-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy path.cursorrules
1654 lines (1274 loc) · 55.8 KB
/
.cursorrules
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
layout: default
title: "Agentic Coding"
---
# Agentic Coding: Humans Design, Agents code!
> If you are an AI agents involved in building LLM Systems, read this guide **VERY, VERY** carefully! This is the most important chapter in the entire document. Throughout development, you should always (1) start with a small and simple solution, (2) design at a high level (`docs/design.md`) before implementation, and (3) frequently ask humans for feedback and clarification.
{: .warning }
## Agentic Coding Steps
Agentic Coding should be a collaboration between Human System Design and Agent Implementation:
| Steps | Human | AI | Comment |
|:-----------------------|:----------:|:---------:|:------------------------------------------------------------------------|
| 1. Requirements | ★★★ High | ★☆☆ Low | Humans understand the requirements and context. |
| 2. Flow | ★★☆ Medium | ★★☆ Medium | Humans specify the high-level design, and the AI fills in the details. |
| 3. Utilities | ★★☆ Medium | ★★☆ Medium | Humans provide available external APIs and integrations, and the AI helps with implementation. |
| 4. Node | ★☆☆ Low | ★★★ High | The AI helps design the node types and data handling based on the flow. |
| 5. Implementation | ★☆☆ Low | ★★★ High | The AI implements the flow based on the design. |
| 6. Optimization | ★★☆ Medium | ★★☆ Medium | Humans evaluate the results, and the AI helps optimize. |
| 7. Reliability | ★☆☆ Low | ★★★ High | The AI writes test cases and addresses corner cases. |
1. **Requirements**: Clarify the requirements for your project, and evaluate whether an AI system is a good fit.
- Understand AI systems' strengths and limitations:
- **Good for**: Routine tasks requiring common sense (filling forms, replying to emails)
- **Good for**: Creative tasks with well-defined inputs (building slides, writing SQL)
- **Not good for**: Ambiguous problems requiring complex decision-making (business strategy, startup planning)
- **Keep It User-Centric:** Explain the "problem" from the user's perspective rather than just listing features.
- **Balance complexity vs. impact**: Aim to deliver the highest value features with minimal complexity early.
2. **Flow Design**: Outline at a high level, describe how your AI system orchestrates nodes.
- Identify applicable design patterns (e.g., [Map Reduce](./design_pattern/mapreduce.md), [Agent](./design_pattern/agent.md), [RAG](./design_pattern/rag.md)).
- For each node in the flow, start with a high-level one-line description of what it does.
- If using **Map Reduce**, specify how to map (what to split) and how to reduce (how to combine).
- If using **Agent**, specify what are the inputs (context) and what are the possible actions.
- If using **RAG**, specify what to embed, noting that there's usually both offline (indexing) and online (retrieval) workflows.
- Outline the flow and draw it in a mermaid diagram. For example:
```mermaid
flowchart LR
start[Start] --> batch[Batch]
batch --> check[Check]
check -->|OK| process
check -->|Error| fix[Fix]
fix --> check
subgraph process[Process]
step1[Step 1] --> step2[Step 2]
end
process --> endNode[End]
```
- > **If Humans can't specify the flow, AI Agents can't automate it!** Before building an LLM system, thoroughly understand the problem and potential solution by manually solving example inputs to develop intuition.
{: .best-practice }
3. **Utilities**: Based on the Flow Design, identify and implement necessary utility functions.
- Think of your AI system as the brain. It needs a body—these *external utility functions*—to interact with the real world:
<div align="center"><img src="https://github.com/the-pocket/PocketFlow/raw/main/assets/utility.png?raw=true" width="400"/></div>
- Reading inputs (e.g., retrieving Slack messages, reading emails)
- Writing outputs (e.g., generating reports, sending emails)
- Using external tools (e.g., calling LLMs, searching the web)
- **NOTE**: *LLM-based tasks* (e.g., summarizing text, analyzing sentiment) are **NOT** utility functions; rather, they are *core functions* internal in the AI system.
- For each utility function, implement it and write a simple test.
