-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbrain.ado
1003 lines (989 loc) · 27.4 KB
/
brain.ado
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
cap program drop brain
program define brain, rclass
version 10.0
local cmd = word(subinstr(`"`1'"',","," ",1),1)
local cmdlen = length(`"`cmd'"')
if strpos(lower("`c(os)'"),"mac") {
local os = "mac"
}
else if strpos(lower("`c(os)'"),"win") {
local os = "win"
}
else {
local os = "unix"
}
local plugin = ""
cap plugin call brainiac // check plugin
if "`plugin'" == "" {
if "`os'" == "win" {
cap program brainiac, plugin using("brainwin.plugin")
if _rc != 0 { // fallback in case of non-native compiler
qui findfile "brainwin.plugin"
local brainpath = substr(r(fn),1,length(r(fn))-15)
local workpath = "`c(pwd)'"
qui cd "`brainpath'" // required to load dlls
cap program brainiac, plugin using("`brainpath'brainwin.plugin")
if _rc != 0 {
qui cd "`workpath'"
di as error "non-natively compiled windows plugin detected, e.g. cygwin/mingw"
di as error "unable to load " as result "brainwin.plugin" as error " from directory " as result "`brainpath'"
di as error "perhaps additional dlls are required in that directory, e.g.:" _newline as result "brain`os'.plugin" _newline "libgomp-1.dll" _newline "libwinpthread-1.dll" _newline "libgcc_s_seh-1.dll"
error 999
}
qui cd "`workpath'"
}
}
else {
program brainiac, plugin using("brain`os'.plugin")
}
plugin call brainiac
}
local version = word("`plugin'",1)
local procs = word("`plugin'",2)
if `cmdlen' == 0 {
di as txt "brain`os'.plugin " as result "`version'"
di as text "brain uses " as result "`procs'" as txt " processors"
return local plugin = "brain`os'.plugin"
return local version = "`version'"
return scalar mp = `procs'
di as text "brain matrices:"
braindir
braincheck easy
exit
}
if `cmdlen' < 2 {
di as error "invalid brain command"
error 999
}
if `"`cmd'"' == substr("fit",1,`cmdlen') {
syntax [anything(id=command)] [if] [in], [SP] [TH(real 0.5)]
token `"`anything'"'
macro shift
local mp = cond("`sp'" == "", "MP", "SP")
tempvar touse pred
local wc = wordcount(`"`*'"')
if `wc' > 2 {
di as error "too many variables"
error 999
}
if `wc' < 1 {
di as error "specify at least the original variable"
error 999
}
forvalues i = 1/`wc' {
confirm var ``i''
}
marksample touse
local true = `"`1'"'
markout `touse' `true'
if `wc' == 1 {
if colsof(output) != 1 {
di as error "predicted variable can only be omitted for univariate output"
error 999
}
local inames : colnames input
markout `touse' `inames'
qui gen double `pred' = .
plugin call brainiac `inames' `pred' if `touse', think`mp'
}
else {
local pred = `"`2'"'
}
markout `touse' `pred'
qui sum `true' if `touse'
if r(N) == 0 {
di as error "no observations"
error 999
}
if r(min) < 0 | r(max) > 1 {
di as error "invalid original variable"
error 999
}
qui sum `pred' if `touse'
if r(N) == 0 {
di as error "no observations"
error 999
}
if r(min) < 0 | r(max) > 1 {
di as error "invalid predicted variable"
error 999
}
qui count if `touse'
local N = r(N)
qui count if `touse' & `pred' >= `th' & `true' >= `th'
local TP = r(N)
qui count if `touse' & `pred' >= `th' & `true' < `th'
local FP = r(N)
qui count if `touse' & `pred' < `th' & `true' < `th'
local TN = r(N)
qui count if `touse' & `pred' < `th' & `true' >= `th'
local FN = r(N)
local Trecall = `TP'/(`TP'+`FN') * 100
local Frecall = `TN'/(`TN'+`FP') * 100
local Tprecision = `TP'/(`TP'+`FP') * 100
local Fprecision = `TN'/(`TN'+`FN') * 100
local accuracy = (`TP'+`TN')/(`TP'+`TN'+`FP'+`FN') * 100
local fit = string(`accuracy',"%6.2f")
local len = 7-length("`fit'")
di as text "{hline 11}{c TT}{hline 26}
di as text "Acc " as result "`fit'" as text "{dup `len': }{c |} True False"
