-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAI4DR_tox21-luc-biochem-p1_CNN_classification.py
372 lines (286 loc) · 21.4 KB
/
AI4DR_tox21-luc-biochem-p1_CNN_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#!/usr/bin/env python
# coding: utf-8
import math
import os
import pandas as pd
import numpy as np
from numpy import loadtxt
import ast
from ast import literal_eval
import matplotlib as mpl
import matplotlib.pyplot as plt
from keras.models import load_model
from sklearn import metrics
from sklearn.neural_network import MLPClassifier
import pickle
import datetime as dt
mpl.use('agg')
models_topdir = './trained_models'
curve_type_model_file = '200610_AI4DR_Shape_CNN_13classes.h5'
curve_type_model_filepath = os.path.join(models_topdir,curve_type_model_file)
curve_type_model = load_model(curve_type_model_filepath)
# summarize model.
curve_type_model.summary()
curve_type_translation_dict = {0 : "CATOP", 1 : "CANB", 2 : "CASIG", 3 : "CANT", 4 : "CAHS", 5 : "CNA", 6 : "P", 7 : "NT", 8 : "LS", 9 : "B", 10 : "B", 11 : "W", 12 : "LU"}
normalizer_model_file = '200626_AI4DR_Dispersion_Normalizer.pkl'
normalizer_model_filepath = os.path.join(models_topdir,normalizer_model_file)
dispersion_model_file = '200626_AI4DR_Dispersion_Classifier.pkl'
dispersion_model_filepath = os.path.join(models_topdir,dispersion_model_file)
# Load normalizer and dispersion models
with open(normalizer_model_filepath, "rb") as f:
normalizer_model = pickle.load(f)
with open(dispersion_model_filepath, "rb") as f:
dispersion_model = pickle.load(f)
def arrays_to_curve_image(pX_list, Y_list):
pX_list = eval(pX_list.replace('nan','None'))
Y_list = eval(Y_list.replace('nan','None'))
assert len(pX_list) == len(Y_list) , 'Different number of replica for concentrations and inhibitions'
mpl.rcParams["figure.dpi"] = 100
fig, ax = plt.subplots(figsize = (1.5,1.5))
for pX,Y in zip(pX_list,Y_list):
assert len(pX) == len(Y) , 'Different number of concentrations and inhibitions values'
curr_line, = ax.plot(pX,Y,'ko')
plt.setp(curr_line, markersize=3)
plt.xticks([])
plt.ylim(-50.0, 150.0)
ax.yaxis.set_tick_params(labelsize=5)
plt.tight_layout(pad=0.5)
img = fig.canvas.draw()
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
W = [0.2, 0.5, 0.3]
W_mean = np.tensordot(data, W, axes = ((-1, -1)))[..., None]
data[:] = W_mean.astype(data.dtype)
output = data[:,:,0]/255.0
plt.close(fig)
return output
def curves_to_predictions(curves):
curves_array = curves.values
curves_array = np.stack(curves_array, axis=0)
curves_array = np.expand_dims(curves_array, axis=-1)
curve_type_model_output = curve_type_model.predict(curves_array)
curve_type_model_categories = [ curve_type_translation_dict[list(probabilities).index(max(list(probabilities)))] for probabilities in curve_type_model_output]
curve_type_model_probabilities = [ max(list(probabilities)) for probabilities in curve_type_model_output]
return curve_type_model_categories, curve_type_model_probabilities
