This repository was archived by the owner on Dec 1, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathembed_cluster.py
195 lines (151 loc) · 5.56 KB
/
embed_cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from __future__ import annotations
import argparse
import json
import os
import pickle
import sys
import time
import hdbscan
import numpy as np
import pandas as pd
import umap
from sentence_transformers import SentenceTransformer
from sklearn.cluster import MiniBatchKMeans
from sklearn.decomposition import PCA
from sklearn.metrics import make_scorer
from sklearn.model_selection import RandomizedSearchCV
PATH = "simplification_clustering/datasets/"
# Get embeddings
def embedd_sentences(sentences):
sbert_model = "all-MiniLM-L6-v2"
max_seq_length = 128
embedder = SentenceTransformer(sbert_model)
embedder.max_seq_length = max_seq_length
corpus_embeddings = embedder.encode(
sentences, batch_size=32, device="cuda", show_progress_bar=True
)
return corpus_embeddings
# Get clusters
def run_kmeans(X, n_clusters=44):
kmeans = MiniBatchKMeans(n_clusters=n_clusters, batch_size=512).fit(X)
labels = kmeans.labels_
return labels
# Get clusters from HDBScan
def run_hdbscan(X, cluster_size, samples, reduced=False):
if reduced:
# Apply PCA to reduce to 64, then umap to reduce to 8 (should be faster)
pca = PCA(n_components=64)
X_pca = pca.fit_transform(X)
umap_ = umap.UMAP(n_neighbors=10, min_dist=0.5, n_components=8)
X_umap = umap_.fit_transform(X_pca)
X = X_umap
hdb = hdbscan.HDBSCAN(
gen_min_span_tree=True, min_cluster_size=cluster_size, min_samples=samples
).fit(X)
labels = hdb.labels_
# Score over search space
"""hdb = hdbscan.HDBSCAN(gen_min_span_tree=True).fit(X)
param_dist = {'min_samples': [15,30,50,100],
'min_cluster_size':[10,50,100,250,500],
'cluster_selection_method' : ['eom','leaf'],
'metric' : ['euclidean']
}
validity_scorer = make_scorer(hdbscan.validity.validity_index,greater_is_better=True)
n_iter_search = 20
random_search = RandomizedSearchCV(hdb,
param_distributions=param_dist,
n_iter=n_iter_search,
scoring=validity_scorer,
random_state=0)
random_search.fit(X)
print(f"Best Parameters {random_search.best_params_}")
print(f"DBCV score :{random_search.best_estimator_.relative_validity_}")"""
return labels
# Load data
def load_data(path):
non_simplified_sentences = []
simplified_sentences = []
data = open(path + "bbc_data_complex_splitted.txt", "r").readlines()
for line in data:
line_val = json.loads(line)
for item in line_val["simplified"]:
if len(item["text"].split()) >= 6:
simplified_sentences.append(item["text"])
sdata = open(path + "bbc_data_simple_sentences.txt", "r").readlines()
for line in sdata:
if len(line.split()) >= 6:
non_simplified_sentences.append(line.strip())
sentences = non_simplified_sentences + simplified_sentences
return sentences
# Load data
def load_data_manf(path):
non_simplified_sentences = []
simplified_sentences = []
data = open(path + "manifesto_simplified.txt", "r").readlines()
for line in data:
line_val = json.loads(line)
for item in line_val["simplified"]:
if len(item["text"].split()) >= 6:
simplified_sentences.append(item["text"])
sentences = simplified_sentences
return sentences
# Load data
def load_data_manf_full_sent(path):
non_simplified_sentences = []
data = open(path + "manifesto_simplified.txt", "r").readlines()
for line in data:
line_val = json.loads(line)
for item in line_val["simplified"]:
if len(item["text"].split()) >= 6:
non_simplified_sentences.append(line_val["original"])
continue
sentences = non_simplified_sentences
return sentences
# Run embeddings and clustering
def run(args):
path = PATH + args.path + "/"
sentences = load_data_manf_full_sent(path)
embeddings = embedd_sentences(sentences)
if args.model == "kmeans":
labels = run_kmeans(embeddings, args.n_clusters)
elif args.model == "hdbscan":
labels = run_hdbscan(
embeddings, args.cluster_size, args.samples, reduced=args.reduction
)
assert len(labels) == len(sentences) == len(embeddings)
data_frame = pd.DataFrame({"sentence": sentences, "label": labels})
if args.model == "kmeans":
data_frame.to_csv(
path +
"manifesto_clustered_numclusters_{}.csv".format(args.n_clusters),
index=False,
)
elif args.model == "hdbscan":
data_frame.to_csv(
path
+ "manifesto_clustered_hdbscan_min_cluster_{}.csv".format(
args.cluster_size
),
index=False,
)
print(data_frame["label"].value_counts())
# Main
def main():
parser = argparse.ArgumentParser(
description="Run K-Means clustering on the dataset"
)
parser.add_argument("--path", type=str, default=PATH,
help="Path to the dataset")
parser.add_argument(
"--model", type=str, help="Choose clustering model", required=True
)
parser.add_argument(
"--reduction", type=bool, default=False, help="Apply PCA and UMAP"
)
parser.add_argument("--cluster_size", type=int, help="Cluster size")
parser.add_argument("--samples", type=int, help="Samples")
args = parser.parse_args()
print(args)
run(args)
if __name__ == "__main__":
main()