-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn_my.py
47 lines (38 loc) · 1.39 KB
/
knn_my.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import pandas as pd
from sklearn.model_selection import train_test_split
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler#to bring all the features on the same scale for efficiency of model
from sklearn.metrics import f1_score
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
from sklearn.preprocessing import LabelEncoder#convert categorial to numerical values here class
# Reading Dataset
df1= pd.read_csv('/Users/subhangisati/Downloads/mushrooms.csv')
df1.head()
# Label Encoding
lb = LabelEncoder()
df1 = df1.apply(lb.fit_transform)
df1.head()
# Splitting dataset into X & Y
X = df1.drop('class',axis=1)
Y = df1['class']
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.30)#30% for training
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# KNN on Mushroom
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,Y_train)
# Confusion Matrix & Accuracy of KNN
acc=(knn.score(X_test,Y_test))*100
print("\nAccuracy:", acc)
results=[]
results=knn.predict(X_test)
print("\nF1 Score:", f1_score(Y_test,results,average='micro'))
c1=confusion_matrix(Y_test,results)
cm=ConfusionMatrixDisplay(confusion_matrix=c1, display_labels=knn.classes_)
print("\n\nConfusion Matrix:\n")
cm.plot(cmap='Greens')
plt.show()