diff --git a/lectures/ak_aiyagari.md b/lectures/ak_aiyagari.md index 4df268ed5..54bd10d59 100644 --- a/lectures/ak_aiyagari.md +++ b/lectures/ak_aiyagari.md @@ -524,8 +524,8 @@ def popu_dist(σ, household, Q): j_grid, a_grid, γ_grid, Π, β, init_μ, VJ = household - J = hh.j_grid.size - num_state = hh.a_grid.size * hh.γ_grid.size + J = household.j_grid.size + num_state = household.a_grid.size * household.γ_grid.size def update_popu_j(μ_j, j): "Update population distribution from age j to j+1" @@ -626,7 +626,7 @@ def compute_aggregates(μ, household): J, a_size, γ_size = j_grid.size, a_grid.size, γ_grid.size - μ = μ.reshape((J, hh.a_grid.size, hh.γ_grid.size)) + μ = μ.reshape((J, household.a_grid.size, household.γ_grid.size)) # Compute private savings a = a_grid.reshape((1, a_size, 1)) @@ -693,13 +693,13 @@ def find_ss(household, firm, pol_target, Q, tol=1e-6, verbose=False): r_old, w_old, τ_old = r, w, τ # Household optimal decisions and values - V, σ = backwards_opt([r, w], [τ, δ], hh, Q) + V, σ = backwards_opt([r, w], [τ, δ], household, Q) # Compute the stationary distribution - μ = popu_dist(σ, hh, Q) + μ = popu_dist(σ, household, Q) # Compute aggregates - A, L = compute_aggregates(μ, hh) + A, L = compute_aggregates(μ, household) K = A - D # Update prices @@ -860,8 +860,8 @@ def population_evolution(σt, μt, household, Q): j_grid, a_grid, γ_grid, Π, β, init_μ, VJ = household - J = hh.j_grid.size - num_state = hh.a_grid.size * hh.γ_grid.size + J = household.j_grid.size + num_state = household.a_grid.size * household.γ_grid.size def population_evolution_j(j): @@ -997,7 +997,7 @@ def path_iteration(ss1, ss2, pol_target, household, firm, Q, tol=1e-4, verbose=F # Solve optimal policies backwards V_seq, σ_seq = solve_backwards( - V_ss2, σ_ss2, hh, firm, price_seq, pol_seq, Q) + V_ss2, σ_ss2, household, firm, price_seq, pol_seq, Q) # Compute population evolution forwards μ_seq, K_seq, L_seq = simulate_forwards(