-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpygpu.py
659 lines (569 loc) · 22.5 KB
/
pygpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
import pyopencl as cl
import pyopencl.cltypes
import numpy as np
import copy
from string import digits
import time
from threading import Thread
class GPU():
def __init__(self, Platform_id = 0, Device_id = 0):
self._cl_basenames = ['uchar', 'char', 'ushort', 'short', \
'uint', 'int', 'ulong', 'long', \
'half', 'float', 'double']
self._np_basenames = ['np.uint8', 'np.int8', 'np.uint16', 'np.int16', \
'np.uint32', 'np.int32', 'np.uint64', 'np.int64', \
'np.float16', 'np.float32', 'np.float64']
if isinstance(Platform_id, str):
platforms = cl.get_platforms()
for i in range(len(platforms)):
if Platform_id.lower() in cl.get_platforms()[i].get_info(cl.platform_info.NAME).lower():
Platform_id = i
break
if isinstance(Platform_id, str):
Platform_id = 0
# PyOpenCL variables
self._platform = cl.get_platforms()[Platform_id]
self._device = self._platform.get_devices(cl.device_type.GPU)[Device_id]
self._context = cl.Context([self._device])
self._queue = cl.CommandQueue(self._context, self._device)
self._program = None
self._kernel = None
self._worksize = None
# some flags
self._program_settle = False
self._return_settle = False
self._args_settle = False
self._is_three = False
self._is_called = False
self._is_image = False
# arguments related
self._fname = ''
self._cl_typenames = []
self._default_args = []
self._default_args_origine = []
self._real_args = []
# single times process related
self._dest_buffer = None
# batch process related
self._n_missions = 0
self._varying_args = []
self._mission_global_args = []
self._mission_finished = False
self._mission_global_buffers = []
# time record
self._host2device_time = 0
self._device2host_time = 0
self._calculate_time = 0
def set_program(self, file_name, function_name):
self._clear_program()
self._fname = function_name
self._get_cl_typenames_in_kernel(file_name, function_name)
self._program = cl.Program(self._context, open(file_name).read()).build()
self._kernel = cl.Kernel(self._program, function_name)
self._mission_global_buffers = [None] * len(self._varying_args)
self._mission_global_args = [None] * len(self._varying_args)
for i in range(len(self._mission_global_args)):
self._mission_global_args[i] = []
self._program_settle = True
def set_return(self, arg):
if not self._program_settle:
print("Error in GPU::set_return(self, arg):")
print("Please set_program before set_return!")
exit(-1)
self._clear_return()
if isinstance(arg, np.ndarray) and arg.dtype == 'uint8':
self._is_image = True
count = self._get_number(self._cl_typenames[0])
arg = np.array(arg, dtype=eval(self._dtype(self._cl_typenames[0])))
self._worksize = (int(arg.size/count),)
if count == 3 and len(arg.shape) == 3 and arg.shape[2] == 3:
arg = np.insert(arg, 3, values=0, axis=2)
self._is_three = True
self._dest_buffer = self._write_only_buffer(arg.nbytes)
self._default_args = []
self._default_args.append(self._dest_buffer)
self._default_args_origine.append(arg)
self._kernel.set_arg(0, self._dest_buffer)
self._return_settle = True
self._args_settle = False
def set_args(self, *args):
if not self._return_settle:
print("Error in GPU::set_args(self, *args):")
print("Please setReturn before setArgs!")
exit(-1)
if len(args) != len(self._cl_typenames)-1:
print("Error in GPU::set_args(self, *args):")
print("need", len(self._cl_typenames)-1, "arguments, but you passed", len(args))
exit(-1)
self._clear_args()
for i, host_arg in enumerate(args):
device_arg = self._type_transform(host_arg, self._cl_typenames[i+1])
self._default_args.append(device_arg)
self._kernel.set_arg(i+1, device_arg)
self._real_args = copy.copy(self._default_args)
self._args_settle = True
def add_mission(self, *args):
if not self._args_settle:
self.set_args(*args)
if len(args) != len(self._varying_args)-1:
print("Error in GPU::add_mission(self, *args):")
print(len(self._varying_args)-1, "varied arguments must be passed!")
