forked from tensorflow/neural-structured-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdynamic_normalization_test.py
150 lines (131 loc) · 5.65 KB
/
dynamic_normalization_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for neural_structured_learning.research.carls.dynamic_normalization."""
from research.carls import context
from research.carls import dynamic_memory_ops as dm_ops
from research.carls import dynamic_normalization as dn
from research.carls.testing import test_util
import numpy as np
import tensorflow as tf
class DynamicNormalizationTest(tf.test.TestCase):
def setUp(self):
super(DynamicNormalizationTest, self).setUp()
self._service_server = test_util.start_kbs_server()
self._kbs_address = 'localhost:%d' % self._service_server.port()
context.clear_all_collection()
def tearDown(self):
self._service_server.Terminate()
super(DynamicNormalizationTest, self).tearDown()
def testDynamicndBatchNormalizationConsistency(self):
"""Checks that BatchNormalization falls into a special case of DN."""
batch_size = 2
dm_config = test_util.default_dm_config(
per_cluster_buffer_size=batch_size,
distance_to_cluster_threshold=0.5,
max_num_clusters=1,
bootstrap_steps=0)
inputs = np.array([[1, 2], [3, 4]])
hidden_layer = tf.keras.layers.Dense(
5, activation='relu', kernel_initializer='ones')(
inputs)
batch_norm = tf.keras.layers.BatchNormalization(
axis=1, center=True, scale=True, momentum=0)(
hidden_layer, training=True)
dynamic_norm = dn.DynamicNormalization(
dm_config,
mode=dm_ops.LOOKUP_WITH_UPDATE,
axis=1,
epsilon=0.001,
use_batch_normalization=True,
service_address=self._kbs_address)(
hidden_layer, training=True)
self.assertAllClose(batch_norm.numpy(), dynamic_norm.numpy())
def testKerasModel(self):
"""Tests the tf.keras interface."""
dm_config = test_util.default_dm_config(
per_cluster_buffer_size=1,
distance_to_cluster_threshold=0.5,
max_num_clusters=1,
bootstrap_steps=0)
model = tf.keras.Sequential([
tf.keras.Input(shape=(2,), name='inputs'),
tf.keras.layers.Dense(4),
dn.DynamicNormalization(
dm_config,
mode=dm_ops.LOOKUP_WITH_UPDATE,
axis=1,
epsilon=0.1,
use_batch_normalization=True,
service_address=self._kbs_address),
tf.keras.layers.Dense(1)
])
model.compile(optimizer='sgd', loss='mse')
x_train = np.array([[1, 0], [0, 1], [1, 1], [0, 0]])
y_train = np.array([1, 1, 0, 0])
model.fit(x_train, y_train, epochs=10)
def testTrainingLogistic(self):
"""Trains two logistic regression models with two normalizations."""
dm_config = test_util.default_dm_config(
per_cluster_buffer_size=500,
distance_to_cluster_threshold=0.9,
max_num_clusters=1,
bootstrap_steps=10)
x = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1],
[1, 0, 1, 0], [0, 1, 0, 1]])
y = np.array([[1], [1], [1], [1], [0], [0]]) # 0/1 label
mode = tf.constant(dm_ops.LOOKUP_WITH_UPDATE, dtype=tf.int32)
def _create_model(enable_dynamic_normalization: bool):
hidden_layer = tf.keras.layers.Dense(5, activation='relu')
if enable_dynamic_normalization:
normalized_layer = dn.DynamicNormalization(
dm_config,
mode=mode,
axis=1,
epsilon=0.001,
use_batch_normalization=False,
service_address=self._kbs_address)
else:
normalized_layer = tf.keras.layers.BatchNormalization(
axis=1, center=True, scale=True, momentum=0)
output_layer = tf.keras.layers.Dense(1, kernel_initializer='ones')
model = tf.keras.Sequential(
[hidden_layer, normalized_layer, output_layer])
return model
def _loss(model, x, y):
output = model(x)
pred = 1 / (1 + tf.exp(-output))
loss = y * tf.math.log(pred) + (1 - y) * tf.math.log(1 - pred)
loss = tf.reduce_mean(-tf.math.reduce_sum(loss, axis=1))
return loss
def _grad(model, x, y):
with tf.GradientTape() as tape:
loss_value = _loss(model, x, y)
return loss_value, tape.gradient(loss_value, model.trainable_variables)
bn_model = _create_model(False) # Model with batch normalization.
dn_model = _create_model(True) # Model with dynamic normalization.
optimizer = tf.keras.optimizers.SGD(learning_rate=0.01)
for i in range(100):
bn_loss_value, bn_grads = _grad(bn_model, x, y)
dn_loss_value, dn_grads = _grad(dn_model, x, y)
print('Step: {}, BN loss: {}, DN loss: {}'.format(i,
bn_loss_value.numpy(),
dn_loss_value.numpy()))
# Update the trainable variables w.r.t. the logistic loss
optimizer.apply_gradients(zip(bn_grads, bn_model.trainable_variables))
optimizer.apply_gradients(zip(dn_grads, dn_model.trainable_variables))
# Checks that DynamicNormalization consistently outperforms
# BatchNormalization in terms of finding lower loss.
self.assertGreater(bn_loss_value.numpy(), dn_loss_value.numpy())
if __name__ == '__main__':
tf.test.main()