forked from tensorflow/neural-structured-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
668 lines (619 loc) · 26.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Main logic for training the A2N model.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gc
import math
import os
from absl import app
from absl import flags
from absl import logging
import clueweb_text_graph
import dataset
import graph
import losses
import metrics
import models
import numpy as np
import slim
from tensorboard.plugins import projector
import tensorflow as tf
from tensorflow.python.training.summary_io import SummaryWriterCache
import text_graph
import utils
FLAGS = flags.FLAGS
flags.DEFINE_string("kg_file", None, "path to kg file")
flags.DEFINE_string("output_dir", None, "output dir for summaries/logs")
flags.DEFINE_string("dev_kg_file", None, "path to dev kg file")
flags.DEFINE_string("test_kg_file", None, "path to test kg file")
flags.DEFINE_string("model_path", None, "path to model if testing only")
flags.DEFINE_boolean("evaluate", False, "run eval loop")
flags.DEFINE_boolean("test_only", False, "if test only")
flags.DEFINE_integer("global_step", None,
"global_step to restore model for testing")
flags.DEFINE_integer("num_epochs", 5, "number of train epochs")
flags.DEFINE_integer("batchsize", 64, "batchsize for training")
flags.DEFINE_integer("test_batchsize", 10, "batchsize for testing")
flags.DEFINE_integer("max_neighbors", None,
"maximum neighbors to use during training")
flags.DEFINE_integer("max_negatives", None,
"maximum number of negative entities to sample")
flags.DEFINE_integer("emb_dim", 100,
"dimension of entity and relation embeddings")
flags.DEFINE_float("entity_encoder_dropout", 1.0,
"dropout for entity embeddings")
flags.DEFINE_float("relation_encoder_dropout", 1.0,
"dropout for relation embeddings")
flags.DEFINE_float("init_entity_encoder_dropout", 1.0,
"dropout for init entity embeddings in attention")
flags.DEFINE_float("attention_encoder_dropout", 1.0,
"dropout for attention encoder")
flags.DEFINE_boolean("use_separate_attention_emb", False,
"use separate entity embeddings for computing attention")
flags.DEFINE_integer("num_parallel_preprocess", 64,
"number of processes to use in dataset preprocessing")
flags.DEFINE_integer("prefetch_examples", 10, "number of examples to prefetch")
flags.DEFINE_integer("shuffle_buffer", 50000,
"buffer for shuffling training examples")
flags.DEFINE_float("learning_rate", 0.001, "learning for optimizer")
flags.DEFINE_float("grad_clip", None, "Clip gradient norm during training")
flags.DEFINE_integer("save_every", 100, "save model every this many steps")
flags.DEFINE_string("entity_names_file", None,
"mapping of Freebase mid to names")
flags.DEFINE_enum("model", "attention",
["distmult", "attention", "source_attention",
"source_rel_attention", "source_path_attention"],
"the model to use")
flags.DEFINE_bool("use_tanh", False, "use tanh non-linearity on embeddings")
flags.DEFINE_enum("attention_type", "bilinear",
["bilinear", "cosine", "sigmoid_bilinear",
"sigmoid_avg_bilinear", "relation"],
"type of attention to use for attention model")
flags.DEFINE_bool("analyze", False, "analyze model")
flags.DEFINE_integer("max_path_length", None,
"maximum path length for path attention models")
flags.DEFINE_string("text_kg_file", None, "path to text data")
flags.DEFINE_integer("max_text_len", None, "max length of text")
flags.DEFINE_integer("max_vocab_size", None, "max number of text words")
flags.DEFINE_integer("min_word_freq", None, "min freq threshold for text words")
flags.DEFINE_integer("max_text_neighbors", None, "max text neighbors")
flags.DEFINE_float("text_encoder_dropout", 1.0, "dropout for text cnn")
flags.DEFINE_list("text_encoder_filter_widths", ["3", "5", "7"],
"filter widths for cnn")
flags.DEFINE_enum("text_encoder_nonlinearity", "tanh", ["relu", "tanh"],
"non-linearity to use for TextCNN")
flags.DEFINE_integer("text_encoder_num_filters", 64, "num filters for cnn")
flags.DEFINE_string("clueweb_sentences", None,
"path to clueweb sentences (or data formatted like cw)")
flags.DEFINE_string("clueweb_data", None,
"path to clueweb data (or data formatted like cw)")
flags.DEFINE_string("clueweb_embeddings", None,
"path to clueweb embeddings (or data formatted like cw)")
flags.DEFINE_integer("text_emb_dim", None, "embedding dim for clueweb text")
flags.DEFINE_integer("subsample_text_rels", None,
"subsample text to max this many per pair")
flags.DEFINE_string("master", "local",
"""BNS name of the TensorFlow master to use.""")
