This repository was archived by the owner on Dec 1, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_clusters.py
165 lines (123 loc) · 4.9 KB
/
evaluate_clusters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from __future__ import annotations
import argparse
import json
import os
import pickle
import sys
import time
from re import M
import numpy as np
import pandas as pd
from sklearn.metrics import accuracy_score
PATH = "simplification_clustering/datasets/"
# Load mapping data
def load_data_manf_map(path):
non_simplified_sentences = []
simplified_sentences = []
mapping_df = pd.DataFrame(columns=["original", "simplified"])
data = open(path + "manifesto_simplified.txt", "r").readlines()
for line in data:
line_val = json.loads(line)
for idx, item in enumerate(line_val["simplified"]):
if len(item["text"].split()) >= 6:
simplified_sentences.append(item["text"])
non_simplified_sentences.append(line_val["original"])
mapping_df["original"] = non_simplified_sentences
mapping_df["simplified"] = simplified_sentences
return mapping_df
# Load actual labels
def load_actual_labels(path):
data = pd.read_csv(path + "manifesto_map.txt",
sep="\t", on_bad_lines="skip")
data.columns = ["original", "label1", "label2", "original2"]
return data
# Map between data frames
def map_df(mapping_df, actual_labels):
actual_labels.set_index("original", inplace=True)
label1_dict = actual_labels.to_dict()["label1"]
label2_dict = actual_labels.to_dict()["label2"]
for key in label1_dict.keys():
mapping_df.loc[mapping_df["original"]
== key, "label1"] = label1_dict[key]
mapping_df.loc[mapping_df["original"]
== key, "label2"] = label2_dict[key]
return mapping_df
def run(args):
path = PATH + args.path + "/"
if not args.load:
mapping_df = load_data_manf_map(path)
actual_labels = load_actual_labels(path)
print(mapping_df.head())
mapping_df_with_labels = map_df(mapping_df, actual_labels)
mapping_df_with_labels.to_csv(path + "mapping_data.csv", index=False)
else:
# Load map
mapping_df_with_labels = pd.read_csv(path + "mapping_data.csv")
# Load clustered files
clustered_frame = pd.read_csv(
path +
"manifesto_clustered_numclusters_{}.csv".format(args.n_clusters)
)
# Sort clustered frame by label ascending
clustered_frame.sort_values(by=["label"], inplace=True)
# Get labels from mapping data
mapping = {
i: j
for i, j in zip(
mapping_df_with_labels["simplified"], mapping_df_with_labels["label1"]
)
}
max_cluster_label_dict = {}
for i in range(args.n_clusters):
df_small = clustered_frame[clustered_frame.label == i]
labels = [mapping[i] for i in df_small["sentence"]]
counts = np.unique(labels, return_counts=True)
# Check for empty cluster id
if counts[1].size == 0:
continue
argmax = counts[1].argmax()
print("argmax", argmax, "num occurrences", counts[1][argmax])
print("label", counts[0][argmax])
max_cluster_label_dict[i] = counts[0][argmax]
print(max_cluster_label_dict)
# Create a new column which is a copy of the label column
clustered_frame["true max label"] = clustered_frame["label"]
# Replace every value in this column by its dictionary value using apply
clustered_frame["true max label"] = clustered_frame["true max label"].apply(
lambda x: max_cluster_label_dict[x]
)
clustered_frame.to_csv(
path +
"manifesto_clustered_numclusters_{}.csv".format(args.n_clusters),
index=False,
)
# Compute cluster accuracy
mapping_df_with_labels.sort_values(by=["simplified"], inplace=True)
mapping_df_with_labels["label1"] = mapping_df_with_labels["label1"].fillna(
"No label"
)
clustered_frame.sort_values(by=["sentence"], inplace=True)
targets = list(mapping_df_with_labels["label1"])
predictions = list(clustered_frame["true max label"])
assert list(clustered_frame["sentence"]) == list(
mapping_df_with_labels["simplified"]
)
assert len(targets) == len(predictions)
print(
"Accuracy of numclusters = {}:".format(args.n_clusters),
accuracy_score(targets, predictions),
)
# Main
def main():
parser = argparse.ArgumentParser(description="Evaluate dataset")
parser.add_argument("--path", type=str, default=PATH,
help="Path to the dataset")
parser.add_argument("--load", type=bool, default=None,
help="Path to the dataset")
parser.add_argument(
"--n_clusters", type=int, default=None, help="Number of clusters"
)
args = parser.parse_args()
run(args)
if __name__ == "__main__":
main()