|
| 1 | +export ChebyshevTransform |
| 2 | + |
| 3 | +struct ChebyshevTransform{N, S} <: AbstractTransform |
| 4 | + modes::NTuple{N, S} # N == ndims(x) |
| 5 | +end |
| 6 | + |
| 7 | +Base.ndims(::ChebyshevTransform{N}) where {N} = N |
| 8 | + |
| 9 | +function transform(t::ChebyshevTransform{N}, 𝐱::AbstractArray) where {N} |
| 10 | + return FFTW.r2r(𝐱, FFTW.REDFT10, 1:N) # [size(x)..., in_chs, batch] |
| 11 | +end |
| 12 | + |
| 13 | +function truncate_modes(t::ChebyshevTransform, 𝐱̂::AbstractArray) |
| 14 | + return view(𝐱̂, map(d -> 1:d, t.modes)..., :, :) # [t.modes..., in_chs, batch] |
| 15 | +end |
| 16 | + |
| 17 | +function inverse(t::ChebyshevTransform{N}, 𝐱̂::AbstractArray) where {N} |
| 18 | + normalized_𝐱̂ = 𝐱̂ ./ (prod(2 .* (size(𝐱̂)[1:N] .- 1))) |
| 19 | + return FFTW.r2r(normalized_𝐱̂, FFTW.REDFT01, 1:N) # [size(x)..., in_chs, batch] |
| 20 | +end |
| 21 | + |
| 22 | +function ChainRulesCore.rrule(::typeof(FFTW.r2r), x::AbstractArray, kind, dims) |
| 23 | + y = FFTW.r2r(x, kind, dims) |
| 24 | + r2r_pullback(Δ) = (NoTangent(), ∇r2r(unthunk(Δ), kind, dims), NoTangent(), NoTangent()) |
| 25 | + return y, r2r_pullback |
| 26 | +end |
| 27 | + |
| 28 | +function ∇r2r(Δ::AbstractArray{T}, kind, dims) where {T} |
| 29 | + # derivative of r2r turns out to be r2r |
| 30 | + Δx = FFTW.r2r(Δ, kind, dims) |
| 31 | + |
| 32 | + # rank 4 correction: needs @bischtob to elaborate the reason using this. |
| 33 | + # (M,) = size(Δ)[dims] |
| 34 | + # a1 = fill!(similar(Δ, M), one(T)) |
| 35 | + # CUDA.@allowscalar a1[1] = a1[end] = zero(T) |
| 36 | + |
| 37 | + # a2 = fill!(similar(Δ, M), one(T)) |
| 38 | + # a2[1:2:end] .= -one(T) |
| 39 | + # CUDA.@allowscalar a2[1] = a2[end] = zero(T) |
| 40 | + |
| 41 | + # e1 = fill!(similar(Δ, M), zero(T)) |
| 42 | + # CUDA.@allowscalar e1[1] = one(T) |
| 43 | + |
| 44 | + # eN = fill!(similar(Δ, M), zero(T)) |
| 45 | + # CUDA.@allowscalar eN[end] = one(T) |
| 46 | + |
| 47 | + # Δx .+= @. a1' * sum(e1' .* Δ, dims=2) - a2' * sum(eN' .* Δ, dims=2) |
| 48 | + # Δx .+= @. eN' * sum(a2' .* Δ, dims=2) - e1' * sum(a1' .* Δ, dims=2) |
| 49 | + return Δx |
| 50 | +end |
0 commit comments