- Document their input/output, as well as why they are necessary. For example:
- `name`: `get_embedding` (`utils/get_embedding.py`)
- `input`: `str`
- `output`: a vector of 3072 floats
- `necessity`: Used by the second node to embed text
- Example utility implementation:
```python
# utils/call_llm.py
from openai import OpenAI
def call_llm(prompt):
client = OpenAI(api_key="YOUR_API_KEY_HERE")
r = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": prompt}]
)
return r.choices[0].message.content
if __name__ == "__main__":
prompt = "What is the meaning of life?"
print(call_llm(prompt))
```
- > **Sometimes, design Utilies before Flow:** For example, for an LLM project to automate a legacy system, the bottleneck will likely be the available interface to that system. Start by designing the hardest utilities for interfacing, and then build the flow around them.
{: .best-practice }
4. **Node Design**: Plan how each node will read and write data, and use utility functions.
- One core design principle for PocketFlow is to use a [shared store](./core_abstraction/communication.md), so start with a shared store design:
- For simple systems, use an in-memory dictionary.
- For more complex systems or when persistence is required, use a database.
- **Don't Repeat Yourself**: Use in-memory references or foreign keys.
- Example shared store design:
```python
shared = {
"user": {
"id": "user123",
"context": { # Another nested dict
"weather": {"temp": 72, "condition": "sunny"},
"location": "San Francisco"
}
},
"results": {} # Empty dict to store outputs
}
```
- For each [Node](./core_abstraction/node.md), describe its type, how it reads and writes data, and which utility function it uses. Keep it specific but high-level without codes. For example:
- `type`: Regular (or Batch, or Async)
- `prep`: Read "text" from the shared store
- `exec`: Call the embedding utility function
- `post`: Write "embedding" to the shared store
5. **Implementation**: Implement the initial nodes and flows based on the design.
- 🎉 If you've reached this step, humans have finished the design. Now *Agentic Coding* begins!
- **"Keep it simple, stupid!"** Avoid complex features and full-scale type checking.
- **FAIL FAST**! Avoid `try` logic so you can quickly identify any weak points in the system.
- Add logging throughout the code to facilitate debugging.
7. **Optimization**:
- **Use Intuition**: For a quick initial evaluation, human intuition is often a good start.
- **Redesign Flow (Back to Step 3)**: Consider breaking down tasks further, introducing agentic decisions, or better managing input contexts.
- If your flow design is already solid, move on to micro-optimizations:
- **Prompt Engineering**: Use clear, specific instructions with examples to reduce ambiguity.
- **In-Context Learning**: Provide robust examples for tasks that are difficult to specify with instructions alone.
- > **You'll likely iterate a lot!** Expect to repeat Steps 3–6 hundreds of times.
>
> <div align="center"><img src="https://github.com/the-pocket/PocketFlow/raw/main/assets/success.png?raw=true" width="400"/></div>
{: .best-practice }
8. **Reliability**
- **Node Retries**: Add checks in the node `exec` to ensure outputs meet requirements, and consider increasing `max_retries` and `wait` times.
- **Logging and Visualization**: Maintain logs of all attempts and visualize node results for easier debugging.
- **Self-Evaluation**: Add a separate node (powered by an LLM) to review outputs when results are uncertain.
## Example LLM Project File Structure
```
my_project/
├── main.py
├── flow.py
├── utils/
│ ├── __init__.py
│ ├── call_llm.py
│ └── search_web.py
├── requirements.txt
└── docs/
└── design.md
```
- **`docs/design.md`**: Contains project documentation for each step above. This should be *high-level* and *no-code*.
- **`utils/`**: Contains all utility functions.
- It's recommended to dedicate one Python file to each API call, for example `call_llm.py` or `search_web.py`.
- Each file should also include a `main()` function to try that API call
- **`flow.py`**: Implements the system's flow, starting with node definitions followed by the overall structure.
```python
# flow.py
from pocketflow import Node, Flow
from utils.call_llm import call_llm
# Example with two nodes in a flow
class GetQuestionNode(Node):
def exec(self, _):
# Get question directly from user input
user_question = input("Enter your question: ")
return user_question
def post(self, shared, prep_res, exec_res):
# Store the user's question
shared["question"] = exec_res
return "default" # Go to the next node
class AnswerNode(Node):
def prep(self, shared):
# Read question from shared
return shared["question"]
def exec(self, question):
# Call LLM to get the answer
return call_llm(question)
def post(self, shared, prep_res, exec_res):
# Store the answer in shared
shared["answer"] = exec_res
# Create nodes
get_question_node = GetQuestionNode()
answer_node = AnswerNode()
# Connect nodes in sequence
get_question_node >> answer_node
# Create flow starting with input node
qa_flow = Flow(start=get_question_node)
```
- **`main.py`**: Serves as the project's entry point.