flags.DEFINE_integer("task", 0,
"""Task id of the replica running the training.""")
flags.DEFINE_integer("ps_tasks", 0, """Number of tasks in the ps job.
If 0 no ps job is used.""")
flags.mark_flag_as_required("kg_file")
flags.mark_flag_as_required("output_dir")
def add_embedding_to_projector(projector_config, emb_name, emb_metadata_path):
embedding_conf = projector_config.embeddings.add()
embedding_conf.tensor_name = emb_name
embedding_conf.metadata_path = emb_metadata_path
def get_train_op(loss, optimizer, grad_clip=None, global_step=None):
"""Make a train_op apply gradients to loss using optimizer.
Args:
loss: the loss function to optimize
optimizer: the optimizer to compute and apply gradients
grad_clip: clip gradient norms by the value supplied (default dont clip)
global_step: tf.placeholder for global_step
Returns:
train_op: the training op to run
grads_and_vars: the gradients and variables for debugging
var_names: the variable names for debugging
capped_grads_and_vars: for debugging
"""
variables = tf.trainable_variables()
grads_and_vars = optimizer.compute_gradients(loss, variables)
var_names = [v.name for v in variables]
logging.info("Trainable variables:")
for var in var_names:
logging.info("\t %s", var)
logging.debug(grads_and_vars)
grad_var_norms = [(tf.global_norm([gv[1]]), tf.global_norm([gv[0]]))
for gv in grads_and_vars]
if grad_clip:
capped_grads_and_vars = [(tf.clip_by_norm(gv[0], grad_clip), gv[1])
for gv in grads_and_vars]
else:
capped_grads_and_vars = grads_and_vars
# norms of gradients for debugging
# grad_norms = [tf.sqrt(tf.reduce_sum(tf.square(grad)))
# for grad, _ in grads_and_vars]
train_op = optimizer.apply_gradients(capped_grads_and_vars,
global_step=global_step)
return train_op, grad_var_norms, var_names, capped_grads_and_vars
def read_graph_data(
kg_file, add_reverse_graph, add_inverse_edge, mode,
num_epochs, batchsize, max_neighbors, max_negatives,
train_graph=None, text_kg_file=None, val_graph=None
):
"""Read graph, create dataset and build model."""
