Skip to content

Commit 9bae7bb

Browse files
authored
Fix deployment and remove mystnb figure options (#36)
* fix labels * fix deployment * fix numbering
1 parent 080d7b3 commit 9bae7bb

File tree

12 files changed

+11
-373
lines changed

12 files changed

+11
-373
lines changed

.github/workflows/ci_pr.yml renamed to .github/workflows/ci.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ on:
55
types: [opened, synchronize, reopened]
66
push:
77
branches:
8-
- theme_updates
8+
- main
99
workflow_dispatch:
1010
inputs:
1111
preview_page:

.github/workflows/deploy.yml

Lines changed: 0 additions & 20 deletions
This file was deleted.

lectures/geom_series.md

Lines changed: 0 additions & 42 deletions
Original file line numberDiff line numberDiff line change
@@ -671,12 +671,6 @@ Now that we have defined our functions, we can plot some outcomes.
671671
First we study the quality of our approximations
672672

673673
```{code-cell} ipython3
674-
---
675-
mystnb:
676-
figure:
677-
caption: "Finite lease present value $T$ periods ahead"
678-
name: finite_lease_present_value
679-
---
680674
:label: gm-plot-fig-1
681675
682676
def plot_function(axes, x_vals, func, args):
@@ -717,12 +711,6 @@ Next we compare the infinite and finite duration lease present values
717711
over different lease lengths $T$.
718712

719713
```{code-cell} ipython3
720-
---
721-
mystnb:
722-
figure:
723-
caption: "Infinite and finite lease present value $T$ periods ahead"
724-
name: infinite_and_finite_lease_present_value
725-
---
726714
:label: gm-plot-fig-2
727715
728716
# Convergence of infinite and finite
@@ -752,12 +740,6 @@ Now we consider two different views of what happens as $r$ and
752740
$g$ covary
753741

754742
```{code-cell} ipython3
755-
---
756-
mystnb:
757-
figure:
758-
caption: "Value of lease of length $T$"
759-
name: value_of_lease
760-
---
761743
:label: gm-plot-fig-3
762744
763745
# First view
@@ -793,12 +775,6 @@ If you aren't enamored of 3-d graphs, feel free to skip the next
793775
visualization!
794776

795777
```{code-cell} ipython3
796-
---
797-
mystnb:
798-
figure:
799-
caption: "Three period lease PV with varying $g$ and $r$"
800-
name: three_period_lease_PV
801-
---
802778
:label: gm-plot-fig-4
803779
804780
# Second view
@@ -879,12 +855,6 @@ time path of $y_t$, given that consumption is a constant fraction
879855
of national income, and investment is fixed.
880856

881857
```{code-cell} ipython3
882-
---
883-
mystnb:
884-
figure:
885-
caption: "Path of aggregate output tver time"
886-
name: path_of_aggregate_output_over_time
887-
---
888858
:label: gm-plot-fig-5
889859
890860
# Function that calculates a path of y
@@ -925,12 +895,6 @@ happen if we vary the so-called **marginal propensity to consume**,
925895
i.e., the fraction of income that is consumed
926896

927897
```{code-cell} ipython3
928-
---
929-
mystnb:
930-
figure:
931-
caption: "Changing consumption as a fraction of income"
932-
name: changing_consumption_as_fraction_of_income
933-
---
934898
:label: gm-plot-fig-6
935899
936900
bs = (1/3, 2/3, 5/6, 0.9)
@@ -957,12 +921,6 @@ path of output over time.
957921
Now we will compare the effects on output of increases in investment and government spending.
958922

959923
```{code-cell} ipython3
960-
---
961-
mystnb:
962-
figure:
963-
caption: "Different increase on output"
964-
name: different_increase_on_output
965-
---
966924
:label: gm-plot-fig-7
967925
968926
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(6, 10))

lectures/inflation_history.md

Lines changed: 0 additions & 66 deletions
Original file line numberDiff line numberDiff line change
@@ -86,12 +86,6 @@ We first plot price levels over the period 1600-1914.
8686
During most years in this time interval, the countries were on a gold or silver standard.
8787

8888
```{code-cell} ipython3
89-
---
90-
mystnb:
91-
figure:
92-
caption: Long run time series of the price level
93-
name: lrpl
94-
---
9589
:label: ih-plot-fig-1
9690
9791
df_fig5_befe1914 = df_fig5[df_fig5.index <= 1914]
@@ -169,12 +163,6 @@ Although we didn't have to use logarithms in our earlier graphs that had stopped
169163
After the outbreak of the Great War in 1914, the four countries left the gold standard and in so doing acquired the ability to print money to finance government expenditures.
170164

