-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathteco.py
382 lines (326 loc) · 16 KB
/
teco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
'''
Detecting Backdoors During the Inference Stage Based on Corruption Robustness Consistency
This file is modified based on the following source:
link : https://github.com/CGCL-codes/TeCo/blob/main/BackdoorBench-v1.0-merge/defense/teco/teco.py
@inproceedings{liu2023detecting,
title={Detecting Backdoors During the Inference Stage Based on Corruption Robustness Consistency},
author={Liu, Xiaogeng and Li, Minghui and Wang, Haoyu and Hu, Shengshan and Ye, Dengpan and Jin, Hai and Wu, Libing and Xiao, Chaowei},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={16363--16372},
year={2023}}
This file implements the (detection) defense method called TeCo (ft), which detects trigger samples during the inference stage based on corruption robustness consistency.
basic sturcture for defense method:
1. basic setting: args
2. attack result(model, train data, test data)
3. TeCo detection:
a. use image corruption
b. get the hard-label output of backdoor-infected model (CRC test)
4. use deviation for trigger sample detection
5. Record a seirse of thresholds, TPRs and FPRs. Besides, the auc also be recorded.
'''
import argparse
import os,sys
import numpy as np
import torch
import torch.nn as nn
sys.path.append('../')
sys.path.append(os.getcwd())
from pprint import pformat
import yaml
import logging
import time
from typing import Any, Dict, List, Optional, Tuple, TYPE_CHECKING
from defense.base import defense
import scipy
from utils.aggregate_block.train_settings_generate import argparser_criterion, argparser_opt_scheduler
from utils.trainer_cls import PureCleanModelTrainer
from utils.aggregate_block.fix_random import fix_random
from utils.aggregate_block.model_trainer_generate import generate_cls_model
from utils.log_assist import get_git_info
from utils.aggregate_block.dataset_and_transform_generate import get_input_shape, get_num_classes, get_transform
from utils.save_load_attack import load_attack_result, save_defense_result
from utils.nCHW_nHWC import *
import tqdm
import heapq
from PIL import Image
from utils.bd_dataset_v2 import dataset_wrapper_with_transform,xy_iter, prepro_cls_DatasetBD_v2
from utils.trainer_cls import Metric_Aggregator, PureCleanModelTrainer, all_acc, general_plot_for_epoch, given_dataloader_test
from collections import Counter
import copy
from torch.utils.data import DataLoader
from sklearn.metrics import confusion_matrix
import random
import csv
from sklearn import metrics
from imagecorruptions import corrupt
from sklearn.metrics import auc
class teco(defense):
def __init__(self,args):
with open(args.yaml_path, 'r') as f:
defaults = yaml.safe_load(f)
defaults.update({k:v for k,v in args.__dict__.items() if v is not None})
args.__dict__ = defaults
args.terminal_info = sys.argv
args.num_classes = get_num_classes(args.dataset)
args.input_height, args.input_width, args.input_channel = get_input_shape(args.dataset)
args.img_size = (args.input_height, args.input_width, args.input_channel)
args.dataset_path = f"{args.dataset_path}/{args.dataset}"
self.args = args
if 'result_file' in args.__dict__ :
if args.result_file is not None:
self.set_result(args.result_file)
def add_arguments(parser):
parser.add_argument('--device', type=str, help='cuda, cpu')
parser.add_argument('--checkpoint_load', type=str)
parser.add_argument('--checkpoint_save', type=str)
parser.add_argument('--log', type=str)
parser.add_argument("--data_root", type=str)
parser.add_argument('--dataset', type=str, help='mnist, cifar10, gtsrb, celeba, tiny')
parser.add_argument("--num_classes", type=int)
parser.add_argument("--input_height", type=int)
parser.add_argument("--input_width", type=int)
parser.add_argument("--input_channel", type=int)
parser.add_argument('--epochs', type=int)
parser.add_argument('--batch_size', type=int)
parser.add_argument("--num_workers", type=float)
parser.add_argument('--model', type=str, help='resnet18')
parser.add_argument('--seed', type=str, help='random seed')
parser.add_argument('--index', type=str, help='index of clean data')
parser.add_argument('--result_file', type=str, help='the location of result')
parser.add_argument('--yaml_path', type=str, default="./config/detection/teco/cifar10.yaml", help='the path of yaml')
# dg settings
parser.add_argument('--cor_type', type=str, help='type of image corruption')
parser.add_argument('--severity', type=int, help='severity of image corruption')
parser.add_argument('--max', type=int, default=6, help='max severity of image corruption')
parser.add_argument('--clean_sample_num', type=int)
def set_result(self, result_file):
attack_file = 'record/' + result_file
save_path = 'record/' + result_file + '/detection/teco_infer/'
if not (os.path.exists(save_path)):
os.makedirs(save_path)
self.args.save_path = save_path
if self.args.checkpoint_save is None:
self.args.checkpoint_save = save_path + 'detection_info/'
if not (os.path.exists(self.args.checkpoint_save)):
os.makedirs(self.args.checkpoint_save)
if self.args.log is None:
self.args.log = save_path + 'log/'
if not (os.path.exists(self.args.log)):
os.makedirs(self.args.log)
self.result = load_attack_result(attack_file + '/attack_result.pt')
def set_trainer(self, model):
self.trainer = PureCleanModelTrainer(
model = model,
)
def set_logger(self):
args = self.args
logFormatter = logging.Formatter(
fmt='%(asctime)s [%(levelname)-8s] [%(filename)s:%(lineno)d] %(message)s',
datefmt='%Y-%m-%d:%H:%M:%S',
)
logger = logging.getLogger()
fileHandler = logging.FileHandler(args.log + '/' + time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime()) + '.log')
fileHandler.setFormatter(logFormatter)
logger.addHandler(fileHandler)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
logger.setLevel(logging.INFO)
logging.info(pformat(args.__dict__))
try:
logging.info(pformat(get_git_info()))
except:
logging.info('Getting git info fails.')
