Skip to content

Commit a791f5f

Browse files
committed
update figure syntax
1 parent 1b581c9 commit a791f5f

13 files changed

+610
-225
lines changed

lectures/business_cycle.md

Lines changed: 79 additions & 82 deletions
Original file line numberDiff line numberDiff line change
@@ -184,12 +184,7 @@ t_params = {'color':'grey', 'fontsize': 9,
184184
Let's start with the United States.
185185

186186
```{code-cell} ipython3
187-
---
188-
mystnb:
189-
figure:
190-
caption: United States (GDP growth rate %)
191-
name: us_gdp
192-
---
187+
:label: bc-plot-fig-1
193188
fig, ax = plt.subplots()
194189
195190
country = 'United States'
@@ -200,7 +195,11 @@ plot_series(gdp_growth, country,
200195
plt.show()
201196
```
202197

203-
+++ {"user_expressions": []}
198+
:::{figure} #bc-plot-fig-1
199+
:label: us_gdp
200+
United States (GDP growth rate %)
201+
:::
202+
204203

205204
GDP growth is positive on average and trending slightly downward over time.
206205

@@ -216,12 +215,7 @@ in the growth rate and significant fluctuations.
216215
Notice the very large dip during the Covid-19 pandemic.
217216

218217
```{code-cell} ipython3
219-
---
220-
mystnb:
221-
figure:
222-
caption: United Kingdom (GDP growth rate %)
223-
name: uk_gdp
224-
---
218+
:label: bc-plot-fig-2
225219
fig, ax = plt.subplots()
226220
227221
country = 'United Kingdom'
@@ -231,7 +225,10 @@ plot_series(gdp_growth, country,
231225
plt.show()
232226
```
233227

234-
+++ {"user_expressions": []}
228+
:::{figure} #bc-plot-fig-2
229+
:label: uk_gdp
230+
United Kingdom (GDP growth rate %)
231+
:::
235232

236233
Now let's consider Japan, which experienced rapid growth in the 1960s and
237234
1970s, followed by slowed expansion in the past two decades.
@@ -240,12 +237,7 @@ Major dips in the growth rate coincided with the Oil Crisis of the 1970s, the
240237
Global Financial Crisis (GFC) and the Covid-19 pandemic.
241238

242239
```{code-cell} ipython3
243-
---
244-
mystnb:
245-
figure:
246-
caption: Japan (GDP growth rate %)
247-
name: jp_gdp
248-
---
240+
:label: bc-plot-fig-3
249241
fig, ax = plt.subplots()
250242
251243
country = 'Japan'
@@ -255,15 +247,15 @@ plot_series(gdp_growth, country,
255247
plt.show()
256248
```
257249

250+
:::{figure} #bc-plot-fig-3
251+
:label: jp_gdp
252+
Japan (GDP growth rate %)
253+
:::
254+
258255
Now let's study Greece.
259256

260257
```{code-cell} ipython3
261-
---
262-
mystnb:
263-
figure:
264-
caption: Greece (GDP growth rate %)
265-
name: gc_gdp
266-
---
258+
:label: bc-plot-fig-4
267259
fig, ax = plt.subplots()
268260
269261
country = 'Greece'
@@ -273,18 +265,18 @@ plot_series(gdp_growth, country,
273265
plt.show()
274266
```
275267

268+
:::{figure} #bc-plot-fig-4
269+
:label: gc_gdp
270+
Greece (GDP growth rate %)
271+
:::
272+
276273
Greece experienced a very large drop in GDP growth around 2010-2011, during the peak
277274
of the Greek debt crisis.
278275

279276
Next let's consider Argentina.
280277

281278
```{code-cell} ipython3
282-
---
283-
mystnb:
284-
figure:
285-
caption: Argentina (GDP growth rate %)
286-
name: arg_gdp
287-
---
279+
:label: bc-plot-fig-5
288280
fig, ax = plt.subplots()
289281
290282
country = 'Argentina'
@@ -294,6 +286,11 @@ plot_series(gdp_growth, country,
294286
plt.show()
295287
```
296288

289+
:::{figure} #bc-plot-fig-5
290+
:label: arg_gdp
291+
Argentina (GDP growth rate %)
292+
:::
293+
297294
Notice that Argentina has experienced far more volatile cycles than
298295
the economies examined above.
299296

@@ -329,13 +326,8 @@ Let's plot the unemployment rate in the US from 1929 to 2022 with recessions
329326
defined by the NBER.
330327

331328
```{code-cell} ipython3
332-
---
333-
mystnb:
334-
figure:
335-
caption: Long-run unemployment rate, US (%)
336-
name: lrunrate
337-
tags: [hide-input]
338-
---
329+
:label: bc-plot-fig-6
330+
:tags: [hide-input]
339331
# We use the census bureau's estimate for the unemployment rate
340332
# between 1942 and 1948
341333
years = [datetime.datetime(year, 6, 1) for year in range(1942, 1948)]
@@ -378,6 +370,11 @@ ax.set_ylabel('unemployment rate (%)')
378370
plt.show()
379371
```
380372

373+
:::{figure} #bc-plot-fig-6
374+
:label: lrunrate
375+
Long-run unemployment rate, US (%)
376+
:::
377+
381378
The plot shows that
382379

383380
* expansions and contractions of the labor market have been highly correlated
@@ -495,13 +492,8 @@ gdp_growth.columns = gdp_growth.columns.str.replace('YR', '').astype(int)
495492
We use the United Kingdom, United States, Germany, and Japan as examples of developed economies.
496493