exit(-1)
self._host2device_time = 0
self._calculate_time = 0
self._device2host_time = 0
return_arg = self._default_args_origine[0]
self._mission_global_args[0].append(np.zeros_like(return_arg, dtype=return_arg.dtype))
for i, host_arg in enumerate(args):
self._mission_global_args[i+1].append(self._np2cl(host_arg, self._varying_args[i+1]))
self._n_missions += 1
def run(self):
self._is_called = False
if self._n_missions == 0:
return
for j in range(len(self._cl_typenames)):
if j not in self._varying_args:
self._kernel.set_arg(j, self._default_args[j])
t1 = time.perf_counter()
self._mission_global_args[0] = np.array(self._mission_global_args[0])
self._mission_global_buffers[0] = self._buffer(self._mission_global_args[0].nbytes)
self._kernel.set_arg(0, self._mission_global_buffers[0])
for j in range(len(self._varying_args)):
self._mission_global_buffers[j] = self._buffer(np.array(self._mission_global_args[j]))
self._kernel.set_arg(self._varying_args[j], self._mission_global_buffers[j])
t2 = time.perf_counter()
cl.enqueue_nd_range_kernel(self._queue, self._kernel, (self._worksize[0]*self._n_missions,), None)
t3 = time.perf_counter()
cl.enqueue_copy(self._queue, self._mission_global_args[0], self._mission_global_buffers[0])
t4 = time.perf_counter()
if self._is_three and len(self._mission_global_args[0][0].shape) == 3 and self._mission_global_args[0][0].shape[2] == 4:
self._mission_global_args[0] = np.delete(self._mission_global_args[0], -1, axis=3)
if self._is_image and self._mission_global_args[0].dtype != 'uint8':
self._mission_global_args[0] = self._mission_global_args[0].astype(np.uint8)
self._host2device_time = t2 - t1
self._calculate_time = t3 - t2
self._device2host_time = t4 - t3
self._mission_finished = True
def __call__(self, *args):
if not self._args_settle:
self.set_args(*args)
self._is_called = True
if len(args) != len(self._cl_typenames)-1:
print("Error in GPU::__call__(self, *args):")
print("need", len(self._cl_typenames)-1, "arguments, but you passed", len(args))
exit(-1)
for i, arg in enumerate(args):
if arg is not None:
self._set_arg(i+1, arg)
t1 = time.perf_counter()
cl.enqueue_nd_range_kernel(self._queue, self._kernel, self._worksize, None)
t2 = time.perf_counter()
cl.enqueue_copy(self._queue, self._default_args_origine[0], self._dest_buffer)
t3 = time.perf_counter()
self._calculate_time = t2 - t1
self._device2host_time = t3 - t2
if self._is_image and self._default_args_origine[0].dtype != 'uint8':
self._default_args_origine[0] = self._default_args_origine[0].astype(np.uint8)
if self._is_three and len(self._default_args_origine[0].shape) == 3 and self._default_args_origine[0].shape[2] == 4:
return np.delete(self._default_args_origine[0], -1, axis=2)
else:
return self._default_args_origine[0]
def result(self, i):
if not self._mission_finished:
print("Error in GPU::result(i):")
print("mission donot finished!")
exit(-1)
return self._mission_global_args[0][i]
def _clear_program(self):
self._fname = ''
self._cl_typenames = []
self._kernel = None
self._program = None
self._program_settle = False
self._varying_args = []
self._clear_return()
def _clear_return(self):
self._worksize = None
self._is_three = False
self._default_args_origine = []
self._dest_buffer = None
self._default_args = []
self._return_settle = False
self._is_image = False
self._clear_args()
def _clear_args(self):
self._real_args = []
self._is_called = False
self._args_settle = False
self._host2device_time = 0
self._device2host_time = 0
self._calculate_time = 0
self.clear_missions()
def clear_missions(self):
self._n_missions = 0
self._mission_global_buffers = [None] * len(self._varying_args)
self._mission_global_args = [None] * len(self._varying_args)
for i in range(len(self._mission_global_args)):
self._mission_global_args[i] = []
self._mission_finished = False
def clear(self):
self._clear_program()
def device2host_time(self):
if not self._mission_finished and not self._is_called:
print("Error in GPU::device2host_time(self):")
print("There is no compution has done!")
