-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcontext_encoder.py
366 lines (300 loc) · 14.4 KB
/
context_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import glob
import os
import time
import PIL.Image as Image
import numpy as np
import params
import tensorflow as tf
from termcolor import cprint
from tqdm import tqdm
from ImageReconstructionProject.utils import weight_variable, bias_variable, conv2d, uconv2d, max_pool_2x2, create_dir
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
tf.summary.histogram('histogram', var)
class ContextEncoder(object):
def __init__(self, batch_size, nb_epochs, batch_index=0, mask=None, mscoco=params.DATA_PATH,
train_path=params.TRAIN_PATH,
valid_path=params.VALID_PATH, caption_path=params.CAPTION_PATH,
experiment_path=params.EXPERIMENT_PATH):
self.batch_size = batch_size
self.nb_epochs = nb_epochs
self._train_batch_index = batch_index
self._valid_batch_index = batch_index
self.mscoco = mscoco
self.train_path = train_path
self.valid_path = valid_path
self.caption_path = caption_path
self.experiment_path = experiment_path
self.save_path = os.path.join(self.experiment_path, "model/")
self.logs_path = os.path.join(self.experiment_path, "logs")
create_dir(self.save_path)
create_dir(self.logs_path)
self.nb_bw_img = 0
self.global_step = tf.Variable(0, trainable=False, name='global_step')
if mask is not None:
self.np_mask = mask
else:
self.np_mask = np.zeros((1, 64, 64, 1))
self.np_mask[:, 16:48, 16:48, :] = 1
self._get_dataset_characteristics()
self._sess = tf.Session()
def _get_dataset_characteristics(self):
train_path = os.path.join(self.mscoco, self.train_path)
valid_path = os.path.join(self.mscoco, self.valid_path)
# caption_path = os.path.join(mscoco, caption_path)
# with open(caption_path) as fd:
# caption_dict = pkl.load(fd)
self.train_imgs = glob.glob(train_path + "/*.jpg")
self.valid_imgs = glob.glob(valid_path + "/*.jpg")
def build_model(self):
# x : input
self.x = tf.placeholder(tf.float32, shape=[self.batch_size, 64, 64, 3])
self.mask = tf.placeholder(tf.float32, shape=[1, 64, 64, 1])
self.x_masked = self.x * (1 - self.mask)
self._encode()
self._channel_wise()
self._decode()
self._generate_image()
self._compute_loss()
self._optimize()
self.merged_summary = tf.summary.merge_all()
def _encode(self):
with tf.name_scope("encode"):
with tf.name_scope('weights'):
self._W_conv1 = weight_variable([5, 5, 3, 128])
self._W_conv2 = weight_variable([5, 5, 128, 256])
self._W_conv3 = weight_variable([5, 5, 256, 512])
self._W_conv4 = weight_variable([5, 5, 512, 512])
self._W_conv5 = weight_variable([3, 3, 512, 512])
variable_summaries(self._W_conv1)
variable_summaries(self._W_conv2)
variable_summaries(self._W_conv3)
variable_summaries(self._W_conv4)
variable_summaries(self._W_conv5)
with tf.name_scope('biases'):
self._b_conv1 = bias_variable([128])
self._b_conv2 = bias_variable([256])
self._b_conv3 = bias_variable([512])
self._b_conv4 = bias_variable([512])
self._b_conv5 = bias_variable([512])
variable_summaries(self._b_conv1)
variable_summaries(self._b_conv2)
variable_summaries(self._b_conv3)
variable_summaries(self._b_conv4)
variable_summaries(self._b_conv5)
self.h_conv1 = tf.nn.relu(conv2d(self.x_masked, self._W_conv1, stride=1) + self._b_conv1)
self.h_pool1 = max_pool_2x2(self.h_conv1)
self.h_conv2 = tf.nn.relu(conv2d(self.h_pool1, self._W_conv2, stride=1) + self._b_conv2)
self.h_pool2 = max_pool_2x2(self.h_conv2)
self.h_conv3 = tf.nn.relu(conv2d(self.h_pool2, self._W_conv3, stride=1) + self._b_conv3)
self.h_pool3 = max_pool_2x2(self.h_conv3)
self.h_conv4 = tf.nn.relu(conv2d(self.h_pool3, self._W_conv4, stride=1) + self._b_conv4)
self.h_pool4 = max_pool_2x2(self.h_conv4)
self.h_conv5 = tf.nn.relu(conv2d(self.h_pool4, self._W_conv5, stride=1) + self._b_conv5)
def _channel_wise(self):
with tf.name_scope('channel_wise'):
