You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
On executing tools/test_net.py, I am getting a runtime error. I am using the default configurations with the pretrained model. When I increase the value of IMS_PER_BATCH, the error vanishes, however, the predictions that I obtain after this are highly incomplete, with most of the words not being detected.
File "tools/test_net.py", line 131, in
main()
File "tools/test_net.py", line 116, in main
output_folder=output_folder,
File "/home/pranav/PMTD/maskrcnn_benchmark/engine/inference.py", line 82, in inference
predictions = compute_on_dataset(model, data_loader, device, inference_timer)
File "/home/pranav/PMTD/maskrcnn_benchmark/engine/inference.py", line 28, in compute_on_dataset
output = model(images)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/pranav/PMTD/maskrcnn_benchmark/modeling/detector/generalized_rcnn.py", line 52, in forward
x, result, detector_losses = self.roi_heads(features, proposals, targets)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/pranav/PMTD/maskrcnn_benchmark/modeling/roi_heads/roi_heads.py", line 39, in forward
x, detections, loss_mask = self.mask(mask_features, detections, targets)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/pranav/PMTD/maskrcnn_benchmark/modeling/roi_heads/mask_head/mask_head.py", line 71, in forward
mask_logits = self.predictor(x)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/pranav/PMTD/maskrcnn_benchmark/modeling/roi_heads/mask_head/roi_mask_predictors.py", line 33, in forward
x = F.relu(self.conv5_mask(x))
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/container.py", line 97, in forward
input = module(input)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/upsampling.py", line 134, in forward
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/functional.py", line 2523, in interpolate
return torch._C._nn.upsample_bilinear2d(input, _output_size(2), align_corners) RuntimeError: invalid argument 2: non-empty 4D input tensor expected but got: [0 x 256 x 14 x 14] at /opt/conda/conda-bld/pytorch-nightly_1553749764730/work/aten/src/THCUNN/generic/SpatialUpSamplingBilinear.cu:21
The text was updated successfully, but these errors were encountered:
Python version: 3.7
Is CUDA available: Yes
CUDA runtime version: 9.0.176
GPU models and configuration:
GPU 0: GeForce GTX 1080 Ti
GPU 1: GeForce GTX 1080 Ti
I am able to execute tools/train_net.py but the inference code does not seem to be working. I don't understand why this is happening. Help would be highly appreciated.
On executing tools/test_net.py, I am getting a runtime error. I am using the default configurations with the pretrained model. When I increase the value of IMS_PER_BATCH, the error vanishes, however, the predictions that I obtain after this are highly incomplete, with most of the words not being detected.
File "tools/test_net.py", line 131, in
main()
File "tools/test_net.py", line 116, in main
output_folder=output_folder,
File "/home/pranav/PMTD/maskrcnn_benchmark/engine/inference.py", line 82, in inference
predictions = compute_on_dataset(model, data_loader, device, inference_timer)
File "/home/pranav/PMTD/maskrcnn_benchmark/engine/inference.py", line 28, in compute_on_dataset
output = model(images)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/pranav/PMTD/maskrcnn_benchmark/modeling/detector/generalized_rcnn.py", line 52, in forward
x, result, detector_losses = self.roi_heads(features, proposals, targets)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/pranav/PMTD/maskrcnn_benchmark/modeling/roi_heads/roi_heads.py", line 39, in forward
x, detections, loss_mask = self.mask(mask_features, detections, targets)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/pranav/PMTD/maskrcnn_benchmark/modeling/roi_heads/mask_head/mask_head.py", line 71, in forward
mask_logits = self.predictor(x)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/home/pranav/PMTD/maskrcnn_benchmark/modeling/roi_heads/mask_head/roi_mask_predictors.py", line 33, in forward
x = F.relu(self.conv5_mask(x))
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/container.py", line 97, in forward
input = module(input)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/module.py", line 491, in call
result = self.forward(*input, **kwargs)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/modules/upsampling.py", line 134, in forward
return F.interpolate(input, self.size, self.scale_factor, self.mode, self.align_corners)
File "/tmp/yes/envs/maskrcnn_benchmark/lib/python3.7/site-packages/torch/nn/functional.py", line 2523, in interpolate
return torch._C._nn.upsample_bilinear2d(input, _output_size(2), align_corners)
RuntimeError: invalid argument 2: non-empty 4D input tensor expected but got: [0 x 256 x 14 x 14] at /opt/conda/conda-bld/pytorch-nightly_1553749764730/work/aten/src/THCUNN/generic/SpatialUpSamplingBilinear.cu:21
The text was updated successfully, but these errors were encountered: