-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathingester.py
266 lines (233 loc) · 11.3 KB
/
ingester.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import json
from enum import Enum
from typing import Dict, List, Literal, Tuple, TypedDict
import sqlite3, sqlite_vec
import spacy
import pandas
import numpy as np
from dotenv import load_dotenv
from tqdm.auto import tqdm
from version import __version__
import struct
load_dotenv()
def serialize_f32(vector: List[float]) -> bytes:
"""serializes a list of floats into a compact "raw bytes" format"""
return struct.pack("%sf" % len(vector), *vector)
class Embedder:
def __init__(self, name: Literal['bge-small-en-v1.5', 'openai', 'all-mpnet-base-v2', 'multi-qa-mpnet-base-dot-v1']) -> None:
self.name = name
self.use_sentence_transformers = False
if name in ['bge-small-en-v1.5']:
from sentence_transformers import SentenceTransformer
self.model = SentenceTransformer(f'BAAI/{name}')
self.use_sentence_transformers = True
elif 'openai' in name:
from openai import OpenAI
self.model = OpenAI()
elif name in ['multi-qa-mpnet-base-dot-v1', 'all-mpnet-base-v2']:
from sentence_transformers import SentenceTransformer
self.model = SentenceTransformer(f'sentence-transformers/{name}')
self.use_sentence_transformers = True
else:
print (f"Unsupported embedder {name}. Please check. ")
exit()
def embed(self, texts: List[str], embedding_dimension: int= 512, batch_size:int = 12) -> np.ndarray:
"""The function that takes a list of strings and returns a numpy array of their embeddings.
"""
if self.use_sentence_transformers:
return self.model.encode(texts, batch_size=batch_size, normalize_embeddings=True)
# elif self.name == 'bge-m3':
# return self.model.encode(texts, batch_size=batch_size, max_length=512)['dense_vecs']
elif "openai" in self.name:
openai_model_id = self.name.split("/")[-1]
response = self.model.embeddings.create(input=texts, model=openai_model_id, dimensions=int(embedding_dimension))
return np.array([item.embedding for item in response.data])
else:
# return dummy embeddings
print (f"Returning dummy embeddings")
return np.random.rand(len(texts), embedding_dimension)
class Chunker:
def __init__(self):
nlp = spacy.load("en_core_web_sm", exclude=["tok2vec",'tagger','parser','ner', 'attribute_ruler', 'lemmatizer'])
nlp.add_pipe("sentencizer")
self.nlp = nlp
def chunk(self, text: str) -> List[List[str]]:
return [sent.text for sent in self.nlp(text).sents]
# return [[sent.text for sent in doc.sents ] for doc in self.nlp.pipe(texts)]
class Ingester:
def __init__(
self,
file_to_ingest: str,
overwrite_data: bool = False,
embedding_dimension: int = 512,
# embedding_model_id: Literal["bge-m3", "bge-small-en-v1.5", "openai/text-embedding-3-small", "openai/text-embedding-3-large", "multi-qa-mpnet-base-dot-v1", "dummy"] = "dummy",
embedding_model_id: Literal["bge-small-en-v1.5", "openai/text-embedding-3-small", "openai/text-embedding-3-large", "multi-qa-mpnet-base-dot-v1",'all-mpnet-base-v2', "dummy"] = "dummy",
sqlite_db_path: str = "./mercury.sqlite",
ingest_column_1: str = "source",
ingest_column_2: str = "summary",
):
self.file_to_ingest = file_to_ingest
self.overwrite_data = overwrite_data
self.sqlite_db_path = sqlite_db_path
self.embedding_dimension = embedding_dimension
if embedding_model_id == "bge-small-en-v1.5":
self.embedding_dimension = 384
elif embedding_model_id == 'all-mpnet-base-v2':
self.embedding_dimension = 768
self.embedding_model_id = embedding_model_id
self.ingest_column_1 = ingest_column_1
self.ingest_column_2 = ingest_column_2
self.chunker = Chunker()
self.embedder = Embedder(embedding_model_id)
self.text = {}
def prepare_db(self):
self.db = sqlite3.connect(self.sqlite_db_path)
self.db.enable_load_extension(True)
sqlite_vec.load(self.db)
self.db.enable_load_extension(False)
if self.overwrite_data:
print ("\n************* BE CAREFUL *************")
print (f"By turning on --overwrite_data, you chooose to remove all data (chunks, embeddings, and annotations) in the database file `{self.sqlite_db_path}`. If you just wanna udpate one table/column, contact Forrest to migrate the data or add a new feature. Type UPPERCASE 'YES' if you still want to proceed.")