di as text "{hline 11}{c +}{hline 26}
di as text "Positive {c |} " as result %12.0f `TP' " " %12.0f `FP'
di as text "Negative {c |} " as result %12.0f `TN' " " %12.0f `FN'
di as text "{hline 11}{c +}{hline 26}
di as text "Recall {c |} " as result %12.2fc `Trecall' " " %12.2fc `Frecall'
di as text "Precision {c |} " as result %12.2fc `Tprecision' " " %12.2fc `Fprecision'
di as text "{hline 11}{c BT}{hline 26}
return scalar threshold = `th'
return scalar accuracy = `accuracy'
return scalar Fprecision = `Fprecision'
return scalar Tprecision = `Tprecision'
return scalar Frecall = `Frecall'
return scalar Trecall = `Trecall'
return scalar FN = `FN'
return scalar TN = `TN'
return scalar FP = `FP'
return scalar TP = `TP'
return scalar N = `N'
exit
}
if `"`cmd'"' == substr("define",1,`cmdlen') {
syntax anything(id=command) [if] [in], INput(varlist) Output(varlist) [Hidden(numlist)] [Spread(real 0.25)] [Raw] [Nonorm]
token `"`anything'"'
macro shift
if `"`1'"' != "" {
error 198
}
local raw = "`raw'" != ""
local nonorm = "`nonorm'" != ""
if `raw' & `nonorm' {
di as error "option raw and nonorm are mutually exclusive"
error 999
}
tempvar touse
local inp = wordcount(`"`input'"')
local out = wordcount(`"`output'"')
local hidden = `"`inp' `hidden' `out'"'
token `"`hidden'"'
local layer = ""
local i = 1
while "``i''" != "" {
cap confirm integer number ``i''
if _rc > 0 {
di as error "invalid layer number"
error 999
}
if ``i'' <= 0 {
di as error "invalid layer definition"
error 999
}
local layer = `"`layer',``i''"'
local i = `i' + 1
}
local layer = "("+substr(`"`layer'"',2,.)+")"
matrix layer = `layer'
if wordcount(`"`input'"') != layer[1,1] {
di as error "invalid number of input variables, " layer[1,1] " required"
matrix drop layer
error 999
}
if wordcount(`"`output'"') != layer[1,colsof(layer)] {
di as error "invalid number of output variables, " layer[1,colsof(layer)] " required"
matrix drop layer
error 999
}
marksample touse
local cols = layer[1,1]
if `nonorm' {
matrix input = J(1, `cols', 0)\J(1, `cols', 1)\J(2, `cols', 0)
}
else {
local v = ""
mata: _brainnorm("input", "`input'", "`touse'", `raw')
forvalue i = 1/`cols' {
if `raw' & (input[1,`i'] != 0 | input[2,`i'] != 1) | `raw' == 0 & (input[1,`i'] == . | input[2,`i'] == .) {
local v = word("`input'", `i')
if `raw' {
di as error "raw input variable `v' is violating the [0,1] range"
}
else {
di as error "input variable `v' is undefined"
}
}
}
if "`v'" != "" {
matrix drop layer
matrix drop input
error 999
}
}
matrix colnames input = `input'
matrix rownames input = min norm value signal
local cols = layer[1,colsof(layer)]
if `nonorm' {
matrix output = J(1, `cols', 0)\J(1, `cols', 1)\J(2, `cols', 0)
}
else {
local v = ""
mata: _brainnorm("output", "`output'", "`touse'", `raw')
forvalue i = 1/`cols' {
if `raw' & (output[1,`i'] != 0 | output[2,`i'] != 1) | `raw' == 0 & (output[1,`i'] == . | output[2,`i'] == .) {
local v = word("`output'", `i')
if `raw' {
di as error "raw output variable `v' is violating the [0,1] range"
}
else {
di as error "output variable `v' is undefined"
}
}
}
if "`v'" != "" {
matrix drop layer
matrix drop input
matrix drop output
error 999
}
}
matrix colnames output = `output'
matrix rownames output = min norm value signal
braincreate `spread'
di as text "defined matrices:"
braindir
exit
}
if `"`cmd'"' == substr("reset",1,`cmdlen') {
syntax anything(id=command) [if] [in], [Spread(real 0.25)]
token `"`anything'"'
macro shift
if `"`1'"' != "" {
error 198
}
braincheck
braincreate `spread'
exit
}
if `"`cmd'"' == substr("norm",1,`cmdlen') {
syntax anything(id=command) [if] [in], [Raw]
token `"`anything'"'
macro shift
if `"`1'"' == "" {
error 198
}
local raw = "`raw'" != ""
local noskip = "`skip'" == ""
