-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclean.qmd
263 lines (230 loc) · 9.13 KB
/
clean.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
---
title: "ANLY-512 Case Study Code Walkthrough"
author:
- name: Group 8
date: "2023-03-27"
format:
revealjs:
output-file: Demo_Walkthrough.html
transition: slide
transition-speed: fast
background-transition: fade
highlight-style: a11y
embed-resources: true
self-contained: true
slide-number: true
smaller: true
code-fold: true
pdf: default
code-link: true
execute:
echo: true
freeze: auto
---
```{r,include=FALSE, message=FALSE, warning=FALSE}
library(flipbookr)
library(tidyverse)
library(ggplot2)
library(forecast)
library(astsa)
library(xts)
library(tseries)
library(fpp2)
library(fma)
library(lubridate)
library(tidyverse)
library(TSstudio)
library(quantmod)
library(tidyquant)
library(plotly)
library(ggplot2)
library(padr)
library(gridExtra)
library(neuralnet)
set.seed(20918)
```
```{r loadntidy, message=FALSE, warning=FALSE, include=FALSE}
df <- read.csv("Oil.csv")
#df$Date <- as.Date(with(gtd,paste(iyear,imonth,iday,sep="-")),"%Y-%m-%d")
#df$Date <- as.POSIXct(df$Date, format = "%d/%m/%Y")
#df$Date <- as.Date(df$Date, format = "%M-%D-%Y")
df$Date <- mdy(df$Date)
df <- arrange(df, desc(row_number()))
date_range <- seq(from = df$Date[1], to = df$Date[1513], by = "day")
all_dates <- data.frame(Date = date_range)
df <- merge(all_dates, df, by = "Date", all.x = TRUE)
df <- arrange(df, Date)
df$Price <- na.interp(df$Price)
df$Price <- as.numeric(df$Price)
df <- subset(df, select=-c(Vol., Change..))
#df$SMA_50 <- as.numeric(SMA(df$Price),n=100)
#df$SMA_200 <- as.numeric(SMA(df$Price),n=200)
# lagged var
df <- df %>%
mutate(lag2 = lag(Price, 2),
lag3 = lag(Price, 3),
lag4 = lag(Price, 4),
lag5 = lag(Price, 5))
df[, (ncol(df)-3):ncol(df)] <- apply(df[, (ncol(df)-3):ncol(df)], 2, na.interp) # Fill NAs in lagged vars
```
## Crude Oil Futures: Candlestick Chart (After Interpolation)
```{r, message=FALSE, warning=FALSE,}
plot_ly(data=df, x = ~Date) %>%
add_trace(type="candlestick",
open = ~Open, close = ~Price,
high = ~High, low = ~Low, name="Crude Oil Futures") %>%
layout(title="Crude Oil Futures: Candlestick Chart",
yaxis=list(title=("Price ($)"))) %>%
layout(hovermode = "x") %>%
layout(paper_bgcolor = "black",
plot_bgcolor = "black",
font = list(color = "white"),
yaxis = list(linecolor = "#6b6b6b",
zerolinecolor = "#6b6b6b",
gridcolor= "#444444"),
xaxis = list(linecolor = "#6b6b6b",
zerolinecolor = "#6b6b6b",
gridcolor= "#444444"))
```
## Neural Network Model I (Predicting Price - Regression)
```{r, message=FALSE, warning=FALSE}
library(cowplot)
library(ggplot2)
ggdraw() + draw_image("./newmodel.png",
width = 1.3, halign = 0.5)
```
```{r, message=FALSE, warning=FALSE, include=FALSE}
df <- subset(df, select=-c(Open, High, Low))
# Normalize the data
# Define a function to scale the prices between -3 and 3, including missing values
scale_between_3_3 <- function(x) {
# Identify the non-missing values
non_missing <- !is.na(x)
# Scale the non-missing values between -1 and 1
x_scaled <- scale(x[non_missing], center = TRUE, scale = max(abs(x[non_missing])))[, 1]
# Assign the scaled values back to the original vector
#x[non_missing] <- x_scaled * 3
# Return the scaled vector
return(x_scaled)
}
# Apply the scaling function to the price column
closing_price <- scale_between_3_3(df$Price)
lag_2_scaled <- scale_between_3_3(df$lag2)
lag_3_scaled <- scale_between_3_3(df$lag3)
lag_4_scaled <- scale_between_3_3(df$lag4)
lag_5_scaled <- scale_between_3_3(df$lag5)
scaled_df <- data.frame(df$Date, closing_price, lag_2_scaled, lag_3_scaled, lag_4_scaled, lag_5_scaled)
# Split the data into training and testing set 70-30
train <- scaled_df[1:1469,]
test <- scaled_df[1470:2099,]
#train <- subset(train, select=-c(Date))
#test <- subset(test, select=-c(Date))
# Build Neural Network
softplus <- function(x) log(1 + exp(x))
nn <- neuralnet(closing_price ~ lag_2_scaled + lag_3_scaled + lag_4_scaled + lag_5_scaled,
data = train, hidden = c(20, 20),
algorithm = 'backprop',
act.fct = softplus,
learningrate = 0.00001,
threshold = 0.1,
err.fct = "sse",