answer = input()
if answer == "YES":
self.db.execute("DROP TABLE IF EXISTS chunks")
self.db.execute("DROP TABLE IF EXISTS embeddings")
self.db.execute("DROP TABLE IF EXISTS config")
self.db.execute("DROP TABLE IF EXISTS annotations")
self.db.execute("DROP TABLE IF EXISTS leaderboard")
self.db.execute("DROP TABLE IF EXISTS users")
self.db.commit()
self.db.execute(
f"CREATE VIRTUAL TABLE IF NOT EXISTS chunks USING vec0(chunk_id INTEGER PRIMARY KEY, text TEXT, text_type TEXT, sample_id INTEGER, char_offset INTEGER, chunk_offset INTEGER, embedding float[{self.embedding_dimension}])"
)
self.db.execute(
"CREATE TABLE IF NOT EXISTS config (key TEXT PRIMARY KEY UNIQUE , value TEXT)"
)
self.db.execute(
"CREATE TABLE IF NOT EXISTS sample_meta (sample_id INTEGER PRIMARY KEY, json_meta TEXT)"
)
# Below commented by Forrest on 2024-09-28 because `users` is not used in ingestion but annotation
# `users` initialization moved to `database.py`
# self.db.execute(
# "CREATE TABLE IF NOT EXISTS users (user_id TEXT PRIMARY KEY, user_name TEXT)"
# )
self.db.execute(
"INSERT OR REPLACE INTO config (key, value) VALUES ('embedding_model_id', ?)",
[self.embedding_model_id],
)
self.db.execute(
"INSERT OR REPLACE INTO config (key, value) VALUES ('embedding_dimension', ?)",
[self.embedding_dimension],
)
self.db.execute(
"INSERT OR REPLACE INTO config (key, value) VALUES ('version', ?)",
[__version__]
)
self.db.commit()
def load_data_for_ingestion(self) -> Tuple[List[str], List[str]]:
# if file_to_ingest ends with JSONL, load it as JSONL
if self.file_to_ingest.endswith("jsonl"):
df = pandas.read_json(self.file_to_ingest, lines=True)
elif self.file_to_ingest.endswith("json"):
df = pandas.read_json(self.file_to_ingest)
elif self.file_to_ingest.endswith("csv"):
df = pandas.read_csv(self.file_to_ingest)
else:
raise Exception(f"Unsupported file format in {self.file_to_ingest}")
df.columns = df.columns.str.lower()
sources: List[str] = df[self.ingest_column_1].tolist()
summaries: List[str] = df[self.ingest_column_2].tolist()
self.text[self.ingest_column_1] = sources
self.text[self.ingest_column_2] = summaries
df_other_columns = df.drop(columns=[self.ingest_column_1, self.ingest_column_2])
if len(df_other_columns.columns) > 0:
sample_ids = range(0, len(sources))
json_meta = [row.to_json() for _, row in df_other_columns.iterrows()]
cmd = "INSERT INTO sample_meta (sample_id, json_meta) VALUES (?, ?)"
self.db.executemany(cmd, zip(sample_ids, json_meta))
self.db.commit()
def ingest(self):
"""Chunk the data, embed the chunks, and save to the database."""
global_chunk_id = 0 # the id of the chunk in tables, starting from 1
for text_type, docs in self.text.items():
print (f"Processing {text_type}")
for sample_id in tqdm(range(0, len(docs)), desc="Sample"): # simple, just chunk and embed one doc each time
char_offset = 0
chunks = self.chunker.chunk(docs[sample_id])
embeddings = self.embedder.embed(chunks, embedding_dimension=self.embedding_dimension)
for chunk_offset, chunk_text in enumerate(chunks):
# print ([global_chunk_id, chunk_text, text_type, sample_id+1, char_offset, chunk_offset])
self.db.execute(
"INSERT INTO chunks (chunk_id, text, text_type, sample_id, char_offset, chunk_offset, embedding) VALUES (?, ?, ?, ?, ?, ?, ?)",
[global_chunk_id, chunk_text, text_type, sample_id, char_offset, chunk_offset, serialize_f32(embeddings[chunk_offset])]
)
self.db.commit()
char_offset += len(chunk_text) + 1 # +1 for the space between sentences.
global_chunk_id += 1
def main(self): # or become __call__
self.prepare_db()
self.load_data_for_ingestion()
self.ingest()
if __name__ == "__main__":
import argparse
import os
def get_env_id_value(env_name: str) -> int | None:
env = os.environ.get(env_name, None)
if env is not None:
return int(env)
return None
parser = argparse.ArgumentParser(
description="Ingest data to be annotated into the SQLite database",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("file_to_ingest", type=str, help="Path to the file to ingest")
parser.add_argument(
"--overwrite_data",
action="store_true",
default=False,
help="If True, overwrite the data store in database. If False (default), append to the existing data.",
)
parser.add_argument(
"--embedding_model_id",
type=str,
default="dummy",
help="The ID of the embedding model to use. Currently supports 'all-mpnet-base-v2', 'multi-qa-mpnet-base-dot-v1', 'bge-small-en-v1.5', 'openai/{text-embedding-3-small, text-embedding-3-large}', and 'dummy' (random numbers).",
)
parser.add_argument(
"--embedding_dimension",
type=int,
default=512,
help="The dimension of the embeddings. Only effective to OpenAI embedders.",
)
parser.add_argument(
"--sqlite_db_path",
type=str,
default="./mercury.sqlite",
help="The path to the SQLite database file",
)
parser.add_argument(
"--ingest_column_1",
type=str,
default="source",
help="The name of the 1st column to ingest",
)
parser.add_argument(
"--ingest_column_2",
type=str,
default="summary",
help="The name of the 2nd column to ingest",
)
parser.add_argument("--version", action="version", version="__version__")
args = parser.parse_args()
print("Mercury version: ", __version__)
print("Ingesting data")
ingester = Ingester(
file_to_ingest=args.file_to_ingest,
overwrite_data=args.overwrite_data,
embedding_dimension=args.embedding_dimension,
embedding_model_id=args.embedding_model_id,
sqlite_db_path=args.sqlite_db_path,
ingest_column_1=args.ingest_column_1,
ingest_column_2=args.ingest_column_2,
)
ingester.main()
print(f"Ingested!")