-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
436 lines (333 loc) · 18.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 28 09:36:05 2019
@author: farismismar
"""
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID";
# The GPU id to use, usually either "0" or "1";
os.environ["CUDA_VISIBLE_DEVICES"]="0"; # My NVIDIA GTX 1080 Ti FE GPU
from keras import backend as K
import random
import numpy as np
from colorama import Fore, Back, Style
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.ticker as tick
from environment import radio_environment
from DQNLearningAgent import DQNLearningAgent as QLearner # Deep with GPU and CPU fallback
MAX_EPISODES_DEEP = 1500
MAX_EPISODES_OPTIMAL = 500
# Succ:
os.chdir('/Users/farismismar/Desktop/deep')
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
def run_agent_optimal(env, plotting=True):
max_episodes_to_run = MAX_EPISODES_OPTIMAL
max_timesteps_per_episode = radio_frame
print('Ep. | TS | Recv. SINR (srv) | Recv. SINR (int) | Serv. Tx Pwr | Int. Tx Pwr')
print('--'*54)
# Implement the Q-learning algorithm
for episode_index in 1 + np.arange(max_episodes_to_run):
observation = env.reset()
# observation = np.reshape(observation, [1, agent._state_size])
(_, _, _, _, pt_serving, pt_interferer, _, _) = observation
action = -1
sinr_progress = [] # needed for the SINR based on the episode.
sinr_ue2_progress = [] # needed for the SINR based on the episode.
serving_tx_power_progress = []
interfering_tx_power_progress = []
# Let us know how we did.
for timestep_index in 1 + np.arange(max_timesteps_per_episode):
# Take a step
next_observation, reward, done, abort = env.step(action)
(x_ue_1, y_ue_1, x_ue_2, y_ue_2, pt_serving, pt_interferer, _, _) = next_observation
# This environment step above will not do anything, besides moving the UEs around
# so here is the work:
# Exhaustive search across all sets...
# pt_serving_orig = pt_serving
# pt_interferer_orig = pt_interferer
max_sinr = -np.inf
max_sinr_ue1_sinr = -np.inf
max_sinr_ue2_sinr = -np.inf
for bs1_index in np.arange(env.M_ULA*env.k_oversample):
env.f_n_bs1 = bs1_index
for bs2_index in np.arange(env.M_ULA*env.k_oversample):
env.f_n_bs2 = bs2_index
for pc_1 in [-1, 1]:
pt_serving_candidate = pt_serving * 10 ** (pc_1/10.)
for pc_2 in [-1, 1]:
pt_int_candidate = pt_interferer * 10 ** (pc_2/10.)
received_power, interference_power, received_sinr = env._compute_rf(x_ue_1, y_ue_1, pt_serving_candidate, pt_int_candidate, is_ue_2=False)
received_power_ue2, interference_power_ue2, received_ue2_sinr = env._compute_rf(x_ue_2, y_ue_2, pt_serving_candidate, pt_int_candidate, is_ue_2=True)
