Skip to content

Commit 46e3a9e

Browse files
committed
equivalences of separation axioms in separating uniform space
1 parent 96a0687 commit 46e3a9e

File tree

1 file changed

+34
-0
lines changed

1 file changed

+34
-0
lines changed

IsarMathLib/UniformSpace_ZF.thy

+34
Original file line numberDiff line numberDiff line change
@@ -566,6 +566,40 @@ proof -
566566
} with \<open>\<Union>?T = X\<close> show ?thesis unfolding isT1_def by simp
567567
qed
568568

569+
text\<open>If $\Phi$ is a uniformity on $X$ then the intersection of $\Phi$ is contained in
570+
diagonal of $X$ if and only if $\bigcup \Phi$ is equal to that diagonal. Some people call
571+
such uniform space "separating".\<close>
572+
573+
theorem unif_inter_diag: assumes "\<Phi> {is a uniformity on} X"
574+
shows "\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> \<Inter>\<Phi> = {\<langle>x,x\<rangle>. x\<in>X}"
575+
using assms entourage_props(2) uniformity_non_empty by force
576+
577+
578+
text\<open>The next theorem collects the information we have to show that
579+
if $\Phi$ is a uniformity on $X$, with the induced topology $T$ then
580+
conditions $T$ is $T_0$, $T$ is $T_1$, $T$ is $T_2$ $T$ is $T_3$ are all equivalent to
581+
the intersection of $\Phi$ being contained in the diagonal
582+
(which is equivalent to the intersection of $\Phi$ being equal to the diagonal, see
583+
\<open>unif_inter_diag\<close> above.\<close>
584+
585+
theorem unif_sep_axioms_diag: assumes "\<Phi> {is a uniformity on} X"
586+
defines "T \<equiv> UniformTopology(\<Phi>,X)"
587+
shows
588+
"\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>0}"
589+
"\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>1}"
590+
"\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>2}"
591+
"\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>3}"
592+
proof -
593+
from assms show "\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>1}"
594+
using unif_t1_inter_diag unif_inter_diag_t1 by auto
595+
with assms show
596+
"\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>0}"
597+
"\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>2}"
598+
"\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>3}"
599+
using utopreg T1_is_T0 T3_is_T2 T2_is_T1
600+
unfolding isT3_def by auto
601+
qed
602+
569603
subsection\<open> Base of a uniformity \<close>
570604

571605
text\<open>A \<open>base\<close> or a \<open>fundamental system of entourages\<close> of a uniformity $\Phi$ is

0 commit comments

Comments
 (0)