```python
# main.py
from flow import qa_flow
# Example main function
# Please replace this with your own main function
def main():
shared = {
"question": None, # Will be populated by GetQuestionNode from user input
"answer": None # Will be populated by AnswerNode
}
qa_flow.run(shared)
print(f"Question: {shared['question']}")
print(f"Answer: {shared['answer']}")
if __name__ == "__main__":
main()
```
================================================
File: docs/index.md
================================================
---
layout: default
title: "Home"
nav_order: 1
---
# Pocket Flow
A [100-line](https://github.com/the-pocket/PocketFlow/blob/main/pocketflow/__init__.py) minimalist LLM framework for *Agents, Task Decomposition, RAG, etc*.
- **Lightweight**: Just the core graph abstraction in 100 lines. ZERO dependencies, and vendor lock-in.
- **Expressive**: Everything you love from larger frameworks—([Multi-](./design_pattern/multi_agent.html))[Agents](./design_pattern/agent.html), [Workflow](./design_pattern/workflow.html), [RAG](./design_pattern/rag.html), and more.
- **Agentic-Coding**: Intuitive enough for AI agents to help humans build complex LLM applications.
<div align="center">
<img src="https://github.com/the-pocket/PocketFlow/raw/main/assets/meme.jpg?raw=true" width="400"/>
</div>
## Core Abstraction
We model the LLM workflow as a **Graph + Shared Store**:
- [Node](./core_abstraction/node.md) handles simple (LLM) tasks.
- [Flow](./core_abstraction/flow.md) connects nodes through **Actions** (labeled edges).
- [Shared Store](./core_abstraction/communication.md) enables communication between nodes within flows.
- [Batch](./core_abstraction/batch.md) nodes/flows allow for data-intensive tasks.
- [Async](./core_abstraction/async.md) nodes/flows allow waiting for asynchronous tasks.
- [(Advanced) Parallel](./core_abstraction/parallel.md) nodes/flows handle I/O-bound tasks.
<div align="center">
<img src="https://github.com/the-pocket/PocketFlow/raw/main/assets/abstraction.png" width="500"/>
</div>
## Design Pattern
From there, it’s easy to implement popular design patterns:
- [Agent](./design_pattern/agent.md) autonomously makes decisions.
- [Workflow](./design_pattern/workflow.md) chains multiple tasks into pipelines.
- [RAG](./design_pattern/rag.md) integrates data retrieval with generation.
- [Map Reduce](./design_pattern/mapreduce.md) splits data tasks into Map and Reduce steps.
- [Structured Output](./design_pattern/structure.md) formats outputs consistently.
- [(Advanced) Multi-Agents](./design_pattern/multi_agent.md) coordinate multiple agents.
<div align="center">
<img src="https://github.com/the-pocket/PocketFlow/raw/main/assets/design.png" width="500"/>
</div>
## Utility Function
We **do not** provide built-in utilities. Instead, we offer *examples*—please *implement your own*:
- [LLM Wrapper](./utility_function/llm.md)
- [Viz and Debug](./utility_function/viz.md)
- [Web Search](./utility_function/websearch.md)
- [Chunking](./utility_function/chunking.md)
- [Embedding](./utility_function/embedding.md)
- [Vector Databases](./utility_function/vector.md)
- [Text-to-Speech](./utility_function/text_to_speech.md)
**Why not built-in?**: I believe it's a *bad practice* for vendor-specific APIs in a general framework:
- *API Volatility*: Frequent changes lead to heavy maintenance for hardcoded APIs.
- *Flexibility*: You may want to switch vendors, use fine-tuned models, or run them locally.
- *Optimizations*: Prompt caching, batching, and streaming are easier without vendor lock-in.
## Ready to build your Apps?
Check out [Agentic Coding Guidance](./guide.md), the fastest way to develop LLM projects with Pocket Flow!
================================================
File: docs/core_abstraction/async.md
================================================
---
layout: default
title: "(Advanced) Async"
parent: "Core Abstraction"
nav_order: 5
---
# (Advanced) Async
**Async** Nodes implement `prep_async()`, `exec_async()`, `exec_fallback_async()`, and/or `post_async()`. This is useful for:
1. **prep_async()**: For *fetching/reading data (files, APIs, DB)* in an I/O-friendly way.
