-
-
Notifications
You must be signed in to change notification settings - Fork 46.5k
/
Copy pathexponential_search.py
48 lines (36 loc) · 1.14 KB
/
exponential_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
Exponential Search Algorithm
Time Complexity:
- Best Case: O(1)
- Average/Worst Case: O(log i), where i is the index of the first element >= target
Use Case:
Efficient for searching in sorted arrays where the target is near the beginning.
Author: Michael Alexander Montoya
"""
def exponential_search(arr, target):
if len(arr) == 0:
return -1
if arr[0] == target:
return 0
# Find range for binary search by repeated doubling
index = 1
while index < len(arr) and arr[index] <= target:
index *= 2
# Perform binary search in the found range
return binary_search(arr, target, index // 2, min(index, len(arr) - 1))
def binary_search(arr, target, left, right):
while left <= right:
mid = (left + right) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1
return -1
# Example usage:
if __name__ == "__main__":
array = [1, 3, 5, 7, 9, 13, 17, 21, 24, 27, 30]
target = 13
result = exponential_search(array, target)
print(f"Target {target} found at index: {result}")