-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetectSmall.py
465 lines (378 loc) · 21.4 KB
/
detectSmall.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import argparse
from sys import platform
from models import * # set ONNX_EXPORT in models.py
from utils.datasets import *
from utils.utils import *
import imutils
import time
from multiprocessing.dummy import Pool as ThreadPool
# Tennis libraries
from tennis.lib_patches import *
from tennis.tennis import *
# Zoom library
from zoom.zoom import zoomin,increase_brightness,getZoomCentroid,getCroppedImage,zoom_ball1,zoom_impact,zoom_player
# Audio function
from addAudio import addAudio
# python3 detectSmall.py --source video_path.mp4 --cfg cfg/yolov3.cfg --weights weights/yolov3.pt --classes 0 32 38 --iou-thres 0.1 --view-img
def detect(save_img=False):
img_size = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
zoom,zoom_object,out, source, weights, half, view_img, save_txt = opt.zoom,opt.zoom_object,opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# Initialize the device
device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device)
if os.path.exists(out)==False:
os.makedirs(out) # make new output folder
# Initialize Tennis State
gameState = TennisState(maxBalls = 8)
readFrame = 0
# Initialize model
model = Darknet(opt.cfg, img_size)
# Load weights
attempt_download(weights)
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'])
else: # darknet format
load_darknet_weights(model, weights)
# Second-stage classifier
classify = False
if classify:
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()
# Export model to device Eval mode
model.to(device).eval()
# Fuse Conv2d + BatchNorm2d layers
# model.fuse()
# Export mode
if ONNX_EXPORT:
model.fuse()
img = torch.zeros((1, 3) + img_size) # (1, 3, 320, 192)
f = opt.weights.replace(opt.weights.split('.')[-1], 'onnx') # *.onnx filename
torch.onnx.export(model, img, f, verbose=False, opset_version=11)
# Validate exported model
import onnx
model = onnx.load(f) # Load the ONNX model
onnx.checker.check_model(model) # Check that the IR is well formed
# print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph
return
# Half precision
half = half and device.type != 'cpu' # half precision only supported on CUDA
if half:
model.half()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=img_size)
else:
save_img = True
dataset = LoadImages(source, img_size=img_size, patch=opt.patch, overlap=opt.overlap)
# Get names and colors
names = load_classes(opt.names)
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# SlowMotion count
count = 0
# Smooth player speed
speed = 0
# player shifted frame
player = None
# last frame zoomed img centroid
lastCentroid = (0,0)
# motion weight
motionWeight = 0.9
# Prediction on raw image
if (opt.patch == 0):
# Run inference
t0 = time.time()
# im0s -> real img
# img -> transformed img (padded .. right size ...)
for path, img, im0s, vid_cap in dataset:
# Initialize Video config
fps = int(vid_cap.get(cv2.CAP_PROP_FPS))
totalFrames = int(vid_cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Detect tennis court on the first frame and Initialize the heart beart
if gameState.courtIsDetected == False:
gameState.court = detectTennisCourt(im0s)
gameState.courtIsDetected = True
gameState.scaleDistance = getEuclideanDistance(gameState.court[0][0], gameState.court[2][0])
print("Scale distance : {}".format(gameState.scaleDistance) )
# gameState.leftHeartRates, gameState.rightHeartRates = readHeartRate(totalFrames, fps)
print("Video total number of frames : {}".format(int(vid_cap.get(cv2.CAP_PROP_FRAME_COUNT))))
gameState.motionDetectionCorners = (200, int(7*im0s.shape[0] / 24), im0s.shape[1] -200, 6 * int(im0s.shape[0]/7))
print("Motion Detection left-top corners : {}, {}".format(200,int(7*im0s.shape[0] / 24)))
# Allocate the image tensor to the chosen device
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
# Resize the tensor
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = torch_utils.time_synchronized()
pred = model(img, augment=opt.augment)[0]
# print(pred)
t2 = torch_utils.time_synchronized()
