Skip to content

Commit 283a5c4

Browse files
committed
modified: lectures/ge_arrow.md
1 parent 598f541 commit 283a5c4

File tree

1 file changed

+15
-14
lines changed

1 file changed

+15
-14
lines changed

lectures/ge_arrow.md

Lines changed: 15 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,7 @@ $$
145145

146146
for all $t$ and for all $s^t$.
147147

148-
## Recursive Formulation
148+
## Recursive formulation
149149

150150
Following descriptions in section 9.3.3 of Ljungqvist and Sargent {cite}`Ljungqvist2012` chapter 9, we set up a competitive equilibrium of a pure exchange economy with complete markets in one-period Arrow securities.
151151

@@ -239,7 +239,7 @@ are zero net aggregate claims.
239239

240240

241241

242-
## State Variable Degeneracy
242+
## State variable degeneracy
243243

244244
Please see Ljungqvist and Sargent {cite}`Ljungqvist2012` for a description of
245245
timing protocol for trades consistent with an Arrow-Debreu vision in which
@@ -284,7 +284,7 @@ This outcome depends critically on there being complete markets in Arrow securit
284284

285285
For example, it does not prevail in the incomplete markets setting of this lecture {doc}`The Aiyagari Model <aiyagari>`
286286

287-
## Markov Asset Prices
287+
## Markov asset prices
288288

289289

290290
Let's start with a brief summary of formulas for computing asset prices in
@@ -315,7 +315,7 @@ $$
315315

316316
* The gross rate of return on a one-period risk-free bond Markov state $\bar s_i$ is $R_i = (\sum_j Q_{i,j})^{-1}$
317317

318-
### Exogenous Pricing Kernel
318+
### Exogenous pricing kernel
319319

320320
At this point, we'll take the pricing kernel $Q$ as exogenous, i.e., determined outside the model
321321

@@ -352,7 +352,7 @@ Below, we describe an equilibrium model with trading of one-period Arrow securit
352352

353353
In constructing our model, we'll repeatedly encounter formulas that remind us of our asset pricing formulas.
354354

355-
### Multi-Step-Forward Transition Probabilities and Pricing Kernels
355+
### Multi-step-forward transition probabilities and pricing kernels
356356

357357
The $(i,j)$ component of the $\ell$-step ahead transition probability $P^\ell$ is
358358

@@ -370,7 +370,7 @@ $$
370370

371371
We'll use these objects to state a useful property in asset pricing theory.
372372

373-
### Laws of Iterated Expectations and Iterated Values
373+
### Laws of iterated expectations and iterated values
374374

375375
A *law of iterated values* has a mathematical structure that parallels a
376376
*law of iterated expectations*
@@ -432,7 +432,7 @@ V \left[ V ( d(s_{t+j}) | s_{t+1} ) | s_t \right]
432432
\end{aligned}
433433
$$
434434

435-
## General Equilibrium
435+
## General equilibrium
436436

437437
Now we are ready to do some fun calculations.
438438

@@ -483,7 +483,7 @@ $$
483483

484484
* A collection of $n \times 1$ vectors of individual $k$ consumptions: $c^k\left(s\right), k=1,\ldots, K$
485485

486-
### $Q$ is the Pricing Kernel
486+
### $Q$ is the pricing kernel
487487

488488

489489
For any agent $k \in \left[1, \ldots, K\right]$, at the equilibrium allocation,
@@ -587,7 +587,7 @@ be nonnegative, then in a *finite horizon* economy with sequential trading of on
587587
588588
589589
590-
### Continuation Wealth
590+
### Continuation wealth
591591
592592
Continuation wealth plays an important role in Bellmanizing a competitive equilibrium with sequential
593593
trading of a complete set of one-period Arrow securities.
@@ -645,7 +645,7 @@ the economy begins with all agents being debt-free and financial-asset-free at
645645
Note that all agents' continuation wealths recurrently return to zero when the Markov state returns to whatever value $s_0$ it had at time $0$.
646646
```
647647
648-
### Optimal Portfolios
648+
### Optimal portfolios
649649
650650
A nifty feature of the model is that an optimal portfolio of a type $k$ agent equals the continuation wealth that we just computed.
651651
@@ -656,7 +656,7 @@ $$
656656
a_k(s) = \psi^k(s), \quad s \in \left[\bar s_1, \ldots, \bar s_n \right]
657657
$$ (eqn:optport)
658658
659-
### Equilibrium Wealth Distribution $\alpha$
659+
### Equilibrium wealth distribution $\alpha$
660660
661661
662662
With the initial state being a particular state $s_0 \in \left[\bar{s}_1, \ldots, \bar{s}_n\right]$,
@@ -703,7 +703,7 @@ $$ J^k = (I - \beta P)^{-1} u(\alpha_k y) , \quad u(c) = \frac{c^{1-\gamma}}{1-
703703
where it is understood that $ u(\alpha_k y)$ is a vector.
704704

705705

706-
## Finite Horizon
706+
## Finite horizon
707707

708708
We now describe a finite-horizon version of the economy that operates for $T+1$ periods
709709
$t \in {\bf T} = \{ 0, 1, \ldots, T\}$.
@@ -717,7 +717,7 @@ one-period utility function $u(c)$ satisfies an Inada condition that sets the ma
717717
limits borrowing.
718718

719719

720-
### Continuation Wealths
720+
### Continuation wealths
721721

722722

723723
We denote a $K \times 1$ vector of state-dependent continuation wealths in Markov state $s$ at time $t$ as
@@ -834,7 +834,7 @@ where it is understood that $ u(\alpha_k y)$ is a vector.
834834

835835

836836

837-
## Python Code
837+
## Python code
838838

839839
We are ready to dive into some Python code.
840840

@@ -885,6 +885,7 @@ class RecurCompetitive(NamedTuple):
885885
ψ: jax.Array # continuation value
886886
J: jax.Array # optimal value
887887
888+
888889
@partial(jax.jit, static_argnums=(6,))
889890
def compute_rc_model(s, P, ys, s0_idx=0, γ=0.5, β=0.98, T=0):
890891
"""Complete equilibrium objects under the endogenous pricing kernel.

0 commit comments

Comments
 (0)