# Read graphs and create datasets
entity_vocab = relation_vocab = None
if train_graph:
entity_vocab = train_graph.entity_vocab
relation_vocab = train_graph.relation_vocab
if FLAGS.clueweb_data and mode == "train":
graph_type = clueweb_text_graph.CWTextGraph
text_kg_file = FLAGS.clueweb_data
elif text_kg_file and mode == "train":
graph_type = text_graph.TextGraph
text_kg_file = FLAGS.text_kg_file
else:
graph_type = graph.Graph
text_kg_file = None
k_graph = graph_type(
text_kg_file=text_kg_file,
skip_new=True,
max_text_len=FLAGS.max_text_len,
max_vocab_size=FLAGS.max_vocab_size,
min_word_freq=FLAGS.min_word_freq,
kg_file=kg_file,
add_reverse_graph=add_reverse_graph,
add_inverse_edge=add_inverse_edge, mode=mode,
entity_vocab=entity_vocab, relation_vocab=relation_vocab,
max_path_length=FLAGS.max_path_length if mode == "train" else None,
embeddings_file=FLAGS.clueweb_embeddings,
sentence_vocab_file=FLAGS.clueweb_sentences,
subsample=FLAGS.subsample_text_rels
)
if FLAGS.text_kg_file:
max_text_len = FLAGS.max_text_len
if mode == "train":
max_text_len = max_text_len or k_graph.max_text_len
elif train_graph:
max_text_len = max_text_len or train_graph.max_text_len
else:
max_text_len = None
k_data = dataset.Dataset(data_graph=k_graph, train_graph=train_graph,
mode=mode, num_epochs=num_epochs,
batchsize=batchsize,
max_neighbors=max_neighbors,
max_negatives=max_negatives,
model_type=FLAGS.model,
max_text_len=max_text_len,
max_text_neighbors=FLAGS.max_text_neighbors,
val_graph=val_graph)
# Create the training data iterator and return the input tensors
# with tf.device("/job:worker"):
k_data.create_dataset_iterator(
num_parallel=FLAGS.num_parallel_preprocess,
prefetch=FLAGS.prefetch_examples,
shuffle_buffer=FLAGS.shuffle_buffer
# , device="worker" if FLAGS.master != "local" else "cpu"
)
return k_graph, k_data
def create_model(train_graph, iterator):
"""Create model and placeholders."""
if FLAGS.clueweb_data:
s, nbrs_s, text_nbrs_s, r, candidates, nbrs_candidates, labels, text_nbrs_s_emb = iterator.get_next()
elif FLAGS.text_kg_file:
s, nbrs_s, text_nbrs_s, r, candidates, nbrs_candidates, labels = \
iterator.get_next()
else:
s, nbrs_s, r, candidates, nbrs_candidates, labels = iterator.get_next()
# Create the attention model, this returns candidates scores and the model
# encoders in a dict for creating feed_dict for all encoders
is_train_ph = tf.placeholder_with_default(True, shape=[],
name="is_train_ph")
if FLAGS.model == "attention":
with tf.variable_scope("attention_model", reuse=False):
candidate_scores, model = models.attention_kbc_model(
FLAGS, train_graph, is_train_ph,
(s, nbrs_s, r, candidates, nbrs_candidates)
)
elif FLAGS.model == "source_attention":
with tf.variable_scope("s_attention_model", reuse=False):
candidate_scores, model = models.source_attention_kbc_model(
FLAGS, train_graph, is_train_ph,
(s, nbrs_s, r, candidates)
)
elif FLAGS.model in ["source_rel_attention", "source_path_attention"]:
if FLAGS.clueweb_data:
input_tensors = (s, nbrs_s, text_nbrs_s, text_nbrs_s_emb, r, candidates)
elif FLAGS.text_kg_file:
input_tensors = (s, nbrs_s, text_nbrs_s, r, candidates)
else:
input_tensors = (s, nbrs_s, r, candidates)
with tf.variable_scope("s_attention_model", reuse=False):
candidate_scores, model = models.source_attention_kbc_model(
FLAGS, train_graph, is_train_ph,
input_tensors, model_type=FLAGS.model
)
elif FLAGS.model == "distmult":
with tf.variable_scope("distmult_model", reuse=False):
candidate_scores, model = models.distmult_kbc_model(
FLAGS, train_graph, is_train_ph,
(s, r, candidates)
)
if FLAGS.clueweb_data:
inputs = (s, nbrs_s, text_nbrs_s, text_nbrs_s_emb,
r, candidates, nbrs_candidates)
elif FLAGS.text_kg_file:
inputs = (s, nbrs_s, text_nbrs_s, r, candidates, nbrs_candidates)
else:
inputs = (s, nbrs_s, r, candidates, nbrs_candidates)
return candidate_scores, candidates, labels, model, is_train_ph, inputs
def evaluate():
"""Run evaluation on dev or test data."""