# to float
if half:
pred = pred.float()
# print("00000000 " , opt.classes)
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,
multi_label=False, classes=opt.classes, agnostic=opt.agnostic_nms)
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i]
else:
p, s, im0 = path, '', im0s
zoom_im0 = im0.copy()
save_path = str(Path(out) / Path(p).name)
s += '%gx%g ' % img.shape[2:] # print string
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
im0Copy = im0.copy() # Image copy used by motion detection
leftPersons = [] # potential left player
rightPersons = [] # potential right player
# Iterate over all detections
# *xyxy - bounding
for *xyxy, conf, cls in det:
if names[int(cls)] == "person" and getArea(xyxy) > 10000:
# If the detected person is in the left side of the image
if (getRectCenter(xyxy))[0] < im0.shape[1] / 2:
leftPersons.append((xyxy,conf,cls))
else:
rightPersons.append((xyxy,conf,cls))
# Plot any other detected objects
elif names[int(cls)] != "person" and opt.show:
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
# Update the ball position and trace
if( opt.tracing and readFrame > START_BALL_TRACK_FRAME):
startBall = torch_utils.time_synchronized()
contours = getMotionContours(im0Copy,True,gameState.motionDetectionCorners)
gameState.updateBallPositionFromMotion(im0, contours,readFrame, showContours = opt.contours)
endBall = torch_utils.time_synchronized()
print("[INFO] Updated ball position. ({:.3f}s)".format(endBall - startBall))
# Update the player last hit speed
gameState.updateHitSpeed(im0,readFrame)
# Update the player position and display the player bounding box on image
gameState.identifyPlayersAndPlot(im0,leftPersons, rightPersons, colors, False)
# Update player heartbeat rate every second
# gameState.updateHeartRate(im0, readFrame,fps)
# Update time watch
gameState.updateTimeWatch(im0, fps)
if zoom:
zoom,im0,count,lastCentroid = zoomin(zoom,im0,gameState.players[0]['box'],count,lastCentroid, motionWeight) #crop image
elif zoom and zoom_object == 'ball':
zoom, zoom_im0,count = zoom_ball1(zoom,zoom_im0,count)
elif zoom and zoom_object == 'impact':
zoom,zoom_im0,count = zoom_impact(zoom,zoom_im0,count)
readFrame +=1
"""
# Write results
for *xyxy, conf, cls in det:
if save_txt: # Write to file
with open(save_path + '.txt', 'a') as file:
file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (names[int(cls)], conf)
if (gameState.clearDetections(xyxy, conf, names[int(cls)])):
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
"""
# Update state after all detections processing
# print("[INFO] Update Game State ...")
# for index, distance in enumerate(gameState.distances):
# print("[INFO] Player {} : {} m".format(index,distance))
gameState.lastFrameBalls = gameState.currentFrameBalls
gameState.currentFrameBalls = []
# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, t2 - t1))
# Stream results
if view_img:
if zoom and opt.tracing:
im0_resized = imutils.resize(im0, width=1080)
elif zoom:
im0_resized = imutils.resize(zoom_im0, width=1080)
else:
im0_resized = imutils.resize(im0, width=1080)
cv2.imshow(p, im0_resized)
#cv2.waitKey(0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
count = 0 # writing count
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fps = vid_cap.get(cv2.CAP_PROP_FPS)
SlowM_80 = 12
SlowM_20 = 48
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (zoom_im0.shape[1], zoom_im0.shape[0]))
if zoom and opt.tracing:
fps = vid_cap.get(cv2.CAP_PROP_FPS)
write_traced_zoom = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (im0.shape[1], im0.shape[0]))
if zoom and opt.tracing:
write_traced_zoom.write(im0)
elif zoom:
vid_writer.write(zoom_im0)
else:
vid_writer.write(im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
if save_txt or save_img:
# print('Results saved to %s' % os.getcwd() + os.sep + out)
if platform == 'darwin': # MacOS
os.system('open ' + out + ' ' + save_path)
# print('Done. (%.3fs)' % (time.time() - t0))
"""
add audio function here
"""
if opt.audioVideoPath:
print('triggered')
audioPath = opt.audioVideoPath
speed = opt.speed
addAudio(source,audioPath,speed)