def sorted_positive_diff(y1,y2):
pos_diffs = []
for i,j in zip(y1,y2):
if (i is None) or (j is None):
pos_diffs.append(0)
else:
pos_diffs.append(abs(j-i))
pos_diffs = sorted(pos_diffs, key=float)
return pos_diffs
def sorted_positive_diff_triplicate(y1,y2,y3):
pos_diffs = []
for i,j,k in zip(y1,y2,y3):
if ((i is None) and (j is None)) or ((i is None) and (k is None)) or ((k is None) and (j is None)):
pos_diffs.append(0)
else:
if (i is None):
pos_diffs.append(abs(j-k))
if (j is None):
pos_diffs.append(abs(i-k))
if (k is None):
pos_diffs.append(abs(i-j))
else:
pos_diffs.append(max([abs(j-i),abs(k-i),abs(j-k)])*2.0/3.0)
pos_diffs = sorted(pos_diffs, key=float)
return pos_diffs
def clean_from_nans(y):
if 'nan' in y :
y = eval(y.replace('nan','999.999'))
cols_toremove = np.where(np.array(y) == 999.999)[1]
y = np.delete(np.array(y),cols_toremove,axis=1)
out=str(y.tolist())
else:
out=y
return(out)
# ## Loading raw input file
datasets_topdir = './tox21-luc-biochem-p1'
in_file ='tox21-luc-biochem-p1.txt'
in_filepath = os.path.join(datasets_topdir,in_file)
my_df = pd.read_csv(in_filepath,sep='\t',index_col=False)
xArray_df = my_df[['CONC0', 'CONC1', 'CONC2', 'CONC3', 'CONC4', 'CONC5', 'CONC6', 'CONC7','CONC8', 'CONC9', 'CONC10', 'CONC11', 'CONC12', 'CONC13', 'CONC14']]
xArray_half_df = my_df[['CONC0', 'CONC2', 'CONC4', 'CONC6', 'CONC8', 'CONC10', 'CONC12', 'CONC14']]
Y_df = my_df[['DATA0','DATA1', 'DATA2', 'DATA3', 'DATA4', 'DATA5', 'DATA6', 'DATA7', 'DATA8','DATA9', 'DATA10', 'DATA11', 'DATA12', 'DATA13', 'DATA14']]
Y_half_df = my_df[['DATA0', 'DATA2', 'DATA4', 'DATA6', 'DATA8', 'DATA10', 'DATA12', 'DATA14']]
my_df['pX'] = [list(-np.log10(xArray_df.iloc[i])) for i in xArray_df.index]
my_df['pXhalf'] = [list(-np.log10(xArray_half_df.iloc[i])) for i in xArray_half_df.index]
my_df['Y'] = [list(Y_df.iloc[i]) for i in Y_df.index]
my_df['Yhalf'] = [list(Y_half_df.iloc[i]) for i in Y_half_df.index]
work_df = my_df[['SAMPLE_ID', 'SAMPLE_DATA_TYPE','pX', 'pXhalf', 'Y', 'Yhalf']]
# We will only use the biochemical assay data, not the viability one
work_df = work_df[[not s.startswith('viability') for s in work_df['SAMPLE_DATA_TYPE']]]
# Build DRC data for the different cases we consider :
# Starting from DRC with 3 replica at 15 concentrations
# We generate DRCs with two of the three replica
# Either at 15 concentrations or at 8 concentrations
# In each case, the raw data needs to be translated
# See Huang, R. et al. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat Commun 7, 10425 (2016).
curves_df = pd.DataFrame()
curr_curve_dict = {}
for i,g in work_df.sort_values(['SAMPLE_ID', 'SAMPLE_DATA_TYPE'],ascending=True).groupby('SAMPLE_ID'):
#print(i, g.shape[0])
if g.shape[0] == 3:
curr_curve_dict['SAMPLE_ID'] = i
curr_curve_dict['pX01_list'] = str(list(g['pX'][0:2]))
curr_curve_dict['pX02_list'] = str(list(g['pX'][0:3:2]))
curr_curve_dict['pX12_list'] = str(list(g['pX'][1:3]))
curr_curve_dict['pX_list'] = str(list(g['pX']))