if (received_sinr + received_ue2_sinr > max_sinr): # dB
max_sinr = received_sinr + received_ue2_sinr
max_sinr_ue1_sinr = received_sinr
max_sinr_ue2_sinr = received_ue2_sinr
# print('Current max SINR product is: {:.2f} dB'.format(max_sinr))
# env.received_sinr_dB = received_sinr
# env.received_ue2_sinr_dB = received_ue2_sinr
pt_serving = pt_serving_candidate
pt_interferer = pt_int_candidate
# solution is found. Use it
received_sinr = max_sinr_ue1_sinr
received_ue2_sinr = max_sinr_ue2_sinr
# Let us know how we did.
print('{}/{} | {} | {:.2f} dB | {:.2f} dB | {:.2f} W | {:.2f} W'.format(episode_index, max_episodes_to_run,
timestep_index,
received_sinr, received_ue2_sinr,
pt_serving, pt_interferer))
abort = (pt_serving > env.max_tx_power) or (pt_interferer > env.max_tx_power_interference) or (received_sinr < env.min_sinr) or (received_ue2_sinr < env.min_sinr) \
or (received_sinr > 70) or (received_ue2_sinr > 70) or (received_sinr < 10) or (received_ue2_sinr < 10) or (max_sinr < 0) # an extra condition
if abort:
break
# Record all in dB/dBm
sinr_progress.append(received_sinr)
sinr_ue2_progress.append(received_ue2_sinr)
serving_tx_power_progress.append(10*np.log10(pt_serving*1e3))
interfering_tx_power_progress.append(10*np.log10(pt_interferer*1e3))
done = (pt_serving <= env.max_tx_power) and (pt_serving >= 0) and (pt_interferer <= env.max_tx_power_interference) and (pt_interferer >= 0) and \
(received_sinr >= env.min_sinr) and (received_ue2_sinr >= env.min_sinr) and (received_sinr >= env.sinr_target) and (received_ue2_sinr >= env.sinr_target)
successful = (done == True) and (timestep_index > max_timesteps_per_episode - 1)
if successful:
print(Fore.GREEN + 'SUCCESS.')
print(Style.RESET_ALL)
else:
print(Fore.RED + 'FAILED TO REACH TARGET.')
print(Style.RESET_ALL)
# Plot the episode...
if (plotting and successful):
plot_measurements(sinr_progress, sinr_ue2_progress, serving_tx_power_progress, interfering_tx_power_progress, max_timesteps_per_episode, episode_index, episode_index)
def run_agent_deep(env, plotting=True):
max_episodes_to_run = MAX_EPISODES_DEEP # needed to ensure epsilon decays to min
max_timesteps_per_episode = radio_frame
successful = False
episode_successful = [] # a list to save the good episodes
Q_values = []
losses = []
batch_size = 32
max_episode = -1
max_reward = -np.inf
print('Ep. | TS | Recv. SINR (srv) | Recv. SINR (int) | Serv. Tx Pwr | Int. Tx Pwr | Reward ')
print('--'*54)
# Implement the Q-learning algorithm
for episode_index in 1 + np.arange(max_episodes_to_run):
observation = env.reset()
# observation = np.reshape(observation, [1, agent._state_size])
(_, _, _, _, pt_serving, pt_interferer, _, _) = observation
action = agent.begin_episode(observation)
# Let us know how we did.
print('{}/{} | {:.2f} | {} | {:.2f} dB | {:.2f} dB | {:.2f} W | {:.2f} W | {:.2f} | {} '.format(episode_index, max_episodes_to_run,
agent.exploration_rate,
0,
np.nan,
np.nan,
pt_serving, pt_interferer,
0, action))
total_reward = 0
done = False
actions = [action]
sinr_progress = [] # needed for the SINR based on the episode.
sinr_ue2_progress = [] # needed for the SINR based on the episode.
serving_tx_power_progress = []
interfering_tx_power_progress = []
episode_loss = []
episode_q = []
for timestep_index in 1 + np.arange(max_timesteps_per_episode):
# Take a step
next_observation, reward, done, abort = env.step(action)
(_, _, _, _, pt_serving, pt_interferer, _, _) = next_observation
received_sinr = env.received_sinr_dB
received_ue2_sinr = env.received_ue2_sinr_dB
# next_observation = np.reshape(next_observation, [1, agent._state_size])
# Remember the previous state, action, reward, and done
agent.remember(observation, action, reward, next_observation, done)
# Sample replay batch from memory
sample_size = min(len(agent.memory), batch_size)
# Learn control policy
loss, q = agent.replay(sample_size)
episode_loss.append(loss)
episode_q.append(q)
# make next_state the new current state for the next frame.
observation = next_observation
total_reward += reward
successful = done and (total_reward > 0) and (abort == False)
# Let us know how we did.
print('{}/{} | {:.2f} | {} | {:.2f} dB | {:.2f} dB | {:.2f} W | {:.2f} W | {:.2f} | {} | '.format(episode_index, max_episodes_to_run,
agent.exploration_rate,
timestep_index,
received_sinr,
received_ue2_sinr,
pt_serving, pt_interferer,
total_reward, action), end='')
actions.append(action)
sinr_progress.append(env.received_sinr_dB)
sinr_ue2_progress.append(env.received_ue2_sinr_dB)
serving_tx_power_progress.append(env.serving_transmit_power_dBm)
interfering_tx_power_progress.append(env.interfering_transmit_power_dBm)
if abort == True:
print('ABORTED.')
