-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvideo_visualizer.py
242 lines (207 loc) · 8.99 KB
/
video_visualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import numpy as np
import pycocotools.mask as mask_util
from detectron2.utils.visualizer import (
ColorMode,
Visualizer,
_create_text_labels,
_PanopticPrediction,
)
from .colormap import random_color
class _DetectedInstance:
"""
Used to store data about detected objects in video frame,
in order to transfer color to objects in the future frames.
Attributes:
label (int):
bbox (tuple[float]):
mask_rle (dict):
color (tuple[float]): RGB colors in range (0, 1)
ttl (int): time-to-live for the instance. For example, if ttl=2,
the instance color can be transferred to objects in the next two frames.
"""
__slots__ = ["label", "bbox", "mask_rle", "color", "ttl"]
def __init__(self, label, bbox, mask_rle, color, ttl):
self.label = label
self.bbox = bbox
self.mask_rle = mask_rle
self.color = color
self.ttl = ttl
class VideoVisualizer:
def __init__(self, metadata, instance_mode=ColorMode.IMAGE):
"""
Args:
metadata (MetadataCatalog): image metadata.
"""
self.metadata = metadata
self._old_instances = []
assert instance_mode in [
ColorMode.IMAGE,
ColorMode.IMAGE_BW,
], "Other mode not supported yet."
self._instance_mode = instance_mode
def draw_instance_predictions(self, frame, predictions):
"""
Draw instance-level prediction results on an image.
Args:
frame (ndarray): an RGB image of shape (H, W, C), in the range [0, 255].
predictions (Instances): the output of an instance detection/segmentation
model. Following fields will be used to draw:
"pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
Returns:
output (VisImage): image object with visualizations.
"""
frame_visualizer = Visualizer(frame, self.metadata)
num_instances = len(predictions)
if num_instances == 0:
return frame_visualizer.output
boxes = predictions.pred_boxes.tensor.numpy() if predictions.has("pred_boxes") else None
scores = predictions.scores if predictions.has("scores") else None
classes = predictions.pred_classes.numpy() if predictions.has("pred_classes") else None
keypoints = predictions.pred_keypoints if predictions.has("pred_keypoints") else None
if predictions.has("pred_masks"):
masks = predictions.pred_masks
# mask IOU is not yet enabled
# masks_rles = mask_util.encode(np.asarray(masks.permute(1, 2, 0), order="F"))
# assert len(masks_rles) == num_instances
else:
masks = None
detected = [
_DetectedInstance(classes[i], boxes[i], mask_rle=None, color=None, ttl=8)
for i in range(num_instances)
]
colors = self._assign_colors(detected)
labels = _create_text_labels(classes, scores, self.metadata.get("thing_classes", None))
if self._instance_mode == ColorMode.IMAGE_BW:
# any() returns uint8 tensor
frame_visualizer.output.img = frame_visualizer._create_grayscale_image(
(masks.any(dim=0) > 0).numpy() if masks is not None else None
)
alpha = 0.3
else:
alpha = 0.5
# frame_visualizer.overlay_instances(
# boxes=None if masks is not None else boxes, # boxes are a bit distracting
# masks=masks,
# labels=labels,
# keypoints=keypoints,
# assigned_colors=colors,
# alpha=alpha,
# )
boxes_need = []
scores_use = scores.numpy()
for i, c in enumerate(classes):
if c == 0 and scores_use[i] > 0.95:
if (boxes[i][3] - boxes[i][1]) * (boxes[i][2] - boxes[i][0]) > 5000:
boxes_need.append(boxes[i])
return frame_visualizer.output, boxes_need
def draw_sem_seg(self, frame, sem_seg, area_threshold=None):
"""
Args:
sem_seg (ndarray or Tensor): semantic segmentation of shape (H, W),
each value is the integer label.
