-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmutational.py
504 lines (417 loc) · 18.9 KB
/
mutational.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
from .util import *
class ConstructMutationalMPI(object):
def __init__(self, nresidues, use_contacts=None, contacts_scores=None, verbose=False):
self.verbose = verbose
self.nresidues = nresidues
self.use_contacts = use_contacts
self.contacts_scores=None
self._convert_parameters_into_list()
self.poison_pill = False # set to False to terminmate the run job
self._initialize_empty_results()
def _convert_parameters_into_list(self):
if self.use_contacts is None:
all_indices = []
for idx in range(1, self.nresidues + 1):
for jdx in range(idx + 1, self.nresidues + 1):
all_indices.append({"idx":idx, "jdx":jdx})
else:
all_indices = []
for contact in self.use_contacts:
try:
assert contact[0] > 0
assert contact[1] > 0
except:
print contact
raise
all_indices.append({"idx":contact[0], "jdx":contact[1]})
if self.contacts_scores is not None:
sort_indices = np.argsort(self.contacts_scores)
sort_indices = sort_indices[-1::-1] # reverse to descending order instead of ascending
# do the actual sorting
new_indices = []
new_scores = []
for sort_idx in sort_indices:
new_indices.append(all_indices[sort_idx])
new_scores.append(self.contacts_scores[sort_idx])
all_indices = new_indices
self.inputs_scores = new_scores
self.inputs_collected = all_indices
if self.verbose:
print "Computing between %d pairs" % (len(self.inputs_collected))
def _add_results_q(self):
E_avg, E_std = self.process_results_q(self.save_q)
def _initialize_empty_results(self):
self.E_avg = np.zeros((self.nresidues, self.nresidues))
self.E_sd = np.zeros((self.nresidues, self.nresidues))
self.all_e_list = [[[] for i in range(self.nresidues)] for j in range(self.nresidues)]
def process_results_q(self, results_q):
# take a queue as input, and then analyze the results
count = 0
print_every = ((self.nresidues) ** 2 ) / 20
for results in results_q:
if self.verbose and (count % print_every == 0):
print "Completed %d saves" % count
count += 1
"""
idx = results[0] # still 1-indexed
jdx = results[1] # still 1-indexed
average = results[2]
sd = results[3]
"""
idx = results["idx"] # still 1-indexed
jdx = results["jdx"] # still 1-indexed
average = results["average"]
sd = results["sd"]
e_list = results["elist"]
zidx = idx - 1
zjdx = jdx - 1
self.E_avg[zidx, zjdx] = average
self.E_avg[zjdx, zidx] = average
self.E_sd[zidx, zjdx] = sd
self.E_sd[zjdx, zidx] = sd
self.all_e_list[idx-1][jdx-1] = e_list
self.all_e_list[jdx-1][idx-1] = e_list
if self.verbose:
print "Completed %d saves" % count
def get_saved_results(self):
return self.E_avg, self.E_sd
@property
def E_list(self):
return self.all_e_list
class ComputePairMPI(object):
def __init__(self, thread_number, pair_list, book_keeper, scorefxn, order, weights, ndecoys, nresidues, pack_radius=10., mutation_scheme="simple", remove_high=None, compute_all_neighbors=False):
self.thread_number = thread_number
print "Thread %d Starting" % self.thread_number
self.pair_list = pair_list
self.save_q = []
self.book_keeper = book_keeper
self.scorefxn = scorefxn
self.order = order
self.weights = weights
self.ndecoys = ndecoys
self.nresidues = nresidues
self.pack_radius = pack_radius
self.still_going = True # default action is to keep going
self.start_time = time.time()
self.n_jobs_run = 0
self.possible_residues = get_possible_residues(self.book_keeper.all_native_pose[0])
self.remove_high = remove_high
self.compute_all_neighbors = compute_all_neighbors
self.current_native_set = None
self.current_idx = -1
self.current_jdx = -1
self.size_of_native_set = -1
random.seed(int(time.time()) + int(self.thread_number*1000))
if mutation_scheme == "simple":
print "Repacking locally with radius %f" % self.pack_radius
self.mutate_residues_and_change = self.mutate_simple
elif mutation_scheme == "repack_all":
print "Repacking all side-chain atoms"
self.mutate_residues_and_change = self.mutate_repack
elif mutation_scheme == "relax_all":
print "Relaxing side-chain and backbone parameters."