braincheck
tempvar touse
tempname chk output input update
scalar `output' = ""
scalar `input' = ""
foreach v of varlist `*' {
cap matrix `chk' = input[1,"`v'"]
if _rc != 0 {
cap matrix `chk' = output[1,"`v'"]
if _rc == 0 {
scalar `output' = `output' + " `v'"
}
}
else {
scalar `input' = `input' + " `v'"
}
}
local output = trim(scalar(`output'))
local input = trim(scalar(`input'))
if "`output'" == "" & "`input'" == "" {
di as error "varlist does not match any input or output variables"
error 999
}
marksample touse
if "`input'" != "" {
mata: _brainnorm("`update'", "`input'", "`touse'", `raw')
local cols = colsof(`update')
token `"`input'"'
local v = ""
forvalue i = 1/`cols' {
if `raw' & (`update'[1,`i'] != 0 | `update'[2,`i'] != 1) | `raw' == 0 & (`update'[1,`i'] == . | `update'[2,`i'] == .) {
local v = `"``i''"'
if `raw' {
di as error "raw input variable `v' is violating the [0,1] range"
}
else {
di as error "input variable `v' is undefined"
}
}
}
if "`v'" != "" {
di as error "original input layer restored"
error 999
}
matrix colnames `update' = `input'
local names : colnames input
token `"`names'"'
local cols = colsof(input)
forvalue i = 1/`cols' {
local v = "``i''"
cap matrix `chk' = `update'[1..2,"`v'"]
if _rc == 0 {
matrix input[1,`i'] = `chk'[1,1]
matrix input[2,`i'] = `chk'[2,1]
}
}
}
if "`output'" != "" {
mata: _brainnorm("`update'", "`output'", "`touse'", `raw')
local cols = colsof(`update')
token `"`output'"'
local v = ""
forvalue i = 1/`cols' {
if `raw' & (`update'[1,`i'] != 0 | `update'[2,`i'] != 1) | `raw' == 0 & (`update'[1,`i'] == . | `update'[2,`i'] == .) {
local v = `"``i''"'
if `raw' {
di as error "raw output variable `v' is violating the [0,1] range"
}
else {
di as error "output variable `v' is undefined"
}
}
}
if "`v'" != "" {
di as error "original output layer restored"
error 999
}
matrix colnames `update' = `output'
local names : colnames output
token `"`names'"'
local cols = colsof(output)
forvalue i = 1/`cols' {
local v = "``i''"
cap matrix `chk' = `update'[1..2,"`v'"]
if _rc == 0 {
matrix output[1,`i'] = `chk'[1,1]
matrix output[2,`i'] = `chk'[2,1]
}
}
}
exit
}
if `"`cmd'"' == substr("save",1,`cmdlen') {
syntax anything(id=command)
token `"`anything'"'
macro shift
if `"`1'"' == "" {
di as error "no file specified"
error 999
}
if `"`2'"' != "" {
error 198
}
local using = `"`1'"'
braincheck
tempname save
local layer = colsof(layer)
local size = colsof(brain)
local isize = colsof(input)
local osize = colsof(output)
local using = subinstr(trim(`"`using'"'),"\","/",.)
if regex(`"`using'?"',"\.[^/]*\?") == 0 {
local using = `"`using'.brn"'
}
qui file open `save' using `"`using'"', write binary replace
file write `save' %9s `"braindead"'
file write `save' %4bu (`layer')
forvalue i = 1/`layer' {
file write `save' %4bu (layer[1,`i'])
}
local names : colnames input
local len = length(`"`names'"')
file write `save' %4bu (`len')
file write `save' %`len's `"`names'"'
local isize = layer[1,1]
forvalue i = 1/`isize' {
file write `save' %8z (input[1,`i'])
file write `save' %8z (input[2,`i'])
}
local names : colnames output
local len = length(`"`names'"')
file write `save' %4bu (`len')
file write `save' %`len's `"`names'"'
local osize = layer[1,colsof(layer)]
forvalue i = 1/`osize' {
file write `save' %8z (output[1,`i'])
file write `save' %8z (output[2,`i'])
}
forvalue i = 1/`size' {
file write `save' %8z (brain[1,`i'])
}
file close `save'
exit
}
if `"`cmd'"' == substr("load",1,`cmdlen') {
syntax anything(id=command)
token `"`anything'"'
macro shift
if `"`1'"' == "" {
di as error "no file specified"
error 999
}
if `"`2'"' != "" {
error 198
}
local using = `"`1'"'
tempname load bin
local using = subinstr(trim(`"`using'"'),"\","/",.)