exit(-1)
return self._device2host_time
def host2device_time(self):
if not self._mission_finished and not self._is_called:
print("Error in GPU::host2device_time(self):")
print("There is no compution has done!")
exit(-1)
return self._host2device_time
def calculate_time(self):
if not self._mission_finished and not self._is_called:
print("Error in GPU::calculate_time(self):")
print("There is no compution has done!")
exit(-1)
return self._calculate_time
def total_time(self):
if not self._mission_finished and not self._is_called:
print("Error in GPU::total_time(self):")
print("There is no compution has done!")
exit(-1)
return self._device2host_time + self._host2device_time + self._calculate_time
def print_performance(self):
if not self._mission_finished and not self._is_called:
print("Error in GPU::print_performance(self):")
print("There is no compution has done!")
exit(-1)
total_time = self._host2device_time + self._calculate_time + self._device2host_time
if self._is_called:
num = 1
else:
num = self._n_missions
print(self.device_name(), "has processed", num, "missions,")
print(" total time:", round(1000*total_time, 2), "ms")
print(" mission average time:", round(1000*total_time/num, 2), "ms")
print(" host -> device time:", round(1000*self._host2device_time, 2), "ms")
print(" calculate time:", round(1000*self._calculate_time, 2), "ms")
print(" device -> host time:", round(1000*self._device2host_time, 2), "ms")
print(" calculate/total ratio:", round(100*self._calculate_time/total_time, 2), "%")
print("calculate/transfer ratio:", round(100*self._calculate_time/(self._host2device_time+self._device2host_time), 2), "%")
def device_name(self):
return self._device.get_info(cl.device_info.NAME)
def print_info(self):
print("PyOpenCL Version:", cl.VERSION)
print("OpenCL Version:", cl.get_cl_header_version())
print()
print("Platform Name:", self._platform.get_info(cl.platform_info.NAME))
print("Platform Profile:", self._platform.get_info(cl.platform_info.PROFILE))
print("Platform Vendor:", self._platform.get_info(cl.platform_info.VENDOR))
print("Platform Version:", self._platform.get_info(cl.platform_info.VERSION))
print()
print("GPU Name:", self._device.get_info(cl.device_info.NAME))
print("OpenCL Version:", self._device.get_info(cl.device_info.OPENCL_C_VERSION))
print("GPU Vendor:", self._device.get_info(cl.device_info.VENDOR))
print("GPU Version:", self._device.get_info(cl.device_info.VERSION))
print("GPU Driver Version:", self._device.get_info(cl.device_info.DRIVER_VERSION))
print("Max Work Group Size:", self._device.get_info(cl.device_info.MAX_WORK_GROUP_SIZE))
print("Max Compute Units:", self._device.get_info(cl.device_info.MAX_COMPUTE_UNITS))
print("Max Work Item Size:", self._device.get_info(cl.device_info.MAX_WORK_ITEM_SIZES))
print("Local Memory Size:", self._device.get_info(cl.device_info.LOCAL_MEM_SIZE)/1024, 'KB')
def _get_number(self, string):
num = ''
for i_start in range(len(string)):
if str.isdigit(string[i_start]):
break
for i_end in range(i_start, len(string)):
if not str.isdigit(string[i_end]):
break
num_str = string[i_start:i_end]
if num_str == '':
return 1
else:
return int(num_str)
def _np2cl(self, arg, i):
counts = [2, 3, 4, 8, 16]
for base in self._cl_basenames:
for count in counts:
typename = base + str(count)
ptr_typename = typename + "*"
