-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathunit_test_torch_helper.h
245 lines (213 loc) · 10.5 KB
/
unit_test_torch_helper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License
// is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
// or implied. See the License for the specific language governing permissions and limitations under
// the License.
//
// ╔════════════════════════════════════════════════════════════════════════════════════════╗
// ║──█████████╗───███████╗───████████╗───██╗──────██╗───███████╗───████████╗───████████╗───║
// ║──██╔══════╝──██╔════██╗──██╔════██╗──██║──────██║──██╔════██╗──██╔════██╗──██╔════██╗──║
// ║──████████╗───██║────██║──████████╔╝──██║──█╗──██║──█████████║──████████╔╝──██║────██║──║
// ║──██╔═════╝───██║────██║──██╔════██╗──██║█████╗██║──██╔════██║──██╔════██╗──██║────██║──║
// ║──██║─────────╚███████╔╝──██║────██║──╚████╔████╔╝──██║────██║──██║────██║──████████╔╝──║
// ║──╚═╝──────────╚══════╝───╚═╝────╚═╝───╚═══╝╚═══╝───╚═╝────╚═╝──╚═╝────╚═╝──╚═══════╝───║
// ╚════════════════════════════════════════════════════════════════════════════════════════╝
//
// Authors: Aster JIAN ([email protected])
// Yzx ([email protected])
// Ao LI ([email protected])
// Paul LU ([email protected])
#pragma once
#include <NvInferPlugin.h>
#include <memory>
#include <string>
#include <vector>
#include "fwd_torch/torch_engine/torch_engine.h"
#include "fwd_torch/torch_engine/torch_infer.h"
#include "unit_test/unit_test.h"
#ifdef _MSC_VER
const char* torch_root_dir = "../../../data/torch_unit_tests/";
const c10::DeviceType device = c10::kCPU;
#else
const c10::DeviceType device = c10::kCUDA;
const char* torch_root_dir = "../../data/torch_unit_tests/";
#endif
/**
* \brief 计算输入尺寸
*/
inline std::vector<int64_t> InputVolume(const std::vector<c10::IValue>& inputs) {
std::vector<int64_t> inputSize;
for (int i = 0; i < inputs.size(); ++i) {
auto dims = fwd::TrtUtils::ToVector(fwd::torch_::DimsOf(inputs[i].toTensor()));
inputSize.push_back(std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<int>()));
}
return inputSize;
}
/**
* \brief 计算输入尺寸
*/
inline std::vector<int64_t> InputVolume(
const std::unordered_map<std::string, c10::IValue>& input_map) {
std::vector<int64_t> inputSize;
for (auto& entry : input_map) {
auto dims = fwd::TrtUtils::ToVector(fwd::torch_::DimsOf(entry.second.toTensor()));
inputSize.push_back(std::accumulate(dims.begin(), dims.end(), 1, std::multiplies<int>()));
}
return inputSize;
}
/**
* \brief 测试单次 torch jit 和 TensorRT 推理
* \param model_file 模型文件路径
* \param inputs 实际输入,位于 CPU / CUDA
* \param mode 推理模式,可以是 "float32", "float16", "int8"
* \param threshold 浮点数误差允许的阈值
*/
inline void TestTorchInference(const std::string& model_file, std::vector<c10::IValue>& inputs,
const std::string& mode, float threshold = 1e-3,
std::shared_ptr<fwd::IBatchStream> batch_stream = nullptr) {
std::vector<at::Tensor> ground_truth;
{
fwd::TorchInfer torch_infer;
ASSERT_TRUE(torch_infer.LoadModel(model_file));
ground_truth = torch_infer.Forward(inputs, false);
}
const std::string engine_path = model_file + ".engine";
{
fwd::TorchBuilder torch_builder;
ASSERT_TRUE(torch_builder.SetInferMode(mode));
if (mode.find("int8") != std::string::npos) {
if (batch_stream == nullptr) {
batch_stream = std::make_shared<TestBatchStream>(InputVolume(inputs));
}
std::shared_ptr<fwd::TrtInt8Calibrator> calib = std::make_shared<fwd::TrtInt8Calibrator>(
batch_stream, getFilename(model_file) + ".calib", "entropy");
torch_builder.SetCalibrator(calib);
}
const auto torch_engine = torch_builder.Build(model_file, inputs);
ASSERT_NE(torch_engine, nullptr);
ASSERT_TRUE(torch_engine->Save(engine_path));
}
if (mode != "float32" && mode != "float") {
for (auto& input : inputs) {
if (input.toTensor().scalar_type() == c10::kFloat) {
input = input.toTensor().to(c10::kHalf);
}
}
}
std::vector<at::Tensor> results;
{
fwd::TorchEngine torch_engine;
ASSERT_TRUE(torch_engine.Load(engine_path));
results = torch_engine.Forward(inputs);
}