if regex(`"`using'?"',"\.[^/]*\?") == 0 {
local using = "`using'.brn"
}
file open `load' using `"`using'"', read binary
file read `load' %9s str
if `"`str'"' != "braindead" {
di as error "invalid file format"
file close `load'
error 999
}
file read `load' %4bu `bin'
local layer = `bin'
matrix layer = J(1,`layer',0)
forvalue i = 1/`layer' {
file read `load' %4bu `bin'
if r(eof) {
di as error "invalid file format"
file close `load'
error 999
}
matrix layer[1,`i'] = `bin'
}
file read `load' %4bu `bin'
local len = `bin'
file read `load' %`len's str
local layer = layer[1,1]
mata: _brainload("input", `layer', 4, 2, "`load'", "`bin'")
matrix colnames input = `str'
matrix rownames input = min norm value signal
file read `load' %4bu `bin'
local len = `bin'
file read `load' %`len's str
local layer = layer[1,colsof(layer)]
mata: _brainload("output", `layer', 4, 2, "`load'", "`bin'")
matrix colnames output = `str'
matrix rownames output = min norm value signal
braincreate `load'
file read `load' %8z `bin' // there should be no leftovers
if r(eof) == 0 {
di as error "invalid file format"
file close `load'
error 999
}
file close `load'
di as text "loaded matrices:"
braindir
braincheck
exit
}
if `"`cmd'"' == substr("feed",1,`cmdlen') {
syntax anything(id=command), [RAW]
token `"`anything'"'
macro shift
local raw = "`raw'" != ""
tempname output
local isize = colsof(input)
local osize = colsof(output)
local ostart = colsof(neuron)-`osize'+1
local wc = wordcount(`"`*'"')
if `wc' != `isize' {
di as error "number of values does not match input neurons (`wc' <> `isize')"
error 999
}
foreach v in `*' {
cap confirm number `v'
if _rc != 0 {
di as error "invalid value: `v'"
error 999
}
}
mata: _brainfeed(`"`*'"', `raw')
plugin call brainiac, forward `raw'
matrix `output' = output[3..4,1...]
matrix list `output', noheader format(%18.9f)
return matrix output = `output'
exit
}
if `"`cmd'"' == substr("signal",1,`cmdlen') {
syntax anything(id=command), [RAW]
token `"`anything'"'
macro shift
if "`1'" != "" {
error 198
}
local raw = "`raw'" != ""
tempname signal
local isize = colsof(input)
local osize = colsof(output)
local nsize = colsof(neuron)
local ostart = `nsize'-`osize'+1
local raw = 3+`raw' // 3 = value, 4 = signal
local inames : colnames input
local onames : colnames output
matrix `signal' = J(`isize'+1, `osize', 0)
matrix colnames `signal' = `onames'
matrix rownames `signal' = `inames' flatline
matrix input[4,1] = J(1,`isize', 0)
plugin call brainiac, forward 1
matrix `signal'[`isize'+1,1] = output[`raw',1...]
forvalue i = 1/`isize' {
matrix input[4,1] = J(1,`isize', 0)
matrix input[4,`i'] = 1
plugin call brainiac, forward 1
matrix `signal'[`i',1] = output[`raw',1]-`signal'[`isize'+1,1]
}
matrix list `signal', noheader format(%18.9f)
return matrix signal = `signal'
exit
}
if `"`cmd'"' == substr("margin",1,`cmdlen') {
syntax anything(id=command) [pweight fweight aweight iweight/] [if] [in], [SP]
token `"`anything'"'
macro shift
local mp = cond("`sp'" == "", "MP", "SP")
tempname signal sn bn cn
tempvar delta touse w
local inames : colnames input
local onames : colnames output
local mnames = "`inames'"
local osize = colsof(output)
local isize = colsof(input)
local msize = `isize'
if `"`*'"' != "" {
local mnames = ""
local msize = 0
foreach v of varlist `*' {
if index(" `inames' ", " `v' ") == 0 {
di as error "invalid input variable `v'"
error 999
}
if index(" `mnames' "," `v' ") > 0 {
di as error "input variable `v' already defined"
error 999
}
local mnames = "`mnames' `v'"
local msize = `msize'+1
}
}
marksample touse
markout `touse' `inames' `onames'
brainweight `w' `touse' `exp'
scalar `sn' = ""
scalar `bn' = ""
forvalue o = 1/`osize' {
tempvar signal`o' base`o'
qui gen double `signal`o'' = .
