-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathdemo_utils.py
338 lines (276 loc) · 17.7 KB
/
demo_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
'''
Seokju Lee
'''
import torch
from torch import nn
import torch.nn.functional as F
from rigid_warp import pixel2cam, inverse_warp2, depth2flow, flow_warp, transform_scale_consistent_depth
from flow_reversal import FlowReversal
import numpy as np
from matplotlib import pyplot as plt
import pdb
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def compute_obj_translation(r2t_obj_depths, t2r_obj_depths, tgt_obj_depths, ref_obj_depths, num_insts, intrinsics):
trans_fwd, trans_bwd = [], []
for r2t_obj_depth, t2r_obj_depth, tgt_obj_depth, ref_obj_depth, num_inst in zip(r2t_obj_depths, t2r_obj_depths, tgt_obj_depths, ref_obj_depths, num_insts):
if sum(num_inst) == 0:
continue;
Ks = []
for bb, ni in enumerate(num_inst):
if ni == 0: continue;
Ks.append( intrinsics[bb].unsqueeze(0).repeat(ni,1,1) )
Ks = torch.cat(Ks, dim=0)
r2t_obj_coords = pixel2cam(r2t_obj_depth[:,0].detach(), Ks.inverse())
t2r_obj_coords = pixel2cam(t2r_obj_depth[:,0].detach(), Ks.inverse())
tgt_obj_coords = pixel2cam(tgt_obj_depth[:,0].detach(), Ks.inverse())
ref_obj_coords = pixel2cam(ref_obj_depth[:,0].detach(), Ks.inverse())
tr_fwd, tr_bwd = [], []
for ii in range( sum(num_inst) ) :
r2t_obj_coord_mean = torch.cat([coords[coords!=0].mean().unsqueeze(0) for coords in r2t_obj_coords[ii]])
t2r_obj_coord_mean = torch.cat([coords[coords!=0].mean().unsqueeze(0) for coords in t2r_obj_coords[ii]])
tgt_obj_coord_mean = torch.cat([coords[coords!=0].mean().unsqueeze(0) for coords in tgt_obj_coords[ii]])
ref_obj_coord_mean = torch.cat([coords[coords!=0].mean().unsqueeze(0) for coords in ref_obj_coords[ii]])
tr_fwd.append( (((r2t_obj_coord_mean-tgt_obj_coord_mean) + (ref_obj_coord_mean-t2r_obj_coord_mean)) / 2).unsqueeze(0) )
tr_bwd.append( (((t2r_obj_coord_mean-ref_obj_coord_mean) + (tgt_obj_coord_mean-r2t_obj_coord_mean)) / 2).unsqueeze(0) )
tr_fwd = torch.cat(tr_fwd, dim=0)
tr_bwd = torch.cat(tr_bwd, dim=0)
trans_fwd.append(tr_fwd)
trans_bwd.append(tr_bwd)
return trans_fwd, trans_bwd
def compute_batch_bg_warping(tgt_img, ref_imgs, tgt_bg_masks, ref_bg_masks, tgt_depth, ref_depths, poses, poses_inv, intrinsics):
outputs = []
for ref_img, ref_depth, pose, pose_inv, tgt_bg_mask, ref_bg_mask in zip(ref_imgs, ref_depths, poses, poses_inv, tgt_bg_masks, ref_bg_masks):
'''
tgt_img: ([B, 3, 256, 832])
ref_img: ([B, 3, 256, 832])
tgt_depth: ([B, 1, 256, 832])
ref_depth: ([B, 1, 256, 832])
pose: ([B, 6])
pose_inv: ([B, 6])
tgt_bg_mask: ([B, 1, 256, 832])
ref_bg_mask: ([B, 1, 256, 832])
bb = 0
plt.close('all')
tgt = (tgt_img * 0.5 + 0.5)
ref = (ref_img * 0.5 + 0.5)
ea1 = 6; ea2 = 1; ii = 1;
fig = plt.figure(1, figsize=(9, 13))
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(tgt.detach().cpu().numpy()[bb].transpose(1,2,0)), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar()