with tf.name_scope('weights'):
self._W_fc1 = weight_variable([512, 4 * 4, 4 * 4])
variable_summaries(self._W_fc1)
with tf.name_scope('biases'):
self._b_fc1 = bias_variable([512])
variable_summaries(self._b_fc1)
self.h_conv5_flat_img = tf.reshape(self.h_conv5, [512, self.batch_size, 4 * 4])
self.h_fc1 = tf.nn.relu(
tf.reshape(tf.matmul(self.h_conv5_flat_img, self._W_fc1), [self.batch_size, 16, 512]) + self._b_fc1)
self.h_fc1_img = tf.reshape(self.h_fc1, [self.batch_size, 4, 4, 512])
def _decode(self):
with tf.name_scope('decode'):
with tf.name_scope('weights'):
self._W_uconv1 = weight_variable([5, 5, 512, 512])
self._W_uconv2 = weight_variable([5, 5, 256, 512])
self._W_uconv3 = weight_variable([5, 5, 128, 256])
with tf.name_scope('biases'):
self._b_uconv1 = bias_variable([512])
self._b_uconv2 = bias_variable([256])
self._b_uconv3 = bias_variable([128])
self.h_uconv1 = tf.nn.relu(
uconv2d(self.h_fc1_img, self._W_uconv1, output_shape=[self.batch_size, 8, 8, 512],
stride=2) + self._b_uconv1)
self.h_uconv2 = tf.nn.relu(
uconv2d(self.h_uconv1, self._W_uconv2, output_shape=[self.batch_size, 16, 16, 256],
stride=2) + self._b_uconv2)
self.h_uconv3 = tf.nn.relu(
uconv2d(self.h_uconv2, self._W_uconv3, output_shape=[self.batch_size, 32, 32, 128],
stride=2) + self._b_uconv3)
def _generate_image(self):
with tf.name_scope('generated_image'):
self._W_uconv4 = weight_variable([5, 5, 3, 128])
self._b_uconv4 = bias_variable([3])
self.y = tf.nn.relu(
uconv2d(self.h_uconv3, self._W_uconv4, output_shape=[self.batch_size, 32, 32, 3],
stride=1) + self._b_uconv4)
self.y_padded = tf.pad(self.y, [[0, 0], [16, 16], [16, 16], [0, 0]])
tf.summary.image("original_image", self.x, max_outputs=12)
tf.summary.image("generated_image", self.y_padded + self.x_masked, max_outputs=12)
def _compute_loss(self):
with tf.name_scope('reconstruction_loss'):
self._reconstruction_loss = tf.nn.l2_loss(self.mask * (self.x - self.y_padded)) / self.batch_size
tf.summary.scalar('reconstruction_loss', self._reconstruction_loss)
def _optimize(self):
with tf.variable_scope("optimizer"):
optimizer = tf.train.AdamOptimizer()
grads = optimizer.compute_gradients(self._reconstruction_loss)
# capped_grads = [(tf.clip_by_norm(grad, 1), var) for grad, var in grads]
self.train_fn = optimizer.apply_gradients(grads, global_step=self.global_step)
def _load_train_batch(self):
'''
get next train batch
'''
# print("loading batch index {} ".format(self._train_batch_index))
start_time = time.time()
batch = np.zeros((self.batch_size, 64, 64, 3))
batch_imgs = self.train_imgs[
self._train_batch_index * self.batch_size:(self._train_batch_index + 1) * self.batch_size]
for i, img_path in enumerate(batch_imgs):
img = Image.open(img_path)
if np.array(img).shape == (64, 64, 3):
batch[i] = np.array(img)
else:
self.nb_bw_img += 1
N_train_batch = len(self.train_imgs) // self.batch_size
self._train_batch_index = (self._train_batch_index + 1) % N_train_batch
# print("batch loaded in : ", time.time() - start_time)
return batch
def _load_valid_batch(self):
'''
get next valid batch
TODO : merge load_batch functions and remove black images
'''
start_time = time.time()
batch = np.zeros((self.batch_size, 64, 64, 3))
batch_imgs = self.valid_imgs[
self._valid_batch_index * self.batch_size:(self._valid_batch_index + 1) * self.batch_size]
for i, img_path in enumerate(batch_imgs):
img = Image.open(img_path)
if np.array(img).shape == (64, 64, 3):
batch[i] = np.array(img)
else:
self.nb_bw_img += 1
N_valid_batch = len(self.valid_imgs) // self.batch_size
self._valid_batch_index = (self._valid_batch_index + 1) % N_valid_batch
# print("batch loaded in : ", time.time() - start_time)
return batch
def _load_valid_data(self):
'''
get valid data
:return:
'''
n_validation = len(self.valid_imgs) // 5
val_imgs = self.valid_imgs[:n_validation]
for i, img_path in enumerate(val_imgs):