add_inverse_edge = FLAGS.model in \
["source_rel_attention", "source_path_attention"]
if FLAGS.clueweb_data:
train_graph = clueweb_text_graph.CWTextGraph(
text_kg_file=FLAGS.clueweb_data,
embeddings_file=FLAGS.clueweb_embeddings,
sentence_vocab_file=FLAGS.clueweb_sentences,
skip_new=True,
kg_file=FLAGS.kg_file,
add_reverse_graph=not add_inverse_edge,
add_inverse_edge=add_inverse_edge,
subsample=FLAGS.subsample_text_rels
)
elif FLAGS.text_kg_file:
train_graph = text_graph.TextGraph(
text_kg_file=FLAGS.text_kg_file,
skip_new=True,
max_text_len=FLAGS.max_text_len,
max_vocab_size=FLAGS.max_vocab_size,
min_word_freq=FLAGS.min_word_freq,
kg_file=FLAGS.kg_file,
add_reverse_graph=not add_inverse_edge,
add_inverse_edge=add_inverse_edge,
max_path_length=FLAGS.max_path_length
)
else:
train_graph = graph.Graph(
kg_file=FLAGS.kg_file,
add_reverse_graph=not add_inverse_edge,
add_inverse_edge=add_inverse_edge,
max_path_length=FLAGS.max_path_length
)
# train_graph, _ = read_graph_data(
# kg_file=FLAGS.kg_file,
# add_reverse_graph=(FLAGS.model != "source_rel_attention"),
# add_inverse_edge=(FLAGS.model == "source_rel_attention"),
# mode="train", num_epochs=FLAGS.num_epochs, batchsize=FLAGS.batchsize,
# max_neighbors=FLAGS.max_neighbors,
# max_negatives=FLAGS.max_negatives
# )
val_graph = None
if FLAGS.dev_kg_file:
val_graph, eval_data = read_graph_data(
kg_file=FLAGS.dev_kg_file,
add_reverse_graph=not add_inverse_edge,
add_inverse_edge=add_inverse_edge,
# add_reverse_graph=False,
# add_inverse_edge=False,
mode="dev", num_epochs=1, batchsize=FLAGS.test_batchsize,
max_neighbors=FLAGS.max_neighbors,
max_negatives=FLAGS.max_negatives, train_graph=train_graph,
text_kg_file=FLAGS.text_kg_file
)
if FLAGS.test_kg_file:
_, eval_data = read_graph_data(
kg_file=FLAGS.test_kg_file,
add_reverse_graph=not add_inverse_edge,
add_inverse_edge=add_inverse_edge,
# add_reverse_graph=False,
# add_inverse_edge=False,
mode="test", num_epochs=1, batchsize=FLAGS.test_batchsize,
max_neighbors=FLAGS.max_neighbors,
max_negatives=None, train_graph=train_graph,
text_kg_file=FLAGS.text_kg_file,
val_graph=val_graph
)
if not FLAGS.dev_kg_file and not FLAGS.test_kg_file:
raise ValueError("Evalution without a dev or test file!")
iterator = eval_data.dataset.make_initializable_iterator()
candidate_scores, candidates, labels, model, is_train_ph, inputs = \
create_model(train_graph, iterator)
# Create eval metrics
# if FLAGS.dev_kg_file:
batch_rr = metrics.mrr(candidate_scores, candidates, labels)
mrr, mrr_update = tf.metrics.mean(batch_rr)
mrr_summary = tf.summary.scalar("MRR", mrr)
all_hits, all_hits_update, all_hits_summaries = [], [], []
for k in [1, 3, 10]:
batch_hits = metrics.hits_at_k(candidate_scores, candidates, labels, k=k)
hits, hits_update = tf.metrics.mean(batch_hits)
hits_summary = tf.summary.scalar("Hits_at_%d" % k, hits)
all_hits.append(hits)
all_hits_update.append(hits_update)
all_hits_summaries.append(hits_summary)
hits = tf.group(*all_hits)
hits_update = tf.group(*all_hits_update)
global_step = tf.Variable(0, name="global_step", trainable=False)
current_step = tf.Variable(0, name="current_step", trainable=False,
collections=[tf.GraphKeys.LOCAL_VARIABLES])
incr_current_step = tf.assign_add(current_step, 1)
reset_current_step = tf.assign(current_step, 0)
slim.get_or_create_global_step(graph=tf.get_default_graph())