171165
```{code-cell} ipython3
172-
---
173-
mystnb:
174-
figure:
175-
caption: Long run time series of the price level (log)
176-
name: lrpl_lg
177-
---
178166
:label: ih-plot-fig-2
179167
180168
fig, ax = plt.subplots(dpi=200)
@@ -414,12 +402,6 @@ The sources of our data are:
414402
* Table 3.4, exchange rate with US
415403

416404
```{code-cell} ipython3
417-
---
418-
mystnb:
419-
figure:
420-
caption: Price index and exchange rate (Austria)
421-
name: pi_xrate_austria
422-
---
423405
:label: ih-plot-fig-3
424406
425407
p_seq = df_aus['Retail price index, 52 commodities']
@@ -440,12 +422,6 @@ Price index and exchange rate (Austria)
440422
:::
441423

442424
```{code-cell} ipython3
443-
---
444-
mystnb:
445-
figure:
446-
caption: Monthly inflation rate (Austria)
447-
name: inflationrate_austria
448-
---
449425
:label: ih-plot-fig-4
450426
451427
# Plot moving average
@@ -475,12 +451,6 @@ The source of our data for Hungary is:
475451
* Table 3.10, price level $\exp p$ and exchange rate
476452

477453
```{code-cell} ipython3
478-
---
479-
mystnb:
480-
figure:
481-
caption: Price index and exchange rate (Hungary)
482-
name: pi_xrate_hungary
483-
---
484454
:label: ih-plot-fig-5
485455
486456
p_seq = df_hun['Hungarian index of prices']
@@ -501,12 +471,6 @@ Price index and exchange rate (Hungary)
501471
:::
502472

503473
```{code-cell} ipython3
504-
---
505-
mystnb:
506-
figure:
507-
caption: Monthly inflation rate (Hungary)
508-
name: inflationrate_hungary
509-
---
510474
:label: ih-plot-fig-6
511475
512476
# Plot moving average
@@ -535,12 +499,6 @@ We dropped the exchange rate after June 1924, when the zloty was adopted. We did
535499
```
536500

537501
```{code-cell} ipython3
538-
---
539-
mystnb:
540-
figure:
541-
caption: Price index and exchange rate (Poland)
542-
name: pi_xrate_poland
543-
---
544502
:label: ih-plot-fig-7
545503
546504
# Splice three price series in different units
@@ -585,12 +543,6 @@ plt.show()
585543
```
586544

587545
```{code-cell} ipython3
588-
---
589-
mystnb:
590-
figure:
591-
caption: Monthly inflation rate (Poland)
592-
name: inflationrate_poland
593-
---
594546
:label: ih-plot-fig-8
595547
596548
# Plot moving average
@@ -614,12 +566,6 @@ The sources of our data for Germany are the following tables from chapter 3 of {
614566
* Table 3.19, exchange rate
615567

616568
```{code-cell} ipython3
617-
---
618-
mystnb:
619-
figure:
620-
caption: Price index and exchange rate (Germany)
621-
name: pi_xrate_germany
622-
---
623569
:label: ih-plot-fig-9
624570
625571
p_seq = df_deu['Price index (on basis of marks before July 1924,'
@@ -642,12 +588,6 @@ Price index and exchange rate (Germany)
642588
:::
643589

644590
```{code-cell} ipython3
645-
---
646-
mystnb:
647-
figure:
648-
caption: Price index (adjusted) and exchange rate (Germany)
649-
name: piadj_xrate_germany
650-
---
651591
:label: ih-plot-fig-10
652592
653593
p_seq = df_deu['Price index (on basis of marks before July 1924,'
@@ -676,12 +616,6 @@ Price index (adjusted) and exchange rate (Germany)
676616
:::
677617

678618
```{code-cell} ipython3
679-
---
680-
mystnb:
681-
figure:
682-
caption: Monthly inflation rate (Germany)
683-
name: inflationrate_germany
684-
---
685619
:label: ih-plot-fig-11
686620
687621
# Plot moving average

lectures/intro_supply_demand.md

Lines changed: 3 additions & 57 deletions
Original file line numberDiff line numberDiff line change
@@ -104,12 +104,6 @@ The total height of each bar $i$ is willingness to pay by consumer $i$.
104104
The orange portion of some of the bars shows consumer surplus.
105105