if ptr_typename in self._cl_typenames[i]:
arg = np.array(arg, dtype=eval('cl.cltypes.' + base))
if count == 3 and len(arg.shape) == 3 and arg.shape[2] == 3:
return np.insert(arg, 3, values=0, axis=2)
if typename in self._cl_typenames[i]:
if (not isinstance(arg, np.ndarray) and len(arg) != count) or \
( isinstance(arg, np.ndarray) and arg.size != count):
print('Error in GPU::__call__(self, *args):')
print(typename + ' need ' + str(count) + ' elements')
print('But you passed ' + str(len(arg)) + ' elements')
exit(-1)
func_name = 'cl.cltypes.make_' + typename
str_args = str(arg[0])
for j in range(1, count):
str_args += (', ' + str(arg[j]))
return eval(func_name + '(' + str_args + ')')
typename = base
ptr_typename = typename + '*'
if ptr_typename in self._cl_typenames[i]:
return np.array(arg, dtype=eval('cl.cltypes.' + typename))
if typename in self._cl_typenames[i]:
return eval('cl.cltypes.' + base + '(' + str(arg) + ')')
exit(-1)
def _set_arg(self, i, arg):
counts = [2, 3, 4, 8, 16]
for base in self._cl_basenames:
for count in counts:
typename = base + str(count)
ptr_typename = typename + "*"
if ptr_typename in self._cl_typenames[i]:
arg = np.array(arg, dtype=eval('cl.cltypes.' + base))
if count == 3 and len(arg.shape) == 3 and arg.shape[2] == 3:
arg = np.insert(arg, 3, values=0, axis=2)
if arg.nbytes == self._default_args_origine[i].nbytes:
cl.enqueue_copy(self._queue, self._real_args[i], arg)
else:
self._real_args[i] = self._buffer(arg)
self._kernel.set_arg(i, self._real_args[i])
return
if typename in self._cl_typenames[i]:
if (not isinstance(arg, np.ndarray) and len(arg) != count) or \
( isinstance(arg, np.ndarray) and arg.size != count):
print('Error in GPU::__call__(self, *args):')
print(typename + ' need ' + str(count) + ' elements')
print('But you passed ' + str(len(arg)) + ' elements')
exit(-1)
func_name = 'cl.cltypes.make_' + typename
str_args = str(arg[0])
for j in range(1, count):
str_args += (', ' + str(arg[j]))
self._real_args[i] = eval(func_name + '(' + str_args + ')')
self._kernel.set_arg(i, self._real_args[i])
return
typename = base
ptr_typename = typename + '*'
if ptr_typename in self._cl_typenames[i]:
arg = np.array(arg, dtype=eval('cl.cltypes.' + typename))
if arg.nbytes == self._default_args_origine[i].nbytes:
cl.enqueue_copy(self._queue, self._real_args[i], arg)
else:
self._real_args[i] = self._buffer(arg)
self._kernel.set_arg(i, self._real_args[i])
return
if typename in self._cl_typenames[i]:
self._real_args[i] = eval('cl.cltypes.' + base + '(' + str(arg) + ')')
self._kernel.set_arg(i, self._real_args[i])
return
exit(-1)
def _get_cl_typenames_in_kernel(self, file_name, function_name):
code = open(file_name).read()
it_function_name = code.find(function_name, 1)
if it_function_name == -1:
print("Error in GPU::setProgram(file_name, function_name):")
print("There are no function named \"", function_name, "\" in file \"", file_name, "\"")
exit(-1)
it_left_brace = code.find("(", it_function_name)
it_right_brace = code.find(")", it_left_brace)
variables = code[it_left_brace+1 : it_right_brace].split(",")
self._cl_typenames = []
self._varying_args = []
for j in range(len(variables)):
variable = variables[j]
if "__global" in variable:
self._varying_args.append(j)
i = variable.find('*')
if i != -1:
i -= 1
while variable[i] == ' ':
