-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_tta.py
145 lines (128 loc) · 4.52 KB
/
eval_tta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2020/4/16 8:25 上午
# @Author : RuisongZhou
# @Mail : [email protected]
"""EVALUATION
Created: Nov 22,2019 - Yuchong Gu
Revised: Dec 03,2019 - Yuchong Gu
"""
import os, sys
import logging
import warnings
from torch.utils.data import DataLoader
from tqdm import tqdm
import numpy as np
from config import Config
from models import *
from dataset.dataset import FGVC7Data
from utils.utils import TopKAccuracyMetric, batch_augment, get_transform
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--datasets', default='./data/', help='Train Dataset directory path')
parser.add_argument('--net', default='inception_mixed_6e', help='Choose net to use')
args = parser.parse_args()
config = Config()
config.net = args.net
config.refresh()
# GPU settings
assert torch.cuda.is_available()
os.environ['CUDA_VISIBLE_DEVICES'] = config.GPU
device = torch.device("cuda")
torch.backends.cudnn.benchmark = True
def choose_net(name: str):
if len(name) == 2 and name[0] == 'b':
model = efficientnet(size=name)
elif name.lower() == 'seresnext50':
model = se_resnext50()
elif name.lower() == 'seresnext101':
model = se_resnext101()
elif name.lower() == 'resnest101':
model = Resnest101()
elif name.lower() == 'resnest200':
model = Resnest200()
elif name.lower() == 'resnest269':
model = Resnest269()
elif name.lower() == 'densenet121':
model = DenseNet121()
else:
logging.fatal("The net type is wrong.")
parser.print_help(sys.stderr)
sys.exit(1)
return model
def main():
logging.basicConfig(
format='%(asctime)s: %(levelname)s: [%(filename)s:%(lineno)d]: %(message)s',
level=logging.INFO)
warnings.filterwarnings("ignore")
try:
ckpt = config.eval_ckpt
except:
logging.info('Set ckpt for evaluation in config.py')
return
##################################
# Dataset for testing
##################################
test_dataset = FGVC7Data(root=args.datasets, phase='test',
transform=get_transform(config.image_size, 'tta')[0])
import pandas as pd
sample_submission = pd.read_csv(os.path.join(args.datasets, 'sample_submission.csv'))
##################################
# Initialize model
##################################
net = choose_net(args.net)
# Load ckpt and get state_dict
checkpoint = torch.load(ckpt)
state_dict = checkpoint['state_dict']
# Load weights
net.load_state_dict(state_dict)
logging.info('Network loaded from {}'.format(ckpt))
##################################
# use cuda
##################################
net.to(device)
if torch.cuda.device_count() > 1:
net = nn.DataParallel(net)
results = []
for index in range(3):
test_dataset.set_transform(get_transform([config.image_size[0], config.image_size[1]], 'tta')[index])
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False, pin_memory=True)
net.eval()
result = []
with torch.no_grad():
pbar = tqdm(total=len(test_loader), unit='batches')
pbar.set_description('Validation TTA {}'.format(index))
for i, input in enumerate(test_loader):
X, _ = input
X = X.to(device)
y_pred, y_metric = net(X)
# 处理结果
y_pred = F.softmax(y_pred, dim=1).cpu().numpy()
result.append(y_pred)
batch_info = 'Val step {}'.format((i + 1))
pbar.update()
pbar.set_postfix_str(batch_info)
pbar.close()
results.append(result)
healthy = []
multiple_disease = []
rust = []
scab = []
for i in tqdm(range(len(results[0]))):
h_ans, m_ans, r_ans, s_ans = 0,0,0,0
for k in range(len(results)):
h_ans += results[k][i][0][0]
m_ans += results[k][i][0][1]
r_ans += results[k][i][0][2]
s_ans += results[k][i][0][3]
healthy.append(h_ans/len(results))
multiple_disease.append(m_ans/len(results))
rust.append(r_ans/len(results))
scab.append(s_ans/len(results))
sample_submission['healthy'] = healthy
sample_submission['multiple_diseases'] = multiple_disease
sample_submission['rust'] = rust
sample_submission['scab'] = scab
sample_submission.to_csv('submission.csv', index=False)
if __name__ == '__main__':
main()