curr_curve_dict['pXhalf01_list'] = str(list(g['pXhalf'][0:2]))
curr_curve_dict['pXhalf02_list'] = str(list(g['pXhalf'][0:3:2]))
curr_curve_dict['pXhalf12_list'] = str(list(g['pXhalf'][1:3]))
curr_curve_dict['pXhalf_list'] = str(list(g['pXhalf']))
Y_translation01 = np.nanmean([np.nanmin(g['Y'].iloc[0]),np.nanmin(g['Y'].iloc[1])])
Y_translation02 = np.nanmean([np.nanmin(g['Y'].iloc[0]),np.nanmin(g['Y'].iloc[2])])
Y_translation12 = np.nanmean([np.nanmin(g['Y'].iloc[1]),np.nanmin(g['Y'].iloc[2])])
Y_translation123 = np.nanmean([np.nanmin(g['Y'].iloc[0]),np.nanmin(g['Y'].iloc[1]),np.nanmin(g['Y'].iloc[2])])
curr_curve_dict['Y01_list'] = str(list([list(np.array(z)-Y_translation01) for z in g['Y'][0:2]]))
curr_curve_dict['Y02_list'] = str(list([list(np.array(z)-Y_translation02) for z in g['Y'][0:3:2]]))
curr_curve_dict['Y12_list'] = str(list([list(np.array(z)-Y_translation12) for z in g['Y'][1:3]]))
curr_curve_dict['Y_list'] = str(list([list(np.array(z)-Y_translation123) for z in g['Y']]))
curr_curve_dict['Y01_list_notr'] = str(list([list(np.array(z)) for z in g['Y'][0:2]]))
curr_curve_dict['Y02_list_notr'] = str(list([list(np.array(z)) for z in g['Y'][0:3:2]]))
curr_curve_dict['Y12_list_notr'] = str(list([list(np.array(z)) for z in g['Y'][1:3]]))
curr_curve_dict['Y_list_notr'] = str(list([list(np.array(z)) for z in g['Y']]))
Y_translationhalf01 = np.nanmean([np.nanmin(g['Yhalf'].iloc[0]),np.nanmin(g['Yhalf'].iloc[1])])
Y_translationhalf02 = np.nanmean([np.nanmin(g['Yhalf'].iloc[0]),np.nanmin(g['Yhalf'].iloc[2])])
Y_translationhalf12 = np.nanmean([np.nanmin(g['Yhalf'].iloc[1]),np.nanmin(g['Yhalf'].iloc[2])])
Y_translationhalf123 = np.nanmean([np.nanmin(g['Yhalf'].iloc[0]),np.nanmin(g['Yhalf'].iloc[1]),np.nanmin(g['Yhalf'].iloc[2])])
curr_curve_dict['Yhalf01_list'] = str(list([list(np.array(z)-Y_translationhalf01) for z in g['Yhalf'][0:2]]))
curr_curve_dict['Yhalf02_list'] = str(list([list(np.array(z)-Y_translationhalf02) for z in g['Yhalf'][0:3:2]]))
curr_curve_dict['Yhalf12_list'] = str(list([list(np.array(z)-Y_translationhalf12) for z in g['Yhalf'][1:3]]))
curr_curve_dict['Yhalf_list'] = str(list([list(np.array(z)-Y_translationhalf123) for z in g['Yhalf']]))
curr_curve_dict['Yhalf01_list_notr'] = str(list([list(np.array(z)) for z in g['Yhalf'][0:2]]))
curr_curve_dict['Yhalf02_list_notr'] = str(list([list(np.array(z)) for z in g['Yhalf'][0:3:2]]))
curr_curve_dict['Yhalf12_list_notr'] = str(list([list(np.array(z)) for z in g['Yhalf'][1:3]]))
curr_curve_dict['Yhalf_list_notr'] = str(list([list(np.array(z)) for z in g['Yhalf']]))
curves_df = curves_df.append(pd.DataFrame(curr_curve_dict, index=[0]))
else:
pass
# Data needed for the dispersion classifier
curves_df['Y0Y1Y2diff'] = [sorted_positive_diff_triplicate(eval(y.replace('nan','0'))[0],eval(y.replace('nan','0'))[1],eval(y.replace('nan','0'))[2]) for y in curves_df['Y_list']]
curves_df['Y0Y1diff'] = [sorted_positive_diff(eval(clean_from_nans(y))[0],eval(clean_from_nans(y))[1]) for y in curves_df['Y01_list']]
