-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_search_pcdarts.py
257 lines (210 loc) · 8.13 KB
/
model_search_pcdarts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch
import torch.nn as nn
import torch.nn.functional as F
from operations import *
from torch.autograd import Variable
from genotypes import PRIMITIVES
from genotypes import Genotype
def channel_shuffle(x, groups):
batchsize, num_channels, height, width = x.data.size()
channels_per_group = num_channels // groups
# reshape
x = x.view(batchsize, groups, channels_per_group, height, width)
x = torch.transpose(x, 1, 2).contiguous()
# flatten
x = x.view(batchsize, -1, height, width)
return x
class MixedOp(nn.Module):
def __init__(self, C, stride):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
self.mp = nn.MaxPool2d(2,2)
self.k = 4
for primitive in PRIMITIVES:
op = OPS[primitive](C //self.k, stride, False)
if 'pool' in primitive:
op = nn.Sequential(op, nn.BatchNorm2d(C //self.k, affine=False))
self._ops.append(op)
def forward(self, x, weights):
#channel proportion k=4
dim_2 = x.shape[1]
xtemp = x[ : , : dim_2//self.k, :, :]
xtemp2 = x[ : , dim_2//self.k:, :, :]
temp1 = sum(w * op(xtemp) for w, op in zip(weights, self._ops))
#reduction cell needs pooling before concat
if temp1.shape[2] == x.shape[2]:
ans = torch.cat([temp1,xtemp2],dim=1)
else:
ans = torch.cat([temp1,self.mp(xtemp2)], dim=1)
ans = channel_shuffle(ans,self.k)
# ans = torch.cat([ans[ : , dim_2//4:, :, :],ans[ : , : dim_2//4, :, :]],dim=1)
#except channe shuffle, channel shift also works
return ans
class Cell(nn.Module):
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
super(Cell, self).__init__()
self.reduction = reduction
if reduction_prev:
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
else:
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
self._bns = nn.ModuleList()
for i in range(self._steps):
for j in range(2+i):
stride = 2 if reduction and j < 2 else 1
op = MixedOp(C, stride)
self._ops.append(op)
def forward(self, s0, s1, weights,weights2):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
offset = 0
for i in range(self._steps):
s = sum(weights2[offset+j]*self._ops[offset+j](h, weights[offset+j]) for j, h in enumerate(states))
offset += len(states)
states.append(s)
return torch.cat(states[-self._multiplier:], dim=1)
class Network(nn.Module):
def __init__(self, C, num_classes, layers, criterion, steps=4, multiplier=4, stem_multiplier=3):
super(Network, self).__init__()
self._C = C
self._num_classes = num_classes
self._layers = layers
self.criterion = criterion
self._steps = steps
self._multiplier = multiplier
C_curr = stem_multiplier*C
self.stem = nn.Sequential(
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
nn.BatchNorm2d(C_curr)
)
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
self.cells = nn.ModuleList()
reduction_prev = False
for i in range(layers):
if i in [layers//3, 2*layers//3]:
C_curr *= 2
reduction = True
else:
reduction = False
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
reduction_prev = reduction
self.cells += [cell]
C_prev_prev, C_prev = C_prev, multiplier*C_curr
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
# self._initialize_alphas()
# def new(self):
# model_new = Network(self._C, self._num_classes, self._layers, self._criterion).cuda()
# for x, y in zip(model_new.arch_parameters(), self.arch_parameters()):
# x.data.copy_(y.data)
# return model_new
def forward(self, x, alphas):
# s0 = s1 = self.stem(input)
s0 = s1 = self.stem(x)
