-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathunit_test_keras_helper.h
118 lines (105 loc) · 6.03 KB
/
unit_test_keras_helper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under
// the License.
//
// ╔════════════════════════════════════════════════════════════════════════════════════════╗
// ║──█████████╗───███████╗───████████╗───██╗──────██╗───███████╗───████████╗───████████╗───║
// ║──██╔══════╝──██╔════██╗──██╔════██╗──██║──────██║──██╔════██╗──██╔════██╗──██╔════██╗──║
// ║──████████╗───██║────██║──████████╔╝──██║──█╗──██║──█████████║──████████╔╝──██║────██║──║
// ║──██╔═════╝───██║────██║──██╔════██╗──██║█████╗██║──██╔════██║──██╔════██╗──██║────██║──║
// ║──██║─────────╚███████╔╝──██║────██║──╚████╔████╔╝──██║────██║──██║────██║──████████╔╝──║
// ║──╚═╝──────────╚══════╝───╚═╝────╚═╝───╚═══╝╚═══╝───╚═╝────╚═╝──╚═╝────╚═╝──╚═══════╝───║
// ╚════════════════════════════════════════════════════════════════════════════════════════╝
//
// Authors: Aster JIAN ([email protected])
// Yzx ([email protected])
// Ao LI ([email protected])
// Paul LU ([email protected])
#pragma once
#include <NvInferPlugin.h>
#include <memory>
#include <string>
#include <vector>
#include "common/common_macros.h"
#include "fwd_keras/keras_engine/keras_engine.h"
#include "unit_test/unit_test.h"
#include "unit_test/unit_test_tf_helper.h"
#ifdef _MSC_VER
const char* keras_root_dir = "../../../data/keras_unit_tests/";
#else
const char* keras_root_dir = "../../data/keras_unit_tests/";
#endif
inline void TestKerasInference(const std::string& pb_path, const std::string& keras_h5_path,
std::vector<std::pair<std::string, TF_Tensor*>>& input_map,
const std::vector<std::string>& output_names, int batch_size = 1,
float threshold = 1e-3) {
// calculate ground truth
std::vector<std::vector<float>> ground_truth;
{
// TODO(Ao Li): 使用 tensorflow pb 作为 keras groundtruth
fwd::TFInfer tf_infer;
if (!tf_infer.LoadGraph(pb_path)) {
ASSERT_TRUE(false);
}
std::unordered_map<std::string, TF_Tensor*> tf_input;
for (auto& entry : input_map) tf_input[entry.first] = entry.second;
std::vector<std::shared_ptr<TF_Tensor>> outputs;
if (!tf_infer.Forward(tf_input, output_names, outputs)) {
ASSERT_TRUE(false);
}
// TODO(Ao Li): 这里假设输出一定是 float 类型
ground_truth = fwd::tf_::GetTensorsData<float>(outputs);
}
// calculate TensorRT infer results
std::vector<std::vector<float>> results;
{
std::shared_ptr<fwd::KerasEngine> keras_engine;
{
fwd::KerasBuilder keras_builder;
// ASSERT_TRUE(keras_builder.SetInferMode(mode));
keras_engine = keras_builder.Build(keras_h5_path, batch_size);
}
ASSERT_TRUE(keras_engine != nullptr);
// keras inputs
std::vector<fwd::Tensor> real_inputs;
std::vector<fwd::Tensor> real_outputs;
for (auto& entry : input_map) {
fwd::Tensor tensor;
tensor.data = TF_TensorData(entry.second);
tensor.dims = fwd::TrtUtils::ToVector(fwd::tf_::DimsOf(entry.second));
tensor.device_type = fwd::DeviceType::CPU;
if (TF_TensorType(entry.second) == TF_INT32) {
tensor.data_type = fwd::DataType::INT32;
} else if (TF_TensorType(entry.second) == TF_HALF) {
tensor.data_type = fwd::DataType::HALF;
}
real_inputs.push_back(tensor);
}
ASSERT_TRUE(keras_engine->Forward(real_inputs, real_outputs));
ASSERT_TRUE(!real_outputs.empty());
// copy outputs back
for (size_t i = 0; i < real_outputs.size(); ++i) {
const auto count = fwd::TrtUtils::Volume(real_outputs[i].dims);
ASSERT_TRUE(real_outputs[i].data);
std::vector<float> result(count);
CUDA_CHECK(cudaMemcpy(result.data(), real_outputs[i].data, count * sizeof(float),
cudaMemcpyDeviceToHost));
results.push_back(result);
}
}
ASSERT_EQ(ground_truth.size(), results.size());
for (size_t i = 0; i < results.size(); ++i) {
ASSERT_EQ(ground_truth[i].size(), results[i].size());
for (size_t j = 0; j < results[i].size(); ++j) {
ASSERT_LE(GetAbsError(results[i][j], ground_truth[i][j]), threshold);
}
}
}