qui gen double `base`o'' = .
scalar `sn' = `sn' + " `signal`o''"
scalar `bn' = `bn' + " `base`o''"
}
local snames = scalar(`sn')
scalar drop `sn'
local bnames = scalar(`bn')
scalar drop `bn'
qui gen double `delta' = .
mata: st_matrix("`signal'", J(`msize',`osize', 0))
matrix rownames `signal' = `mnames'
scalar `cn' = ""
forvalue o = 1/`osize' {
local oname = word("`onames'", `o')
scalar `cn' = `cn' + " `oname'"
}
local cnames = scalar(`cn')
scalar drop `cn'
matrix colnames `signal' = `cnames'
di as text "unrestricted " _continue
plugin call brainiac `inames' `bnames' if `touse', think`mp'
local ind = 0
foreach v of varlist `mnames' {
forvalue i = 1/`isize' {
local iname = word("`inames'", `i')
if "`v'" == "`iname'" {
di as result "`iname' " _continue
plugin call brainiac `inames' `snames' if `touse', think`mp' `i'
local ind = `ind' + 1
forvalue o = 1/`osize' {
local oname = word("`onames'", `o')
qui replace `delta' = `base`o''-`signal`o'' if `touse'
qui sum `delta' [aweight=`w'] if `touse'
matrix `signal'[`ind',`o'] = r(mean)
}
continue, break
}
}
}
di ""
matrix list `signal', noheader format(%18.9f)
return matrix margin = `signal'
exit
}
if `"`cmd'"' == substr("think",1,`cmdlen') {
syntax anything(id=command) [if] [in], [SP]
token `"`anything'"'
macro shift
local mp = cond("`sp'" == "", "MP", "SP")
tempvar touse
local wc = wordcount(`"`*'"')
local osize = colsof(output)
if `wc' != `osize' {
di as error "number of target variables does not match output neurons (`wc' <> `osize')"
error 999
}
foreach v in `*' {
cap drop `v'
qui gen double `v' = .
}
marksample touse
local inames : colnames input
markout `touse' `inames'
plugin call brainiac `inames' `*' if `touse', think`mp'
return scalar N = `plugin'
exit
}
if `"`cmd'"' == substr("error",1,`cmdlen') {
syntax anything(id=command) [pweight fweight aweight iweight/] [if] [in], [SP]
token `"`anything'"'
macro shift
if "`1'" != "" {
error 198
}
local mp = cond("`sp'" == "", "MP", "SP")
tempvar touse w
marksample touse
local inames : colnames input
local onames : colnames output
markout `touse' `inames' `onames'
brainweight `w' `touse' `exp'
plugin call brainiac `inames' `onames' `w' if `touse', error`mp'
local err = word("`plugin'", 1)
local N = word("`plugin'", 2)
di as text "Number of obs = " as result %12.0fc `N'
di as text "Error = " as result %12.9f `err'
return scalar N = `N'
return scalar err = `err'
exit
}
if `"`cmd'"' == substr("train",1,`cmdlen') {
syntax anything(id=command) [pweight fweight aweight iweight/] [if] [in], [ITer(integer 0)] [Eta(real 0.25)] [BAtch(integer 1)] [Report(integer 10)] [BEst] [SP] [Noshuffle]
token `"`anything'"'
macro shift
if "`1'" != "" {
error 198
}
local mp = cond("`sp'" == "", "MP", "SP")
local shuffle = "`noshuffle'" == ""
local best = "`best'" != ""
tempvar touse w
tempname bestbrain
if `eta' <= 0 {
di as error "eta has to be a number larger than zero"
error 999
}
if `iter' <= 0 {
di as error "number of iterations has to be larger than zero"
error 999
}
if `batch' < 1 {
di as error "batch size has to be larger than zero"
error 999
}
local mptrain = "`mp'"
if `batch' <= 1 {
local mptrain = "SP" // multiprocessing only works with mini-batches
}
marksample touse
local inames : colnames input
local onames : colnames output
markout `touse' `inames' `onames'
brainweight `w' `touse' `exp'
qui count if `touse'
local N = r(N)
local err = 0
local prev = .