ASSERT_EQ(results.size(), ground_truth.size());
for (size_t i = 0; i < results.size(); ++i) {
ASSERT_EQ(results[i].numel(), ground_truth[i].numel());
// 转成 float 进行比较
results[i] = results[i].cpu().contiguous().to(c10::kFloat);
ground_truth[i] = ground_truth[i].cpu().contiguous().to(c10::kFloat);
const float* res_ptr = static_cast<float*>(results[i].data_ptr());
const float* gt_ptr = static_cast<float*>(ground_truth[i].data_ptr());
for (size_t j = 0; j < ground_truth[i].numel(); ++j) {
ASSERT_LE(GetAbsError(res_ptr[j], gt_ptr[j]), threshold);
}
}
}
/**
* \brief 测试单次 torch jit 和 TensorRT 推理
* \param model_file 模型文件路径
* \param inputs 实际输入,位于 CPU / CUDA
* \param mode 推理模式,可以是 "float32", "float16", "int8"
* \param threshold 浮点数误差允许的阈值
*/
inline void TestTorchInference(const std::string& model_file,
std::unordered_map<std::string, c10::IValue>& input_map,
const std::string& mode, float threshold = 1e-3,
std::shared_ptr<fwd::IBatchStream> batch_stream = nullptr) {
std::vector<at::Tensor> ground_truth;
{
fwd::TorchInfer torch_infer;
ASSERT_TRUE(torch_infer.LoadModel(model_file));
ground_truth = torch_infer.Forward(input_map, false);
}
const std::string engine_path = model_file + ".engine";
{
fwd::TorchBuilder torch_builder;
ASSERT_TRUE(torch_builder.SetInferMode(mode));
if (mode.find("int8") != std::string::npos) {
if (batch_stream == nullptr) {
batch_stream = std::make_shared<TestBatchStream>(InputVolume(input_map));
}
std::shared_ptr<fwd::TrtInt8Calibrator> calib = std::make_shared<fwd::TrtInt8Calibrator>(
batch_stream, getFilename(model_file) + ".calib", "entropy");
torch_builder.SetCalibrator(calib);
}
const auto torch_engine = torch_builder.Build(model_file, input_map);
ASSERT_NE(torch_engine, nullptr);
ASSERT_TRUE(torch_engine->Save(engine_path));
}
if (mode != "float32" && mode != "float") {
for (auto& entry : input_map) {
auto& input = entry.second;
if (input.toTensor().scalar_type() == c10::kFloat) {
input = input.toTensor().to(c10::kHalf);
}
}
}
std::vector<at::Tensor> results;
{
fwd::TorchEngine torch_engine;
ASSERT_TRUE(torch_engine.Load(engine_path));
results = torch_engine.ForwardWithName(input_map);
}
ASSERT_EQ(results.size(), ground_truth.size());
for (size_t i = 0; i < results.size(); ++i) {
ASSERT_EQ(results[i].numel(), ground_truth[i].numel());
// 转成 float 进行比较
results[i] = results[i].cpu().contiguous().to(c10::kFloat);
ground_truth[i] = ground_truth[i].cpu().contiguous().to(c10::kFloat);
const float* res_ptr = static_cast<float*>(results[i].data_ptr());
const float* gt_ptr = static_cast<float*>(ground_truth[i].data_ptr());
for (size_t j = 0; j < ground_truth[i].numel(); ++j) {
ASSERT_LE(GetAbsError(res_ptr[j], gt_ptr[j]), threshold);
}
}
}
inline void TestTorchTime(const std::string& model_path,
std::unordered_map<std::string, c10::IValue>& inputs,
const std::string& mode = "float32", int test_count = 100,
std::shared_ptr<fwd::IBatchStream> batch_stream = nullptr) {
auto builder = fwd::TorchBuilder();
ASSERT_TRUE(builder.SetInferMode(mode));
if (mode.find("int8") != std::string::npos) {
std::shared_ptr<fwd::TrtInt8Calibrator> calib = std::make_shared<fwd::TrtInt8Calibrator>(
// batch_stream, getFilename(graph_path) + ".calib", "entropy");
batch_stream, getFilename(model_path) + ".calib", "minmax");
builder.SetCalibrator(calib);
}
auto engine = builder.Build(model_path, inputs);
if (mode != "float32" && mode != "float") {
for (auto& entry : inputs) {
auto& input = entry.second;
if (input.toTensor().scalar_type() == c10::kFloat) {
input = input.toTensor().to(c10::kHalf);
}
}
}
// GPU cold start
auto outputs = engine->ForwardWithName(inputs);
auto start = std::chrono::high_resolution_clock::now();
for (int t = 0; t < test_count; ++t) {
auto output = engine->ForwardWithName(inputs);
}
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<float, std::milli> duration = end - start;
std::cout << "Test Iteration = " << test_count << std::endl;
std::cout << "average time = " << duration.count() / test_count << std::endl;
}