break
else:
print()
# Update for the next time step
action = agent.act(observation)
# at the level of the episode end
loss_z = np.mean(episode_loss)
q_z = np.mean(episode_q)
if (successful == True) and (abort == False):
#reward = env.reward_max
#total_reward += reward
print(Fore.GREEN + 'SUCCESS. Total reward = {}. Loss = {}.'.format(total_reward, loss_z))
print(Style.RESET_ALL)
if (total_reward > max_reward):
max_reward, max_episode = total_reward, episode_index
else:
reward = 0
print(Fore.RED + 'FAILED TO REACH TARGET.')
print(Style.RESET_ALL)
losses.append(loss_z)
Q_values.append(q_z)
if (successful):
episode_successful.append(episode_index)
# print('SINR progress')
# print(sinr_progress)
# print('Serving BS transmit power progress')
# print(serving_tx_power_progress)
# print('Interfering BS transmit power progress')
# print(interfering_tx_power_progress)
# Plot the episode...
if (plotting and successful):
plot_measurements(sinr_progress, sinr_ue2_progress, serving_tx_power_progress, interfering_tx_power_progress, max_timesteps_per_episode, episode_index, episode_index)
plot_actions(actions, max_timesteps_per_episode, episode_index, episode_index)
plot_performance_function_deep(losses, episode_index, is_loss=True)
plot_performance_function_deep(Q_values, episode_index, is_loss=False)
#if (episode_index > 100*env.M_ULA):
# break
optimal = 'Episode {}/{} generated the highest reward {}.'.format(max_episode, MAX_EPISODES_DEEP, max_reward)
print(optimal)
# Store all values in files
filename = 'figures/optimal_{}.txt'.format(seed)
file = open(filename, 'w')
file.write(optimal)
file.close()
agent.save('deep_rl.model')
if (len(episode_successful) == 0):
print("Goal cannot be reached after {} episodes. Try to increase maximum episodes.".format(max_episodes_to_run))
def plot_performance_function_deep(values, episode_count, is_loss=False):
return
# print(values)
title = r'\bf Average $Q$' if not is_loss else r'\bf Episode Loss'
y_label = 'Expected Action-Value $Q$' if not is_loss else r'\bf Expected Loss'
filename = 'q_function' if not is_loss else 'losses'
fig = plt.figure(figsize=(8,5))
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
matplotlib.rcParams['text.usetex'] = True
matplotlib.rcParams['font.size'] = 16
matplotlib.rcParams['text.latex.preamble'] = [
r'\usepackage{amsmath}',
r'\usepackage{amssymb}']
plt.title(title)
plt.xlabel('Episode')
plt.ylabel(y_label)
# plt.step(episodes, values, color='k')
plt.plot(1 + np.arange(episode_count), values, linestyle='-', color='k')
# plt.plot(values, linestyle='-', color='k')
plt.grid(True)
plt.tight_layout()
plt.savefig('figures/{}_{}_seed{}.pdf'.format(filename, episode_count,seed), format="pdf")
# Store all values in files
file = open('figures/{}_{}_seed{}.txt'.format(filename, episode_count,seed), 'w')
file.write('values: {}'.format(values))
file.close()
# plt.show(block=True)
plt.close(fig)
def plot_measurements(sinr_progress, sinr_ue2_progress, serving_tx_power_progress, interfering_tx_power_progress, max_timesteps_per_episode, episode_index, max_episodes_to_run):
# Do some nice plotting here
#ig = plt.figure(figsize=(8,5))
#plt.rc('text', usetex=True)
#plt.rc('font', family='serif')
#matplotlib.rcParams['text.usetex'] = True
#matplotlib.rcParams['font.size'] = 16
#matplotlib.rcParams['text.latex.preamble'] = [
# r'\usepackage{amsmath}',
# r'\usepackage{amssymb}']
#plt.xlabel('Transmit Time Interval (1 ms)')
# Only integers
#ax = fig.gca()
#ax.xaxis.set_major_formatter(tick.FormatStrFormatter('%0g'))