di as text "{hline 40}"
di as text "Brain{dup 7: }Number of obs = " as result %12.0fc `N'
di as text "Train{dup 17: }eta = " as result %12.6f `eta'
di as text "{hline 10}{c TT}{hline 14}{c TT}{hline 14}"
di as text "Iteration {c |} Error {c |} Delta"
di as text "{hline 10}{c +}{hline 14}{c +}{hline 14}"
local miniter = 0
if `best' {
plugin call brainiac `inames' `onames' `w' if `touse', error`mp'
local minerr = word("`plugin'",1)
matrix `bestbrain' = brain
di as result %9.0f 0 as text " {c |} " as result %12.9f `minerr' as text " {c |} " as result %12.9f .
local prev = `minerr'
}
else {
local minerr = -1
}
local i = 0
while `i' < `iter' {
local epoch = cond(`i'+`report' <= `iter',`report',`iter'-`i')
plugin call brainiac `inames' `onames' `w' if `touse', train`mptrain' `eta' `batch' `epoch' `shuffle'
plugin call brainiac `inames' `onames' `w' if `touse', error`mp'
local err = word("`plugin'",1)
local delta = `err'-`prev'
local prev = `err'
local i = `i'+`epoch'
di as result %9.0f `i' as text " {c |} " as result %12.9f `err' as text " {c |} " as result %12.9f `delta'
if `err' < `minerr' {
matrix `bestbrain' = brain
local miniter = `i'
local minerr = `err'
}
}
if `best' & `err' >= `minerr' {
matrix brain = `bestbrain'
local delta = `minerr'-`prev'
local err = `minerr'
local iter = `miniter'
}
di as text "{hline 10}{c +}{hline 14}{c +}{hline 14}"
di as result %9.0f `iter' as text " {c |} " as result %12.9f `err' as text " {c |} " as result %12.9f `delta'
di as text "{hline 10}{c BT}{hline 14}{c BT}{hline 14}"
return scalar N = `N'
return scalar iter = `iter'
return scalar err = `err'
exit
}
di as error "invalid brain command"
error 999
end
cap program drop braindir
program define braindir
cap local rows = rowsof(input)
if _rc == 0 {
di as result " input[" `rows' "," colsof(input) "]"
}
cap local rows = rowsof(output)
if _rc == 0 {
di as result "output[" `rows' "," colsof(output) "]"
}
cap local rows = rowsof(neuron)
if _rc == 0 {
di as result "neuron[" `rows' "," colsof(neuron) "]"
}
cap local rows = rowsof(layer)
if _rc == 0 {
di as result " layer[" `rows' "," colsof(layer) "]"
}
cap local rows = rowsof(brain)
if _rc == 0 {
di as result " brain[" `rows' "," colsof(brain) "]"
}
end
cap program drop braincheck
program define braincheck
local ok = 0
foreach m in input output layer neuron brain {
cap local rows = rowsof(`m')
if _rc == 0 {
local ok = `ok'+1
}
}
if `ok' == 0 {
if "`1'" != "" {
di as text "no brain detected"
exit 0
}
di as error "no brain detected"
exit 999
}
if `ok' > 0 & `ok' < 5 {
di as error "inomplete brain detected"
exit 999
}
if rowsof(input) != 4 {
di as error "invalid input matrix"
exit 999
}
if rowsof(output) != 4 {
di as error "invalid output matrix"
exit 999
}
if rowsof(layer) != 1 {
di as error "invalid layer matrix"
exit 999
}
if rowsof(neuron) != 1 {
di as error "invalid neuron matrix"
exit 999
}
if rowsof(brain) != 1 {
di as error "invalid brain matrix"
exit 999
}
if colsof(input) != layer[1,1] {
di as error "input and layer matrices are incompatible"
exit 999
}
if colsof(output) != layer[1,colsof(layer)] {
di as error "output and layer matrices are incompatible"
exit 999
}
local size = 0
local nsize = colsof(input)
local layer = colsof(layer)
forvalue l = 2/`layer' {
local neurons = layer[1,`l']
local weights = layer[1,`l'-1]