self.mutate_residues_and_change = self.mutate_relax
elif mutation_scheme == "single":
print "Mutating and Repacking within radius %f for single residue" % self.pack_radius
self.mutate_residues_and_change = self.mutate_simple_single
self._extra_init()
def _extra_init(self):
pass
def get_native_pose(self, idx, jdx):
# idx and jdx are 1-indexed
if self.current_idx != idx and self.current_jdx != jdx:
self.current_native_set = self.book_keeper.get_possible_native(idx-1, jdx-1)
self.current_idx = idx
self.current_jdx = jdx
self.size_of_native_set = len(self.current_native_set)
return self.current_native_set[np.random.choice(self.size_of_native_set)]
def check_unique_mutated_residue_byidx(self, old_indices, new_residues):
old_residues = []
for i in old_indices: #old_indices are 1-indexed generally
old_residues.append(self.possible_residues[i-1])
return self.check_unique_mutated_residue(old_residues, new_residues)
def check_unique_mutated_residue(self, old_residues, new_residues):
go = False
for old, new in zip(old_residues, new_residues):
if old != new:
go = True
return go
def select_new_pair(self, idx, jdx, possible_residues):
go = True
while go:
new_res1 = random.choice(possible_residues)
new_res2 = random.choice(possible_residues)
new = self.check_unique_mutated_residue_byidx([idx, jdx], [new_res1, new_res2]) # True if one residue is new
#go = not new
go = False
return new_res1, new_res2
def select_new_single(self, idx, possible_residues):
go = True
while go:
new_res1 = random.choice(possible_residues)
new = self.check_unique_mutated_residue_byidx([idx], [new_res1]) # True if one residue is new
#go = not new
go = False # currently some mutations fail since all other mutants are bad. specifically mutant number 48
return new_res1
def mutate_residue_pair(self, idx, jdx, possible_residues):
new_res1, new_res2 = self.select_new_pair(idx, jdx, possible_residues)
new_pose = Pose()
new_pose.assign(self.get_native_pose(idx,jdx))
mutate_residue(new_pose, idx, new_res1, pack_radius=0)
mutate_residue(new_pose, jdx, new_res2, pack_radius=0)
return new_pose
def mutate_relax(self, idx, jdx, possible_residues):
new_pose = self.mutate_residue_pair(idx, jdx, possible_residues)
relaxer = ClassicRelax()
relaxer.set_scorefxn(pyrt.get_fa_scorefxn())
relaxer.apply(new_pose)
return new_pose
def mutate_repack(self, idx, jdx, possible_residues):
new_res1, new_res2 = self.select_new_pair(idx, jdx, possible_residues)
new_pose = Pose()
new_pose.assign(self.get_native_pose(idx,jdx))
mutate_residue(new_pose, idx, new_res1, pack_radius=0)
mutate_residue(new_pose, jdx, new_res2, pack_radius=50)
"""
task = pyr.standard_packer_task(new_pose)
task.restrict_to_repacking()
pack_mover = PackRotamersMover(generic_scorefxn, task)
pack_mover.apply(new_pose)
"""
return new_pose
def mutate_simple(self, idx, jdx, possible_residues):
new_res1, new_res2 = self.select_new_pair(idx, jdx, possible_residues)
new_pose = Pose()
new_pose.assign(self.get_native_pose(idx,jdx))
mutate_residue(new_pose, idx, new_res1, pack_radius=self.pack_radius)
mutate_residue(new_pose, jdx, new_res2, pack_radius=self.pack_radius)
return new_pose
def mutate_simple_single(self, idx, possible_residues):
new_res1 = self.select_new_single(idx, possible_residues)
new_pose = Pose()
new_pose.assign(self.get_native_pose(idx,jdx))
mutate_residue(new_pose, idx, new_res1, pack_radius=self.pack_radius)
"""
task = pyr.standard_packer_task(new_pose)
task.restrict_to_repacking()
pack_mover = PackRotamersMover(generic_scorefxn, task)
pack_mover.apply(new_pose)
"""
return new_pose
def print_status(self):
print "THREAD%2d --- %6f minutes: %6d Pairs Complete" % (self.thread_number, (time.time() - self.start_time)/60., self.n_jobs_run)
def _determine_single_pair(self, new_pose, idx, jdx):
emap = pyrt.EMapVector()
self.scorefxn.eval_ci_2b(new_pose.residue(idx), new_pose.residue(jdx), new_pose, emap)
this_E = 0.