img = Image.open(img_path)
if np.array(img).shape == (64, 64, 3):
val_imgs[i] = np.array(img)
return val_imgs
def _restore(self):
"""
Retrieve last model saved if possible
Create a main Saver object
Create a SummaryWriter object
Init variables
:param save_name: string (default : model)
Name of the model
:return:
"""
saver = tf.train.Saver(max_to_keep=2)
# Try to restore an old model
last_saved_model = tf.train.latest_checkpoint(self.save_path)
self._sess.run(tf.global_variables_initializer())
train_writer = tf.summary.FileWriter(os.path.join(self.logs_path, "train"),
graph=self._sess.graph,
flush_secs=20)
val_writer = tf.summary.FileWriter(os.path.join(self.logs_path, "val"),
graph=self._sess.graph,
flush_secs=20)
if last_saved_model is not None:
saver.restore(self._sess, last_saved_model)
print("[*] Restoring model {}".format(last_saved_model))
else:
tf.train.global_step(self._sess, self.global_step)
print("[*] New model created")
return saver, train_writer, val_writer
def _save(self, saver, summary_writer, is_iter=True, extras=None):
"""
All save operations (Graph, Weights, Curve, Embeddings)
This function handles all writings on disk
:param saver: tf.train.Saver
The main Saver object to save graph object
:param summary_writer: tf.summary.FileWriter
The main FileWriter to write all summary operations for TensorBoard
:param is_iter: boolean (default: True)
Saving is different given its a saving iteration or a saving iteration operation
:param extras: float or tf.summaries
Use to save all summaries for iteration, and validation accuracy for epoch operations
:return:
"""
current_iter = self._sess.run(self.global_step)
# Epoch saving (logs + model)
if not is_iter:
# Save validation_accuracy
summary_writer.add_summary(extras, global_step=current_iter)
# Save graph
saver.save(self._sess, global_step=current_iter, save_path=self.save_path)
# Iter saving (logs)
else:
summary_writer.add_summary(extras, global_step=current_iter)
def train(self):
"""
Train the model
:return:
"""
# Retrieve a model or create a new
saver, train_writer, val_writer = self._restore()
epoch = 0
n_train_batches = len(self.train_imgs) // self.batch_size
n_val_batches = len(self.valid_imgs) // self.batch_size // 2
# Retrieve current global step
last_step = self._sess.run(self.global_step)
epoch += last_step // n_train_batches
last_iter = last_step - n_train_batches * epoch
print("last iter {}".format(last_iter))
print("last step {}".format(last_step))
print("epocj {}".format(epoch))
# Iterate over epochs
is_not_restart = False
while epoch < self.nb_epochs:
for i in tqdm(range(n_train_batches)):
if i < last_iter and not is_not_restart:
continue
is_not_restart = True
batch = self._load_train_batch()
_, loss, summary_str, global_step = self._sess.run(
[self.train_fn, self._reconstruction_loss, self.merged_summary, self.global_step],
feed_dict={self.x: batch, self.mask: self.np_mask})
if global_step % 200 == 0:
# print("nb of black and white images so far : {}".format(self.nb_bw_img))
self._save(saver, train_writer, is_iter=True, extras=summary_str)
val_loss = 0
for i in tqdm(range(n_val_batches)):
batch = self._load_valid_batch()
loss, summary_str = self._sess.run([self._reconstruction_loss, self.merged_summary], feed_dict={self.x: batch, self.mask: self.np_mask})
val_loss += loss
val_loss /= n_val_batches * self.batch_size
self._save(saver, val_writer, is_iter=False, extras=summary_str)
val_writer.add_summary(
tf.Summary(value=[tf.Summary.Value(tag="val_loss", simple_value=val_loss), ]), global_step=global_step
)
cprint("Epoch {}".format(epoch), color="yellow")
epoch += 1
cprint("Training done.", "green", attrs=["bold"])
train_writer.flush()
val_writer.flush()
train_writer.close()
val_writer.close()
if __name__ == '__main__':
ce = ContextEncoder(batch_size=32, nb_epochs=50)
ce.build_model()
ce.train()