@@ -566,6 +566,40 @@ proof -
566
566
} with \<open>\<Union>?T = X\<close> show ?thesis unfolding isT1_def by simp
567
567
qed
568
568
569
+ text \<open>If $\Phi$ is a uniformity on $X$ then the intersection of $\Phi$ is contained in
570
+ diagonal of $X$ if and only if $\bigcup \Phi$ is equal to that diagonal. Some people call
571
+ such uniform space "separating".\<close>
572
+
573
+ theorem unif_inter_diag : assumes "\<Phi> {is a uniformity on} X"
574
+ shows "\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> \<Inter>\<Phi> = {\<langle>x,x\<rangle>. x\<in>X}"
575
+ using assms entourage_props ( 2 ) uniformity_non_empty by force
576
+
577
+
578
+ text \<open>The next theorem collects the information we have to show that
579
+ if $\Phi$ is a uniformity on $X$, with the induced topology $T$ then
580
+ conditions $T$ is $T_0$, $T$ is $T_1$, $T$ is $T_2$ $T$ is $T_3$ are all equivalent to
581
+ the intersection of $\Phi$ being contained in the diagonal
582
+ (which is equivalent to the intersection of $\Phi$ being equal to the diagonal, see
583
+ \<open>unif_inter_diag\<close> above.\<close>
584
+
585
+ theorem unif_sep_axioms_diag : assumes "\<Phi> {is a uniformity on} X"
586
+ defines "T \<equiv> UniformTopology(\<Phi>,X)"
587
+ shows
588
+ "\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>0}"
589
+ "\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>1}"
590
+ "\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>2}"
591
+ "\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>3}"
592
+ proof -
593
+ from assms show "\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>1}"
594
+ using unif_t1_inter_diag unif_inter_diag_t1 by auto
595
+ with assms show
596
+ "\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>0}"
597
+ "\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>2}"
598
+ "\<Inter>\<Phi> \<subseteq> {\<langle>x,x\<rangle>. x\<in>X} \<longleftrightarrow> T {is T\<^sub>3}"
599
+ using utopreg T1_is_T0 T3_is_T2 T2_is_T1
600
+ unfolding isT3_def by auto
601
+ qed
602
+
569
603
subsection \<open> Base of a uniformity \<close>
570
604
571
605
text \<open>A \<open>base\<close> or a \<open>fundamental system of entourages\<close> of a uniformity $\Phi $ is
0 commit comments