2. **exec_async()**: Typically used for async LLM calls.
3. **post_async()**: For *awaiting user feedback*, *coordinating across multi-agents* or any additional async steps after `exec_async()`.
**Note**: `AsyncNode` must be wrapped in `AsyncFlow`. `AsyncFlow` can also include regular (sync) nodes.
### Example
```python
class SummarizeThenVerify(AsyncNode):
async def prep_async(self, shared):
# Example: read a file asynchronously
doc_text = await read_file_async(shared["doc_path"])
return doc_text
async def exec_async(self, prep_res):
# Example: async LLM call
summary = await call_llm_async(f"Summarize: {prep_res}")
return summary
async def post_async(self, shared, prep_res, exec_res):
# Example: wait for user feedback
decision = await gather_user_feedback(exec_res)
if decision == "approve":
shared["summary"] = exec_res
return "approve"
return "deny"
summarize_node = SummarizeThenVerify()
final_node = Finalize()
# Define transitions
summarize_node - "approve" >> final_node
summarize_node - "deny" >> summarize_node # retry
flow = AsyncFlow(start=summarize_node)
async def main():
shared = {"doc_path": "document.txt"}
await flow.run_async(shared)
print("Final Summary:", shared.get("summary"))
asyncio.run(main())
```
================================================
File: docs/core_abstraction/batch.md
================================================
---
layout: default
title: "Batch"
parent: "Core Abstraction"
nav_order: 4
---
# Batch
**Batch** makes it easier to handle large inputs in one Node or **rerun** a Flow multiple times. Example use cases:
- **Chunk-based** processing (e.g., splitting large texts).
- **Iterative** processing over lists of input items (e.g., user queries, files, URLs).
## 1. BatchNode
A **BatchNode** extends `Node` but changes `prep()` and `exec()`:
- **`prep(shared)`**: returns an **iterable** (e.g., list, generator).
- **`exec(item)`**: called **once** per item in that iterable.
- **`post(shared, prep_res, exec_res_list)`**: after all items are processed, receives a **list** of results (`exec_res_list`) and returns an **Action**.
### Example: Summarize a Large File
```python
class MapSummaries(BatchNode):
def prep(self, shared):
# Suppose we have a big file; chunk it
content = shared["data"]
chunk_size = 10000
chunks = [content[i:i+chunk_size] for i in range(0, len(content), chunk_size)]
return chunks
def exec(self, chunk):
prompt = f"Summarize this chunk in 10 words: {chunk}"
summary = call_llm(prompt)
return summary
def post(self, shared, prep_res, exec_res_list):
combined = "\n".join(exec_res_list)
shared["summary"] = combined
return "default"
map_summaries = MapSummaries()
flow = Flow(start=map_summaries)
flow.run(shared)
```
---
## 2. BatchFlow
A **BatchFlow** runs a **Flow** multiple times, each time with different `params`. Think of it as a loop that replays the Flow for each parameter set.
### Example: Summarize Many Files
```python
class SummarizeAllFiles(BatchFlow):
def prep(self, shared):
# Return a list of param dicts (one per file)
filenames = list(shared["data"].keys()) # e.g., ["file1.txt", "file2.txt", ...]
return [{"filename": fn} for fn in filenames]
# Suppose we have a per-file Flow (e.g., load_file >> summarize >> reduce):
summarize_file = SummarizeFile(start=load_file)
# Wrap that flow into a BatchFlow:
summarize_all_files = SummarizeAllFiles(start=summarize_file)
summarize_all_files.run(shared)
```
### Under the Hood
1. `prep(shared)` returns a list of param dicts—e.g., `[{filename: "file1.txt"}, {filename: "file2.txt"}, ...]`.
2. The **BatchFlow** loops through each dict. For each one:
- It merges the dict with the BatchFlow’s own `params`.
- It calls `flow.run(shared)` using the merged result.
3. This means the sub-Flow is run **repeatedly**, once for every param dict.
---
## 3. Nested or Multi-Level Batches
You can nest a **BatchFlow** in another **BatchFlow**. For instance:
- **Outer** batch: returns a list of diretory param dicts (e.g., `{"directory": "/pathA"}`, `{"directory": "/pathB"}`, ...).
- **Inner** batch: returning a list of per-file param dicts.