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(tgt_bg_mask.detach().cpu().numpy()[bb,0]), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar()
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(ref.detach().cpu().numpy()[bb].transpose(1,2,0)), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar()
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(ref_bg_mask.detach().cpu().numpy()[bb,0]), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar()
fig.tight_layout(), plt.ion(), plt.show()
'''
### Outputs: warped-masked-bg-img, valid-bg-mask, valid-bg-proj-depth, valid-bg-comp-depth ###
fwd_outputs = compute_bg_warping(tgt_img, ref_img, tgt_bg_mask, tgt_depth, ref_depth, pose, pose_inv, intrinsics)
bwd_outputs = compute_bg_warping(ref_img, tgt_img, ref_bg_mask, ref_depth, tgt_depth, pose_inv, pose, intrinsics)
outputs.append( [torch.cat([fwd, bwd], dim=0) for fwd, bwd in zip(fwd_outputs, bwd_outputs)] )
return outputs
def compute_bg_warping(tgt_img, ref_img, bg_mask, tgt_depth, ref_depth, pose, pose_inv, intrinsic):
ref_img_warped, valid_mask, projected_depth, computed_depth = inverse_warp2(ref_img, tgt_depth, pose, intrinsic, ref_depth)
valid_mask = valid_mask * bg_mask
return ref_img_warped * valid_mask, valid_mask, projected_depth * valid_mask, computed_depth * valid_mask
def compute_batch_obj_warping(tgt_img, ref_imgs, tgt_obj_masks, ref_obj_masks, tgt_depth, ref_depths, ego_poses, ego_poses_inv, obj_poses, obj_poses_inv, intrinsics, num_insts):
outputs, ovl_obj = [], []
for ref_img, ref_depth, tgt_obj_mask, ref_obj_mask, ego_pose, ego_pose_inv, obj_pose, obj_pose_inv, num_inst in \
zip(ref_imgs, ref_depths, tgt_obj_masks, ref_obj_masks, ego_poses, ego_poses_inv, obj_poses, obj_poses_inv, num_insts):
# pdb.set_trace()
tgt_Is, ref_Is, tgt_Ds, ref_Ds, ego_Ps, ego_Ps_inv, Ks = [], [], [], [], [], [], []
for bb, ni in enumerate(num_inst):
if ni == 0: continue;
tgt_Is.append( tgt_img[bb].unsqueeze(0).repeat(ni,1,1,1) )
ref_Is.append( ref_img[bb].unsqueeze(0).repeat(ni,1,1,1) )
tgt_Ds.append( tgt_depth[bb].unsqueeze(0).repeat(ni,1,1,1) )
ref_Ds.append( ref_depth[bb].unsqueeze(0).repeat(ni,1,1,1) )
ego_Ps.append( ego_pose[bb].unsqueeze(0).repeat(ni,1) )
ego_Ps_inv.append( ego_pose_inv[bb].unsqueeze(0).repeat(ni,1) )
Ks.append( intrinsics[bb].unsqueeze(0).repeat(ni,1,1) )
tgt_Is = torch.cat(tgt_Is, dim=0)
ref_Is = torch.cat(ref_Is, dim=0)
tgt_Ds = torch.cat(tgt_Ds, dim=0)
ref_Ds = torch.cat(ref_Ds, dim=0)
ego_Ps = torch.cat(ego_Ps, dim=0)
ego_Ps_inv = torch.cat(ego_Ps_inv, dim=0)
Ks = torch.cat(Ks, dim=0)
# (rtt_Is, rtt_Ms, prj_Ds, cmp_Ds), ovl_obj
fwd_outputs, fwd_ovl_obj = compute_obj_warping(ref_Is, ref_obj_mask, tgt_obj_mask, ref_Ds, tgt_Ds, ego_Ps, obj_pose, Ks, num_inst)
bwd_outputs, bwd_ovl_obj = compute_obj_warping(tgt_Is, tgt_obj_mask, ref_obj_mask, tgt_Ds, ref_Ds, ego_Ps_inv, obj_pose_inv, Ks, num_inst)
outputs.append( [torch.cat([fwd, bwd], dim=0) for fwd, bwd in zip(fwd_outputs, bwd_outputs)] )