def set_devices(self):
self.device = self.args.device
def dg(self, image, args):
image = np.array(image)
image = corrupt(image, corruption_name=args.cor_type, severity=args.severity)
image = Image.fromarray(image)
return image
def no_defense(self, args, result, config):
model = generate_cls_model(args.model, args.num_classes)
model.load_state_dict(result['model'])
model.to(args.device)
result = {}
result['model'] = model
return result
def cal(self, true, pred):
TN, FP, FN, TP = confusion_matrix(true, pred).ravel()
return TN, FP, FN, TP
def metrix(self, TN, FP, FN, TP):
TPR = TP/(TP+FN)
FPR = FP/(FP+TN)
precision = TP/(TP+FP)
acc = (TP+TN)/(TN+FP+FN+TP)
return TPR, FPR, precision, acc
def filtering(self):
start = time.perf_counter()
self.set_devices()
fix_random(self.args.random_seed)
### a. load model, bd train data and transforms
model = generate_cls_model(self.args.model,self.args.num_classes)
model.load_state_dict(self.result['model'])
if "," in self.device:
model = torch.nn.DataParallel(
model,
device_ids=[int(i) for i in self.args.device[5:].split(",")] # eg. "cuda:2,3,7" -> [2,3,7]
)
self.args.device = f'cuda:{model.device_ids[0]}'
model.to(self.args.device)
model.eval()
else:
model.to(self.args.device)
model.eval()
test_tran = get_transform(self.args.dataset, *([self.args.input_height,self.args.input_width]) , train = False)
bd_test_dataset = self.result['bd_test'].wrapped_dataset
bd_dict = {}
images_poison = []
labels_poison = []
for img, label,*other_info in bd_test_dataset:
images_poison.append(img)
labels_poison.append(label)
data_bd_test = xy_iter(images_poison, labels_poison,transform=test_tran)
data_bd_loader = DataLoader(data_bd_test, batch_size=args.batch_size, shuffle=False)
for i, (inputs, labels) in enumerate(data_bd_loader): # type: ignore
inputs, labels = inputs.to(args.device), labels.to(args.device)
outputs = model(inputs)
pre_label = torch.max(outputs, dim=1)[1]
for j in range(len(pre_label)):
save_name = str(i * args.batch_size + j)
bd_dict[save_name] = {}
bd_dict[save_name]['original'] = [pre_label[j].item()]
for name in ['gaussian_noise', 'shot_noise','impulse_noise', 'defocus_blur', 'glass_blur', 'motion_blur',
'zoom_blur', 'snow', 'frost', 'fog', 'brightness', 'contrast', 'elastic_transform', 'pixelate',
'jpeg_compression']:
for severity in range(1, 6):
args.severity = severity
args.cor_type = name
x = images_poison
for i in range(len(x)):
x[i] = self.dg(x[i], args)
y = labels_poison
data_bd_test = xy_iter(x,y,transform=test_tran)
data_bd_loader = DataLoader(data_bd_test, batch_size=args.batch_size, num_workers=args.num_workers,drop_last=False, shuffle=False,pin_memory=False)
for i, (inputs,labels) in enumerate(data_bd_loader): # type: ignore
inputs, labels = inputs.to(args.device), labels.to(args.device)
outputs = model(inputs)
pre_label = torch.max(outputs,dim=1)[1]
for j in range(len(pre_label)):
save_name = str(i * args.batch_size + j)
if name not in bd_dict[save_name].keys():
bd_dict[save_name][name] = []
bd_dict[save_name][name].append(bd_dict[save_name]['original'][0])
bd_dict[save_name][name].append(pre_label[j].item())
clean_dict = {}
clean_test_dataset = self.result['clean_test'].wrapped_dataset
### b. find a clean sample from test dataset
images = []
labels = []
for img, label in clean_test_dataset:
images.append(img)
labels.append(label)
class_idx_whole = []
num = int(self.args.clean_sample_num / self.args.num_classes)
if num == 0:
num = 1
for i in range(self.args.num_classes):
class_idx_whole.append(np.random.choice(np.where(np.array(labels)==i)[0], num))
