-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path01_export_pth.py
84 lines (58 loc) · 2.6 KB
/
01_export_pth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
'''
导出controlnet中各部分的torch模型
xj 2023-07-17
'''
import os
import torch
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
def get_state_dict(d):
return d.get('state_dict', d)
def get_state_dicts(ckpt_path, location='cpu'):
_, extension = os.path.splitext(ckpt_path)
if extension.lower() == ".safetensors":
import safetensors.torch
state_dict = safetensors.torch.load_file(ckpt_path, device=location)
else:
state_dict = get_state_dict(torch.load(ckpt_path, map_location=torch.device(location)))
state_dict = get_state_dict(state_dict)
print(f'Loaded state_dict from [{ckpt_path}]')
return state_dict
def create_pt_model(config_path):
config = OmegaConf.load(config_path)
model = instantiate_from_config(config.model).cpu()
state_dicts = get_state_dicts('/home/player/ControlNet/models/control_sd15_canny.pth', location='cuda')
# clip text encoder
clip_config = config["model"]['params']['cond_stage_config']
clip_model = instantiate_from_config(clip_config).cpu()
clip_dicts = {k: state_dicts["cond_stage_model."+k] for k in clip_model.state_dict()}
clip_model.load_state_dict(clip_dicts)
clip_model = clip_model
torch.save(clip_model,"./models/clip_encoder.pth")
print("save clip encoder success!!!")
# vae
vae_config = config["model"]['params']['first_stage_config']
vae_model = instantiate_from_config(vae_config).cpu()
vae_dicts = {k:state_dicts["first_stage_model."+k] for k in vae_model.state_dict()}
vae_model.load_state_dict(vae_dicts)
torch.save(vae_model,"./models/vae_decoder.pth")
print("save vae success!!!")
# 暂时不转unet和controlnet
# #controlNet
# controlnet_config = config["model"]['params']['control_stage_config']
# controlnet_model = instantiate_from_config(controlnet_config).cpu()
# controlnet_dicts = {k:state_dicts["control_model."+k] for k in controlnet_model.state_dict()}
# controlnet_model.load_state_dict(controlnet_dicts)
# torch.save(controlnet_model,"./models/controlnet.pth")
# print("save controlnet success!!!")
# # unet
# unet_config = config["model"]['params']['unet_config']
# unet_model = instantiate_from_config(unet_config).cpu()
# unet_dicts = {k:state_dicts["model.diffusion_model."+k] for k in unet_model.state_dict()}
# unet_model.load_state_dict(unet_dicts)
# torch.save(unet_model,"./models/unet.pth")
# print("save unet success!!!")
def save_model():
pass
if __name__ == "__main__":
model = create_pt_model('./models/cldm_v15.yaml')