-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClassifier.py
137 lines (112 loc) · 5.94 KB
/
Classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from torch import device, nn, optim
import torch
from Model import Model
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
class Classifier():
def __init__(self, epoch, type_pool = 1, type_active = 0, out_channels= 10,
kernel_size=0, padding=0, linear_layer_out_1 = 100, active_type_1 = 1,
linear_layer_out_2 = 50, active_type_2 = 2,
linear_layer_out_3 = 10, last_layer_type = 3, drop_out_1 = 0.1, drop_out_2 = 0.1, drop_out_3 = 0.1,
optim_type = 0, lr = 10e-2) -> None:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.__addLoss()
self.__loadData()
self.accuracy_list = []
self.epoch = epoch
self.addModel(type_pool = type_pool, type_active = type_active, out_channels= out_channels,
kernel_size=kernel_size, padding=padding, linear_layer_out_1 = linear_layer_out_1, active_type_1 = active_type_1,
linear_layer_out_2 = linear_layer_out_2, active_type_2 = active_type_2,
linear_layer_out_3 = linear_layer_out_3, last_layer_type = last_layer_type, optim_type = optim_type, lr = lr,
drop_out_1 =drop_out_1, drop_out_2 = drop_out_2, drop_out_3 = drop_out_3)
def addModel(self, type_pool = 1, type_active = 0, out_channels= 10,
kernel_size=0, padding=0, linear_layer_out_1 = 100, active_type_1 = 1,
linear_layer_out_2 = 50, active_type_2 = 2,
linear_layer_out_3 = 10, last_layer_type = 3,
optim_type = 0, lr = 10e-2, drop_out_1 = 0.1, drop_out_2 = 0.1, drop_out_3 = 0.1):
# kernel_size = self.kernelSizeToInteger(kernel_size)
# 定义Model
self.model = Model(type_pool = type_pool, type_active = type_active, out_channels= out_channels,
kernel_size=kernel_size, padding=padding, linear_layer_out_1 = linear_layer_out_1, active_type_1 = active_type_1,
linear_layer_out_2 = linear_layer_out_2, active_type_2 = active_type_2,
linear_layer_out_3 = linear_layer_out_3, last_layer_type = last_layer_type,
drop_out_1 = drop_out_1, drop_out_2 = drop_out_2, drop_out_3 = drop_out_3)
# 定义学习lv
self.lr = lr
# 定义优化器
self.__addOptimizer(optim_type)
# GPU
self.model = self.model.to(self.device)
def kernelSizeToInteger(self, kernel_size):
return int(kernel_size)
def __addOptimizer(self, type = 0):
assert type in [0, 1]
if type == 0:
self.optimizer = optim.SGD(self.model.parameters(), lr=self.lr)
else:
self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
def __addLoss(self):
self.criterion = nn.CrossEntropyLoss()
def printNet(self):
print(self.model)
def plotImage(self):
plt.figure(figsize=(16, 6))
for i in range(10):
plt.subplot(2, 5, i + 1)
image, _ = self.train_loader.dataset.__getitem__(i)
plt.imshow(image.squeeze().numpy())
plt.axis('off')
def __loadData(self):
self.train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=64, shuffle=True)
self.test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=1000, shuffle=True)
def train(self, perm=torch.arange(0, 784).long()):
self.model.train()
for batch_idx, (data, target) in enumerate(self.train_loader):
# send to device
data, target = data.to(self.device), target.to(self.device)
# permute pixels
data = data.view(-1, 28*28)
data = data[:, perm]
data = data.view(-1, 1, 28, 28)
self.optimizer.zero_grad()
output = self.model(data)
# print(f"[OUTPUT]: {output.shape}, [TARGET]: {target.shape}")
loss = self.criterion(output, target)
loss.backward()
self.optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
self.epoch, batch_idx * len(data), len(self.train_loader.dataset),
100. * batch_idx / len(self.train_loader), loss.item()))
def test(self, perm=torch.arange(0, 784).long()):
self.model.eval()
test_loss = 0
correct = 0
for data, target in self.test_loader:
# send to device
data, target = data.to(self.device), target.to(self.device)
# permute pixels
data = data.view(-1, 28*28)
data = data[:, perm]
data = data.view(-1, 1, 28, 28)
output = self.model(data)
test_loss += self.criterion(output, target).item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()
test_loss /= len(self.test_loader.dataset)
accuracy = 100. * correct / len(self.test_loader.dataset)
self.accuracy_list.append(accuracy)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(self.test_loader.dataset),
accuracy))