-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathClustering.scala
298 lines (240 loc) · 8.86 KB
/
Clustering.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*
* Copyright 2015 Matteo Ceccarello
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
package it.unipd.dei.graphx.diameter
import org.apache.spark.graphx.{Graph, TripletFields, VertexId}
import org.apache.spark.util.LongAccumulator
import org.slf4j.LoggerFactory
import scala.annotation.tailrec
import scala.util.Random
/**
* The clustering algorithm used to compute the diameter approximation.
*/
private[diameter]
object Clustering {
private val log = LoggerFactory.getLogger(this.getClass)
def run[VD](graph: Graph[VD, Distance], target: Long, delta: Distance = 1.0)
: Graph[ClusteringInfo, Distance] = {
val maxIterations = math.ceil(math.log(graph.ops.numVertices / target) / math.log(2))
val batchDim = target / maxIterations
log.info(s"Start clustering (iterations=$maxIterations, batch=$batchDim)")
val clustered = cluster(init(graph), target, delta, batchDim)
clustered
}
private def init[VD](graph: Graph[VD, Distance]): Graph[ClusteringInfo, Distance] =
graph.mapVertices({ case _ => ClusteringInfo() }).groupEdges(math.min)
@tailrec
private def cluster(
graph: Graph[ClusteringInfo, Distance],
target: Long,
delta: Distance,
batchDim: Double)
: Graph[ClusteringInfo, Distance] = {
log.info("Start clustering a fraction of the graph")
val quotientSize = graph.vertices.filter({ case (_, v) => v.isQuotient }).count()
val numUncovered = graph.vertices.filter({ case (_, v) => !v.covered }).count()
if (quotientSize < target) {
return selectCenters(graph, 1.0)
}
// Add the next batch of centers
val centerProb = batchDim / numUncovered
val wCenters = selectCenters(graph, centerProb)
val (updated, newDelta) = phase(wCenters, math.max(numUncovered / 2, target), delta)
// Reset the nodes
val reset = resetGraph(updated)
cluster(reset, target, newDelta, batchDim)
}
private def resetGraph(updated: Graph[ClusteringInfo, Distance])
: Graph[ClusteringInfo, Distance] = {
updated.mapVertices { case (id, v) =>
if (!v.covered) {
ClusteringInfo()
} else {
v.copy(offsetDistance = v.distance, phaseDistance = 0, updated = true)
}
}
}
private def selectCenters(graph: Graph[ClusteringInfo, Distance], centerProb: Double) = {
graph.mapVertices { case (id, v) =>
if (!v.covered && Random.nextDouble() <= centerProb) {
ClusteringInfo.makeCenter(id, v)
} else {
v
}
}
}
@tailrec
private def phase(
graph: Graph[ClusteringInfo, Distance],
phaseTarget: Long,
delta: Distance)
: (Graph[ClusteringInfo, Distance], Distance) = {
tentative(graph, phaseTarget, delta) match {
case Right(g) => (g, delta)
case Left(g) =>
val activated = g.mapVertices { case (_, v) =>
if (v.covered) {
v.copy(updated = true)
} else {
v
}
}
phase(activated, phaseTarget, 2 * delta)
}
}
private def tentative(
graph: Graph[ClusteringInfo, Distance],
phaseTarget: Long,
delta: Distance)
: Either[Graph[ClusteringInfo, Distance], Graph[ClusteringInfo, Distance]] = {
log.info(s"Doing a tentative with delta=$delta and target $phaseTarget")
val updatedGraph = deltaStep(graph, delta, phaseTarget)
val quotientSize = updatedGraph.vertices.filter({ case (_, v) => v.isQuotient }).count()
if (quotientSize <= phaseTarget) {
Right(updatedGraph)
} else {
Left(updatedGraph)
}
}
/*
* A delta step can exit in one of two states:
*
* - We are below the target size
* - The last relaxation did not update any vertex
*
* In the first case we can go on with the clustering, whereas the second scenario can
* arise in two different contexts:
*
* - each cluster has reached all the nodes it could, i.e. uncovered nodes
* are in a different connected component
* - the selected delta do not allow to cover half the graph
*
* To detect the first case, one should look at the number of edges that can lead from
* nodes inside a cluster to uncovered nodes.