At each level, **BatchFlow** merges its own param dict with the parent’s. By the time you reach the **innermost** node, the final `params` is the merged result of **all** parents in the chain. This way, a nested structure can keep track of the entire context (e.g., directory + file name) at once.
```python
class FileBatchFlow(BatchFlow):
def prep(self, shared):
directory = self.params["directory"]
# e.g., files = ["file1.txt", "file2.txt", ...]
files = [f for f in os.listdir(directory) if f.endswith(".txt")]
return [{"filename": f} for f in files]
class DirectoryBatchFlow(BatchFlow):
def prep(self, shared):
directories = [ "/path/to/dirA", "/path/to/dirB"]
return [{"directory": d} for d in directories]
# MapSummaries have params like {"directory": "/path/to/dirA", "filename": "file1.txt"}
inner_flow = FileBatchFlow(start=MapSummaries())
outer_flow = DirectoryBatchFlow(start=inner_flow)
```
================================================
File: docs/core_abstraction/communication.md
================================================
---
layout: default
title: "Communication"
parent: "Core Abstraction"
nav_order: 3
---
# Communication
Nodes and Flows **communicate** in 2 ways:
1. **Shared Store (for almost all the cases)**
- A global data structure (often an in-mem dict) that all nodes can read ( `prep()`) and write (`post()`).
- Great for data results, large content, or anything multiple nodes need.
- You shall design the data structure and populate it ahead.
- > **Separation of Concerns:** Use `Shared Store` for almost all cases to separate *Data Schema* from *Compute Logic*! This approach is both flexible and easy to manage, resulting in more maintainable code. `Params` is more a syntax sugar for [Batch](./batch.md).
{: .best-practice }
2. **Params (only for [Batch](./batch.md))**
- Each node has a local, ephemeral `params` dict passed in by the **parent Flow**, used as an identifier for tasks. Parameter keys and values shall be **immutable**.
- Good for identifiers like filenames or numeric IDs, in Batch mode.
If you know memory management, think of the **Shared Store** like a **heap** (shared by all function calls), and **Params** like a **stack** (assigned by the caller).
---
## 1. Shared Store
### Overview
A shared store is typically an in-mem dictionary, like:
```python
shared = {"data": {}, "summary": {}, "config": {...}, ...}
```
It can also contain local file handlers, DB connections, or a combination for persistence. We recommend deciding the data structure or DB schema first based on your app requirements.
### Example
```python
class LoadData(Node):
def post(self, shared, prep_res, exec_res):
# We write data to shared store
shared["data"] = "Some text content"
return None
class Summarize(Node):
def prep(self, shared):
# We read data from shared store
return shared["data"]
def exec(self, prep_res):
# Call LLM to summarize
prompt = f"Summarize: {prep_res}"
summary = call_llm(prompt)
return summary
def post(self, shared, prep_res, exec_res):
# We write summary to shared store
shared["summary"] = exec_res
return "default"
load_data = LoadData()
summarize = Summarize()
load_data >> summarize
flow = Flow(start=load_data)
shared = {}
flow.run(shared)
```
Here:
- `LoadData` writes to `shared["data"]`.
- `Summarize` reads from `shared["data"]`, summarizes, and writes to `shared["summary"]`.
---
## 2. Params
**Params** let you store *per-Node* or *per-Flow* config that doesn't need to live in the shared store. They are:
- **Immutable** during a Node's run cycle (i.e., they don't change mid-`prep->exec->post`).
- **Set** via `set_params()`.
- **Cleared** and updated each time a parent Flow calls it.
> Only set the uppermost Flow params because others will be overwritten by the parent Flow.
>
> If you need to set child node params, see [Batch](./batch.md).
{: .warning }
Typically, **Params** are identifiers (e.g., file name, page number). Use them to fetch the task you assigned or write to a specific part of the shared store.
### Example
```python
# 1) Create a Node that uses params
class SummarizeFile(Node):
def prep(self, shared):
# Access the node's param
filename = self.params["filename"]
return shared["data"].get(filename, "")
def exec(self, prep_res):
prompt = f"Summarize: {prep_res}"
return call_llm(prompt)
def post(self, shared, prep_res, exec_res):
filename = self.params["filename"]
shared["summary"][filename] = exec_res
return "default"
# 2) Set params
node = SummarizeFile()
# 3) Set Node params directly (for testing)
node.set_params({"filename": "doc1.txt"})
node.run(shared)
# 4) Create Flow
flow = Flow(start=node)
# 5) Set Flow params (overwrites node params)
flow.set_params({"filename": "doc2.txt"})
flow.run(shared) # The node summarizes doc2, not doc1
```
================================================
File: docs/core_abstraction/flow.md
================================================
---
layout: default
title: "Flow"
parent: "Core Abstraction"
nav_order: 2
---
# Flow
A **Flow** orchestrates a graph of Nodes. You can chain Nodes in a sequence or create branching depending on the **Actions** returned from each Node's `post()`.