local nsize = `nsize' + `neurons'
local size = `size' + `neurons' * (`weights'+1)
}
if colsof(neuron) != `nsize' {
di as error "neuron and layer matrices are incompatible"
exit 999
}
if colsof(brain) != `size' {
di as error "brain and layer matrices are incompatible"
exit 999
}
exit 0
end
cap program drop braincreate
program define braincreate
tempname names binary
local handle = "`1'"
local size = 0
local layer = colsof(layer)
scalar `names' = ""
forvalue l = 2/`layer' {
local p = `l'-1
local neurons = layer[1,`l']
local weights = layer[1,`p']
local size = `size' + `neurons' * (`weights'+1)
if `l' < `layer' {
local prefix = "h`p'n"
}
else {
local prefix = "o"
}
forvalue n = 1/`neurons' {
forvalue w = 1/`weights' {
scalar `names' = `names' + " `prefix'`n'w`w'"
}
scalar `names' = `names' + " `prefix'`n'b"
}
}
if "`handle'" != "" {
if real("`handle'") == . {
mata: _brainload("brain", `size', 1, 1, "`handle'", "`binary'")
}
else {
mata: _braininit(`size', `handle')
}
}
else {
mata: st_matrix("brain", J(1,`size',0))
}
local cnames = scalar(`names')
scalar `names' = ""
matrix colnames brain = `cnames'
matrix rownames brain = weight
local cnames = "in"
local layer = `layer'-2
forvalue l = 1/`layer' {
local cnames = "`cnames' hid`l'"
}
local cnames = "`cnames' out"
matrix colnames layer = `cnames'
matrix rownames layer = neurons
local layer = colsof(layer)
local cnames = ""
local size = 0
forvalue i = 1/`layer' {
local neurons = layer[1,`i']
local size = `size'+`neurons'
if `i' == 1 {
local prefix = "in"
}
else if `i' == `layer' {
local prefix = "out"
}
else {
local j = `i'-1
local prefix = "h`j'n"
}
forvalue j = 1/`neurons' {
scalar `names' = `names' + " `prefix'`j'"
}
}
local cnames = scalar(`names')
scalar drop `names'
mata: st_matrix("neuron", J(1,`size',0))
matrix colnames neuron = `cnames'
matrix rownames neuron = signal
end
cap program drop brainweight
program define brainweight
local w = "`1'"
local touse = "`2'"
local exp = "`3'"
if `"`exp'"' == "" {
qui gen double `w' = 1
}
else {
qui gen `w' = `exp' if `touse'
qui sum `w'
if r(min) < 0 {
di as error "negative weights encountered"
error 999
}
qui replace `w' = `w'/r(max)
}
end
mata:
void _brainload(string scalar name, real scalar cols, real scalar rows, real scalar userows, string scalar handle, string scalar bin)
{ real matrix brain
real scalar i, j, val
brain = J(rows, cols, 0)
for (i = 1; i <= cols; i++)
{ for (j = 1; j <= userows; j++)
{ stata("file read "+handle+" %8z "+bin)
brain[j,i] = st_numscalar(bin)
}
}
st_matrix(name, brain)
}
void _braininit(real scalar size, real scalar spread)
{ real matrix brain
real scalar range
spread = abs(spread)
range = spread*2
brain = runiform(1, size) :* range :- spread
st_matrix("brain", brain)
}
void _brainnorm(string scalar name, string scalar vars, string scalar touse, real scalar raw)
{ real matrix N, D
real rowvector min, max
real scalar cols
cols = cols(tokens(vars))
st_view(D=., ., vars, touse)
N = J(4,cols,0)
min = colmin(D)
max = colmax(D)
if (raw > 0)
{ N[1,.] = min :< 0
N[2,.] = max :<= 1
}
else {
N[1,.] = min
N[2,.] = 1 :/ (max :- min)
}
st_matrix(name, N)
}
void _brainfeed(string scalar values, real scalar raw)
{ real matrix I
I = st_matrix("input")
if (raw > 0)
{ I[4,.] = strtoreal(tokens(values))
}
else
{ I[3,.] = strtoreal(tokens(values))
}
st_matrix("input", I)