@@ -97,9 +97,20 @@ text\<open>The next lemma just shows the definition of $\mathfrak{B}$ in notatio
97
97
used in the \<open>muliple_pmetric\<close> . \<close>
98
98
99
99
lemma ( in muliple_pmetric ) mgauge_def_alt : shows
100
- "UniformGaugeSets(X,L,A,r,M) = {(\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})). f\<in>M\<rightarrow>L\<^sub>+}"
101
100
"\<BB> = (\<Union>M\<in>FinPow(\<M>)\<setminus>{\<emptyset>}. {(\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})). f\<in>M\<rightarrow>L\<^sub>+})"
102
- unfolding UniformGaugeSets_def UniformGauges_def by simp_all
101
+ unfolding UniformGaugeSets_def UniformGauges_def by simp
102
+
103
+ text \<open>$\mathfrak{B}$ consists of (finite) intersections of sets of the
104
+ form $d^{-1}(\{c\in L^+:c\leq f(d)\})$ where $f:M\rightarrow L_+$
105
+ some finite subset $M\subseteq \mathcal{M}$.
106
+ More precisely, if $M$ is a nonempty finite subset of $\mathcal{M}$ and $f$ maps
107
+ $M$ to the positive set of the loop $L$, then the set
108
+ $\bigcap_{d\in M} d^{-1}(\{c\in L^+:c\leq f(d)\}$ is in $\mathfrak{B}$.\<close>
109
+
110
+ lemma ( in muliple_pmetric ) mgauge_finset_fun :
111
+ assumes "M\<in>FinPow(\<M>)" "M\<noteq>\<emptyset>" "f:M\<rightarrow>L\<^sub>+"
112
+ shows "(\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})) \<in> \<BB>"
113
+ using assms mgauge_def_alt by auto
103
114
104
115
text \<open>If $d$ is one of the pseudometrics from $\mathcal{M}$ then theorems
105
116
proven in \<open>pmetric_space\<close> can are valid. \<close>
@@ -157,7 +168,7 @@ proof -
157
168
with I show "?L\<subseteq>?R" by ( rule subset_trans )
158
169
qed
159
170
160
- text \<open>For any two sets $B_1,B_2$ in $\mathcal {B}$ there exist a third one
171
+ text \<open>For any two sets $B_1,B_2$ in $\mathfrak {B}$ there exist a third one
161
172
that is contained in both. \<close>
162
173
163
174
lemma ( in muliple_pmetric ) mgauge_1st_cond :
@@ -179,7 +190,7 @@ proof -
179
190
by auto
180
191
let ?B \<^sub >3 = "\<Inter>d\<in>?M\<^sub>3. d-``({c\<in>L\<^sup>+. c\<lsq>f\<^sub>3`(d)})"
181
192
from I ( 1 , 2 ) \<open>M\<^sub>1\<noteq>\<emptyset>\<close> \<open>f\<^sub>3:?M\<^sub>3\<rightarrow>L\<^sub>+\<close> have "?B\<^sub>3\<in>\<BB>"
182
- using union_finpow mgauge_def_alt ( 2 ) by auto
193
+ using union_finpow mgauge_def_alt by auto
183
194
moreover have "?B\<^sub>3\<subseteq>B\<^sub>1\<inter>B\<^sub>2"
184
195
proof -
185
196
from I ( 1 , 2 ) have "M\<^sub>1\<subseteq>\<M>" "M\<^sub>1\<subseteq>?M\<^sub>3" "M\<^sub>2\<subseteq>\<M>" "M\<^sub>2\<subseteq>?M\<^sub>3"
@@ -190,5 +201,72 @@ proof -
190
201
qed
191
202
ultimately show "\<exists>B\<in>\<BB>. B\<subseteq>B\<^sub>1\<inter>B\<^sub>2" by ( rule witness_exists )
192
203
qed
193
-
204
+
205
+ text \<open>Sets in $\mathfrak{B}$ contain the diagonal and are symmetric,
206
+ hence contain a symmetric subset from $\mathfrak{B}$.\<close>
207
+
208
+ lemma ( in muliple_pmetric ) mgauge_2nd_and_3rd_cond : assumes "B\<in>\<BB>"
209
+ shows "id(X)\<subseteq>B" "B = converse(B)" "\<exists>B\<^sub>2\<in>\<BB>. B\<^sub>2 \<subseteq> converse(B)"
210
+ proof -
211
+ from assms obtain M f where "M\<in>FinPow(\<M>)" "M\<noteq>\<emptyset>" "f:M\<rightarrow>L\<^sub>+" and
212
+ I : "B = (\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)}))"
213
+ using mgauge_def_alt by auto
214
+ { fix d assume "d\<in>M"
215
+ let ?B \<^sub >d = "d-``({c\<in>L\<^sup>+. c\<lsq>f`(d)})"
216
+ from \<open>d\<in>M\<close> \<open>f:M\<rightarrow>L\<^sub>+\<close> \<open>M\<in>FinPow(\<M>)\<close> have
217
+ "pmetric_space(L,A,r,d,X)" and "?B\<^sub>d \<in> UniformGauge(X,L,A,r,d)"
218
+ unfolding FinPow_def UniformGauge_def
219