curves_df['Y0Y2diff'] = [sorted_positive_diff(eval(clean_from_nans(y))[0],eval(clean_from_nans(y))[1]) for y in curves_df['Y02_list']]
curves_df['Y1Y2diff'] = [sorted_positive_diff(eval(clean_from_nans(y))[0],eval(clean_from_nans(y))[1]) for y in curves_df['Y12_list']]
curves_df['Y0Y1Y2halfdiff'] = [sorted_positive_diff_triplicate(eval(y.replace('nan','0'))[0],eval(y.replace('nan','0'))[1],eval(y.replace('nan','0'))[2]) for y in curves_df['Yhalf_list']]
curves_df['Y0Y1halfdiff'] = [sorted_positive_diff(eval(clean_from_nans(y))[0],eval(clean_from_nans(y))[1]) for y in curves_df['Yhalf01_list']]
curves_df['Y0Y2halfdiff'] = [sorted_positive_diff(eval(clean_from_nans(y))[0],eval(clean_from_nans(y))[1]) for y in curves_df['Yhalf02_list']]
curves_df['Y1Y2halfdiff'] = [sorted_positive_diff(eval(clean_from_nans(y))[0],eval(clean_from_nans(y))[1]) for y in curves_df['Yhalf12_list']]
curves_df['Y0Y1Y2diff_q1'] = [np.percentile(d, 25) for d in curves_df['Y0Y1Y2diff'] ]
curves_df['Y0Y1Y2diff_q2'] = [np.percentile(d, 50) for d in curves_df['Y0Y1Y2diff'] ]
curves_df['Y0Y1Y2diff_q3'] = [np.percentile(d, 75) for d in curves_df['Y0Y1Y2diff']]
curves_df['Y0Y1Y2diff_interquartile'] = [q3-q1 for q1,q3 in zip(curves_df['Y0Y1Y2diff_q1'],curves_df['Y0Y1Y2diff_q3'])]
curves_df['Y0Y1diff_q1'] = [np.percentile(d, 25) for d in curves_df['Y0Y1diff'] ]
curves_df['Y0Y1diff_q2'] = [np.percentile(d, 50) for d in curves_df['Y0Y1diff'] ]
curves_df['Y0Y1diff_q3'] = [np.percentile(d, 75) for d in curves_df['Y0Y1diff']]
curves_df['Y0Y1diff_interquartile'] = [q3-q1 for q1,q3 in zip(curves_df['Y0Y1diff_q1'],curves_df['Y0Y1diff_q3'])]
curves_df['Y0Y2diff_q1'] = [np.percentile(d, 25) for d in curves_df['Y0Y2diff'] ]
curves_df['Y0Y2diff_q2'] = [np.percentile(d, 50) for d in curves_df['Y0Y2diff'] ]
curves_df['Y0Y2diff_q3'] = [np.percentile(d, 75) for d in curves_df['Y0Y2diff']]
curves_df['Y0Y2diff_interquartile'] = [q3-q1 for q1,q3 in zip(curves_df['Y0Y2diff_q1'],curves_df['Y0Y2diff_q3'])]
curves_df['Y1Y2diff_q1'] = [np.percentile(d, 25) for d in curves_df['Y1Y2diff'] ]
curves_df['Y1Y2diff_q2'] = [np.percentile(d, 50) for d in curves_df['Y1Y2diff'] ]
curves_df['Y1Y2diff_q3'] = [np.percentile(d, 75) for d in curves_df['Y1Y2diff']]
curves_df['Y1Y2diff_interquartile'] = [q3-q1 for q1,q3 in zip(curves_df['Y1Y2diff_q1'],curves_df['Y1Y2diff_q3'])]
curves_df['Y0Y1Y2halfdiff_q1'] = [np.percentile(d, 25) for d in curves_df['Y0Y1Y2halfdiff'] ]
curves_df['Y0Y1Y2halfdiff_q2'] = [np.percentile(d, 50) for d in curves_df['Y0Y1Y2halfdiff'] ]
curves_df['Y0Y1Y2halfdiff_q3'] = [np.percentile(d, 75) for d in curves_df['Y0Y1Y2halfdiff']]
curves_df['Y0Y1Y2halfdiff_interquartile'] = [q3-q1 for q1,q3 in zip(curves_df['Y0Y1Y2halfdiff_q1'],curves_df['Y0Y1Y2halfdiff_q3'])]
curves_df['Y0Y1halfdiff_q1'] = [np.percentile(d, 25) for d in curves_df['Y0Y1halfdiff'] ]
curves_df['Y0Y1halfdiff_q2'] = [np.percentile(d, 50) for d in curves_df['Y0Y1halfdiff'] ]