*
*/
@tailrec
private def deltaStep(
graph: Graph[ClusteringInfo, Distance],
delta: Distance,
phaseTarget: Long)
: Graph[ClusteringInfo, Distance] = {
val start = System.currentTimeMillis()
val updatedAcc = graph.edges.sparkContext.longAccumulator
val quotientAcc = graph.edges.sparkContext.longAccumulator
val updated = relaxEdges(graph, delta, updatedAcc, quotientAcc).persist()
updated.numVertices
val updatedCnt = updatedAcc.value
val quotientSize = quotientAcc.value
val end = System.currentTimeMillis()
log.info(s"Delta step: ${end - start}ms elapsed ")
if (updatedCnt == 0 || quotientSize <= phaseTarget) {
updated
} else {
deltaStep(updated, delta, phaseTarget)
}
}
private def relaxEdges(
graph: Graph[ClusteringInfo, Distance],
delta: Distance,
updatedAcc: LongAccumulator,
quotientAcc: LongAccumulator)
: Graph[ClusteringInfo, Distance] = {
val messages = graph
.subgraph(epred = { ctx => ctx.attr <= delta })
.aggregateMessages[ClusteringMessage](
ctx => {
if (ctx.srcAttr.updated && ctx.srcAttr.phaseDistance < delta) {
ctx.sendToDst(ClusteringMessage(ctx.srcAttr, ctx.attr))
}
if (ctx.dstAttr.updated && ctx.dstAttr.phaseDistance < delta) {
ctx.sendToSrc(ClusteringMessage(ctx.dstAttr, ctx.attr))
}
},
ClusteringMessage.min,
TripletFields.All
)
graph.outerJoinVertices(messages) {
case (id, v, Some(msg)) if !v.covered || (msg.distance < v.distance && v.isUnstable) =>
updatedAcc add 1
if (v.isQuotient) quotientAcc add 1
v.updateWith(msg, delta)
case (_, v, _) if v.phaseDistance < delta =>
if (v.isQuotient) quotientAcc add 1
v.copy(updated = false)
case (_, v, _) =>
if (v.isQuotient) quotientAcc add 1
v
}
}
}
private[diameter]
case class ClusteringMessage(
center: VertexId,
phaseDistance: Distance,
offsetDistance: Distance) {
def distance: Distance = phaseDistance + offsetDistance
}
private[diameter]
object ClusteringMessage {
def apply(v: ClusteringInfo, edgeWeight: Distance): ClusteringMessage =
new ClusteringMessage(v.center, edgeWeight + v.phaseDistance, v.offsetDistance)
def min(a: ClusteringMessage, b: ClusteringMessage): ClusteringMessage =
if (a.distance < b.distance) a
else b
}
/**
* Contains various information about the role of the vertex in the clustering.
*/
private[diameter]
case class ClusteringInfo(
center: VertexId,
phaseDistance: Distance,
offsetDistance: Distance,
updated: Boolean,
covered: Boolean) {
/**
* The distance from the center. To get the center ID, use `center`.
* @return the distance from the cluster's center.
*/
def distance: Distance = phaseDistance + offsetDistance
/**
* `true` if the node is itself a center
* @return true if the node is itself a center.
*/
def isCenter: Boolean = distance == 0.0
def isQuotient: Boolean = !covered || isCenter
def isUnstable: Boolean = offsetDistance == 0.0 && !isCenter
def updateWith(message: ClusteringMessage, delta: Distance): ClusteringInfo =
this.copy(
center = message.center,
phaseDistance = message.phaseDistance,
offsetDistance = message.offsetDistance,
updated = true,
covered = covered || message.phaseDistance < delta)
}
private[diameter]
object ClusteringInfo {
def apply(): ClusteringInfo = new ClusteringInfo(
center = -1L,
phaseDistance = Infinity,
offsetDistance = 0.0,
updated = false,
covered = false
)
def makeCenter(id: VertexId, v: ClusteringInfo): ClusteringInfo =
v.copy(center = id, phaseDistance = 0.0, updated = true, covered = true)
}