linear.output = TRUE)
# Predict on test data
pr.nn <- compute(nn, test[,2:5])
# Compute mean squared error
pr.nn_ <- pr.nn$net.result * (max(test$closing_price) - min(test$closing_price))
+ min(test$closing_price)
test.r <- (test$closing_price) * (max(test$closing_price) - min(test$closing_price)) +
min(test$closing_price)
RMSE.nn <- (sum((test.r - pr.nn_)^2) / nrow(test))**0.5
# Plot the neural network
#plot(nn)
#cat("RMSE on test set: ", RMSE.nn)
```
## Neural Network Model: Result on Test Data
```{r, message=FALSE, warning=FALSE}
preds_reverted <- ((pr.nn$net.result + 1) / 2) * (max(abs(df$Price)) - min(abs(df$Price))) + min(abs(df$Price))
closing_price_orig <- df[1470:2099, 2]
plot_df_test <- data.frame(test$df.Date, preds_reverted, closing_price_orig)
plot_ly(data=plot_df_test, x = ~test.df.Date) %>%
add_trace(type = 'scatter', mode = 'lines', y=~preds_reverted,
name="Predicted Closing Price", line = list(color = 'blue')) %>%
add_trace(type = 'scatter', mode = 'lines', y=~closing_price_orig,
name="Original Closing Price",line = list(color = 'orange')) %>%
layout(title="Crude Oil Futures: Predicted vs Original (Test Set)",
yaxis=list(title=("Price ($)")),
xaxis=list(title=("Date"))) %>%
layout(hovermode = "x") %>%
layout(paper_bgcolor = "black",
plot_bgcolor = "black",
font = list(color = "white"),
yaxis = list(linecolor = "#6b6b6b",
zerolinecolor = "#6b6b6b",
gridcolor= "#444444"),
xaxis = list(linecolor = "#6b6b6b",
zerolinecolor = "#6b6b6b",
gridcolor= "#444444"))
#cat("RMSE on test set: ", RMSE.nn)
```
## Neural Network Model: Result on Train Data
```{r, message=FALSE, warning=FALSE, include=FALSE}
# Predict on test data
pr.nn <- compute(nn, train[,2:5])
# Compute mean squared error
pr.nn_ <- pr.nn$net.result * (max(train$closing_price) - min(train$closing_price))
+ min(train$closing_price)
train.r <- (train$closing_price) * (max(train$closing_price) - min(train$closing_price)) +
min(train$closing_price)
RMSE.nn <- sum((train.r - pr.nn_)^2) / nrow(train)
# Plot the neural network
#plot(nn)
cat("RMSE on TRAIN set: ", RMSE.nn)
preds_reverted_train <- ((pr.nn$net.result + 1) / 2) * (max(abs(df$Price)) - min(abs(df$Price))) + min(abs(df$Price))
closing_price_orig_train <- df[1:1469, 2]
plot_df_train <- data.frame(train$df.Date, preds_reverted_train, closing_price_orig_train)
```
```{r, message=FALSE, warning=FALSE}
plot_ly(data=plot_df_train, x = ~train.df.Date) %>%
add_trace(type = 'scatter', mode = 'lines', y=~preds_reverted_train,
name="Predicted Closing Price", line = list(color = 'blue')) %>%
add_trace(type = 'scatter', mode = 'lines', y=~closing_price_orig_train,
name="Original Closing Price",line = list(color = 'orange')) %>%
layout(title="Crude Oil Futures: Predicted vs Original (Train Set)",
yaxis=list(title=("Price ($)")),
xaxis=list(title=("Date"))) %>%
layout(hovermode = "x") %>%
layout(paper_bgcolor = "black",
plot_bgcolor = "black",
font = list(color = "white"),
yaxis = list(linecolor = "#6b6b6b",
zerolinecolor = "#6b6b6b",
gridcolor= "#444444"),
xaxis = list(linecolor = "#6b6b6b",
zerolinecolor = "#6b6b6b",
gridcolor= "#444444"))
#cat("RMSE on test set: ", RMSE.nn)
```
## Neural Network Model: Combined Result
```{r, message=FALSE, warning=FALSE}
#plot_df_all <- data.frame(train$df.Date, preds_reverted, closing_price_orig)
colnames(plot_df_train) <- colnames(plot_df_test)
plot_df_all <- rbind(plot_df_train, plot_df_test)
plot_ly(data=plot_df_all, x = ~test.df.Date) %>%
add_trace(type = 'scatter', mode = 'lines', y=~preds_reverted,
name="Predicted Closing Price", line = list(color = 'blue')) %>%
add_trace(type = 'scatter', mode = 'lines', y=~closing_price_orig,
name="Original Closing Price",line = list(color = 'orange')) %>%
layout(title="Crude Oil Futures: Predicted vs Original (Full Dataset)",
yaxis=list(title=("Price ($)")),
xaxis=list(title=("Date"))) %>%
layout(hovermode = "x") %>%
layout(paper_bgcolor = "black",
plot_bgcolor = "black",
font = list(color = "white"),
yaxis = list(linecolor = "#6b6b6b",
zerolinecolor = "#6b6b6b",
gridcolor= "#444444"),
xaxis = list(linecolor = "#6b6b6b",
zerolinecolor = "#6b6b6b",
gridcolor= "#444444"))
```