## 1. Action-based Transitions
Each Node's `post()` returns an **Action** string. By default, if `post()` doesn't return anything, we treat that as `"default"`.
You define transitions with the syntax:
1. **Basic default transition**: `node_a >> node_b`
This means if `node_a.post()` returns `"default"`, go to `node_b`.
(Equivalent to `node_a - "default" >> node_b`)
2. **Named action transition**: `node_a - "action_name" >> node_b`
This means if `node_a.post()` returns `"action_name"`, go to `node_b`.
It's possible to create loops, branching, or multi-step flows.
## 2. Creating a Flow
A **Flow** begins with a **start** node. You call `Flow(start=some_node)` to specify the entry point. When you call `flow.run(shared)`, it executes the start node, looks at its returned Action from `post()`, follows the transition, and continues until there's no next node.
### Example: Simple Sequence
Here's a minimal flow of two nodes in a chain:
```python
node_a >> node_b
flow = Flow(start=node_a)
flow.run(shared)
```
- When you run the flow, it executes `node_a`.
- Suppose `node_a.post()` returns `"default"`.
- The flow then sees `"default"` Action is linked to `node_b` and runs `node_b`.
- `node_b.post()` returns `"default"` but we didn't define `node_b >> something_else`. So the flow ends there.
### Example: Branching & Looping
Here's a simple expense approval flow that demonstrates branching and looping. The `ReviewExpense` node can return three possible Actions:
- `"approved"`: expense is approved, move to payment processing
- `"needs_revision"`: expense needs changes, send back for revision
- `"rejected"`: expense is denied, finish the process
We can wire them like this:
```python
# Define the flow connections
review - "approved" >> payment # If approved, process payment
review - "needs_revision" >> revise # If needs changes, go to revision
review - "rejected" >> finish # If rejected, finish the process
revise >> review # After revision, go back for another review
payment >> finish # After payment, finish the process
flow = Flow(start=review)
```
Let's see how it flows:
1. If `review.post()` returns `"approved"`, the expense moves to the `payment` node
2. If `review.post()` returns `"needs_revision"`, it goes to the `revise` node, which then loops back to `review`
3. If `review.post()` returns `"rejected"`, it moves to the `finish` node and stops
```mermaid
flowchart TD
review[Review Expense] -->|approved| payment[Process Payment]
review -->|needs_revision| revise[Revise Report]
review -->|rejected| finish[Finish Process]
revise --> review
payment --> finish
```
### Running Individual Nodes vs. Running a Flow
- `node.run(shared)`: Just runs that node alone (calls `prep->exec->post()`), returns an Action.
- `flow.run(shared)`: Executes from the start node, follows Actions to the next node, and so on until the flow can't continue.
> `node.run(shared)` **does not** proceed to the successor.
> This is mainly for debugging or testing a single node.
>
> Always use `flow.run(...)` in production to ensure the full pipeline runs correctly.
{: .warning }
## 3. Nested Flows
A **Flow** can act like a Node, which enables powerful composition patterns. This means you can:
1. Use a Flow as a Node within another Flow's transitions.
2. Combine multiple smaller Flows into a larger Flow for reuse.
3. Node `params` will be a merging of **all** parents' `params`.
### Flow's Node Methods
A **Flow** is also a **Node**, so it will run `prep()` and `post()`. However:
- It **won't** run `exec()`, as its main logic is to orchestrate its nodes.
- `post()` always receives `None` for `exec_res` and should instead get the flow execution results from the shared store.