# best_hits = tf.Variable(0., trainable=False)
# best_step = tf.Variable(0, trainable=False)
# with tf.control_dependencies([hits]):
# update_best_hits = tf.cond(tf.greater(hits, best_hits),
# lambda: tf.assign(best_hits, hits),
# lambda: 0.)
# update_best_step = tf.cond(tf.greater(hits, best_hits),
# lambda: tf.assign(best_step, global_step),
# lambda: 0)
# best_hits_summary = tf.summary.scalar("Best Hits@10", best_hits)
# best_step_summary = tf.summary.scalar("Best Step", best_step)
nexamples = eval_data.data_graph.tuple_store.shape[0]
if eval_data.data_graph.add_reverse_graph:
nexamples *= 2
num_batches = math.ceil(nexamples / float(FLAGS.test_batchsize))
local_init_op = tf.local_variables_initializer()
if FLAGS.analyze:
entity_names = utils.read_entity_name_mapping(FLAGS.entity_names_file)
session = tf.Session()
# summary_writer = tf.summary.FileWriter(FLAGS.output_dir, session.graph)
init_op = tf.global_variables_initializer()
session.run(init_op)
session.run(local_init_op)
saver = tf.train.Saver(tf.trainable_variables())
ckpt_path = FLAGS.model_path + "/model.ckpt-%d" % FLAGS.global_step
attention_probs = model["attention_encoder"].get_from_collection(
"attention_probs"
)
if FLAGS.clueweb_data:
s, nbrs_s, text_nbrs_s, text_nbrs_s_emb, r, candidates, _ = inputs
elif FLAGS.text_kg_file:
s, nbrs_s, text_nbrs_s, r, candidates, _ = inputs
else:
s, nbrs_s, r, candidates, _ = inputs
saver.restore(session, ckpt_path)
session.run(iterator.initializer)
num_attention = 5
nsteps = 0
outf_correct = open(FLAGS.output_dir + "/analyze_correct.txt", "w+")
outf_incorrect = open(
FLAGS.output_dir + "/analyze_incorrect.txt", "w+"
)
ncorrect = 0
analyze_outputs = [candidate_scores, s, nbrs_s, r, candidates, labels,
attention_probs]
if FLAGS.text_kg_file:
analyze_outputs.append(text_nbrs_s)
while True:
try:
analyze_vals = session.run(analyze_outputs, {is_train_ph: False})
if FLAGS.text_kg_file:
cscores, se, nbrs, qr, cands, te, nbr_attention_probs, text_nbrs = \
analyze_vals
else:
cscores, se, nbrs, qr, cands, te, nbr_attention_probs = analyze_vals
# import pdb; pdb.set_trace()
pred_ids = cscores.argmax(1)
for i in range(se.shape[0]):
sname = train_graph.inverse_entity_vocab[se[i]]
if sname in entity_names:
sname = entity_names[sname]
rname = train_graph.inverse_relation_vocab[qr[i]]
pred_target = cands[i, pred_ids[i]]
pred_name = train_graph.inverse_entity_vocab[pred_target]
if pred_name in entity_names:
pred_name = entity_names[pred_name]
tname = train_graph.inverse_entity_vocab[te[i][0]]
if tname in entity_names:
tname = entity_names[tname]
if te[i][0] == pred_target:
outf = outf_correct
ncorrect += 1
else:
outf = outf_incorrect
outf.write("\n(%d) %s, %s, ? \t Pred: %s \t Target: %s" %
(nsteps+i+1, sname, rname, pred_name, tname))