curves_df['Y0Y1halfdiff_q3'] = [np.percentile(d, 75) for d in curves_df['Y0Y1halfdiff']]
curves_df['Y0Y1halfdiff_interquartile'] = [q3-q1 for q1,q3 in zip(curves_df['Y0Y1halfdiff_q1'],curves_df['Y0Y1halfdiff_q3'])]
curves_df['Y0Y2halfdiff_q1'] = [np.percentile(d, 25) for d in curves_df['Y0Y2halfdiff'] ]
curves_df['Y0Y2halfdiff_q2'] = [np.percentile(d, 50) for d in curves_df['Y0Y2halfdiff'] ]
curves_df['Y0Y2halfdiff_q3'] = [np.percentile(d, 75) for d in curves_df['Y0Y2halfdiff']]
curves_df['Y0Y2halfdiff_interquartile'] = [q3-q1 for q1,q3 in zip(curves_df['Y0Y2halfdiff_q1'],curves_df['Y0Y2halfdiff_q3'])]
curves_df['Y1Y2halfdiff_q1'] = [np.percentile(d, 25) for d in curves_df['Y1Y2halfdiff'] ]
curves_df['Y1Y2halfdiff_q2'] = [np.percentile(d, 50) for d in curves_df['Y1Y2halfdiff'] ]
curves_df['Y1Y2halfdiff_q3'] = [np.percentile(d, 75) for d in curves_df['Y1Y2halfdiff']]
curves_df['Y1Y2halfdiff_interquartile'] = [q3-q1 for q1,q3 in zip(curves_df['Y1Y2halfdiff_q1'],curves_df['Y1Y2halfdiff_q3'])]
# Dispersion classification
# Step 1 : normalization
norm_diff_012_df = pd.DataFrame(normalizer_model.transform(curves_df[['Y0Y1Y2diff_q1','Y0Y1Y2diff_q2','Y0Y1Y2diff_q3','Y0Y1Y2diff_interquartile']]),columns=['Y0Y1Y2diff_q1_norm','Y0Y1Y2diff_q2_norm','Y0Y1Y2diff_q3_norm','Y0Y1Y2diff_interquartile_norm'])
norm_diff_01_df = pd.DataFrame(normalizer_model.transform(curves_df[['Y0Y1diff_q1','Y0Y1diff_q2','Y0Y1diff_q3','Y0Y1diff_interquartile']]),columns=['Y0Y1diff_q1_norm','Y0Y1diff_q2_norm','Y0Y1diff_q3_norm','Y0Y1diff_interquartile_norm'])
norm_diff_02_df = pd.DataFrame(normalizer_model.transform(curves_df[['Y0Y2diff_q1','Y0Y2diff_q2','Y0Y2diff_q3','Y0Y2diff_interquartile']]),columns=['Y0Y2diff_q1_norm','Y0Y2diff_q2_norm','Y0Y2diff_q3_norm','Y0Y2diff_interquartile_norm'])
norm_diff_12_df = pd.DataFrame(normalizer_model.transform(curves_df[['Y1Y2diff_q1','Y1Y2diff_q2','Y1Y2diff_q3','Y1Y2diff_interquartile']]),columns=['Y1Y2diff_q1_norm','Y1Y2diff_q2_norm','Y1Y2diff_q3_norm','Y1Y2diff_interquartile_norm'])
norm_halfdiff_012_df = pd.DataFrame(normalizer_model.transform(curves_df[['Y0Y1Y2halfdiff_q1','Y0Y1Y2halfdiff_q2','Y0Y1Y2halfdiff_q3','Y0Y1Y2halfdiff_interquartile']]),columns=['Y0Y1Y2halfdiff_q1_norm','Y0Y1Y2halfdiff_q2_norm','Y0Y1Y2halfdiff_q3_norm','Y0Y1Y2halfdiff_interquartile_norm'])
norm_halfdiff_01_df = pd.DataFrame(normalizer_model.transform(curves_df[['Y0Y1halfdiff_q1','Y0Y1halfdiff_q2','Y0Y1halfdiff_q3','Y0Y1halfdiff_interquartile']]),columns=['Y0Y1halfdiff_q1_norm','Y0Y1halfdiff_q2_norm','Y0Y1halfdiff_q3_norm','Y0Y1halfdiff_interquartile_norm'])
norm_halfdiff_02_df = pd.DataFrame(normalizer_model.transform(curves_df[['Y0Y2halfdiff_q1','Y0Y2halfdiff_q2','Y0Y2halfdiff_q3','Y0Y2halfdiff_interquartile']]),columns=['Y0Y2halfdiff_q1_norm','Y0Y2halfdiff_q2_norm','Y0Y2halfdiff_q3_norm','Y0Y2halfdiff_interquartile_norm'])