497494
```{code-cell} ipython3
498-
---
499-
mystnb:
500-
figure:
501-
caption: Developed economies (GDP growth rate %)
502-
name: adv_gdp
503-
tags: [hide-input]
504-
---
495+
:label: bc-plot-fig-7
496+
:tags: [hide-input]
505497
fig, ax = plt.subplots()
506498
countries = ['United Kingdom', 'United States', 'Germany', 'Japan']
507499
ylabel = 'GDP growth rate (%)'
@@ -512,16 +504,16 @@ plot_comparison(gdp_growth.loc[countries, 1962:],
512504
plt.show()
513505
```
514506

507+
:::{figure} #bc-plot-fig-7
508+
:label: adv_gdp
509+
Developed economies (GDP growth rate %)
510+
:::
511+
515512
We choose Brazil, China, Argentina, and Mexico as representative developing economies.
516513

517514
```{code-cell} ipython3
518-
---
519-
mystnb:
520-
figure:
521-
caption: Developing economies (GDP growth rate %)
522-
name: deve_gdp
523-
tags: [hide-input]
524-
---
515+
:label: bc-plot-fig-8
516+
:tags: [hide-input]
525517
fig, ax = plt.subplots()
526518
countries = ['Brazil', 'China', 'Argentina', 'Mexico']
527519
plot_comparison(gdp_growth.loc[countries, 1962:],
@@ -531,6 +523,11 @@ plot_comparison(gdp_growth.loc[countries, 1962:],
531523
plt.show()
532524
```
533525

526+
:::{figure} #bc-plot-fig-8
527+
:label: deve_gdp
528+
Developing economies (GDP growth rate %)
529+
:::
530+
534531
The comparison of GDP growth rates above suggests that
535532
business cycles are becoming more synchronized in 21st-century recessions.
536533

@@ -547,13 +544,8 @@ Here we compare the unemployment rate of the United States,
547544
the United Kingdom, Japan, and France.
548545

549546
```{code-cell} ipython3
550-
---
551-
mystnb:
552-
figure:
553-
caption: Developed economies (unemployment rate %)
554-
name: adv_unemp
555-
tags: [hide-input]
556-
---
547+
:label: bc-plot-fig-9
548+
:tags: [hide-input]
557549
unempl_rate = wb.data.DataFrame('SL.UEM.TOTL.NE.ZS',
558550
['USA', 'FRA', 'GBR', 'JPN'], labels=True)
559551
unempl_rate = unempl_rate.set_index('Country')
@@ -569,6 +561,11 @@ plot_comparison(unempl_rate, countries,
569561
plt.show()
570562
```
571563

564+
:::{figure} #bc-plot-fig-9
565+
:label: adv_unemp
566+
Developed economies (unemployment rate %)
567+
:::
568+
572569
We see that France, with its strong labor unions, typically experiences
573570
relatively slow labor market recoveries after negative shocks.
574571

@@ -598,13 +595,8 @@ year-on-year
598595
(CPI) change from 1978-2022 in the US.
599596

600597
```{code-cell} ipython3
601-
---
602-
mystnb:
603-
figure:
604-
caption: Consumer sentiment index and YoY CPI change, US
605-
name: csicpi
606-
tags: [hide-input]
607-
---
598+
:label: bc-plot-fig-10
599+
:tags: [hide-input]
608600
start_date = datetime.datetime(1978, 1, 1)
609601
end_date = datetime.datetime(2022, 12, 31)
610602
@@ -656,6 +648,11 @@ ax_t.set_ylabel('CPI YoY change (%)')
656648
plt.show()
657649
```
658650

651+
:::{figure} #bc-plot-fig-10
652+
:label: csicpi
653+
Consumer sentiment index and YoY CPI change, US
654+
:::
655+
659656
We see that
660657

661658
* consumer sentiment often remains high during expansions and
@@ -679,13 +676,8 @@ We plot the real industrial output change from the previous year
679676
from 1919 to 2022 in the US to show this trend.
680677

681678
```{code-cell} ipython3
682-
---
683-
mystnb:
684-
figure:
685-
caption: YoY real output change, US (%)
686-
name: roc
687-
tags: [hide-input]
688-
---
679+
:label: bc-plot-fig-11
680+
:tags: [hide-input]
689681
start_date = datetime.datetime(1919, 1, 1)
690682
end_date = datetime.datetime(2022, 12, 31)
691683
@@ -709,6 +701,11 @@ ax.set_ylabel('YoY real output change (%)')
709701
plt.show()
710702
```
711703

704+
:::{figure} #bc-plot-fig-11
705+
:label: roc
706+
YoY real output change, US (%)
707+
:::
708+
712709
We observe the delayed contraction in the plot across recessions.
713710

714711

@@ -726,13 +723,8 @@ The following graph shows the domestic credit to the private sector as a
726723
percentage of GDP by banks from 1970 to 2022 in the UK.
727724

728725
```{code-cell} ipython3
729-
---
730-
mystnb:
731-
figure:
732-
caption: Domestic credit to private sector by banks (% of GDP)
733-
name: dcpc
734-
tags: [hide-input]
735-
---
726+
:label: bc-plot-fig-12
727+
:tags: [hide-input]
736728
private_credit = wb.data.DataFrame('FS.AST.PRVT.GD.ZS',
737729
['GBR'], labels=True)
738730
private_credit = private_credit.set_index('Country')
@@ -748,5 +740,10 @@ ax = plot_series(private_credit, countries,
748740
plt.show()
749741
```
750742

743+
:::{figure} #bc-plot-fig-12
744+
:label: dcpc
745+
Domestic credit to private sector by banks (% of GDP)
746+
:::
747+
751748
Note that the credit rises during economic expansions
752-
and stagnates or even contracts after recessions.
749+
and stagnates or even contracts after recessions.

0 commit comments

Comments
 (0)