forked from tensorflow/neural-structured-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathio_ops_test.py
112 lines (96 loc) · 4.4 KB
/
io_ops_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from absl import flags
from research.carls import context
from research.carls import dynamic_embedding_ops as de_ops
from research.carls import io_ops
from research.carls.testing import test_util
import tensorflow as tf
FLAGS = flags.FLAGS
class IoOpsTest(tf.test.TestCase):
def setUp(self):
super(IoOpsTest, self).setUp()
self._config = test_util.default_de_config(2)
self._service_server = test_util.start_kbs_server()
self._kbs_address = 'localhost:%d' % self._service_server.port()
context.clear_all_collection()
def tearDown(self):
self._service_server.Terminate()
super(IoOpsTest, self).tearDown()
def test_save_knowledge_bank(self):
# Adds an embedding with values [4, 5].
pattern1 = (
FLAGS.test_tmpdir + '/knowledge_bank_data_[0-9]+_[0-9]+_[0-9]+' +
'/emb1/embedding_store_meta_data.pbtxt')
de_ops.dynamic_embedding_update(['first'],
tf.constant([4.0, 5.0]),
self._config,
'emb1',
service_address=self._kbs_address)
saved_paths = io_ops.save_knowledge_bank(FLAGS.test_tmpdir,
self._kbs_address)
self.assertLen(saved_paths, 1)
self.assertRegex(saved_paths[0].numpy()[0].decode(), pattern1)
# Add another embedding data.
pattern2 = (
FLAGS.test_tmpdir + '/knowledge_bank_data_[0-9]+_[0-9]+_[0-9]+' +
'/emb2/embedding_store_meta_data.pbtxt')
de_ops.dynamic_embedding_update(['first'],
tf.constant([5.0, 6.0]),
self._config,
'emb2',
service_address=self._kbs_address)
saved_paths = io_ops.save_knowledge_bank(FLAGS.test_tmpdir,
self._kbs_address)
self.assertLen(saved_paths, 2)
self.assertRegex(saved_paths[0].numpy()[0].decode(), pattern1)
self.assertRegex(saved_paths[1].numpy()[0].decode(), pattern2)
# Only save selected embedding.
new_saved_paths = io_ops.save_knowledge_bank(
FLAGS.test_tmpdir, self._kbs_address, var_names=['emb2'])
self.assertLen(new_saved_paths, 1)
self.assertRegex(new_saved_paths[0].numpy()[0].decode(), pattern2)
self.assertNotEqual(new_saved_paths[0].numpy()[0],
saved_paths[0].numpy()[0])
def test_restore_knowledge_bank(self):
de_ops.dynamic_embedding_update(['first'],
tf.constant([4.0, 5.0]),
self._config,
'emb',
service_address=self._kbs_address)
saved_paths = io_ops.save_knowledge_bank(FLAGS.test_tmpdir,
self._kbs_address)
self.assertLen(saved_paths, 1)
# Now updates the embedding value.
de_ops.dynamic_embedding_update(['first'],
tf.constant([10.0, 20.0]),
self._config,
'emb',
service_address=self._kbs_address)
# Checks it is updated.
embedding = de_ops.dynamic_embedding_lookup(
['first'], self._config, 'emb', service_address=self._kbs_address)
self.assertAllClose(embedding.numpy(), [[10.0, 20.0]])
# Now restore the knowledge bank.
io_ops.restore_knowledge_bank(
self._config,
'emb',
saved_paths[0].numpy()[0],
service_address=self._kbs_address)
# Checks it is restored.
embedding = de_ops.dynamic_embedding_lookup(
['first'], self._config, 'emb', service_address=self._kbs_address)
self.assertAllClose(embedding.numpy(), [[4.0, 5.0]])
if __name__ == '__main__':
tf.test.main()