ovl_obj.append( torch.cat([fwd_ovl_obj, bwd_ovl_obj], dim=0) )
return outputs, ovl_obj
def compute_obj_warping(ref_img, ref_obj_mask, tgt_obj_mask, ref_depth, tgt_depth, ego_pose, obj_pose, intrinsic, num_inst):
rtt_img_warped, valid_mask, projected_depth, computed_depth = inverse_warp2(ref_img, tgt_depth, [ego_pose, obj_pose], intrinsic, ref_depth)
obj_valid_mask = valid_mask * tgt_obj_mask
rtt_Is, rtt_Ms, prj_Ds, cmp_Ds, ovl_Ms = [], [], [], [], []
for bb, ni in enumerate(num_inst):
if ni == 0:
rtt_Is.append(torch.zeros(1, rtt_img_warped.size(1), rtt_img_warped.size(2), rtt_img_warped.size(3)).cuda())
rtt_Ms.append(torch.zeros(1, obj_valid_mask.size(1), obj_valid_mask.size(2), obj_valid_mask.size(3)).cuda())
prj_Ds.append(torch.zeros(1, projected_depth.size(1), projected_depth.size(2), projected_depth.size(3)).cuda())
cmp_Ds.append(torch.zeros(1, computed_depth.size(1), computed_depth.size(2), computed_depth.size(3)).cuda())
ovl_Ms.append(torch.zeros(1, obj_valid_mask.size(1), obj_valid_mask.size(2), obj_valid_mask.size(3)).cuda())
continue;
rtt_Is.append( (rtt_img_warped*obj_valid_mask)[int(sum(num_inst[:bb])):int(sum(num_inst[:bb])+ni)].sum(dim=0, keepdim=True) )
rtt_Ms.append( obj_valid_mask[int(sum(num_inst[:bb])):int(sum(num_inst[:bb])+ni)].sum(dim=0, keepdim=True) )
prj_Ds.append( (projected_depth*obj_valid_mask)[int(sum(num_inst[:bb])):int(sum(num_inst[:bb])+ni)].sum(dim=0, keepdim=True) )
cmp_Ds.append( (computed_depth*obj_valid_mask)[int(sum(num_inst[:bb])):int(sum(num_inst[:bb])+ni)].sum(dim=0, keepdim=True) )
# ovl_Ms.append( ( 1 - (1-r2t_obj_mask) * (1-tgt_obj_mask) * (1-ref_obj_mask) )[int(sum(num_inst[:bb])):int(sum(num_inst[:bb])+ni)].sum(dim=0, keepdim=True).clamp(0,1) ) # ref + r2t + tgt 모두 합해서 마스킹
ovl_Ms.append( ( 1 - (1-tgt_obj_mask) * (1-ref_obj_mask) )[int(sum(num_inst[:bb])):int(sum(num_inst[:bb])+ni)].sum(dim=0, keepdim=True).clamp(0,1) ) # ref + tgt 모두 합해서 마스킹
rtt_Is = torch.cat(rtt_Is, dim=0)
rtt_Ms = torch.cat(rtt_Ms, dim=0)
prj_Ds = torch.cat(prj_Ds, dim=0)
cmp_Ds = torch.cat(cmp_Ds, dim=0)
ovl_Ms = torch.cat(ovl_Ms, dim=0)
return (rtt_Is, rtt_Ms, prj_Ds, cmp_Ds), ovl_Ms
def compute_reverse_warp_ego(depths, obj_imgs, obj_masks, ego_poses, intrinsics, num_insts):
'''
(args)
depths: NumSeqs(2) >> B1HW
ego_poses: NumSeqs(2) >> B6
intrinsics: B33
bb = 0
plt.close('all')
aaa = 1/depths[0].detach().cpu()[bb,0]
bbb = d2f.detach().cpu()[bb,0]
ccc = rev_d2f.detach().cpu()[bb,0]
ddd = r_valid.detach().cpu()[bb,0]
eee = w_valid.detach().cpu()[bb,0]
fff = v_mask.detach().cpu()[bb,0]
ggg = 1/w_depth.detach().cpu()[bb,0]
hhh = 1/w_sc_depth.detach().cpu()[bb,0]
ea1 = 8; ea2 = 1; ii = 1;
fig = plt.figure(1, figsize=(7, 13))