alpha_normal, alpha_reduce, beta_normal, beta_reduce = alphas
for i, cell in enumerate(self.cells):
if cell.reduction:
weights = F.softmax(alpha_reduce, dim=-1)
n = 3
start = 2
weights2 = F.softmax(beta_reduce[0:2], dim=-1)
for i in range(self._steps-1):
end = start + n
tw2 = F.softmax(beta_reduce[start:end], dim=-1)
start = end
n += 1
weights2 = torch.cat([weights2,tw2],dim=0)
else:
weights = F.softmax(alpha_normal, dim=-1)
n = 3
start = 2
weights2 = F.softmax(beta_normal[0:2], dim=-1)
for i in range(self._steps-1):
end = start + n
tw2 = F.softmax(beta_normal[start:end], dim=-1)
start = end
n += 1
weights2 = torch.cat([weights2,tw2],dim=0)
s0, s1 = s1, cell(s0, s1, weights,weights2)
out = self.global_pooling(s1)
logits = self.classifier(out.view(out.size(0),-1))
return logits
# def _loss(self, input, target):
# logits = self(input)
# return self._criterion(logits, target)
def loss(self, x, alphas, target, acc=False):
logits = self(x, alphas)
if not acc:
return self.criterion(logits, target)
correct = (logits.argmax(dim=1) == target).float().sum().item()
return self.criterion(logits, target), correct
def genotype(self,alphas):
alpha_normal, alpha_reduce, beta_normal, beta_reduce = alphas
def _parse(weights,weights2):
gene = []
n = 2
start = 0
for i in range(self._steps):
end = start + n
W = weights[start:end].copy()
W2 = weights2[start:end].copy()
for j in range(n):
W[j,:]=W[j,:]*W2[j]
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
#edges = sorted(range(i + 2), key=lambda x: -W2[x])[:2]
for j in edges:
k_best = None
for k in range(len(W[j])):
if k != PRIMITIVES.index('none'):
if k_best is None or W[j][k] > W[j][k_best]:
k_best = k
gene.append((PRIMITIVES[k_best], j))
start = end
n += 1
return gene
n = 3
start = 2
weightsr2 = F.softmax(beta_reduce[0:2], dim=-1)
weightsn2 = F.softmax(beta_normal[0:2], dim=-1)
for i in range(self._steps-1):
end = start + n
tw2 = F.softmax(beta_reduce[start:end], dim=-1)
tn2 = F.softmax(beta_normal[start:end], dim=-1)
start = end
n += 1
weightsr2 = torch.cat([weightsr2,tw2],dim=0)
weightsn2 = torch.cat([weightsn2,tn2],dim=0)
gene_normal = _parse(F.softmax(alpha_normal, dim=-1).data.cpu().numpy(),weightsn2.data.cpu().numpy())
gene_reduce = _parse(F.softmax(alpha_reduce, dim=-1).data.cpu().numpy(),weightsr2.data.cpu().numpy())
concat = range(2+self._steps-self._multiplier, self._steps+2)
genotype = Genotype(
normal=gene_normal, normal_concat=concat,
reduce=gene_reduce, reduce_concat=concat
)
return genotype
class Architecture(nn.Module):
def __init__(self, steps):
super(Architecture, self).__init__()
k = sum(1 for i in range(steps) for j in range(2 + i))
num_ops = len(PRIMITIVES)
self.alpha_normal = nn.Parameter(torch.randn(k, num_ops))
self.alpha_reduce = nn.Parameter(torch.randn(k, num_ops))
self.beta_normal = nn.Parameter(torch.randn(k))
self.beta_reduce = nn.Parameter(torch.randn(k))
with torch.no_grad():
# initialize to smaller value
self.alpha_normal.mul_(1e-3)
self.alpha_reduce.mul_(1e-3)
self.beta_normal.mul_(1e-3)
self.beta_reduce.mul_(1e-3)
# self.alpha_normal = Variable(1e-3*torch.randn(k, num_ops).cuda(), requires_grad=True)
# self.alpha_reduce = Variable(1e-3*torch.randn(k, num_ops).cuda(), requires_grad=True)
# self.beta_normal = Variable(1e-3*torch.randn(k).cuda(), requires_grad=True)
# self.beta_reduce = Variable(1e-3*torch.randn(k).cuda(), requires_grad=True)
def forward(self):
return [self.alpha_normal, self.alpha_reduce, self.beta_normal, self.beta_reduce]