Skip to content

Commit ae9217e

Browse files
committed
Binary Search Tree
1 parent 28eafd7 commit ae9217e

File tree

2 files changed

+81
-0
lines changed

2 files changed

+81
-0
lines changed

README.md

+2
Original file line numberDiff line numberDiff line change
@@ -30,4 +30,6 @@ Data Structures and Algorithms Patterns implemented in Python.
3030
- [x] [Bucket Sort](Sorting-Algo/bucketsort.py)
3131
- [x] [Strings](Strings)
3232
- [x] [KMP (Knuth Morris Pratt) Pattern Searching](Strings/KMP.py)
33+
- [x] [Trees](Trees)
34+
- [x] [Binary Search Tree](Trees/binarysearchtree.py)
3335

Trees/binarysearchtree.py

+79
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,79 @@
1+
'''
2+
Binary Search Tree
3+
A binary tree is a tree data structure in which each node can have a maximum of 2 children. It means that each node in a binary tree can have either one, or two or no children. Each node in a binary tree contains data and references to its children. Both the children are named as left child and the right child according to their position.
4+
5+
Time Complexity - O(logn)
6+
'''
7+
class BinaryTreeNode:
8+
def __init__(self, data):
9+
self.data = data
10+
self.leftChild = None
11+
self.rightChild = None
12+
13+
14+
def insert(root, newValue):
15+
# if binary search tree is empty, make a new node and declare it as root
16+
if root is None:
17+
root = BinaryTreeNode(newValue)
18+
return root
19+
# binary search tree is not empty, so we will insert it into the tree
20+
# if newValue is less than value of data in root, add it to left subtree and proceed recursively
21+
if newValue < root.data:
22+
root.leftChild = insert(root.leftChild, newValue)
23+
else:
24+
# if newValue is greater than value of data in root, add it to right subtree and proceed recursively
25+
root.rightChild = insert(root.rightChild, newValue)
26+
return root
27+
28+
29+
def search(root, value):
30+
# Condition 1
31+
if root == None:
32+
return False
33+
# Condition 2
34+
elif root.data == value:
35+
return True
36+
# Condition 3
37+
elif root.data < value:
38+
return search(root.rightChild, value)
39+
# Condition 4
40+
else:
41+
return search(root.leftChild, value)
42+
43+
44+
def findLargestElement(root):
45+
# check if binary search tree is empty
46+
if root == None:
47+
return False
48+
# check if current node is rightmost node
49+
elif root.rightChild == None:
50+
return root.data
51+
# check right subtree of current node
52+
else:
53+
return findLargestElement(root.rightChild)
54+
55+
56+
root = insert(None, 15)
57+
58+
59+
def findSmallestElement(root):
60+
# check if binary search tree is empty
61+
if root == None:
62+
return False
63+
# check if current node is leftmost node
64+
elif root.leftChild == None:
65+
return root.data
66+
# check right subtree of current node
67+
else:
68+
return findSmallestElement(root.leftChild)
69+
70+
71+
insert(root, 10)
72+
insert(root, 25)
73+
insert(root, 6)
74+
insert(root, 14)
75+
insert(root, 20)
76+
insert(root, 60)
77+
print(search(root, 14)) # True
78+
print(findLargestElement(root)) # 60
79+
print(findSmallestElement(root)) # 6

0 commit comments

Comments
 (0)