#ax.xaxis.set_ticks(np.arange(0, max_timesteps_per_episode))
#ax_sec = ax.twinx()
#ax.set_autoscaley_on(False)
#ax_sec.set_autoscaley_on(False)
#ax.plot(sinr_progress, marker='o', color='b', label='SINR for UE 0')
#ax.plot(sinr_ue2_progress, marker='*', color='m', label='SINR for UE 2')
#ax_sec.plot(serving_tx_power_progress, linestyle='--', color='k', label='Serving BS')
#ax_sec.plot(interfering_tx_power_progress, linestyle='--', color='c', label='Interfering BS')
# ax.set_xlim(xmin=0, xmax=max_timesteps_per_episode - 1)
#ax.axhline(y=env.min_sinr, xmin=0, color="red", linewidth=1.5, label='SINR min')
# ax.axhline(y=env.sinr_target, xmin=0, color="green", linewidth=1.5, label='SINR target')
#ax.set_ylabel('DL Received SINR (dB)')
#ax_sec.set_ylabel('BS Transmit Power (dBm)')
#max_sinr = max(max(sinr_progress), max(sinr_ue2_progress))
#ax.set_ylim(env.min_sinr - 1, max_sinr + 1)
#ax_sec.set_ylim(0, np.ceil(10*np.log10(1e3 * max(env.max_tx_power_interference, env.max_tx_power))))
#ax.legend(loc="lower left")
#ax_sec.legend(loc='upper right')
# plt.title('Episode {0} / {1} ($\epsilon = {2:0.3}$)'.format(episode_index, max_episodes_to_run, agent.exploration_rate))
# plt.grid(True)
# plt.tight_layout()
# Store all values in files
filename = 'figures/measurements_{}_seed{}.txt'.format(episode_index,seed)
file = open(filename, 'w')
file.write('sinr_progress: {}'.format(sinr_progress))
file.write('sinr_ue2_progress: {}'.format(sinr_ue2_progress))
file.write('serving_tx_power: {}'.format(serving_tx_power_progress))
file.write('interf_tx_power: {}'.format(interfering_tx_power_progress))
file.close()
#plt.savefig('figures/measurements_episode_{}_seed{}.pdf'.format(episode_index,seed), format="pdf")
# plt.show(block=True)
#plt.close(fig)
def plot_actions(actions, max_timesteps_per_episode, episode_index, max_episodes_to_run):
return
fig = plt.figure(figsize=(8,5))
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
plt.xlabel('Transmit Time Interval (1 ms)')
plt.ylabel('Action Transition')
# Only integers
ax = fig.gca()
ax.xaxis.set_major_formatter(tick.FormatStrFormatter('%0g'))
ax.xaxis.set_ticks(np.arange(0, max_timesteps_per_episode))
ax.set_xlim(xmin=0, xmax=max_timesteps_per_episode-1)
ax.set_autoscaley_on(False)
ax.set_ylim(-1,env.num_actions)
#plt.title('Episode {0} / {1} ($\epsilon = {2:0.3}$)'.format(episode_index, max_episodes_to_run, agent.exploration_rate))
plt.grid(True)
plt.tight_layout()
# Store all values in files
filename = 'figures/actions_{}.txt'.format(episode_index)
file = open(filename, 'w')
file.write('actions: {}'.format(actions))
file.close()
plt.step(np.arange(len(actions)), actions, color='b', label='Actions')
plt.savefig('figures/actions_episode_{}_seed{}.pdf'.format(episode_index, seed), format="pdf")
# plt.show(block=True)
plt.close(fig)
return
########################################################################################
radio_frame = 10
#seeds = np.arange(1200).astype(int).tolist()
seeds = [255] # for optimal: max reward [4,8,16,32,64] = [408, 1160, 813, 631, 945 ] for least 4,8,16,32,64 = [255, 949, 761, 239|781, 1151]
for seed in seeds:
print('Now running seed: {}'.format(seed))
random.seed(seed)
np.random.seed(seed)
env = radio_environment(seed=seed)
run_agent_optimal(env)
# agent = QLearner(seed=seed) # only for the deep
# run_agent_deep(env)
# K.clear_session() # free up GPU memory
# del agent
########################################################################################