-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfrank.py
51 lines (38 loc) · 1.47 KB
/
frank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from eval_utils import eval_and_write
import os
import pandas
import json
from tqdm import tqdm
def process_frank_line(line):
_doc = line["article"]
_sum = line["summary"]
sample = {"doc": _doc, "sum": _sum, "ref": line["reference"],
"human": line["Factuality"], "id": line["hash"], "id0": "id0"}
return sample
def load_frank(data_file, annotation_file):
"""Return [cnndm,xsum] variants dataframes.
"""
with open(data_file, "r", encoding="UTF-8") as f:
data = json.load(f)
with open(annotation_file, "r", encoding="UTF-8") as f:
annot = json.load(f)
data_dict = {}
for sample in data:
data_dict[(sample['hash'], sample['model_name'])] = sample
for sample in annot:
data_dict[(sample['hash'], sample['model_name'])].update(sample)
cnndm = []
xsum = []
for line in tqdm(data_dict.values()):
processed_line = process_frank_line(line)
if line["dataset"] == "cnndm":
cnndm.append(processed_line)
elif line["dataset"] == "bbc":
xsum.append(processed_line)
return [pandas.DataFrame(cnndm), pandas.DataFrame(xsum)]
def main(exp_config: dict):
FRANK_PATH = exp_config["data_path"]
cnndm, xsum = load_frank(os.path.join(FRANK_PATH, "benchmark_data.json"),
os.path.join(FRANK_PATH, "human_annotations.json"))
eval_and_write("frank-cnndm", cnndm, exp_config)
eval_and_write("frank-xsum", xsum, exp_config)