norm_halfdiff_12_df = pd.DataFrame(normalizer_model.transform(curves_df[['Y1Y2halfdiff_q1','Y1Y2halfdiff_q2','Y1Y2halfdiff_q3','Y1Y2halfdiff_interquartile']]),columns=['Y1Y2halfdiff_q1_norm','Y1Y2halfdiff_q2_norm','Y1Y2halfdiff_q3_norm','Y1Y2halfdiff_interquartile_norm'])
# Dispersion classification
# Step 1 : classification
curves_df['Disp_model012'] = dispersion_model.predict(norm_diff_012_df)
curves_df['Disp_model01'] = dispersion_model.predict(norm_diff_01_df)
curves_df['Disp_model02'] = dispersion_model.predict(norm_diff_02_df)
curves_df['Disp_model12'] = dispersion_model.predict(norm_diff_12_df)
curves_df['Disp_modelhalf012'] = dispersion_model.predict(norm_halfdiff_012_df)
curves_df['Disp_modelhalf01'] = dispersion_model.predict(norm_halfdiff_01_df)
curves_df['Disp_modelhalf02'] = dispersion_model.predict(norm_halfdiff_02_df)
curves_df['Disp_modelhalf12'] = dispersion_model.predict(norm_halfdiff_12_df)
disp_model_probs012 = pd.DataFrame(dispersion_model.predict_proba(norm_diff_012_df),columns=['Disp_Proba012','NoDisp_Proba012'])
disp_model_probs01 = pd.DataFrame(dispersion_model.predict_proba(norm_diff_01_df),columns=['Disp_Proba01','NoDisp_Proba01'])
disp_model_probs02 = pd.DataFrame(dispersion_model.predict_proba(norm_diff_02_df),columns=['Disp_Proba02','NoDisp_Proba02'])
disp_model_probs12 = pd.DataFrame(dispersion_model.predict_proba(norm_diff_12_df),columns=['Disp_Proba12','NoDisp_Proba12'])
disp_model_probshalf012 = pd.DataFrame(dispersion_model.predict_proba(norm_halfdiff_012_df),columns=['Disp_Probahalf012','NoDisp_Probahalf012'])
disp_model_probshalf01 = pd.DataFrame(dispersion_model.predict_proba(norm_halfdiff_01_df),columns=['Disp_Probahalf01','NoDisp_Probahalf01'])
disp_model_probshalf02 = pd.DataFrame(dispersion_model.predict_proba(norm_halfdiff_02_df),columns=['Disp_Probahalf02','NoDisp_Probahalf02'])
disp_model_probshalf12 = pd.DataFrame(dispersion_model.predict_proba(norm_halfdiff_12_df),columns=['Disp_Probahalf12','NoDisp_Probahalf12'])
curves_df = pd.concat([curves_df.reset_index(drop=True),disp_model_probs012,disp_model_probs01,disp_model_probs02,disp_model_probs12,disp_model_probshalf012,disp_model_probshalf01,disp_model_probshalf02,disp_model_probshalf12],axis=1)
# Shape classification
# Step 1 : DRC image generation
all_curves = []
all_curves01 = []
all_curves02 = []
all_curves12 = []
all_curveshalf = []
all_curveshalf01 = []
all_curveshalf02 = []
all_curveshalf12 = []
for i in range(0, len(curves_df), 1000):
print(i)
slc = curves_df.iloc[i : i + 1000]
all_curves01.append([arrays_to_curve_image(x,y) for x,y in zip(slc['pX01_list'],slc['Y01_list'])])
all_curves02.append([arrays_to_curve_image(x,y) for x,y in zip(slc['pX02_list'],slc['Y02_list'])])
all_curves12.append([arrays_to_curve_image(x,y) for x,y in zip(slc['pX12_list'],slc['Y12_list'])])
all_curves.append([arrays_to_curve_image(x,y) for x,y in zip(slc['pX_list'],slc['Y_list'])])
all_curveshalf01.append([arrays_to_curve_image(x,y) for x,y in zip(slc['pXhalf01_list'],slc['Yhalf01_list'])])
