-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcsvhelper_memento.py
236 lines (203 loc) · 6.84 KB
/
csvhelper_memento.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Orignal author: Siddhant Ray
import argparse
import os
import numpy as np
import pandas as pd
print("Current directory is:", os.getcwd())
print("Generate combined csv for TCP congestion data")
def extract_TTL(text):
list_of_features = text.split()
idx_of_ttl = list_of_features.index("ttl")
ttl = list_of_features[idx_of_ttl + 1]
return ttl
def extract_protocol(text):
list_of_features = text.split()
idx_of_protocol = list_of_features.index("protocol")
protocol = list_of_features[idx_of_protocol + 1]
return protocol
def rename_flowid(input_text):
return input_text
def generate_senders_csv(path, n_senders):
path = path
num_senders = n_senders
sender_num = 0
df_sent_cols = [
"Timestamp",
"Flow ID",
"Packet ID",
"Packet Size",
"IP ID",
"DSCP",
"ECN",
"TTL",
"Payload Size",
"Proto",
"Source IP",
"Destination IP",
"TCP Source Port",
"TCP Destination Port",
"TCP Sequence Number",
"TCP Window Size",
"Delay",
"Workload ID",
"Application ID",
"Message ID",
]
df_sent_cols_to_drop = [
0,
2,
4,
6,
8,
10,
12,
14,
16,
18,
20,
22,
24,
26,
28,
30,
32,
34,
36,
38,
40,
]
temp_cols = [
"Timestamp",
"Flow ID",
"Packet ID",
"Packet Size",
"IP ID",
"DSCP",
"ECN",
"TTL",
"Payload Size",
"Proto",
"Source IP",
"Destination IP",
"TCP Source Port",
"TCP Destination Port",
"TCP Sequence Number",
"TCP Window Size",
"Delay",
"Workload ID",
"Application ID",
"Message ID",
]
temp = pd.DataFrame(columns=temp_cols)
print(temp.head())
# files = ["topo_1.csv", "topo_2.csv", "topo_test_1.csv", "topo_test_2.csv"]
# files = ["topo_more_data_1.csv", "topo_more_data_2.csv", "topo_more_data_3.csv",
# "topo_more_data_4.csv", "topo_more_data_5.csv", "topo_more_data_6.csv"]
"""files = ["small_test_no_disturbance_with_message_ids1.csv",
"small_test_no_disturbance_with_message_ids2.csv",
"small_test_no_disturbance_with_message_ids3.csv",
"small_test_no_disturbance_with_message_ids4.csv",
"small_test_no_disturbance_with_message_ids5.csv",
"small_test_no_disturbance_with_message_ids6.csv",
"small_test_no_disturbance_with_message_ids7.csv",
"small_test_no_disturbance_with_message_ids8.csv",
"small_test_no_disturbance_with_message_ids9.csv",
"small_test_no_disturbance_with_message_ids10.csv"]"""
"""files = ["small_test_one_disturbance_with_message_ids1.csv",
"small_test_one_disturbance_with_message_ids2.csv",
"small_test_one_disturbance_with_message_ids3.csv",
"small_test_one_disturbance_with_message_ids4.csv",
"small_test_one_disturbance_with_message_ids5.csv",
"small_test_one_disturbance_with_message_ids6.csv",
"small_test_one_disturbance_with_message_ids7.csv",
"small_test_one_disturbance_with_message_ids8.csv",
"small_test_one_disturbance_with_message_ids9.csv",
"small_test_one_disturbance_with_message_ids10.csv",
"small_test_one_disturbance_with_message_ids11.csv"]"""
files = [
"large_test_disturbance_with_message_ids1.csv",
"large_test_disturbance_with_message_ids2.csv",
"large_test_disturbance_with_message_ids3.csv",
"large_test_disturbance_with_message_ids4.csv",
"large_test_disturbance_with_message_ids5.csv",
"large_test_disturbance_with_message_ids6.csv",
"large_test_disturbance_with_message_ids7.csv",
"large_test_disturbance_with_message_ids8.csv",
"large_test_disturbance_with_message_ids9.csv",
"large_test_disturbance_with_message_ids10.csv",
]
# files = ["memento_test10.csv", "memento_test20.csv", "memento_test25.csv"]
for file in files:
sender_tx_df = pd.read_csv(path + file)
sender_tx_df = pd.DataFrame(np.vstack([sender_tx_df.columns, sender_tx_df]))
sender_tx_df.drop(
sender_tx_df.columns[df_sent_cols_to_drop], axis=1, inplace=True
)
sender_tx_df.columns = df_sent_cols
sender_tx_df["Packet ID"].iloc[0] = 0
sender_tx_df["Flow ID"].iloc[0] = sender_tx_df["Flow ID"].iloc[1]
sender_tx_df["IP ID"].iloc[0] = 0
sender_tx_df["DSCP"].iloc[0] = 0
sender_tx_df["ECN"].iloc[0] = 0
sender_tx_df["TCP Sequence Number"].iloc[0] = 0
# sender_tx_df["TTL"] = sender_tx_df.apply(lambda row: extract_TTL(row['Extra']), axis = 1)
# sender_tx_df["Proto"] = sender_tx_df.apply(lambda row: extract_protocol(row['Extra']), axis = 1)
sender_tx_df["Flow ID"] = [sender_num for i in range(sender_tx_df.shape[0])]
sender_tx_df["Message ID"].iloc[0] = sender_tx_df["Message ID"].iloc[1]
df_sent_cols_new = [
"Timestamp",
"Flow ID",
"Packet ID",
"Packet Size",
"IP ID",
"DSCP",
"ECN",
"Payload Size",
"TTL",
"Proto",
"Source IP",
"Destination IP",
"TCP Source Port",
"TCP Destination Port",
"TCP Sequence Number",
"TCP Window Size",
"Delay",
"Workload ID",
"Application ID",
"Message ID",
]
sender_tx_df = sender_tx_df[df_sent_cols_new]
# sender_tx_df.drop(['Extra'],axis = 1, inplace=True)
temp = pd.concat([temp, sender_tx_df], ignore_index=True, copy=False)
# sender_tx_df.drop(['Extra'],axis = 1, inplace=True)
save_name = file.split(".")[0] + "_final.csv"
sender_tx_df.to_csv(path + save_name, index=False)
# temp.drop(['Extra'],axis = 1, inplace=True)
print(temp.head())
print(temp.columns)
print(temp.shape)
return temp
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"-mod",
"--model",
help="choose CC model for creating congestion",
required=False,
)
parser.add_argument(
"-nsend",
"--numsenders",
help="choose path for different topologies",
required=False,
)
args = parser.parse_args()
print(args)
if args.model == "memento":
path = "results/"
else:
pass
n_senders = 1
sender_csv = generate_senders_csv(path, n_senders)
if __name__ == "__main__":
main()