variable = variable[:i] + variable[i+1:]
i -= 1
for it_end in range(len(variable)-1, -1, -1):
if variable[it_end] != " ":
break
flag = False
for it_typename_end in range(it_end, -1, -1):
if variable[it_typename_end] == " ":
flag = True
if flag and variable[it_typename_end] != " ":
it_typename_end += 1
break
for it_typename_begin in range(it_typename_end-1, -1, -1):
if variable[it_typename_begin] == " ":
it_typename_begin += 1
break
self._cl_typenames.append(variable[it_typename_begin:it_typename_end])
def _dtype(self, cl_type):
remove_digits = str.maketrans('', '', digits)
cl_type = cl_type.translate(remove_digits)
return self._np_basenames[self._cl_basenames.index(cl_type.replace('*', ''))]
def _buffer(self, arg):
if isinstance(arg, int):
return cl.Buffer(self._context, cl.mem_flags.READ_WRITE, arg)
elif isinstance(arg, np.ndarray):
return cl.Buffer(self._context, cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR, hostbuf=arg)
def _write_only_buffer(self, nbytes):
return cl.Buffer(self._context, cl.mem_flags.WRITE_ONLY, nbytes)
def _read_only_buffer(self, arg):
if isinstance(arg, int):
return cl.Buffer(self._context, cl.mem_flags.READ_ONLY, arg)
elif isinstance(arg, np.ndarray):
return cl.Buffer(self._context, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf=arg)
def _type_transform(self, arg, cl_typename):
counts = [2, 3, 4, 8, 16]
for base in self._cl_basenames:
for count in counts:
typename = base + str(count)
ptr_typename = typename + "*"
if ptr_typename in cl_typename:
arg = np.array(arg, dtype=eval('cl.cltypes.' + base))
if count == 3 and len(arg.shape) == 3 and arg.shape[2] == 3:
arg = np.insert(arg, 3, values=1, axis=2)
t1 = time.perf_counter()
device_buffer = self._buffer(arg)
t2 = time.perf_counter()
self._host2device_time += (t2 - t1)
self._default_args_origine.append(arg)
return device_buffer
if typename in cl_typename:
if (not isinstance(arg, np.ndarray) and len(arg) != count) or \
( isinstance(arg, np.ndarray) and arg.size != count):
print('Error in GPU::set_args(self, *args):')
print(typename + ' need ' + str(count) + ' elements')
print('But you passed ' + str(len(arg)) + ' elements')
exit(-1)
func_name = 'cl.cltypes.make_' + typename
str_args = str(arg[0])
for i in range(1, count):
str_args += (', ' + str(arg[i]))
self._default_args_origine.append(0)
return eval(func_name + '(' + str_args + ')')
typename = base
ptr_typename = typename + '*'
if ptr_typename in cl_typename:
arg = np.array(arg, dtype=eval('cl.cltypes.' + typename))
t1 = time.perf_counter()
device_buffer = self._buffer(arg)
t2 = time.perf_counter()
self._host2device_time += (t2 - t1)
self._default_args_origine.append(arg)
return device_buffer
if typename in cl_typename:
self._default_args_origine.append(0)
return eval('cl.cltypes.' + base + '(' + str(arg) + ')')
exit(-1)
class AllGPUs:
def __init__(self):
Intel_GPUs = []
AMD_GPUs = []
Nvidia_GPUs = []
platforms = cl.get_platforms()
for i in range(len(platforms)):
devices = platforms[i].get_devices(cl.device_type.GPU)
for j in range(len(devices)):
if "intel" in devices[j].get_info(cl.device_info.NAME).lower():
Intel_GPUs.append(GPU(i, j))
elif "amd" in devices[j].get_info(cl.device_info.NAME).lower():
AMD_GPUs.append(GPU(i, j))
else:
Nvidia_GPUs.append(GPU(i, j))
self.GPUs = Nvidia_GPUs + Intel_GPUs + AMD_GPUs
self.n_GPUs = len(self.GPUs)