all_curveshalf02.append([arrays_to_curve_image(x,y) for x,y in zip(slc['pXhalf02_list'],slc['Yhalf02_list'])])
all_curveshalf12.append([arrays_to_curve_image(x,y) for x,y in zip(slc['pXhalf12_list'],slc['Yhalf12_list'])])
all_curveshalf.append([arrays_to_curve_image(x,y) for x,y in zip(slc['pXhalf_list'],slc['Yhalf_list'])])
curves_df['curves'] = [item for subset in all_curves for item in subset ]
curves_df['curves01'] = [item for subset in all_curves01 for item in subset ]
curves_df['curves02'] = [item for subset in all_curves02 for item in subset ]
curves_df['curves12'] = [item for subset in all_curves12 for item in subset ]
curves_df['curveshalf'] = [item for subset in all_curves for item in subset ]
curves_df['curveshalf01'] = [item for subset in all_curveshalf01 for item in subset ]
curves_df['curveshalf02'] = [item for subset in all_curveshalf02 for item in subset ]
curves_df['curveshalf12'] = [item for subset in all_curveshalf12 for item in subset ]
# Shape classification
# Step 2 : DRC shape classification
curves_df['category'], curves_df['probability'] = curves_to_predictions(curves_df['curves'])
curves_df['category01'], curves_df['probability01'] = curves_to_predictions(curves_df['curves01'])
curves_df['category02'], curves_df['probability02'] = curves_to_predictions(curves_df['curves02'])
curves_df['category12'], curves_df['probability12'] = curves_to_predictions(curves_df['curves12'])
curves_df['categoryhalf'], curves_df['probabilityhalf'] = curves_to_predictions(curves_df['curveshalf'])
curves_df['categoryhalf01'], curves_df['probabilityhalf01'] = curves_to_predictions(curves_df['curveshalf01'])
curves_df['categoryhalf02'], curves_df['probabilityhalf02'] = curves_to_predictions(curves_df['curveshalf02'])
curves_df['categoryhalf12'], curves_df['probabilityhalf12'] = curves_to_predictions(curves_df['curveshalf12'])
curves_df.drop(columns=['Y0Y1Y2diff','Y0Y1diff', 'Y0Y2diff', 'Y1Y2diff',
'Y0Y1Y2diff_q1', 'Y0Y1Y2diff_q2', 'Y0Y1Y2diff_q3', 'Y0Y1Y2diff_interquartile',
'Y0Y1diff_q1', 'Y0Y1diff_q2', 'Y0Y1diff_q3', 'Y0Y1diff_interquartile',
'Y0Y2diff_q1', 'Y0Y2diff_q2', 'Y0Y2diff_q3', 'Y0Y2diff_interquartile',
'Y1Y2diff_q1', 'Y1Y2diff_q2', 'Y1Y2diff_q3', 'Y1Y2diff_interquartile',
'curves', 'curves01', 'curves02', 'curves12',
'Y0Y1Y2halfdiff','Y0Y1halfdiff', 'Y0Y2halfdiff', 'Y1Y2halfdiff',
'Y0Y1Y2halfdiff_q1', 'Y0Y1Y2halfdiff_q2', 'Y0Y1Y2halfdiff_q3', 'Y0Y1Y2halfdiff_interquartile',
'Y0Y1halfdiff_q1', 'Y0Y1halfdiff_q2', 'Y0Y1halfdiff_q3', 'Y0Y1halfdiff_interquartile',
'Y0Y2halfdiff_q1', 'Y0Y2diff_q2', 'Y0Y2halfdiff_q3', 'Y0Y2halfdiff_interquartile',
'Y1Y2halfdiff_q1', 'Y1Y2diff_q2', 'Y1Y2halfdiff_q3', 'Y1Y2halfdiff_interquartile',
'curveshalf', 'curveshalf01', 'curveshalf02', 'curveshalf12',
], inplace=True)
curves_df = curves_df.merge(my_df[['SAMPLE_ID','ASSAY_OUTCOME','CURVE_CLASS2']].groupby('SAMPLE_ID').first(),on='SAMPLE_ID')
out_file ='AI4DR_annotated_tox21_luc_biochem_p1_dup.pkl'
curves_df.to_pickle(out_file)