Skip to content

Commit be07276

Browse files
committed
refine styling
1 parent 253dea6 commit be07276

File tree

1 file changed

+20
-20
lines changed

1 file changed

+20
-20
lines changed

lectures/ge_arrow.md

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -541,21 +541,21 @@ to pose or represent the solution of an individual household's optimum problem.
541541
We denote an $K \times 1$ vector of state-dependent values of agents' endowments in Markov state $s$ as
542542
543543
$$
544-
A\left(s\right)=\left[\begin{array}{c}
544+
A\left(s\right)=\begin{bmatrix}
545545
A^{1}\left(s\right)\\
546546
\vdots\\
547547
A^{K}\left(s\right)
548-
\end{array}\right], \quad s \in \left[\bar{s}_1, \ldots, \bar{s}_n\right]
548+
\end{bmatrix}, \quad s \in \left[\bar{s}_1, \ldots, \bar{s}_n\right]
549549
$$
550550
551551
and an $n \times 1$ vector-form function of continuation endowment values for each individual $k$ as
552552
553553
$$
554-
A^{k}=\left[\begin{array}{c}
554+
A^{k}=\begin{bmatrix}
555555
A^{k}\left(\bar{s}_{1}\right)\\
556556
\vdots\\
557557
A^{k}\left(\bar{s}_{n}\right)
558-
\end{array}\right], \quad k \in \left[1, \ldots, K\right]
558+
\end{bmatrix}, \quad k \in \left[1, \ldots, K\right]
559559
$$
560560
561561
$A^k$ of consumer $k$ satisfies
@@ -567,11 +567,11 @@ $$
567567
where
568568
569569
$$
570-
y^{k}=\left[\begin{array}{c}
570+
y^{k}=\begin{bmatrix}
571571
y^{k}\left(\bar{s}_{1}\right)\\
572572
\vdots\\
573573
y^{k}\left(\bar{s}_{n}\right)
574-
\end{array}\right] \equiv \begin{bmatrix} y^k_1 \cr \vdots \cr y^k_n \end{bmatrix}
574+
\end{bmatrix} \equiv \begin{bmatrix} y^k_1 \cr \vdots \cr y^k_n \end{bmatrix}
575575
$$
576576
577577
@@ -602,21 +602,21 @@ trading of a complete set of one-period Arrow securities.
602602
We denote an $K \times 1$ vector of state-dependent continuation wealths in Markov state $s$ as
603603
604604
$$
605-
\psi\left(s\right)=\left[\begin{array}{c}
605+
\psi\left(s\right)=\begin{bmatrix}
606606
\psi^{1}\left(s\right)\\
607607
\vdots\\
608608
\psi^{K}\left(s\right)
609-
\end{array}\right], \quad s \in \left[\bar{s}_1, \ldots, \bar{s}_n\right]
609+
\end{bmatrix}, \quad s \in \left[\bar{s}_1, \ldots, \bar{s}_n\right]
610610
$$
611611
612612
and an $n \times 1$ vector-form function of continuation wealths for each individual $k\in \left[1, \ldots, K\right]$ as
613613
614614
$$
615-
\psi^{k}=\left[\begin{array}{c}
615+
\psi^{k}=\begin{bmatrix}
616616
\psi^{k}\left(\bar{s}_{1}\right)\\
617617
\vdots\\
618618
\psi^{k}\left(\bar{s}_{n}\right)
619-
\end{array}\right]
619+
\end{bmatrix}
620620
$$
621621
622622
Continuation wealth $\psi^k$ of consumer $k$ satisfies
@@ -628,15 +628,15 @@ $$ (eq:continwealth)
628628
where
629629
630630
$$
631-
y^{k}=\left[\begin{array}{c}
631+
y^{k}=\begin{bmatrix}
632632
y^{k}\left(\bar{s}_{1}\right)\\
633633
\vdots\\
634634
y^{k}\left(\bar{s}_{n}\right)
635-
\end{array}\right],\quad y=\left[\begin{array}{c}
635+
\end{bmatrix},\quad y=\begin{bmatrix}
636636
y\left(\bar{s}_{1}\right)\\
637637
\vdots\\
638638
y\left(\bar{s}_{n}\right)
639-
\end{array}\right]
639+
\end{bmatrix}
640640
$$
641641
642642
Note that $\sum_{k=1}^K \psi^k = {0}_{n \times 1}$.
@@ -731,21 +731,21 @@ limits borrowing.
731731
We denote a $K \times 1$ vector of state-dependent continuation wealths in Markov state $s$ at time $t$ as
732732

733733
$$
734-
\psi_t\left(s\right)=\left[\begin{array}{c}
734+
\psi_t\left(s\right)=\begin{bmatrix}
735735
\psi^{1}\left(s\right)\\
736736
\vdots\\
737737
\psi^{K}\left(s\right)
738-
\end{array}\right], \quad s \in \left[\bar{s}_1, \ldots, \bar{s}_n\right]
738+
\end{bmatrix}, \quad s \in \left[\bar{s}_1, \ldots, \bar{s}_n\right]
739739
$$
740740

741741
and an $n \times 1$ vector of continuation wealths for each individual $k$ as
742742

743743
$$
744-
\psi_t^{k}=\left[\begin{array}{c}
744+
\psi_t^{k}=\begin{bmatrix}
745745
\psi_t^{k}\left(\bar{s}_{1}\right)\\
746746
\vdots\\
747747
\psi_t^{k}\left(\bar{s}_{n}\right)
748-
\end{array}\right], \quad k \in \left[1, \ldots, K\right]
748+
\end{bmatrix}, \quad k \in \left[1, \ldots, K\right]
749749
$$
750750

751751

@@ -764,15 +764,15 @@ $$ (eq:vv)
764764
where
765765
766766
$$
767-
y^{k}=\left[\begin{array}{c}
767+
y^{k}=\begin{bmatrix}
768768
y^{k}\left(\bar{s}_{1}\right)\\
769769
\vdots\\
770770
y^{k}\left(\bar{s}_{n}\right)
771-
\end{array}\right],\quad y=\left[\begin{array}{c}
771+
\end{bmatrix},\quad y=\begin{bmatrix}
772772
y\left(\bar{s}_{1}\right)\\
773773
\vdots\\
774774
y\left(\bar{s}_{n}\right)
775-
\end{array}\right]
775+
\end{bmatrix}
776776
$$
777777
778778
Note that $\sum_{k=1}^K \psi_t^k = {0}_{n \times 1}$ for all $t \in {\bf T}$.

0 commit comments

Comments
 (0)