# Prediction on image patches. Use --patch and --overlap arguments to use patch inference.
else:
# Run inference
t0 = time.time()
# im0s -> real img
# img -> transformed img (padded .. right size ...)
for path, im0s, vid_cap in dataset:
# Initialize patches array
patches, patchesRelativePos = imageToPatches(im0s, opt.patch, opt.overlap)
# Initialize detection boxes array
patchesDetections = []
timeStartFullImg = time.time()
for index, patch in enumerate(patches):
# Patch processing (adapt to the the network size). See datasets.py.
# Padded resize
img = letterbox(patch, new_shape=img_size)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
img = np.ascontiguousarray(img)
# Initialize inference
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = torch_utils.time_synchronized()
pred = model(img, augment=opt.augment)[0]
t2 = torch_utils.time_synchronized()
# to float
if half:
pred = pred.float()
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres,multi_label=False, classes=opt.classes, agnostic=opt.agnostic_nms)
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i]
else:
p, s, im0 = path, '', patch
save_path = str(Path(out) / Path(p).name)
s += '%gx%g ' % img.shape[2:] # print string
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
# Write results
for *xyxy, conf, cls in det:
if save_txt: # Write to file
with open(save_path + '.txt', 'a') as file:
file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
if save_img or view_img: # Add bbox to image
if gameState.clearPatchDetections(index,xyxy, conf, names[int(cls)]):
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
# Plot ball tracer
plot_ball_history(gameState.balls,im0)
# Print patch time (inference + NMS)
patches[index] = im0 #Update patches array
# print('Patch inference %d/%d %sDone. (%.3fs)' % (index,len(patches),s, t2 - t1))
# Update state after all detections processing
# print("[INFO] Update Game state ...")
gameState.lastFrameBallsPatch[index] = gameState.currentFrameBallsPatch[index]
gameState.currentFrameBallsPatch[index] = []
fullImg = patchesRelToImage(patches, patchesRelativePos,im0s.shape[0], im0s.shape[1])
# print('Full Image Done. (%.3fs)' % (time.time() - timeStartFullImg))
# Stream results
if view_img:
fullImg_resized = imutils.resize(fullImg, width=1920,height=1080)
cv2.imshow(p, fullImg_resized)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, fullImg)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fps = vid_cap.get(cv2.CAP_PROP_FPS)
SlowM_80 = 12
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
vid_writer.write(fullImg)
if save_txt or save_img:
# print('Results saved to %s' % os.getcwd() + os.sep + out)
if platform == 'darwin': # MacOS
os.system('open ' + out + ' ' + save_path)
# print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov3-spp.cfg', help='*.cfg path')
parser.add_argument('--names', type=str, default='data/coco.names', help='*.names path')
parser.add_argument('--weights', type=str, default='weights/yolov3-spp-ultralytics.pt', help='weights path')
parser.add_argument('--source', type=str, default='data/samples', help='source') # input file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=512, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--half', action='store_true', help='half precision FP16 inference')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS.')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--patch', type=int, default=0, help='patch size used for patches-based inference. ') # patch 1000 and overlap 200
parser.add_argument('--overlap', type=int, help='overlap length used for patches-based inference. Should be greater or equal to the biggest relevant object')
parser.add_argument('--tracing', action='store_true', help='Enable ball tracing')
parser.add_argument('--show', action='store_true', help='Enable bounding boxes display from object detection')
parser.add_argument('--contours', action='store_true', help='Enable contours display from motion detection')
parser.add_argument('--zoom',action="store_true", help='zoom or not to zoom [True/False]')
parser.add_argument('--zoom_object',type=str,default='object',help='enter object to zoom into[object/player/ball]')
# parser.add_argument("--videoPath", help="path to the stitched video file")
parser.add_argument("--audioVideoPath", help="path to one of the original video to retrieve its audio channel")
parser.add_argument('--speed',type=int,default=1,help='speed of video when adding audio')
opt = parser.parse_args()
with torch.no_grad():
detect()