-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathchat_api.py
425 lines (350 loc) · 12.7 KB
/
chat_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import logging
import os
import re
import time
from dataclasses import dataclass
from functools import partial
from typing import Optional
import openai
from huggingface_hub import InferenceClient
from openai import AzureOpenAI, OpenAI
import agentlab.llm.tracking as tracking
from agentlab.llm.base_api import AbstractChatModel, BaseModelArgs
from agentlab.llm.huggingface_utils import HFBaseChatModel
from agentlab.llm.llm_utils import AIMessage, Discussion
def make_system_message(content: str) -> dict:
return dict(role="system", content=content)
def make_user_message(content: str) -> dict:
return dict(role="user", content=content)
def make_assistant_message(content: str) -> dict:
return dict(role="assistant", content=content)
class CheatMiniWoBLLM(AbstractChatModel):
"""For unit-testing purposes only. It only work with miniwob.click-test task."""
def __init__(self, wait_time=0) -> None:
self.wait_time = wait_time
def __call__(self, messages) -> str:
if self.wait_time > 0:
print(f"Waiting for {self.wait_time} seconds")
time.sleep(self.wait_time)
if isinstance(messages, Discussion):
prompt = messages.to_string()
else:
prompt = messages[1].get("content", "")
match = re.search(r"^\s*\[(\d+)\].*button", prompt, re.MULTILINE | re.IGNORECASE)
if match:
bid = match.group(1)
action = f'click("{bid}")'
else:
raise Exception("Can't find the button's bid")
answer = f"""I'm clicking the button as requested.
<action>
{action}
</action>
"""
return make_assistant_message(answer)
@dataclass
class CheatMiniWoBLLMArgs:
model_name = "test/cheat_miniwob_click_test"
max_total_tokens = 10240
max_input_tokens = 8000
max_new_tokens = 128
wait_time: int = 0
def make_model(self):
return CheatMiniWoBLLM(self.wait_time)
def prepare_server(self):
pass
def close_server(self):
pass
@dataclass
class OpenRouterModelArgs(BaseModelArgs):
"""Serializable object for instantiating a generic chat model with an OpenAI
model."""
def make_model(self):
return OpenRouterChatModel(
model_name=self.model_name,
temperature=self.temperature,
max_tokens=self.max_new_tokens,
)
@dataclass
class OpenAIModelArgs(BaseModelArgs):
"""Serializable object for instantiating a generic chat model with an OpenAI
model."""
def make_model(self):
return OpenAIChatModel(
model_name=self.model_name,
temperature=self.temperature,
max_tokens=self.max_new_tokens,
)
@dataclass
class AzureModelArgs(BaseModelArgs):
"""Serializable object for instantiating a generic chat model with an Azure model."""
deployment_name: str = None
def make_model(self):
return AzureChatModel(
model_name=self.model_name,
temperature=self.temperature,
max_tokens=self.max_new_tokens,
deployment_name=self.deployment_name,
)
@dataclass
class SelfHostedModelArgs(BaseModelArgs):
"""Serializable object for instantiating a generic chat model with a self-hosted model."""
model_url: str = None
token: str = None
backend: str = "huggingface"
n_retry_server: int = 4
def make_model(self):
if self.backend == "huggingface":
# currently only huggingface tgi servers are supported
if self.model_url is None:
self.model_url = os.environ["AGENTLAB_MODEL_URL"]
if self.token is None:
self.token = os.environ["AGENTLAB_MODEL_TOKEN"]
return HuggingFaceURLChatModel(
model_name=self.model_name,
model_url=self.model_url,
token=self.token,
temperature=self.temperature,
max_new_tokens=self.max_new_tokens,
n_retry_server=self.n_retry_server,
)
else:
raise ValueError(f"Backend {self.backend} is not supported")
@dataclass
class ChatModelArgs(BaseModelArgs):
"""Object added for backward compatibility with the old ChatModelArgs."""
model_path: str = None
model_url: str = None
model_size: str = None
training_total_tokens: int = None
hf_hosted: bool = False
is_model_operational: str = False
sliding_window: bool = False
n_retry_server: int = 4
infer_tokens_length: bool = False
vision_support: bool = False
shard_support: bool = True
extra_tgi_args: dict = None
tgi_image: str = None
info: dict = None
def __post_init__(self):
import warnings
warnings.simplefilter("always", DeprecationWarning)
warnings.warn(
"ChatModelArgs is deprecated and used only for xray. Use one of the specific model args classes instead.",
DeprecationWarning,
)
warnings.simplefilter("default", DeprecationWarning)
def make_model(self):
pass
def _extract_wait_time(error_message, min_retry_wait_time=60):
"""Extract the wait time from an OpenAI RateLimitError message."""