for thing,wt in zip(self.order, self.weights):
this_E += emap[thing] * wt
return this_E
def _determine_all_pairs(self, new_pose, idx, jdx):
this_E = 0. # the total
for i_count in range(1, self.nresidues+1):
if (i_count != idx) and (i_count != jdx):
# compute for idx
emap = pyrt.EMapVector()
self.scorefxn.eval_ci_2b(new_pose.residue(idx), new_pose.residue(i_count), new_pose, emap)
for thing,wt in zip(self.order, self.weights):
this_E += emap[thing] * wt
# now compute for jdx
emap = pyrt.EMapVector()
self.scorefxn.eval_ci_2b(new_pose.residue(jdx), new_pose.residue(i_count), new_pose, emap)
for thing,wt in zip(self.order, self.weights):
this_E += emap[thing] * wt
# now compute the idx-jdx pair energy directly.
self.scorefxn.eval_ci_2b(new_pose.residue(idx), new_pose.residue(jdx), new_pose, emap)
for thing,wt in zip(self.order, self.weights):
this_E += emap[thing] * wt
return this_E
def run(self, list_of_index):
block_print()
self.still_going = True
for index in list_of_index:
new_E = None
if self.n_jobs_run % 10 == 0:
# print what step you are on
enable_print()
self.print_status()
block_print()
new_params = self.pair_list[index]
idx = new_params["idx"] # 1-indexed
jdx = new_params["jdx"] # 1-indexed
all_E = np.zeros(self.ndecoys)
i_decoy = 0
while i_decoy < self.ndecoys:
new_pose = self.mutate_residues_and_change(idx, jdx, self.possible_residues)
emap = pyrt.EMapVector()
if self.compute_all_neighbors:
this_E = self._determine_all_pairs(new_pose, idx, jdx)
else:
this_E = self._determine_single_pair(new_pose, idx, jdx)
if self.remove_high is None:
all_E[i_decoy] = this_E
i_decoy += 1
else:
if this_E < self.remove_high:
all_E[i_decoy] = this_E
i_decoy += 1
new_E = all_E
"""
# this removes after the fact, but means hundreds of decoys can be missing
if self.remove_high is not None:
temp_E = np.array(all_E)
new_E = temp_E[np.where(temp_E < self.remove_high)]
else:
new_E = all_E
"""
this_avg, this_std = compute_average_and_sd(new_E)
self.save_q.append({"idx":idx, "jdx":jdx, "average":this_avg, "sd":this_std, "elist":new_E})
#self.save_q.put([idx, jdx, this_avg, this_std])
self.n_jobs_run += 1
self.still_going = False
enable_print()
return
class ComputePairMPIControl(ComputePairMPI):
def mutate_residues_control(self, idx, jdx, this_native_pose):
new_pose = Pose()
new_pose.assign(this_native_pose)
original_sequence = new_pose.sequence()
new_res1 = original_sequence[idx - 1]
new_res2 = original_sequence[jdx - 1]
mutate_residue(new_pose, idx, new_res1, pack_radius=self.pack_radius)
mutate_residue(new_pose, jdx, new_res2, pack_radius=self.pack_radius)
return new_pose
def run(self, list_of_index):
self.still_going = True
for index in list_of_index:
new_E = None
if self.n_jobs_run % 10 == 0:
# print what step you are on
enable_print()
self.print_status()
block_print()
new_params = self.pair_list[index]
idx = new_params["idx"] # 1-indexed
jdx = new_params["jdx"] # 1-indexed
i_decoy = 0
this_native_set = self.book_keeper.get_possible_native(idx-1, jdx-1)
n_in_current_native_set = len(this_native_set)
all_E = []
for i_decoy in range(n_in_current_native_set):
this_native_pose = this_native_set[i_decoy]
new_pose = self.mutate_residues_control(idx, jdx, this_native_pose)
assert new_pose.sequence() == this_native_pose.sequence()
emap = pyrt.EMapVector()
if self.compute_all_neighbors:
this_E = self._determine_all_pairs(new_pose, idx, jdx)
else:
this_E = self._determine_single_pair(new_pose, idx, jdx)
if self.remove_high is None:
all_E.append(this_E)
i_decoy += 1
else:
if this_E < self.remove_high:
all_E.append(this_E)
assert len(all_E) > 0
new_E = np.array(all_E)
"""
# this removes after the fact, but means hundreds of decoys can be missing
if self.remove_high is not None:
temp_E = np.array(all_E)
new_E = temp_E[np.where(temp_E < self.remove_high)]
else:
new_E = all_E
"""
this_avg, this_std = compute_average_and_sd(new_E)
self.save_q.append({"idx":idx, "jdx":jdx, "average":this_avg, "sd":this_std, "elist":new_E})
#self.save_q.put([idx, jdx, this_avg, this_std])
self.n_jobs_run += 1
self.still_going = False
enable_print()
return
class ConstructMutationalSingleMPI(ConstructMutationalMPI):
def _initialize_empty_results(self):
self.E_avg = np.zeros(self.nresidues)
self.E_sd = np.zeros(self.nresidues)
self.all_e_list = [[] for i in range(self.nresidues)]
def _convert_parameters_into_list(self):
all_indices = []
for idx in range(1, self.nresidues + 1):
all_indices.append({"idx":idx})
self.inputs_collected = all_indices
if self.verbose:
print "Computing %s residues" % (len(self.inputs_collected))
def process_results_q(self, results_q):
# take a queue as input, and then analyze the results
count = 0
print_every = ((self.nresidues) ** 2 ) / 20
for results in results_q:
if self.verbose and (count % print_every == 0):
print "Completed %d saves" % count
count += 1
idx = results["idx"] # still 1-indexed
average = results["average"]
sd = results["sd"]
e_list = results["elist"]
zidx = idx - 1
self.E_avg[zidx] = average
self.E_sd[zidx] = sd
self.all_e_list[idx-1] = e_list
if self.verbose:
print "Completed %d saves" % count
class ComputeSingleMPI(ComputePairMPI):
def _extra_init(self):
print "Mutating and Repacking within radius %f for single residue" % self.pack_radius
self.mutate_residues_and_change = self.mutate_simple_single
def _determine_all_single_pairs(self, new_pose, idx):
this_E = 0. # the total
for i_count in range(1, self.nresidues+1):
if (i_count != idx): # avoid self interactions
# compute for idx
emap = pyrt.EMapVector()
self.scorefxn.eval_ci_2b(new_pose.residue(idx), new_pose.residue(i_count), new_pose, emap)
for thing,wt in zip(self.order, self.weights):
this_E += emap[thing] * wt
return this_E
def print_status(self):
print "THREAD%2d --- %6f minutes: %6d Residues Complete" % (self.thread_number, (time.time() - self.start_time)/60., self.n_jobs_run)
def run(self, list_of_index):
block_print()
self.still_going = True
for index in list_of_index:
new_E = None
if self.n_jobs_run % 10 == 0:
# print what step you are on
enable_print()
self.print_status()
block_print()
new_params = self.pair_list[index]
idx = new_params["idx"] # 1-indexed
all_E = np.zeros(self.ndecoys)
i_decoy = 0
while i_decoy < self.ndecoys:
new_pose = self.mutate_residues_and_change(idx, self.possible_residues)
emap = pyrt.EMapVector()
this_E = self._determine_all_single_pairs(new_pose, idx)
if self.remove_high is None:
all_E[i_decoy] = this_E
i_decoy += 1
else:
if this_E < self.remove_high:
all_E[i_decoy] = this_E
i_decoy += 1
new_E = all_E
"""
# this removes after the fact, but means hundreds of decoys can be missing
if self.remove_high is not None:
temp_E = np.array(all_E)
new_E = temp_E[np.where(temp_E < self.remove_high)]
else:
new_E = all_E
"""
this_avg, this_std = compute_average_and_sd(new_E)
self.save_q.append({"idx":idx, "average":this_avg, "sd":this_std, "elist":new_E})
self.n_jobs_run += 1
self.still_going = False
enable_print()
return