### Basic Flow Nesting
Here's how to connect a flow to another node:
```python
# Create a sub-flow
node_a >> node_b
subflow = Flow(start=node_a)
# Connect it to another node
subflow >> node_c
# Create the parent flow
parent_flow = Flow(start=subflow)
```
When `parent_flow.run()` executes:
1. It starts `subflow`
2. `subflow` runs through its nodes (`node_a->node_b`)
3. After `subflow` completes, execution continues to `node_c`
### Example: Order Processing Pipeline
Here's a practical example that breaks down order processing into nested flows:
```python
# Payment processing sub-flow
validate_payment >> process_payment >> payment_confirmation
payment_flow = Flow(start=validate_payment)
# Inventory sub-flow
check_stock >> reserve_items >> update_inventory
inventory_flow = Flow(start=check_stock)
# Shipping sub-flow
create_label >> assign_carrier >> schedule_pickup
shipping_flow = Flow(start=create_label)
# Connect the flows into a main order pipeline
payment_flow >> inventory_flow >> shipping_flow
# Create the master flow
order_pipeline = Flow(start=payment_flow)
# Run the entire pipeline
order_pipeline.run(shared_data)
```
This creates a clean separation of concerns while maintaining a clear execution path:
```mermaid
flowchart LR
subgraph order_pipeline[Order Pipeline]
subgraph paymentFlow["Payment Flow"]
A[Validate Payment] --> B[Process Payment] --> C[Payment Confirmation]
end
subgraph inventoryFlow["Inventory Flow"]
D[Check Stock] --> E[Reserve Items] --> F[Update Inventory]
end
subgraph shippingFlow["Shipping Flow"]
G[Create Label] --> H[Assign Carrier] --> I[Schedule Pickup]
end
paymentFlow --> inventoryFlow
inventoryFlow --> shippingFlow
end
```
================================================
File: docs/core_abstraction/node.md
================================================
---
layout: default
title: "Node"
parent: "Core Abstraction"
nav_order: 1
---
# Node
A **Node** is the smallest building block. Each Node has 3 steps `prep->exec->post`:
<div align="center">
<img src="https://github.com/the-pocket/PocketFlow/raw/main/assets/node.png?raw=true" width="400"/>
</div>
1. `prep(shared)`
- **Read and preprocess data** from `shared` store.
- Examples: *query DB, read files, or serialize data into a string*.
- Return `prep_res`, which is used by `exec()` and `post()`.
2. `exec(prep_res)`
- **Execute compute logic**, with optional retries and error handling (below).
- Examples: *(mostly) LLM calls, remote APIs, tool use*.
- ⚠️ This shall be only for compute and **NOT** access `shared`.
- ⚠️ If retries enabled, ensure idempotent implementation.
- Return `exec_res`, which is passed to `post()`.
3. `post(shared, prep_res, exec_res)`
- **Postprocess and write data** back to `shared`.
- Examples: *update DB, change states, log results*.
- **Decide the next action** by returning a *string* (`action = "default"` if *None*).
> **Why 3 steps?** To enforce the principle of *separation of concerns*. The data storage and data processing are operated separately.
>
> All steps are *optional*. E.g., you can only implement `prep` and `post` if you just need to process data.
{: .note }
### Fault Tolerance & Retries
You can **retry** `exec()` if it raises an exception via two parameters when define the Node:
- `max_retries` (int): Max times to run `exec()`. The default is `1` (**no** retry).
- `wait` (int): The time to wait (in **seconds**) before next retry. By default, `wait=0` (no waiting).
`wait` is helpful when you encounter rate-limits or quota errors from your LLM provider and need to back off.
```python
my_node = SummarizeFile(max_retries=3, wait=10)
```
When an exception occurs in `exec()`, the Node automatically retries until:
- It either succeeds, or
- The Node has retried `max_retries - 1` times already and fails on the last attempt.
You can get the current retry times (0-based) from `self.cur_retry`.
```python
class RetryNode(Node):
def exec(self, prep_res):
print(f"Retry {self.cur_retry} times")
raise Exception("Failed")
```
### Graceful Fallback
To **gracefully handle** the exception (after all retries) rather than raising it, override:
```python
def exec_fallback(self, prep_res, exc):
raise exc
```
By default, it just re-raises exception. But you can return a fallback result instead, which becomes the `exec_res` passed to `post()`.
