-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval.py
204 lines (168 loc) · 5.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import pandas as pd
from matplotlib import pyplot as plt
import numpy as np
import seaborn as sns
import sys
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.ticker import FormatStrFormatter
BIG = True
TEST = True # Marked true for fine-tuning data with multiple bottlenecks
val = sys.argv[1]
sns.set_theme("paper", "whitegrid", font_scale=1.5)
mpl.rcParams.update({
'text.usetex': True,
'font.family': 'serif',
'text.latex.preamble': r'\usepackage{amsmath,amssymb}',
'lines.linewidth': 2,
'lines.markeredgewidth': 0,
'scatter.marker': '.',
'scatter.edgecolors': 'none',
# Set image quality and reduce whitespace around saved figure.
'savefig.dpi': 300,
'savefig.bbox': 'tight',
'savefig.pad_inches': 0.01,
})
if not TEST:
frame = pd.read_csv("small_test_no_disturbance_with_message_ids{}.csv".format(val))
else:
if not BIG:
frame = pd.read_csv("small_test_one_disturbance_with_message_ids{}.csv".format(val))
else:
frame = pd.read_csv("large_test_disturbance_with_message_ids{}.csv".format(val))
# Get the time stamp, packet size and delay (from my format, Alex uses a different format)
frame = frame[frame.columns[[1,7,-8]]]
frame.columns = ["t", "size", "delay"]
print(frame.head())
frame = (
frame
.assign(delay=lambda df: df['delay']) # to ms.
)
plt.figure(figsize=(5,5))
sbs = sns.displot(
data=frame,
kind='ecdf',
x='delay'
)
#sbs.fig.suptitle('Delay plot with multiple senders')
sbs.set(xlabel='Delay (seconds)', ylabel='Fraction of packets')
plt.xlim([0,0.5])
plt.ylim(bottom=0)
# Tight layout
sbs.fig.tight_layout()
plt.savefig("delay"+".pdf")
frame['delay'].quantile([0.5, 0.99])
throughput = frame.loc[frame['t'] > 20, 'size'].sum() / 40 / (1024*1024) # in MBps
queueframe = pd.read_csv("queue.csv", names=["source", "time", "size"])
bottleneck_source = "/NodeList/0/DeviceList/0/$ns3::CsmaNetDevice/TxQueue/PacketsInQueue"
bottleneck_queue = queueframe[queueframe["source"] == bottleneck_source]
print(bottleneck_source)
plt.figure(figsize=(5,5))
scs = sns.relplot(
data=bottleneck_queue,
kind='line',
x='time',
y='size',
legend=False,
ci=None,
)
scs.fig.suptitle('Bottleneck queue plot with multiple senders')
plt.savefig("Queuesize"+".pdf")
## Bottleneck plots for switches A, B, D, G
if BIG:
values = [6, 7, 9, 12]
dict_switches = {
6: "A",
7: "B",
9: "D",
12: "G"
}
else:
values = [2, 3]
dict_switches = {
2: "A",
3: "B"
}
for value in values:
bottleneck_source = "/NodeList/{}/DeviceList/0/$ns3::CsmaNetDevice/TxQueue/PacketsInQueue".format(value)
bottleneck_queue = queueframe[queueframe["source"] == bottleneck_source]
print(bottleneck_source)
plt.figure(figsize=(5,5))
scs = sns.relplot(
data=bottleneck_queue,
kind='line',
x='time',
y='size',
legend=False,
ci=None,
)
#scs.fig.suptitle('Bottleneck queue on switch {} '.format(dict_switches[value]))
#scs.fig.suptitle('Queue on bottleneck switch')
scs.set(xlabel='Simulation Time (seconds)', ylabel='Queue Size (packets)')
plt.xlim([0,60])
plt.ylim([0,1000])
save_name = "Queue profile on switch {}".format(dict_switches[value]) + ".pdf"
scs.fig.tight_layout()
plt.savefig(save_name)
dropframe = pd.read_csv("drops.csv", names=["source", "time", "packetsize"])
print("Drop fraction:", len(dropframe) / (len(dropframe) + len(frame)))
if BIG:
## Plot delay distribution for each receiver
new_frame = pd.read_csv("large_test_disturbance_with_message_ids{}.csv".format(val))
new_frame = new_frame[new_frame.columns[[1,7, 23, -8]]]
new_frame.columns = ["t", "size", "dest ip", "delay"]
print(new_frame.head())
gb = new_frame.groupby('dest ip')
groups = [gb.get_group(x) for x in gb.groups]
print(groups)
for idx, group in enumerate(groups):
print(idx, group.shape)
plt.figure(figsize=(5,5))
scs = sns.displot(
data=group,
kind='ecdf',
x='delay',
legend=False
)
scs.fig.suptitle('Delay plot on receiver {} '.format(idx+1))
scs.set(xlabel='Delay', ylabel='Fraction of packets')
plt.xlim([0,0.5])
# Tight layout
scs.fig.tight_layout()
plt.savefig("delay_Receiver{}".format(idx)+".pdf")
fig, ax = plt.subplots(figsize=(5,5))
df0 = groups[0]
df1 = groups[1]
df2 = groups[2]
scs0 = sns.ecdfplot(
data=df0,
x='delay',
label="Receiver 1",
color="blue",
ax = ax
)
scs1 = sns.ecdfplot(
data=df1,
x='delay',
label="Receiver 2",
color="red",
ax = ax
)
scs2 = sns.ecdfplot(
data=df2,
x='delay',
label="Receiver 3",
color="green",
ax = ax
)
ax.set_xlabel("Delay", fontsize=12)
ax.set_ylabel("Fraction of packets",fontsize=12)
ax.axis(xmin=0,xmax=0.5)
ax.lines[0].set_linestyle("dotted")
ax.lines[1].set_linestyle("--")
ax.lines[2].set_linestyle("-.")
fig.legend(["Receiver 1","Receiver 2","Receiver 3"],loc = "lower right", bbox_to_anchor=(0.948, 0.125), ncol=1, fontsize=10)
#ax.get_legend().remove()
# Tight layout
fig.tight_layout()
fig.savefig("delay_Receivers"+".pdf")