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(aaa), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(bbb), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(ccc), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(ddd), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(eee), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(fff), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(ggg), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(hhh), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.tight_layout(), plt.ion(), plt.show()
'''
flow_reversal_layer = FlowReversal()
w_depths, w_sc_depths, v_masks, r_flows = [], [], [], []
w_obj_imgs, w_obj_masks, w_obj_depths, w_obj_sc_depths = [], [], [], []
for depth, obj_img, obj_mask, ego_pose, num_inst in zip(depths, obj_imgs, obj_masks, ego_poses, num_insts):
### 1st step: batch-wise ###
d2f, _ = depth2flow(depth, ego_pose, intrinsics)
rev_d2f, norm = flow_reversal_layer(d2f, d2f) # torch.Size([4, 2, 256, 832]), torch.Size([4, 2, 256, 832])
rev_d2f = -rev_d2f
rev_d2f[norm > 0] = rev_d2f[norm>0]/norm[norm>0].clone()
r_valid = (norm != 0).float().prod(dim=1, keepdim=True) # torch.Size([4, 1, 256, 832])
rev_d2f = rev_d2f * r_valid # torch.Size([4, 2, 256, 832])
w_depth, w_valid = flow_warp(depth, rev_d2f) # torch.Size([4, 1, 256, 832]), torch.Size([4, 1, 256, 832])
v_mask = (w_valid * r_valid).detach() # torch.Size([4, 1, 256, 832])
w_depth = w_depth * v_mask # torch.Size([4, 1, 256, 832])
w_sc_depth = transform_scale_consistent_depth(w_depth, ego_pose, intrinsics) * v_mask # torch.Size([4, 1, 256, 832])
### 1st step outputs ###
w_depths.append( w_depth ) # NumRefs(2) >> torch.Size([4, 1, 256, 832])
w_sc_depths.append( w_sc_depth ) # NumRefs(2) >> torch.Size([4, 1, 256, 832])
v_masks.append( v_mask ) # NumRefs(2) >> torch.Size([4, 1, 256, 832])
r_flows.append( rev_d2f ) # NumRefs(2) >> torch.Size([4, 2, 256, 832])
# pdb.set_trace()
### 2nd step: instance-wise ###
Vs, Fs, Ds, Ts = [], [], [], []
for bb, ni in enumerate(num_inst):
if ni == 0: continue;
Vs.append(v_mask[bb].unsqueeze(0).repeat(ni,1,1,1))
Fs.append(rev_d2f[bb].unsqueeze(0).repeat(ni,1,1,1))
Ds.append(w_depth[bb].unsqueeze(0).repeat(ni,1,1,1))
Ts.append(w_sc_depth[bb].unsqueeze(0).repeat(ni,1,1,1))
Vs = torch.cat(Vs, dim=0)
Fs = torch.cat(Fs, dim=0)
Ds = torch.cat(Ds, dim=0)
Ts = torch.cat(Ts, dim=0)
w_obj_img, _ = flow_warp(obj_img, Fs)
w_obj_mask, _ = flow_warp(obj_mask, Fs)
### 2nd step outputs ###
w_obj_imgs.append( w_obj_img * w_obj_mask.round() * Vs ) # NumRefs(2) >> torch.Size([12, 3, 256, 832])
w_obj_masks.append( w_obj_mask.round() * Vs ) # NumRefs(2) >> torch.Size([12, 1, 256, 832])
w_obj_depths.append( Ds * w_obj_mask.round() * Vs) # NumRefs(2) >> torch.Size([12, 1, 256, 832])
w_obj_sc_depths.append( Ts * w_obj_mask.round() * Vs) # NumRefs(2) >> torch.Size([12, 1, 256, 832])
# pdb.set_trace()
return w_depths, w_sc_depths, v_masks, r_flows, w_obj_imgs, w_obj_masks, w_obj_depths, w_obj_sc_depths
def compute_reverse_warp_obj(depths, obj_imgs, obj_masks, obj_poses, intrinsics, num_insts):
'''
(args)
depths: NumSeqs(2) >> N1HW
obj_poses: NumSeqs(2) >> N6
intrinsics: B33
bb = 0
plt.close('all')