self._n_missions = 0
self.current_gpu = 0
self.mission_map_to_gpu = []
self._is_called = False
def set_program(self, file_name, function_name):
for gpu in self.GPUs:
gpu.set_program(file_name, function_name)
def set_return(self, *args):
for gpu in self.GPUs:
gpu.set_return(*args)
def set_args(self, *args):
for gpu in self.GPUs:
gpu.set_args(*args)
def add_mission(self, *args):
self.mission_map_to_gpu.append((self.current_gpu, self.GPUs[self.current_gpu]._n_missions))
self.GPUs[self.current_gpu].add_mission(*args)
self.current_gpu += 1
if self.current_gpu >= self.n_GPUs:
self.current_gpu = 0
self._n_missions += 1
def __call__(self, *args):
self._is_called = True
return self.GPUs[0](*args)
def run(self):
self._is_called = False
thread_list = []
for gpu in self.GPUs:
if gpu._n_missions > 0:
t = Thread(target=gpu.run, args=())
thread_list.append(t)
t.start()
for t in thread_list:
t.join()
def result(self, i):
gpu_mission = self.mission_map_to_gpu[i]
return self.GPUs[gpu_mission[0]].result(gpu_mission[1])
def clear(self):
for gpu in self.GPUs:
gpu.clear()
self._n_missions = 0
self.current_gpu = 0
self.mission_map_to_gpu = []
def clear_missions(self):
for gpu in self.GPUs:
gpu.clear_missions()
self._n_missions = 0
self.current_gpu = 0
self.mission_map_to_gpu = []
def print_performance(self):
total_time = 0
for gpu in self.GPUs:
if gpu._n_missions > 0:
total_time += gpu.total_time()
if self._is_called:
num = 1
else:
num = self._n_missions
print("Processed", num, "missions in", round(1000*total_time, 2), "ms")
print("Total time:", round(1000*total_time, 2), "ms")
print("Average time:", round(1000*total_time/self._n_missions, 2), "ms")
print("For each device:")
for gpu in self.GPUs:
if gpu._n_missions > 0:
print()
gpu.print_performance()
@staticmethod
def list_devices():
platforms = cl.get_platforms()
for i in range(len(platforms)):
devices = platforms[i].get_devices(cl.device_type.GPU)
for j in range(len(devices)):
print("(", i, ",", j, "):", devices[j].get_info(cl.device_info.NAME))
@staticmethod
def print_info():
print("PyOpenCL Version:", cl.VERSION)
print("OpenCL Head Version:", cl.get_cl_header_version())
print()
platforms = cl.get_platforms()
print("Platforms Amount:", len(platforms))
for plat in platforms:
print("Platform:", plat.get_info(cl.platform_info.NAME))
print("--Platform Profile:", plat.get_info(cl.platform_info.PROFILE))
print("--Platform Vendor:", plat.get_info(cl.platform_info.VENDOR))
print("--Platform Version:", plat.get_info(cl.platform_info.VERSION))
devices = plat.get_devices(cl.device_type.GPU)
print("--GPU Amount:", len(devices))
for device in devices:
print("--GPU:", device.get_info(cl.device_info.NAME))
print("----OpenCL Version:",device.get_info(cl.device_info.OPENCL_C_VERSION))
print("----GPU Vendor:",device.get_info(cl.device_info.VENDOR))
print("----GPU Version:",device.get_info(cl.device_info.VERSION))
print("----GPU Driver Version:",device.get_info(cl.device_info.DRIVER_VERSION))
print("----Max Work Group Size:",device.get_info(cl.device_info.MAX_WORK_GROUP_SIZE))
print("----Max Compute Units:",device.get_info(cl.device_info.MAX_COMPUTE_UNITS))
print("----Max Work Item Size:",device.get_info(cl.device_info.MAX_WORK_ITEM_SIZES))
print("----Local Memory Size:",device.get_info(cl.device_info.LOCAL_MEM_SIZE)/1024, 'KB')
print()