### Example: Summarize file
```python
class SummarizeFile(Node):
def prep(self, shared):
return shared["data"]
def exec(self, prep_res):
if not prep_res:
return "Empty file content"
prompt = f"Summarize this text in 10 words: {prep_res}"
summary = call_llm(prompt) # might fail
return summary
def exec_fallback(self, prep_res, exc):
# Provide a simple fallback instead of crashing
return "There was an error processing your request."
def post(self, shared, prep_res, exec_res):
shared["summary"] = exec_res
# Return "default" by not returning
summarize_node = SummarizeFile(max_retries=3)
# node.run() calls prep->exec->post
# If exec() fails, it retries up to 3 times before calling exec_fallback()
action_result = summarize_node.run(shared)
print("Action returned:", action_result) # "default"
print("Summary stored:", shared["summary"])
```
================================================
File: docs/core_abstraction/parallel.md
================================================
---
layout: default
title: "(Advanced) Parallel"
parent: "Core Abstraction"
nav_order: 6
---
# (Advanced) Parallel
**Parallel** Nodes and Flows let you run multiple **Async** Nodes and Flows **concurrently**—for example, summarizing multiple texts at once. This can improve performance by overlapping I/O and compute.
> Because of Python’s GIL, parallel nodes and flows can’t truly parallelize CPU-bound tasks (e.g., heavy numerical computations). However, they excel at overlapping I/O-bound work—like LLM calls, database queries, API requests, or file I/O.
{: .warning }
> - **Ensure Tasks Are Independent**: If each item depends on the output of a previous item, **do not** parallelize.
>
> - **Beware of Rate Limits**: Parallel calls can **quickly** trigger rate limits on LLM services. You may need a **throttling** mechanism (e.g., semaphores or sleep intervals).
>
> - **Consider Single-Node Batch APIs**: Some LLMs offer a **batch inference** API where you can send multiple prompts in a single call. This is more complex to implement but can be more efficient than launching many parallel requests and mitigates rate limits.
{: .best-practice }
## AsyncParallelBatchNode
Like **AsyncBatchNode**, but run `exec_async()` in **parallel**:
```python
class ParallelSummaries(AsyncParallelBatchNode):
async def prep_async(self, shared):
# e.g., multiple texts
return shared["texts"]
async def exec_async(self, text):
prompt = f"Summarize: {text}"
return await call_llm_async(prompt)
async def post_async(self, shared, prep_res, exec_res_list):
shared["summary"] = "\n\n".join(exec_res_list)
return "default"
node = ParallelSummaries()
flow = AsyncFlow(start=node)
```
## AsyncParallelBatchFlow
Parallel version of **BatchFlow**. Each iteration of the sub-flow runs **concurrently** using different parameters:
```python
class SummarizeMultipleFiles(AsyncParallelBatchFlow):
async def prep_async(self, shared):
return [{"filename": f} for f in shared["files"]]
sub_flow = AsyncFlow(start=LoadAndSummarizeFile())
parallel_flow = SummarizeMultipleFiles(start=sub_flow)
await parallel_flow.run_async(shared)
```
================================================
File: docs/design_pattern/agent.md
================================================
---
layout: default
title: "Agent"
parent: "Design Pattern"
nav_order: 1
---
# Agent
Agent is a powerful design pattern in which nodes can take dynamic actions based on the context.
<div align="center">
<img src="https://github.com/the-pocket/PocketFlow/raw/main/assets/agent.png?raw=true" width="350"/>
</div>
## Implement Agent with Graph
1. **Context and Action:** Implement nodes that supply context and perform actions.
2. **Branching:** Use branching to connect each action node to an agent node. Use action to allow the agent to direct the [flow](../core_abstraction/flow.md) between nodes—and potentially loop back for multi-step.
3. **Agent Node:** Provide a prompt to decide action—for example:
```python
f"""
### CONTEXT
Task: {task_description}
Previous Actions: {previous_actions}
Current State: {current_state}
### ACTION SPACE
[1] search
Description: Use web search to get results
Parameters:
- query (str): What to search for
[2] answer
Description: Conclude based on the results
Parameters:
- result (str): Final answer to provide
### NEXT ACTION
Decide the next action based on the current context and available action space.
Return your response in the following format:
```yaml
thinking: |
<your step-by-step reasoning process>
action: <action_name>
parameters:
<parameter_name>: <parameter_value>
```"""
```
The core of building **high-performance** and **reliable** agents boils down to:
1. **Context Management:** Provide *relevant, minimal context.* For example, rather than including an entire chat history, retrieve the most relevant via [RAG](./rag.md). Even with larger context windows, LLMs still fall victim to ["lost in the middle"](https://arxiv.org/abs/2307.03172), overlooking mid-prompt content.