image_c = []
label_c = []
class_idx_whole = np.concatenate(class_idx_whole, axis=0)
image_c = [images[i] for i in class_idx_whole]
label_c = [labels[i] for i in class_idx_whole]
clean_dataset = xy_iter(image_c, label_c,transform=test_tran)
data_clean_loader = DataLoader(clean_dataset, batch_size=args.batch_size, num_workers=args.num_workers, drop_last=False, shuffle=False, pin_memory=False)
for i, (inputs, labels) in enumerate(data_clean_loader): # type: ignore
inputs, labels = inputs.to(args.device), labels.to(args.device)
outputs = model(inputs)
pre_label = torch.max(outputs, dim=1)[1]
for j in range(len(pre_label)):
save_name = str(i * args.batch_size + j)
clean_dict[save_name] = {}
clean_dict[save_name]['original'] = [pre_label[j].item()]
for name in ['gaussian_noise', 'shot_noise', 'impulse_noise', 'defocus_blur', 'glass_blur', 'motion_blur',
'zoom_blur', 'snow', 'frost', 'fog', 'brightness', 'contrast', 'elastic_transform', 'pixelate',
'jpeg_compression']:
for severity in range(1, 6):
args.severity = severity
args.cor_type = name
x = image_c
for i in range(len(x)):
x[i] = self.dg(x[i], args)
y = label_c
data_clean_test = xy_iter(x,y,transform=test_tran)
data_clean_loader = DataLoader(data_clean_test, batch_size=args.batch_size, num_workers=args.num_workers,drop_last=False, shuffle=False,pin_memory=False)
for i, (inputs,labels) in enumerate(data_clean_loader): # type: ignore
inputs, labels = inputs.to(args.device), labels.to(args.device)
outputs = model(inputs)
pre_label = torch.max(outputs,dim=1)[1]
for j in range(len(pre_label)):
save_name = str(i * args.batch_size + j)
if name not in clean_dict[save_name].keys():
clean_dict[save_name][name] = []
clean_dict[save_name][name].append(clean_dict[save_name]['original'][0])
clean_dict[save_name][name].append(pre_label[j].item())
result = {'clean': clean_dict, 'bd': bd_dict}
labels = []
mads = []
total_images = 0
for file in ['clean', 'bd']:
label_dict = result[file]
images = list(label_dict.keys())
keys = list(label_dict[images[0]].keys())
total_images += len(images)
for img in images:
indexs = []
img_preds = label_dict[img]
for corruption in keys[1:]:
flag = 0
for i in range(args.max):
if int(img_preds[corruption][i]) != int(img_preds[corruption][0]):
index = i
flag = 1
indexs.append(index)
break
if flag == 0:
indexs.append(args.max)
indexs = np.asarray(indexs)
mad = np.std(indexs)
mads.append(mad)
if file == 'clean':
labels.append(0)
else:
labels.append(1)
mads = np.asarray(mads)
labels = np.asarray(labels)
fpr, tpr, thresholds = metrics.roc_curve(labels, mads)
f1_scores = []
for th in thresholds:
pred = np.where(mads > th, 1, 0)
f1_score = metrics.f1_score(labels, pred, average='micro')
f1_scores.append(f1_score)
f1_scores = np.asarray(f1_scores)
roc_auc = auc(fpr, tpr)
end = time.perf_counter()
time_miniute = (end-start)/60
f = open(self.args.save_path + '/detection_info.csv', 'a', encoding='utf-8')
csv_write = csv.writer(f)
csv_write.writerow(['record', 'Threshold', 'TPR','FPR', 'AUC', 'target'])
csv_write.writerow([args.result_file, thresholds, tpr, fpr, roc_auc, 'None'])
f.close()
def detection(self,result_file):
self.set_result(result_file)
self.set_logger()
result = self.filtering()
return result
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=sys.argv[0])
teco.add_arguments(parser)
args = parser.parse_args()
teco_method = teco(args)
if "result_file" not in args.__dict__:
args.result_file = 'defense_test_badnet'
elif args.result_file is None:
args.result_file = 'defense_test_badnet'
result = teco_method.detection(args.result_file)