @@ c1 = c2 = np.array([1, -2, 1])
722722
e1 = e2 = np.array([10, 10, 3])
723723
```
724724

725-
```{figure} /_static/lecture_specific/markov_perf/judd_fig2.png
725+
```{image} /_static/lecture_specific/markov_perf/judd_fig2.png
726+
:align: center
726727
```
727728

728729
Inventories trend to a common steady state.
@@ -731,7 +732,8 @@ If we increase the depreciation rate to $\delta = 0.05$, then we expect steady s
731732

732733
This is indeed the case, as the next figure shows
733734

734-
```{figure} /_static/lecture_specific/markov_perf/judd_fig1.png
735+
```{image} /_static/lecture_specific/markov_perf/judd_fig1.png
736+
:align: center
735737
```
736738

737739
In this exercise, reproduce the figure when $\delta = 0.02$.

lectures/ols.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -604,7 +604,7 @@ results.
604604

605605
```{code-cell} python3
606606
# Load in data
607-
df4 = pd.read_stata('https://github.com/QuantEcon/lecture-python/blob/master/source/_static/lecture_specific/ols/maketable4.dta?raw=true')
607+
df4 = pd.read_stata('https://github.com/QuantEcon/lecture-python.myst/raw/refs/heads/main/lectures/_static/lecture_specific/ols/maketable4.dta')
608608
609609
# Add a constant term
610610
df4['const'] = 1
@@ -677,7 +677,7 @@ using `numpy` - your results should be the same as those in the
677677

678678
```{code-cell} python3
679679
# Load in data
680-
df1 = pd.read_stata('https://github.com/QuantEcon/lecture-python/blob/master/source/_static/lecture_specific/ols/maketable1.dta?raw=true')
680+
df1 = pd.read_stata('https://github.com/QuantEcon/lecture-python.myst/raw/refs/heads/main/lectures/_static/lecture_specific/ols/maketable1.dta')
681681
df1 = df1.dropna(subset=['logpgp95', 'avexpr'])
682682
683683
# Add a constant term

0 commit comments

Comments
 (0)