106106
```{code-cell} ipython3
107-
---
108-
mystnb:
109-
figure:
110-
caption: "Willingness to pay (discrete)"
111-
name: wpdisc
112-
---
113107
:label: isd-plot-fig-1
114108
115109
fig, ax = plt.subplots()
@@ -171,12 +165,6 @@ p = 100 e^{-q}
171165
$$
172166

173167
```{code-cell} ipython3
174-
---
175-
mystnb:
176-
figure:
177-
caption: "Willingness to pay (continuous)"
178-
name: wpcont
179-
---
180168
:label: isd-plot-fig-2
181169
182170
def inverse_demand(q):
@@ -209,12 +197,6 @@ Reasoning by analogy with the discrete case, the area under the demand curve and
209197
The consumer surplus is shaded in the figure below.
210198

211199
```{code-cell} ipython3
212-
---
213-
mystnb:
214-
figure:
215-
caption: "Willingness to pay (continuous) with consumer surplus"
216-
name: wpcont_cs
217-
---
218200
:label: isd-plot-fig-3
219201
220202
# solve for the value of q where demand meets price
@@ -254,12 +236,6 @@ Having discussed demand, let's now switch over to the supply side of the market.
254236
The figure below shows the price at which a collection of producers, also numbered 1 to 10, are willing to sell one unit of the good in question
255237

256238
```{code-cell} ipython3
257-
---
258-
mystnb:
259-
figure:
260-
caption: "Willingness to sell (discrete)"
261-
name: wsdisc
262-
---
263239
:label: isd-plot-fig-4
264240
265241
fig, ax = plt.subplots()
@@ -310,12 +286,6 @@ The shaded area is the total producer surplus in this continuous model.
310286
```
311287

312288
```{code-cell} ipython3
313-
---
314-
mystnb:
315-
figure:
316-
caption: "Willingness to sell (continuous) with producer surplus"
317-
name: wscont
318-
---
319289
:label: isd-plot-fig-5
320290
321291
def inverse_supply(q):
@@ -365,12 +335,6 @@ In general, for a function $f$, the **integral** of $f$ over the interval $[a, b
365335
This value is written as $\int_a^b f(x) \mathrm{d} x$ and illustrated in the figure below when $f(x) = \cos(x/2) + 1$.
366336

367337
```{code-cell} ipython3
368-
---
369-
mystnb:
370-
figure:
371-
caption: "Area under the curve"
372-
name: integrate
373-
---
374338
:label: isd-plot-fig-6
375339
376340
def f(x):
@@ -473,12 +437,6 @@ def inverse_supply(q, model):
473437
Here is a plot of these two functions using `market`.
474438

475439
```{code-cell} ipython3
476-
---
477-
mystnb:
478-
figure:
479-
caption: "Supply and demand"
480-
name: supply_demand
481-
---
482440
:label: isd-plot-fig-7
483441
484442
market = create_market()
@@ -524,13 +482,9 @@ The next figure illustrates
524482
525483
```{code-cell} ipython3
526484
---
527-
mystnb:
528-
figure:
529-
caption: "Supply and demand (consumer surplus)"
530-
name: supply_demand_cs
485+
label: isd-plot-fig-8
531486
tags: [hide-input]
532487
---
533-
:label: isd-plot-fig-8
534488
535489
q = 1.25
536490
p = inverse_demand(q, market)
@@ -596,13 +550,9 @@ The next figure illustrates
596550
597551
```{code-cell} ipython3
598552
---
599-
mystnb:
600-
figure:
601-
caption: "Supply and demand (producer surplus)"
602-
name: supply_demand_ps
553+
label: isd-plot-fig-9
603554
tags: [hide-input]
604555
---
605-
:label: isd-plot-fig-9
606556
607557
q = 0.75
608558
p = inverse_supply(q, market)
@@ -682,13 +632,9 @@ The next figure plots welfare as a function of $q$.
682632
683633
```{code-cell} ipython3
684634
---
685-
mystnb:
686-
figure:
687-
caption: "Welfare"
688-
name: wf
635+
label: isd-plot-fig-10
689636
tags: [hide-input]
690637
---
691-
:label: isd-plot-fig-10
692638
693639
q_vals = np.linspace(0, 1.78, 200)
694640
fig, ax = plt.subplots()

0 commit comments

Comments
 (0)