top_nbrs_index = np.argsort(nbr_attention_probs[i, :])[::-1]
outf.write("\nTop Nbrs:")
for j in range(num_attention):
nbr_index = top_nbrs_index[j]
if nbr_index < FLAGS.max_neighbors:
nbr_id = nbrs[i, nbr_index, :]
nbr_name = ""
for k in range(0, nbrs.shape[-1], 2):
ent_name = train_graph.inverse_entity_vocab[nbr_id[k+1]]
if ent_name in entity_names:
ent_name = entity_names[ent_name]
rel_name = train_graph.inverse_relation_vocab[nbr_id[k]]
nbr_name += "(%s, %s)" % (rel_name, ent_name)
else:
# Text Relation
text_nbr_ids = text_nbrs[i, nbr_index - FLAGS.max_neighbors, :]
text_nbr_ent = text_nbr_ids[0]
ent_name = train_graph.inverse_entity_vocab[text_nbr_ent]
if ent_name in entity_names:
ent_name = entity_names[ent_name]
rel_name = train_graph.get_relation_text(text_nbr_ids[1:])
nbr_name = "(%s, %s)" % (rel_name, ent_name)
outf.write("\n\t\t %s Prob: %.4f" %
(nbr_name, nbr_attention_probs[i, nbr_index]))
nsteps += se.shape[0]
tf.logging.info("Current hits@1: %.3f", ncorrect * 1.0 / (nsteps))
except tf.errors.OutOfRangeError:
break
outf_correct.close()
outf_incorrect.close()
return
class DataInitHook(tf.train.SessionRunHook):
def after_create_session(self, sess, coord):
sess.run(iterator.initializer)
sess.run(reset_current_step)
if FLAGS.test_only:
ckpt_path = FLAGS.model_path + "/model.ckpt-%d" % FLAGS.global_step
slim.evaluation.evaluate_once(
master=FLAGS.master,
checkpoint_path=ckpt_path,
logdir=FLAGS.output_dir,
variables_to_restore=tf.trainable_variables() + [global_step],
initial_op=tf.group(local_init_op, iterator.initializer),
# initial_op=iterator.initializer,
num_evals=num_batches,
eval_op=tf.group(mrr_update, hits_update, incr_current_step),
eval_op_feed_dict={is_train_ph: False},
final_op=tf.group(mrr, hits),
final_op_feed_dict={is_train_ph: False},
summary_op=tf.summary.merge([mrr_summary]+ all_hits_summaries),
hooks=[DataInitHook(),
tf.train.LoggingTensorHook(
{"mrr": mrr, "hits": hits, "step": current_step},
every_n_iter=1
)]
)
else:
slim.evaluation.evaluation_loop(
master=FLAGS.master,
checkpoint_dir=FLAGS.model_path,
logdir=FLAGS.output_dir,
variables_to_restore=tf.trainable_variables() + [global_step],
initial_op=tf.group(local_init_op, iterator.initializer),
# initial_op=iterator.initializer,
num_evals=num_batches,
eval_op=tf.group(mrr_update, hits_update, incr_current_step),
eval_op_feed_dict={is_train_ph: False},
final_op=tf.group(mrr, hits),
final_op_feed_dict={is_train_ph: False},
summary_op=tf.summary.merge([mrr_summary] + all_hits_summaries),
max_number_of_evaluations=None,
eval_interval_secs=60,
hooks=[DataInitHook(),
tf.train.LoggingTensorHook(
{"mrr": mrr, "hits": hits, "step": current_step},
every_n_iter=1
)]
)
def train():
"""Running the main training loop with given parameters."""
