-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrenderer.py
156 lines (124 loc) · 6.52 KB
/
renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch,os,imageio,sys
from tqdm.auto import tqdm
from dataLoader.ray_utils import get_rays
from models.tensoRF import TensorVM, TensorCP, raw2alpha, TensorVMSplit, AlphaGridMask
from models.tensoRF_VQ import TensorVMSplitVQ
from utils import *
from dataLoader.ray_utils import ndc_rays_blender
def OctreeRender_trilinear_fast(rays, tensorf, chunk=4096, N_samples=-1, ndc_ray=False, white_bg=True, is_train=False, device='cuda', **kwargs):
rgbs, alphas, depth_maps, weights, uncertainties = [], [], [], [], []
N_rays_all = rays.shape[0]
for chunk_idx in range(N_rays_all // chunk + int(N_rays_all % chunk > 0)):
rays_chunk = rays[chunk_idx * chunk:(chunk_idx + 1) * chunk].to(device)
rgb_map, depth_map = tensorf(rays_chunk, is_train=is_train, white_bg=white_bg, ndc_ray=ndc_ray, N_samples=N_samples, **kwargs)
rgbs.append(rgb_map)
depth_maps.append(depth_map)
return torch.cat(rgbs), None, torch.cat(depth_maps), None, None
@torch.no_grad()
def evaluation(test_dataset,tensorf, args, renderer, savePath=None, N_vis=5, prtx='', N_samples=-1,
white_bg=False, ndc_ray=False, compute_extra_metrics=True, device='cuda', im_save=False):
if prtx is not None:
prtx = prtx + '_'
result_path = f'{savePath}/{prtx}res.txt'
if os.path.exists(result_path) and not args.render_path:
psnr = np.loadtxt(result_path)[0]
return psnr
PSNRs, rgb_maps, depth_maps = [], [], []
ssims,l_alex,l_vgg=[],[],[]
if savePath is not None:
os.makedirs(savePath, exist_ok=True)
os.makedirs(savePath+"/rgbd", exist_ok=True)
try:
tqdm._instances.clear()
except Exception:
pass
near_far = test_dataset.near_far
img_eval_interval = 1 if N_vis < 0 else max(test_dataset.all_rays.shape[0] // N_vis,1)
# img_eval_interval = max(img_eval_interval, test_dataset.all_rays.shape[0]//49)
idxs = list(range(0, test_dataset.all_rays.shape[0], img_eval_interval))
for idx, samples in tqdm(enumerate(test_dataset.all_rays[0::img_eval_interval]), file=sys.stdout):
W, H = test_dataset.img_wh
rays = samples.view(-1,samples.shape[-1])
rgb_map, _, depth_map, _, _ = renderer(rays, tensorf, chunk=4096, N_samples=N_samples,
ndc_ray=ndc_ray, white_bg = white_bg, device=device)
rgb_map = rgb_map.clamp(0.0, 1.0)
rgb_map, depth_map = rgb_map.reshape(H, W, 3).cpu(), depth_map.reshape(H, W).cpu()
depth_map, _ = visualize_depth_numpy(depth_map.numpy(),near_far)
if len(test_dataset.all_rgbs):
gt_rgb = test_dataset.all_rgbs[idxs[idx]].view(H, W, 3)
loss = torch.mean((rgb_map - gt_rgb) ** 2)
PSNRs.append(-10.0 * np.log(loss.item()) / np.log(10.0))
if compute_extra_metrics:
ssim = rgb_ssim(rgb_map, gt_rgb, 1)
l_a = rgb_lpips(gt_rgb.numpy(), rgb_map.numpy(), 'alex', tensorf.device)
l_v = rgb_lpips(gt_rgb.numpy(), rgb_map.numpy(), 'vgg', tensorf.device)
ssims.append(ssim)
l_alex.append(l_a)
