-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
56 lines (42 loc) · 1.73 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import numpy as np
import paddle
from DQN import FINAL_PARAM_PATH, Agent, RandomAgent, build_model, evaluate
from GameInterface import GameInterface
from PRNG import PRNG
evaluate_random = PRNG()
evaluate_random.seed("RedContritio")
if __name__ == "__main__":
EVALUATE_TIMES = 200
feature_map_height = GameInterface.FEATURE_MAP_HEIGHT
feature_map_width = GameInterface.FEATURE_MAP_WIDTH
action_dim = GameInterface.ACTION_NUM
feature_dim = feature_map_height * feature_map_width * 2
e_greed = 0.5
e_greed_decrement = 1e-6
env = GameInterface()
agent = Agent(build_model, feature_dim, action_dim, e_greed, e_greed_decrement)
if os.path.exists(FINAL_PARAM_PATH):
agent.policy_net.set_state_dict(paddle.load(FINAL_PARAM_PATH))
print("Loaded final param.")
random_agent = RandomAgent(GameInterface.ACTION_NUM)
scores1, rewards1 = [], []
scores2, rewards2 = [], []
for _ in range(EVALUATE_TIMES):
seed = evaluate_random.random()
score1, reward1 = evaluate(env, agent, seed)
scores1.append(score1)
rewards1.append(reward1)
score2, reward2 = evaluate(env, random_agent, seed)
scores2.append(score2)
rewards2.append(reward2)
print(
f"""[DQN Agent]\t:\tmean_score: {np.mean(scores1)},\tmean_reward: {np.mean(rewards1)},
\t\t\tmax_score: {np.max(scores1)},\tmax_reward: {np.max(rewards1)},
\t\t\tmin_score: {np.min(scores1)},\tmin_reward: {np.min(rewards1)}"""
)
print(
f"""[Random Agent]\t:\tmean_score: {np.mean(scores2)},\tmean_reward: {np.mean(rewards2)},
\t\t\tmax_score: {np.max(scores2)},\tmax_reward: {np.max(rewards2)},
\t\t\tmin_score: {np.min(scores2)},\tmin_reward: {np.min(rewards2)}"""
)