@@ -541,21 +541,21 @@ to pose or represent the solution of an individual household's optimum problem.
541541We denote an $K \times 1$ vector of state-dependent values of agents' endowments in Markov state $s$ as
542542
543543$$
544- A\left(s\right)=\left [ \ begin{array}{c }
544+ A\left(s\right)=\begin{bmatrix }
545545A^{1}\left(s\right)\\
546546 \vdots\\
547547A^{K}\left(s\right)
548- \end{array}\right ] , \quad s \in \left[ \bar{s}_ 1, \ldots, \bar{s}_ n\right]
548+ \end{bmatrix} , \quad s \in \left[ \bar{s}_ 1, \ldots, \bar{s}_ n\right]
549549$$
550550
551551and an $n \times 1$ vector-form function of continuation endowment values for each individual $k$ as
552552
553553$$
554- A^{k}=\left [ \ begin{array}{c }
554+ A^{k}=\begin{bmatrix }
555555A^{k}\left(\bar{s}_ {1}\right)\\
556556\vdots\\
557557A^{k}\left(\bar{s}_ {n}\right)
558- \end{array}\right ] , \quad k \in \left[ 1, \ldots, K\right]
558+ \end{bmatrix} , \quad k \in \left[ 1, \ldots, K\right]
559559$$
560560
561561$A^k$ of consumer $k$ satisfies
567567where
568568
569569$$
570- y^{k}=\left [ \ begin{array}{c }
570+ y^{k}=\begin{bmatrix }
571571y^{k}\left(\bar{s}_ {1}\right)\\
572572\vdots\\
573573y^{k}\left(\bar{s}_ {n}\right)
574- \end{array}\right ] \equiv \begin{bmatrix} y^k_1 \cr \vdots \cr y^k_n \end{bmatrix}
574+ \end{bmatrix} \equiv \begin{bmatrix} y^k_1 \cr \vdots \cr y^k_n \end{bmatrix}
575575$$
576576
577577
@@ -602,21 +602,21 @@ trading of a complete set of one-period Arrow securities.
602602We denote an $K \times 1$ vector of state-dependent continuation wealths in Markov state $s$ as
603603
604604$$
605- \psi\left(s\right)=\left [ \ begin{array}{c }
605+ \psi\left(s\right)=\begin{bmatrix }
606606\psi^{1}\left(s\right)\\
607607\vdots\\
608608\psi^{K}\left(s\right)
609- \end{array}\right ] , \quad s \in \left[ \bar{s}_ 1, \ldots, \bar{s}_ n\right]
609+ \end{bmatrix} , \quad s \in \left[ \bar{s}_ 1, \ldots, \bar{s}_ n\right]
610610$$
611611
612612and an $n \times 1$ vector-form function of continuation wealths for each individual $k\in \left[1, \ldots, K\right]$ as
613613
614614$$
615- \psi^{k}=\left [ \ begin{array}{c }
615+ \psi^{k}=\begin{bmatrix }
616616\psi^{k}\left(\bar{s}_ {1}\right)\\
617617\vdots\\
618618\psi^{k}\left(\bar{s}_ {n}\right)
619- \end{array}\right ]
619+ \end{bmatrix}
620620$$
621621
622622Continuation wealth $\psi^k$ of consumer $k$ satisfies
@@ -628,15 +628,15 @@ $$ (eq:continwealth)
628628where
629629
630630$$
631- y^{k}=\left [ \ begin{array}{c }
631+ y^{k}=\begin{bmatrix }
632632y^{k}\left(\bar{s}_ {1}\right)\\
633633\vdots\\
634634y^{k}\left(\bar{s}_ {n}\right)
635- \end{array}\right ] ,\quad y=\left [ \ begin{array}{c }
635+ \end{bmatrix} ,\quad y=\begin{bmatrix }
636636y\left(\bar{s}_ {1}\right)\\
637637\vdots\\
638638y\left(\bar{s}_ {n}\right)
639- \end{array}\right ]
639+ \end{bmatrix}
640640$$
641641
642642Note that $\sum_{k=1}^K \psi^k = {0}_{n \times 1}$.
@@ -731,21 +731,21 @@ limits borrowing.
731731We denote a $K \times 1$ vector of state-dependent continuation wealths in Markov state $s$ at time $t$ as
732732
733733$$
734- \psi_t\left(s\right)=\left[\ begin{array}{c }
734+ \psi_t\left(s\right)=\begin{bmatrix }
735735\psi^{1}\left(s\right)\\
736736\vdots\\
737737\psi^{K}\left(s\right)
738- \end{array}\right] , \quad s \in \left[\bar{s}_1, \ldots, \bar{s}_n\right]
738+ \end{bmatrix} , \quad s \in \left[\bar{s}_1, \ldots, \bar{s}_n\right]
739739$$
740740
741741and an $n \times 1$ vector of continuation wealths for each individual $k$ as
742742
743743$$
744- \psi_t^{k}=\left[\ begin{array}{c }
744+ \psi_t^{k}=\begin{bmatrix }
745745\psi_t^{k}\left(\bar{s}_{1}\right)\\
746746\vdots\\
747747\psi_t^{k}\left(\bar{s}_{n}\right)
748- \end{array}\right] , \quad k \in \left[1, \ldots, K\right]
748+ \end{bmatrix} , \quad k \in \left[1, \ldots, K\right]
749749$$
750750
751751
@@ -764,15 +764,15 @@ $$ (eq:vv)
764764where
765765
766766$$
767- y^{k}=\left [ \ begin{array}{c }
767+ y^{k}=\begin{bmatrix }
768768y^{k}\left(\bar{s}_ {1}\right)\\
769769\vdots\\
770770y^{k}\left(\bar{s}_ {n}\right)
771- \end{array}\right ] ,\quad y=\left [ \ begin{array}{c }
771+ \end{bmatrix} ,\quad y=\begin{bmatrix }
772772y\left(\bar{s}_ {1}\right)\\
773773\vdots\\
774774y\left(\bar{s}_ {n}\right)
775- \end{array}\right ]
775+ \end{bmatrix}
776776$$
777777
778778Note that $\sum_{k=1}^K \psi_t^k = {0}_{n \times 1}$ for all $t \in {\bf T}$.
0 commit comments