l_vgg.append(l_v)
rgb_map = (rgb_map.numpy() * 255).astype('uint8')
# rgb_map = np.concatenate((rgb_map, depth_map), axis=1)
rgb_maps.append(rgb_map)
depth_maps.append(depth_map)
if savePath is not None and im_save:
imageio.imwrite(f'{savePath}/{prtx}{idx:03d}.png', rgb_map)
rgb_map = np.concatenate((rgb_map, depth_map), axis=1)
imageio.imwrite(f'{savePath}/rgbd/{prtx}{idx:03d}.png', rgb_map)
if savePath is not None:
imageio.mimwrite(f'{savePath}/{prtx}video.mp4', np.stack(rgb_maps), fps=30, quality=10)
imageio.mimwrite(f'{savePath}/{prtx}depthvideo.mp4', np.stack(depth_maps), fps=30, quality=10)
if PSNRs:
psnr = np.mean(np.asarray(PSNRs))
if compute_extra_metrics:
ssim = np.mean(np.asarray(ssims))
l_a = np.mean(np.asarray(l_alex))
l_v = np.mean(np.asarray(l_vgg))
if savePath is not None:
np.savetxt(result_path, np.asarray([psnr, ssim, l_a, l_v]))
else:
if savePath is not None:
np.savetxt(result_path, np.asarray([psnr]))
return PSNRs
@torch.no_grad()
def evaluation_path(test_dataset,tensorf, c2ws, renderer, savePath=None, N_vis=5, prtx='', N_samples=-1,
white_bg=False, ndc_ray=False, compute_extra_metrics=True, device='cuda'):
PSNRs, rgb_maps, depth_maps = [], [], []
ssims,l_alex,l_vgg=[],[],[]
os.makedirs(savePath, exist_ok=True)
os.makedirs(savePath+"/rgbd", exist_ok=True)
try:
tqdm._instances.clear()
except Exception:
pass
near_far = test_dataset.near_far
for idx, c2w in tqdm(enumerate(c2ws)):
W, H = test_dataset.img_wh
c2w = torch.FloatTensor(c2w)
rays_o, rays_d = get_rays(test_dataset.directions, c2w) # both (h*w, 3)
if ndc_ray:
rays_o, rays_d = ndc_rays_blender(H, W, test_dataset.focal[0], 1.0, rays_o, rays_d)
rays = torch.cat([rays_o, rays_d], 1) # (h*w, 6)
rgb_map, _, depth_map, _, _ = renderer(rays, tensorf, chunk=8192, N_samples=N_samples,
ndc_ray=ndc_ray, white_bg = white_bg, device=device)
rgb_map = rgb_map.clamp(0.0, 1.0)
rgb_map, depth_map = rgb_map.reshape(H, W, 3).cpu(), depth_map.reshape(H, W).cpu()
depth_map, _ = visualize_depth_numpy(depth_map.numpy(),near_far)
rgb_map = (rgb_map.numpy() * 255).astype('uint8')
# rgb_map = np.concatenate((rgb_map, depth_map), axis=1)
rgb_maps.append(rgb_map)
depth_maps.append(depth_map)
if savePath is not None:
imageio.imwrite(f'{savePath}/{prtx}{idx:03d}.png', rgb_map)
rgb_map = np.concatenate((rgb_map, depth_map), axis=1)
imageio.imwrite(f'{savePath}/rgbd/{prtx}{idx:03d}.png', rgb_map)
imageio.mimwrite(f'{savePath}/{prtx}video.mp4', np.stack(rgb_maps), fps=30, quality=8)
imageio.mimwrite(f'{savePath}/{prtx}depthvideo.mp4', np.stack(depth_maps), fps=30, quality=8)
if PSNRs:
psnr = np.mean(np.asarray(PSNRs))
if compute_extra_metrics:
ssim = np.mean(np.asarray(ssims))
l_a = np.mean(np.asarray(l_alex))
l_v = np.mean(np.asarray(l_vgg))
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr, ssim, l_a, l_v]))
else:
np.savetxt(f'{savePath}/{prtx}mean.txt', np.asarray([psnr]))
return PSNRs