Skip to content

Commit 19aecd1

Browse files
committed
Fix tests and such
1 parent 4033a9d commit 19aecd1

9 files changed

+20
-297
lines changed

src/Classifiers/LogisticRegression.php

+3-3
Original file line numberDiff line numberDiff line change
@@ -108,9 +108,9 @@ class LogisticRegression implements Estimator, Learner, Online, Probabilistic, R
108108
/**
109109
* The underlying neural network instance.
110110
*
111-
* @var \Rubix\ML\NeuralNet\Network|null
111+
* @var Network|null
112112
*/
113-
protected ?\Rubix\ML\NeuralNet\Network $network = null;
113+
protected ?Network $network = null;
114114

115115
/**
116116
* The unique class labels.
@@ -267,7 +267,7 @@ public function losses() : ?array
267267
/**
268268
* Return the underlying neural network instance or null if not trained.
269269
*
270-
* @return \Rubix\ML\NeuralNet\Network|null
270+
* @return Network|null
271271
*/
272272
public function network() : ?Network
273273
{

src/Classifiers/MultilayerPerceptron.php

+3-8
Original file line numberDiff line numberDiff line change
@@ -139,9 +139,9 @@ class MultilayerPerceptron implements Estimator, Learner, Online, Probabilistic,
139139
/**
140140
* The underlying neural network instance.
141141
*
142-
* @var \Rubix\ML\NeuralNet\Network|null
142+
* @var Network|null
143143
*/
144-
protected ?\Rubix\ML\NeuralNet\Network $network = null;
144+
protected ?Network $network = null;
145145

146146
/**
147147
* The unique class labels.
@@ -167,12 +167,7 @@ class MultilayerPerceptron implements Estimator, Learner, Online, Probabilistic,
167167
/**
168168
* @param \Rubix\ML\NeuralNet\Layers\Hidden[] $hiddenLayers
169169
* @param int $batchSize
170-
<<<<<<< HEAD
171-
* @param \Rubix\ML\NeuralNet\Optimizers\Optimizer|null $optimizer
172-
=======
173170
* @param Optimizer|null $optimizer
174-
* @param float $l2Penalty
175-
>>>>>>> 2.5
176171
* @param int $epochs
177172
* @param float $minChange
178173
* @param int $evalInterval
@@ -349,7 +344,7 @@ public function losses() : ?array
349344
/**
350345
* Return the underlying neural network instance or null if not trained.
351346
*
352-
* @return \Rubix\ML\NeuralNet\Network|null
347+
* @return Network|null
353348
*/
354349
public function network() : ?Network
355350
{

src/Classifiers/SoftmaxClassifier.php

+3-3
Original file line numberDiff line numberDiff line change
@@ -104,9 +104,9 @@ class SoftmaxClassifier implements Estimator, Learner, Online, Probabilistic, Ve
104104
/**
105105
* The underlying neural network instance.
106106
*
107-
* @var \Rubix\ML\NeuralNet\Network|null
107+
* @var Network|null
108108
*/
109-
protected ?\Rubix\ML\NeuralNet\Network $network = null;
109+
protected ?Network $network = null;
110110

111111
/**
112112
* The unique class labels.
@@ -263,7 +263,7 @@ public function losses() : ?array
263263
/**
264264
* Return the underlying neural network instance or null if not trained.
265265
*
266-
* @return \Rubix\ML\NeuralNet\Network|null
266+
* @return Network|null
267267
*/
268268
public function network() : ?Network
269269
{

src/NeuralNet/FeedForward.php

-271
This file was deleted.

src/NeuralNet/Network.php

+3-3
Original file line numberDiff line numberDiff line change
@@ -34,7 +34,7 @@ class Network
3434
*
3535
* @var Input
3636
*/
37-
protected \Rubix\ML\NeuralNet\Layers\Input $input;
37+
protected Input $input;
3838

3939
/**
4040
* The hidden layers of the network.
@@ -59,14 +59,14 @@ class Network
5959
*
6060
* @var Output
6161
*/
62-
protected \Rubix\ML\NeuralNet\Layers\Output $output;
62+
protected Output $output;
6363

6464
/**
6565
* The gradient descent optimizer used to train the network.
6666
*
6767
* @var Optimizer
6868
*/
69-
protected \Rubix\ML\NeuralNet\Optimizers\Optimizer $optimizer;
69+
protected Optimizer $optimizer;
7070

7171
/**
7272
* @param Input $input

src/Regressors/Adaline.php

+3-3
Original file line numberDiff line numberDiff line change
@@ -109,9 +109,9 @@ class Adaline implements Estimator, Learner, Online, RanksFeatures, Verbose, Per
109109
/**
110110
* The underlying neural network instance.
111111
*
112-
* @var \Rubix\ML\NeuralNet\Network|null
112+
* @var Network|null
113113
*/
114-
protected ?\Rubix\ML\NeuralNet\Network $network = null;
114+
protected ?Network $network = null;
115115

116116
/**
117117
* The loss at each epoch from the last training session.
@@ -261,7 +261,7 @@ public function losses() : ?array
261261
/**
262262
* Return the underlying neural network instance or null if not trained.
263263
*
264-
* @return \Rubix\ML\NeuralNet\Network|null
264+
* @return Network|null
265265
*/
266266
public function network() : ?Network
267267
{

0 commit comments

Comments
 (0)