-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyolov5.py
336 lines (310 loc) · 14.7 KB
/
yolov5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import argparse
import os
import platform
import shutil
import time
from pathlib import Path
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from utils.utils import *
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import (
check_img_size, non_max_suppression, apply_classifier, scale_coords,
xyxy2xywh, plot_one_box, strip_optimizer, set_logging)
from utils.torch_utils import select_device, load_classifier, time_synchronized
from utils.general import (
check_img_size, non_max_suppression, apply_classifier, scale_coords,
xyxy2xywh, plot_one_box, strip_optimizer, set_logging)
# def detect_image(source,out,imgsz = 640,save_img=False,save_txt = False,weights = "./weights/yolov5s.pt"):
# # out, source, weights, view_img, save_txt, imgsz = \
# # opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
# # webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# webcam = source =='0'
# # Initialize
# set_logging()
# device = select_device('')
# # if os.path.exists(out):
# # shutil.rmtree(out) # delete output folder
# # os.mkdir(out) # make new output folder
# half = device.type != 'cpu' # half precision only supported on CUDA
#
# # Load model
# model = attempt_load(weights, map_location=device) # load FP32 model
# imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
# if half:
# model.half() # to FP16
#
# # Second-stage classifier
# # classify = False
# # if classify:
# # modelc = load_classifier(name='resnet101', n=2) # initialize
# # modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
# # modelc.to(device).eval()
#
# # Set Dataloader
# vid_path, vid_writer = None, None
# if webcam:
# view_img = True
# cudnn.benchmark = True # set True to speed up constant image size inference
# dataset = LoadStreams(source, img_size=imgsz)
# else:
# save_img = True
# view_img = False
# dataset = LoadImages(source, img_size=imgsz)
#
# # Get names and colors
# names = model.module.names if hasattr(model, 'module') else model.names
# colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
#
# # Run inference
# t0 = time.time()
# img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
# _ = model(img.half() if half else img) if device.type != 'cpu' else None
# list_file = open("detection.txt", 'w')# run once
# for path, img, im0s, vid_cap in dataset:
# img = torch.from_numpy(img).to(device)
# img = img.half() if half else img.float() # uint8 to fp16/32
# img /= 255.0 # 0 - 255 to 0.0 - 1.0
# if img.ndimension() == 3:
# img = img.unsqueeze(0)
#
# # Inference
# t1 = time_synchronized()
# pred = model(img, augment='store_true')[0]
#
# # Apply NMS
# pred = non_max_suppression(pred, 0.4,0.5, agnostic='store_true')
# t2 = time_synchronized()
#
# # # Apply Classifier
# # if classify:
# # pred = apply_classifier(pred, modelc, img, im0s)
#
# # Process detections
# for i, det in enumerate(pred): # detections per image
# if webcam: # batch_size >= 1
# p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
# else:
# p, s, im0 = path, '', im0s
#
# save_path = str(Path(out) / Path(p).name)
# txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
# s += '%gx%g ' % img.shape[2:] # print string
# gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
# if det is not None and len(det):
# # Rescale boxes from img_size to im0 size
# det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
#
# # Print results
# for c in det[:, -1].unique():
# n = (det[:, -1] == c).sum() # detections per class
# s += '%g %ss, ' % (n, names[int(c)]) # add to string
#
# # Write results
#
#
# for *xyxy, conf, cls in reversed(det):
# if save_txt: # Write to file
# xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
# with open(txt_path + '.txt', 'a') as f:
# f.write(('%g ' * 5 + '\n') % (cls, *xywh))
#
# # label format
#
# if save_img or view_img: # Add bbox to image
# label = '%s %.2f' % (names[int(cls)], conf)
# plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
#
# # Print time (inference + NMS)
# # with open(os.getcwd()+'output.txt','w') as f:
# # f.write('%sDone. (%.3fs)' % (s, t2 - t1))
#
# list_file.write('%sDone. (%.3fs)' % (s, t2 - t1))
# list_file.write('\n')
# print('%sDone. (%.3fs)' % (s, t2 - t1))
#
# # Stream results
# if view_img:
# cv2.imshow(p, im0)
# if cv2.waitKey(1) == ord('q'): # q to quit
# raise StopIteration
#
# # Save results (image with detections)
# if save_img:
# if dataset.mode == 'images':
# cv2.imwrite(save_path, im0)
# else:
# if vid_path != save_path: # new video
# vid_path = save_path
# if isinstance(vid_writer, cv2.VideoWriter):
# vid_writer.release() # release previous video writer
#
# fourcc = 'mp4v' # output video codec
# fps = vid_cap.get(cv2.CAP_PROP_FPS)
# w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
# h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
# vid_writer.write(im0)
#
# if save_txt or save_img:
# print('Results saved to %s' % Path(out))
# # if platform.system() == 'Darwin' and not opt.update: # MacOS
# # os.system('open ' + save_path)
#
# print('Done. (%.3fs)' % (time.time() - t0))
def detect(save_img=False):
out, source, weights, view_img, save_txt, imgsz = \
opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
webcam = source.isnumeric() or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
print('-----')
print(source)
print(type(source))
# Initialize
set_logging()
device = select_device(opt.device)
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(source, img_size=imgsz)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
for path, img, im0s, vid_cap in dataset:
print('path:{0}'.format(path))
print('im0s:{0}'.format(im0s))
print('im0s类型:{0}'.format(type(im0s)))
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# 用于存储人员边界坐标的列表 ---linjie
people_coords = []
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name)
txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# print('先看看这里能不能进行,再看看im0多少:{0}。再看看im0类型:{1}'.format(im0,type(im0)))
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
#判断标签是否为人 --linjie
if label is not None:
if (label.split())[0] == 'person':
print('标签是人')
distancing(people_coords, im0, dist_thres_lim=(200, 250))
people_coords.append(xyxy)
# plot_one_box(xyxy, im0, line_thickness=3)
plot_dots_on_people(xyxy, im0)
# 画上人与人的连接线 --linjie
distancing(people_coords, im0, dist_thres_lim=(200, 250))
# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1))
# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fourcc = 'mp4v' # output video codec
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % Path(out))
if platform == 'Darwin' and not opt.update: # MacOS
os.system('open ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
opt = parser.parse_args()
print(opt)
with torch.no_grad():
if opt.update: # update all models (to fix SourceChangeWarning)
for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
print('model1')
detect()
strip_optimizer(opt.weights)
else:
print('model2')
detect()