+ using apply_funtype pmetric_space_valid_in_mpm by auto
220
+ then have "id(X)\<subseteq>?B\<^sub>d" and "?B\<^sub>d = converse(?B\<^sub>d)"
221
+ using pmetric_space.gauge_2nd_cond pmetric_space.gauge_symmetric
222
+ by simp_all
223
+ } with I \<open>M\<noteq>\<emptyset>\<close> show "id(X)\<subseteq>B" and "B = converse(B)" by auto
224
+ from assms \<open>B = converse(B)\<close> show "\<exists>B\<^sub>2\<in>\<BB>. B\<^sub>2 \<subseteq> converse(B)"
225
+ by auto
226
+ qed
227
+
228
+ text \<open>$\mathfrak{B}$ is a subset of the power set of $X\times X$.\<close>
229
+
230
+ lemma ( in muliple_pmetric ) mgauge_5thCond : shows "\<BB>\<subseteq>Pow(X\<times>X)"
231
+ using muniform_gauge_relations by auto
232
+
233
+ text \<open>If $\mathcal{M}$ and $L_+$ are nonempty then $\mathfrak{B}$ is also nonempty.\<close>
234
+
235
+ lemma ( in muliple_pmetric ) mgauge_6thCond :
236
+ assumes "\<M>\<noteq>\<emptyset>" and "L\<^sub>+\<noteq>\<emptyset>" shows "\<BB>\<noteq>\<emptyset>"
237
+ proof -
238
+ from assms obtain M y where "M\<in>FinPow(\<M>)" "M\<noteq>\<emptyset>" and "y\<in>L\<^sub>+"
239
+ using finpow_nempty_nempty by blast
240
+ from \<open>y\<in>L\<^sub>+\<close> have "ConstantFunction(M,y):M\<rightarrow>L\<^sub>+" using func1_3_L1 by simp
241
+ with \<open>M\<in>FinPow(\<M>)\<close> \<open>M\<noteq>\<emptyset>\<close> show "\<BB>\<noteq>\<emptyset>" using mgauge_finset_fun by auto
242
+ qed
243
+
244
+ text \<open>If the loop order is halfable then for every set $B_1\in \mathfrak{B}$
245
+ there is another set $B_2\in \mathfrak{B}$ such that $B_2\circ B_2 \subseteq B_1$.\<close>
246
+
247
+ lemma ( in muliple_pmetric ) mgauge_4thCond :
248
+ assumes "IsHalfable(L,A,r)" "B\<^sub>1\<in>\<BB>" shows "\<exists>B\<^sub>2\<in>\<BB>. B\<^sub>2 O B\<^sub>2 \<subseteq> B\<^sub>1"
249
+ proof -
250
+ from assms ( 2 ) obtain M f \<^sub >1 where "M\<in>FinPow(\<M>)" "M\<noteq>\<emptyset>" "f\<^sub>1:M\<rightarrow>L\<^sub>+" and
251
+ I : "B\<^sub>1 = (\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f\<^sub>1`(d)}))"
252
+ using mgauge_def_alt by auto
253
+ from assms ( 1 ) \<open>f\<^sub>1:M\<rightarrow>L\<^sub>+\<close> have "\<forall>d\<in>M. \<exists>b\<^sub>2\<in>L\<^sub>+. b\<^sub>2\<ra>b\<^sub>2 \<lsq> f\<^sub>1`(d)"
254
+ using apply_funtype unfolding IsHalfable_def by simp
255
+ with \<open>M\<in>FinPow(\<M>)\<close> have "\<exists>f\<^sub>2\<in>M\<rightarrow>L\<^sub>+. \<forall>d\<in>M. f\<^sub>2`(d) \<ra> f\<^sub>2`(d) \<lsq> f\<^sub>1`(d)"
256
+ unfolding FinPow_def using finite_choice_fun by auto
257
+ then obtain f \<^sub >2 where "f\<^sub>2\<in>M\<rightarrow>L\<^sub>+" and II : "\<forall>d\<in>M. f\<^sub>2`(d) \<ra> f\<^sub>2`(d) \<lsq> f\<^sub>1`(d)"
258
+ by auto
259
+ let ?B \<^sub >2 = "\<Inter>d\<in>M. d-``({c\<in>L\<^sup>+. c\<lsq>f\<^sub>2`(d)})"
260
+ { fix d assume "d\<in>M"
261
+ let ?A \<^sub >2 = "d-``({c\<in>L\<^sup>+. c\<lsq>f\<^sub>2`(d)})"
262
+ from \<open>d\<in>M\<close> \<open>M\<in>FinPow(\<M>)\<close> have "pmetric_space(L,A,r,d,X)"
263
+ unfolding FinPow_def using pmetric_space_valid_in_mpm by auto
264
+ with \<open>f\<^sub>2\<in>M\<rightarrow>L\<^sub>+\<close> \<open>d\<in>M\<close> II have "?A\<^sub>2 O ?A\<^sub>2 \<subseteq> d-``({c\<in>L\<^sup>+. c\<lsq>f\<^sub>1`(d)})"
265
+ using apply_funtype pmetric_space.half_vimage_square by simp
266
+ }
267
+ with \<open>M\<noteq>\<emptyset>\<close> I have "?B\<^sub>2 O ?B\<^sub>2 \<subseteq> B\<^sub>1" using square_incl_product by simp
268
+ with \<open>M\<in>FinPow(\<M>)\<close> \<open>M\<noteq>\<emptyset>\<close> \<open>f\<^sub>2\<in>M\<rightarrow>L\<^sub>+\<close> show ?thesis
269
+ using mgauge_finset_fun by auto
270
+ qed
271
+
194
272
end
0 commit comments