if FLAGS.task == 0 and not tf.gfile.Exists(FLAGS.output_dir):
tf.gfile.MakeDirs(FLAGS.output_dir)
# Read train/dev/test graphs, create datasets and model
add_inverse_edge = FLAGS.model in \
["source_rel_attention", "source_path_attention"]
train_graph, train_data = read_graph_data(
kg_file=FLAGS.kg_file,
add_reverse_graph=not add_inverse_edge,
add_inverse_edge=add_inverse_edge,
mode="train",
num_epochs=FLAGS.num_epochs, batchsize=FLAGS.batchsize,
max_neighbors=FLAGS.max_neighbors,
max_negatives=FLAGS.max_negatives,
text_kg_file=FLAGS.text_kg_file
)
worker_device = "/job:{}".format(FLAGS.brain_job_name)
with tf.device(
tf.train.replica_device_setter(
FLAGS.ps_tasks, worker_device=worker_device)):
iterator = train_data.dataset.make_one_shot_iterator()
candidate_scores, _, labels, model, is_train_ph, _ = create_model(
train_graph, iterator
)
# Create train loss and training op
loss = losses.softmax_crossentropy(logits=candidate_scores, labels=labels)
optimizer = tf.train.AdamOptimizer(learning_rate=FLAGS.learning_rate)
global_step = tf.Variable(0, name="global_step", trainable=False)
train_op = get_train_op(loss, optimizer, FLAGS.grad_clip,
global_step=global_step)
tf.summary.scalar("Loss", loss)
run_options = tf.RunOptions(report_tensor_allocations_upon_oom=True)
session_config = tf.ConfigProto(log_device_placement=True)
# Create tf training session
scaffold = tf.train.Scaffold(saver=tf.train.Saver(max_to_keep=1000))
# ckpt_hook = tf.train.CheckpointSaverHook(
# checkpoint_dir=FLAGS.output_dir, scaffold=scaffold,
# save_steps=FLAGS.save_every
# )
# summary_hook = tf.train.SummarySaverHook(
# save_secs=60, output_dir=FLAGS.output_dir,
# summary_op=tf.summary.merge_all()
# )
session = tf.train.MonitoredTrainingSession(
master=FLAGS.master,
is_chief=(FLAGS.task == 0),
checkpoint_dir=FLAGS.output_dir,
save_checkpoint_steps=FLAGS.save_every,
scaffold=scaffold,
save_summaries_secs=60,
# hooks=[summary_hook],
# chief_only_hooks=[ckpt_hook],
config=session_config
)
# Create embeddings visualization
if FLAGS.task == 0:
utils.save_embedding_vocabs(FLAGS.output_dir, train_graph,
FLAGS.entity_names_file)
pconfig = projector.ProjectorConfig()
add_embedding_to_projector(
pconfig, model["entity_encoder"].embeddings.name.split(":")[0],
os.path.join(FLAGS.output_dir, "entity_vocab.tsv")
)
add_embedding_to_projector(
pconfig, model["relation_encoder"].embeddings.name.split(":")[0],
os.path.join(FLAGS.output_dir, "relation_vocab.tsv")
)
if FLAGS.text_kg_file:
word_embeddings = model["text_encoder"].word_embedding_encoder.embeddings
add_embedding_to_projector(
pconfig, word_embeddings.name.split(":")[0],
os.path.join(FLAGS.output_dir, "word_vocab.tsv")
)
projector.visualize_embeddings(
SummaryWriterCache.get(FLAGS.output_dir), pconfig
)
# Main training loop
running_total_loss = 0.
nsteps = 0
gc.collect()
while True:
try:
current_loss, _, _ = session.run(
[loss, train_op, global_step],
# feed_dict={is_train_ph: True, handle: train_iterator_handle},
feed_dict={is_train_ph: True},
options=run_options
)
nsteps += 1
running_total_loss += current_loss
tf.logging.info("Step %d, loss: %.3f, running avg loss: %.3f",
nsteps, current_loss, running_total_loss / nsteps)
if nsteps %2 == 0:
gc.collect()
except tf.errors.OutOfRangeError:
tf.logging.info("End of Traning Epochs after %d steps", nsteps)
break
def main(argv):
del argv
if FLAGS.test_only or FLAGS.evaluate or FLAGS.analyze:
evaluate()
else:
train()
if __name__ == "__main__":
app.run(main)