area_threshold (Optional[int]): only draw segmentations larger than the threshold
"""
# don't need to do anything special
frame_visualizer = Visualizer(frame, self.metadata)
frame_visualizer.draw_sem_seg(sem_seg, area_threshold=None)
return frame_visualizer.output
def draw_panoptic_seg_predictions(
self, frame, panoptic_seg, segments_info, area_threshold=None, alpha=0.5
):
frame_visualizer = Visualizer(frame, self.metadata)
pred = _PanopticPrediction(panoptic_seg, segments_info)
if self._instance_mode == ColorMode.IMAGE_BW:
frame_visualizer.output.img = frame_visualizer._create_grayscale_image(
pred.non_empty_mask()
)
# draw mask for all semantic segments first i.e. "stuff"
for mask, sinfo in pred.semantic_masks():
category_idx = sinfo["category_id"]
try:
mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]]
except AttributeError:
mask_color = None
frame_visualizer.draw_binary_mask(
mask,
color=mask_color,
text=self.metadata.stuff_classes[category_idx],
alpha=alpha,
area_threshold=area_threshold,
)
all_instances = list(pred.instance_masks())
if len(all_instances) == 0:
return frame_visualizer.output
# draw mask for all instances second
masks, sinfo = list(zip(*all_instances))
num_instances = len(masks)
masks_rles = mask_util.encode(
np.asarray(np.asarray(masks).transpose(1, 2, 0), dtype=np.uint8, order="F")
)
assert len(masks_rles) == num_instances
category_ids = [x["category_id"] for x in sinfo]
detected = [
_DetectedInstance(category_ids[i], bbox=None, mask_rle=masks_rles[i], color=None, ttl=8)
for i in range(num_instances)
]
colors = self._assign_colors(detected)
labels = [self.metadata.thing_classes[k] for k in category_ids]
frame_visualizer.overlay_instances(
boxes=None,
masks=masks,
labels=labels,
keypoints=None,
assigned_colors=colors,
alpha=alpha,
)
return frame_visualizer.output
def _assign_colors(self, instances):
"""
Naive tracking heuristics to assign same color to the same instance,
will update the internal state of tracked instances.
Returns:
list[tuple[float]]: list of colors.
"""
# Compute iou with either boxes or masks:
is_crowd = np.zeros((len(instances),), dtype=np.bool)
if instances[0].bbox is None:
assert instances[0].mask_rle is not None
# use mask iou only when box iou is None
# because box seems good enough
rles_old = [x.mask_rle for x in self._old_instances]
rles_new = [x.mask_rle for x in instances]
ious = mask_util.iou(rles_old, rles_new, is_crowd)
threshold = 0.5
else:
boxes_old = [x.bbox for x in self._old_instances]
boxes_new = [x.bbox for x in instances]
ious = mask_util.iou(boxes_old, boxes_new, is_crowd)
threshold = 0.6
if len(ious) == 0:
ious = np.zeros((len(self._old_instances), len(instances)), dtype="float32")
# Only allow matching instances of the same label:
for old_idx, old in enumerate(self._old_instances):
for new_idx, new in enumerate(instances):
if old.label != new.label:
ious[old_idx, new_idx] = 0
matched_new_per_old = np.asarray(ious).argmax(axis=1)
max_iou_per_old = np.asarray(ious).max(axis=1)
# Try to find match for each old instance:
extra_instances = []
for idx, inst in enumerate(self._old_instances):
if max_iou_per_old[idx] > threshold:
newidx = matched_new_per_old[idx]
if instances[newidx].color is None:
instances[newidx].color = inst.color
continue
# If an old instance does not match any new instances,
# keep it for the next frame in case it is just missed by the detector
inst.ttl -= 1
if inst.ttl > 0:
extra_instances.append(inst)
# Assign random color to newly-detected instances:
for inst in instances:
if inst.color is None:
inst.color = random_color(rgb=True, maximum=1)
self._old_instances = instances[:] + extra_instances
return [d.color for d in instances]