aaa = depths[0].detach().cpu()[bb,0]
bbb = d2f.detach().cpu()[bb,0]
ccc = rev_d2f.detach().cpu()[bb,0]
ddd = r_valid.detach().cpu()[bb,0]
eee = w_valid.detach().cpu()[bb,0]
fff = v_mask.detach().cpu()[bb,0]
ggg = w_depth.detach().cpu()[bb,0]
hhh = w_sc_depth.detach().cpu()[bb,0]
iii = obj_img.detach().cpu()[bb,0]
jjj = w_obj_img.detach().cpu()[bb,0]
kkk = (w_obj_mask*v_mask).detach().cpu()[bb,0]
lll = (w_obj_img*w_obj_mask*v_mask).detach().cpu()[bb,0]
ea1 = 12; ea2 = 1; ii = 1;
fig = plt.figure(1, figsize=(7, 13))
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(aaa), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(bbb), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(ccc), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(ddd), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(eee), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(fff), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(ggg), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(hhh), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(iii), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(jjj), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(kkk), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.add_subplot(ea1,ea2,ii); ii += 1;
plt.imshow(lll), plt.grid(linestyle=':', linewidth=0.4), plt.colorbar();
fig.tight_layout(), plt.ion(), plt.show()
'''
flow_reversal_layer = FlowReversal()
w_obj_imgs, w_obj_masks, w_obj_depths, w_obj_sc_depths = [], [], [], []
for depth, obj_img, obj_mask, obj_pose, num_inst in zip(depths, obj_imgs, obj_masks, obj_poses, num_insts):
### 1st step: instance-wise ###
d2f, _ = depth2flow(depth, obj_pose, intrinsics)
rev_d2f, norm = flow_reversal_layer(d2f, d2f) # torch.Size([12, 2, 256, 832]), torch.Size([12, 2, 256, 832])
rev_d2f = -rev_d2f
rev_d2f[norm > 0] = rev_d2f[norm>0]/norm[norm>0].clone()
r_valid = (norm != 0).float().prod(dim=1, keepdim=True) # torch.Size([12, 1, 256, 832])
rev_d2f = rev_d2f * r_valid # torch.Size([12, 2, 256, 832])
w_depth, w_valid = flow_warp(depth, rev_d2f) # torch.Size([12, 1, 256, 832]), torch.Size([12, 1, 256, 832])
v_mask = (w_valid * r_valid).detach() # torch.Size([12, 1, 256, 832])
w_depth = w_depth * v_mask # torch.Size([12, 1, 256, 832])
w_sc_depth = transform_scale_consistent_depth(w_depth, obj_pose, intrinsics) * v_mask # torch.Size([12, 1, 256, 832])
w_obj_img, _ = flow_warp(obj_img, rev_d2f)
w_obj_mask, _ = flow_warp(obj_mask, rev_d2f)
### outputs ###
w_obj_imgs.append( w_obj_img * w_obj_mask.round() * v_mask ) # NumRefs(2) >> torch.Size([12, 3, 256, 832])
w_obj_masks.append( w_obj_mask.round() * v_mask ) # NumRefs(2) >> torch.Size([12, 1, 256, 832])
w_obj_depths.append( w_depth * w_obj_mask.round() * v_mask) # NumRefs(2) >> torch.Size([12, 1, 256, 832])
w_obj_sc_depths.append( w_sc_depth * w_obj_mask.round() * v_mask) # NumRefs(2) >> torch.Size([12, 1, 256, 832])
return w_obj_imgs, w_obj_masks, w_obj_depths, w_obj_sc_depths