match = re.search(r"try again in (\d+(\.\d+)?)s", error_message)
if match:
return max(min_retry_wait_time, float(match.group(1)))
return min_retry_wait_time
class RetryError(Exception):
pass
def handle_error(error, itr, min_retry_wait_time, max_retry):
if not isinstance(error, openai.OpenAIError):
raise error
logging.warning(
f"Failed to get a response from the API: \n{error}\n" f"Retrying... ({itr+1}/{max_retry})"
)
wait_time = _extract_wait_time(
error.args[0],
min_retry_wait_time=min_retry_wait_time,
)
logging.info(f"Waiting for {wait_time} seconds")
time.sleep(wait_time)
error_type = error.args[0]
return error_type
class OpenRouterError(openai.OpenAIError):
pass
class ChatModel(AbstractChatModel):
def __init__(
self,
model_name,
api_key=None,
temperature=0.5,
max_tokens=100,
max_retry=4,
min_retry_wait_time=60,
api_key_env_var=None,
client_class=OpenAI,
client_args=None,
pricing_func=None,
):
assert max_retry > 0, "max_retry should be greater than 0"
self.model_name = model_name
self.temperature = temperature
self.max_tokens = max_tokens
self.max_retry = max_retry
self.min_retry_wait_time = min_retry_wait_time
# Get the API key from the environment variable if not provided
if api_key_env_var:
api_key = api_key or os.getenv(api_key_env_var)
self.api_key = api_key
# Get pricing information
if pricing_func:
pricings = pricing_func()
try:
self.input_cost = float(pricings[model_name]["prompt"])
self.output_cost = float(pricings[model_name]["completion"])
except KeyError:
logging.warning(
f"Model {model_name} not found in the pricing information, prices are set to 0. Maybe try upgrading langchain_community."
)
self.input_cost = 0.0
self.output_cost = 0.0
else:
self.input_cost = 0.0
self.output_cost = 0.0
client_args = client_args or {}
self.client = client_class(
api_key=api_key,
**client_args,
)
def __call__(self, messages: list[dict], n_samples: int = 1, temperature: float = None) -> dict:
# Initialize retry tracking attributes
self.retries = 0
self.success = False
self.error_types = []
completion = None
e = None
for itr in range(self.max_retry):
self.retries += 1
temperature = temperature if temperature is not None else self.temperature
try:
completion = self.client.chat.completions.create(
model=self.model_name,
messages=messages,
n=n_samples,
temperature=temperature,
max_tokens=self.max_tokens,
)
if completion.usage is None:
raise OpenRouterError(
"The completion object does not contain usage information. This is likely a bug in the OpenRouter API."
)
self.success = True
break
except openai.OpenAIError as e:
error_type = handle_error(e, itr, self.min_retry_wait_time, self.max_retry)
self.error_types.append(error_type)
if not completion:
raise RetryError(
f"Failed to get a response from the API after {self.max_retry} retries\n"
f"Last error: {error_type}"
)
input_tokens = completion.usage.prompt_tokens
output_tokens = completion.usage.completion_tokens
cost = input_tokens * self.input_cost + output_tokens * self.output_cost
if hasattr(tracking.TRACKER, "instance") and isinstance(
tracking.TRACKER.instance, tracking.LLMTracker
):
tracking.TRACKER.instance(input_tokens, output_tokens, cost)
if n_samples == 1:
return AIMessage(completion.choices[0].message.content)
else:
return [AIMessage(c.message.content) for c in completion.choices]
def get_stats(self):
return {
"n_retry_llm": self.retries,
# "busted_retry_llm": int(not self.success), # not logged if it occurs anyways
}
class OpenAIChatModel(ChatModel):
def __init__(
self,
model_name,
api_key=None,
temperature=0.5,
max_tokens=100,
max_retry=4,
min_retry_wait_time=60,
):
super().__init__(
model_name=model_name,
api_key=api_key,
temperature=temperature,
max_tokens=max_tokens,
max_retry=max_retry,
min_retry_wait_time=min_retry_wait_time,
api_key_env_var="OPENAI_API_KEY",
client_class=OpenAI,
pricing_func=tracking.get_pricing_openai,
)
class OpenRouterChatModel(ChatModel):
def __init__(
self,
model_name,
api_key=None,
temperature=0.5,
max_tokens=100,
max_retry=4,
min_retry_wait_time=60,
):
client_args = {
"base_url": "https://openrouter.ai/api/v1",
}
super().__init__(
model_name=model_name,
api_key=api_key,
temperature=temperature,
max_tokens=max_tokens,
max_retry=max_retry,
min_retry_wait_time=min_retry_wait_time,
api_key_env_var="OPENROUTER_API_KEY",
client_class=OpenAI,
client_args=client_args,
pricing_func=tracking.get_pricing_openrouter,
)
class AzureChatModel(ChatModel):
def __init__(
self,
model_name,
api_key=None,
deployment_name=None,
temperature=0.5,
max_tokens=100,
max_retry=4,
min_retry_wait_time=60,
):
api_key = api_key or os.getenv("AZURE_OPENAI_API_KEY")
endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
assert endpoint, "AZURE_OPENAI_ENDPOINT has to be defined in the environment"
client_args = {
"azure_deployment": deployment_name,
"azure_endpoint": endpoint,
"api_version": "2024-02-01",
}
super().__init__(
model_name=model_name,
api_key=api_key,
temperature=temperature,
max_tokens=max_tokens,
max_retry=max_retry,
min_retry_wait_time=min_retry_wait_time,
client_class=AzureOpenAI,
client_args=client_args,
pricing_func=tracking.get_pricing_openai,
)
class HuggingFaceURLChatModel(HFBaseChatModel):
def __init__(
self,
model_name: str,
base_model_name: str,
model_url: str,
token: Optional[str] = None,
temperature: Optional[int] = 1e-1,
max_new_tokens: Optional[int] = 512,
n_retry_server: Optional[int] = 4,
):
super().__init__(model_name, base_model_name, n_retry_server)
if temperature < 1e-3:
logging.warning("Models might behave weirdly when temperature is too low.")
self.temperature = temperature
if token is None:
token = os.environ["TGI_TOKEN"]
client = InferenceClient(model=model_url, token=token)
self.llm = partial(client.text_generation, max_new_tokens=max_new_tokens)